CN108832221B - 新能源车辆串联式热管理管路的控制方法和装置 - Google Patents

新能源车辆串联式热管理管路的控制方法和装置 Download PDF

Info

Publication number
CN108832221B
CN108832221B CN201810371252.3A CN201810371252A CN108832221B CN 108832221 B CN108832221 B CN 108832221B CN 201810371252 A CN201810371252 A CN 201810371252A CN 108832221 B CN108832221 B CN 108832221B
Authority
CN
China
Prior art keywords
temperature difference
battery
command
cooling liquid
liquid interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810371252.3A
Other languages
English (en)
Other versions
CN108832221A (zh
Inventor
陆群
张宇
刘天鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CH Auto Technology Co Ltd
Original Assignee
CH Auto Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CH Auto Technology Co Ltd filed Critical CH Auto Technology Co Ltd
Priority to CN201810371252.3A priority Critical patent/CN108832221B/zh
Publication of CN108832221A publication Critical patent/CN108832221A/zh
Application granted granted Critical
Publication of CN108832221B publication Critical patent/CN108832221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

本发明实施方式公开了新能源车辆串联式热管理管路的控制方法和装置。该方法包括:温度差检测元件检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。本发明实施方式实现串联式热管理系统管路方案,保证了流量均一性,而且利用换向阀对串联式水路的流向进行控制,从而减少电池系统温差。

Description

新能源车辆串联式热管理管路的控制方法和装置
技术领域
本发明涉及汽车技术领域,更具体地,涉及新能源车辆串联式热管理管路的控制方法和装置。
背景技术
能源短缺、石油危机和环境污染愈演愈烈,给人们的生活带来巨大影响,直接关系到国家经济和社会的可持续发展。世界各国都在积极开发新能源技术。降低石油消耗、低污染、低噪声的新能源汽车,被认为是解决能源危机和环境恶化的重要途径。
新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车通常包括四大类型,混合动力电动汽车(HEV)、纯电动汽车(BEV)、燃料电池电动汽车(FCEV)和其他新能源(如超级电容器、飞轮等高效储能器)汽车等。
在新能源汽车中,动力电池驱动电动机产生动力,因此动力电池的性能及寿命是影响汽车性能的关键因素。由于车辆上空间有限,电池在工作中产生大量热量受空间影响而累积,造成各处温度不均而影响电池单体的一致性,从而降低电池充放电循环效率,影响电池的功率和能量发挥,严重时还将导致热失控,影响系统的安全性与可靠性。为了使动力电池发挥最佳性能和寿命,需要优化电池组的结构,并采用热管理系统来保持电池温度处于适宜的区间,并保证电池各部分温度均衡。热管理系统通过系统管路为各个电池组水室提供冷却液实现对电池组的散热和制冷。
一般认为,动力电池串联冷却系统会造成很大的温差,所以不适用于较大规模的电池模组。然而,并联冷却系统的流量控制是一个工程难题,特别是为复杂电池组设计热管理管路,很难保证流量均一性,而且流量均一性在实际使用中会随着系统管路弯折、压迫或是内部结垢等原因而被破坏。
发明内容
本发明的目的是提出一种新能源车辆串联式热管理管路的控制方法和装置,从而提高流量均一性。
本发明实施方案包括:
一种新能源车辆串联式热管理管路的控制方法,所述热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
温度差检测元件检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差小于等于所述预定温差门限值时,所述换向阀控制器生成保持命令。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差大于所述预定温差门限值时,所述换向阀控制器生成所述换向命令,并在生成所述换向命令后的预定时间内持续生成保持命令。
在一个实施方式中,在基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口之后,该方法还包括:
当所述电池温度差出现先减小再增大的变化且当所述电池温度差再次大于所述预定温差门限值时,所述换向阀控制器生成第二换向命令;
所述换向阀基于所述第二换向命令将水路方向变换为从所述第一冷却液接口流到所述第二冷却液接口。
一种新能源车辆串联式热管理管路的控制装置,所述热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该控制装置包括:
温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
一种新能源车辆串联式热管理管路的控制方法,所述热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
温度差检测元件检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差小于等于所述预定温差门限值时,所述换向阀控制器生成保持命令。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差大于所述预定温差门限值时,所述换向阀控制器生成换向命令,并在生成所述换向命令后的预定时间内持续生成保持命令。
在一个实施方式中,在基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口之后,该方法还包括:
当所述电池温度差出现先减小再增大的变化且当所述电池温度差再次大于所述预定温差门限值时,所述换向阀控制器生成第二换向命令;
所述换向阀基于所述第二换向命令将水路方向变换为从所述第一冷却液接口流到所述第二冷却液接口。
一种新能源车辆串联式热管理管路的控制装置,所述热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;所述装置包括:
温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
从上述技术方案可以看出,本发明实施方式的热管理管路包括:水泵;加热元件,加热元件的入水口与水泵的出水口串联;包含多个电池的电池组,包含布置在电池组的第一侧的第一冷却液接口和布置在第一侧的相对侧的第二冷却液接口,电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与加热元件的出水口、水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:温度差检测元件检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;换向阀控制器基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;换向阀基于保持命令保持水路方向为从第一冷却液接口流到第二冷却液接口,并基于换向命令将水路方向变换为从第二冷却液接口流到第一冷却液接口。因此,本发明实施方式实现串联式热管理系统管路方案,保证了流量均一性。
而且,本发明实施方式利用换向阀对串联式水路的流向进行控制,从而减少电池系统温差。
附图说明
以下附图仅对本发明做示意性说明和解释,并不限定本发明的范围。
图1为根据本发明新能源车辆串联式热管理系统的第一示范性结构图。
图2为图1中换向阀执行换向操作后的热管理水路示意图。
图3为根据本发明新能源车辆串联式热管理系统的第一控制流程示意图。
图4为根据本发明新能源车辆串联式热管理系统的第二示范性结构图。
图5为图4中换向阀执行换向操作后的热管理水路示意图。
图6为根据本发明新能源车辆串联式热管理系统的第二控制流程示意图。
具体实施方式
为了对发明的技术特征、目的和效果有更加清楚的理解,现对照附图说明本发明的具体实施方式,在各图中相同的标号表示相同的部分。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
申请人发现:当前新能源车辆的热管理系统通常采用并联冷却系统,难保证流量均一性,而且流量均一性在实际使用中会随着系统管路弯折、压迫或是内部结垢等原因而被破坏。
申请人还发现:目前现有的串联式管路方案,其内部液体的流向不可改变,这造成目前使用串联热管理系统方案的电池模组,其内部温差难以得到有效的控制,造成温差过大。极端情况下,由于管路各处的温度不同,热管理系统甚至会加大电池系统原有的温差,对电池系统的温度一致性造成不良影响。
本发明实施方式中提出一种新能源车辆串联式热管理系统,克服并联冷却系统的流量非均一性问题。
而且,在本发明实施方式中,在电池热管理系统需要工作时,利用换向阀根据管路各处温度差的变化调节管路流向,实现降低电池内部温差的目的。
图1为根据本发明新能源车辆串联式热管理系统的第一示范性结构图。
如图1所示,该系统包括:
水泵P1;
加热元件;加热元件的入水口与水泵P1的出水口串联;
包含多个电池的电池组,包含布置在电池组的第一侧的第一冷却液接口K和布置在第一侧的相对侧的第二冷却液接口M;电池组中用于加热各个电池的各个水室的各个管路相互串联(比如,在图1中,水室1、水室2到水室n的管路相互串联,其中水室1连接第一冷却液接口K,水室n连接第二冷却液接口M,n为电池的个数);
换向阀V1,与加热元件的出水口、水泵P1的回水口、第一冷却液接口K和第二冷却液接口M分别连接;
温度差检测元件,用于检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;
换向阀控制器,用于基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中换向阀基于保持命令保持水路方向为从第一冷却液接口K流到第二冷却液接口M,并基于换向命令将水路方向变换为从第二冷却液接口M流到第一冷却液接口K。
可见,本发明实施方式的电池组包含多个电池,电池组中用于加热各个电池的各个水室的各个管路相互串联,因此本发明实现了一种新能源车辆串联式热管理系统,可以克服并联冷却系统的流量非均一性问题。
在一个实施方式中,换向阀V1可以实施为电磁换向阀、机动换向阀、电液换向阀或手动换向阀,等等。
优选的,换向阀V1实施为二位四通电磁换向阀、二位六通电磁换向阀、三位四通电磁换向阀或三位六通电磁换向阀,等等。
以上示范性示出换向阀的具体实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
在一个实施方式中,换向阀控制器,用于当电池温度差小于等于预定温差门限值时生成保持命令,当电池温度差大于预定温差门限值时,生成换向命令,并在生成换向命令后的预定时间内持续生成保持命令。因此,通过在生成换向命令后的预定时间内持续生成保持命令,可以防止换向阀的频发切换。
优选的,在基于换向命令将水路方向变换为从第二冷却液接口M流到第一冷却液接口K之后,当电池温度差出现先减小再增大的变化且当电池温度差再次大于预定温差门限值时,换向阀控制器再生成第二换向命令,换向阀基于第二换向命令将水路方向变换为从第一冷却液接口K流到第二冷却液接口M。
优选的,加热元件可以具体实施为PTC加热器。当加热元件具体实施为PTC加热器时,图1所示的新能源车辆的电池水路包含P1水泵、加热元件、换向阀V1、电池组、管路,其中电池组包含多个电池,电池组中用于加热各个电池的各个水室的各个管路相互串联。此时,工作过程如下:
在热管理系统启动的初始时刻,水泵P1和PTC加热器工作,同时换向阀V1保持初始状态,热管理系统可以为电池组提供热量。此时,冷却液的流动次序如图1所示,具体为:水泵P1的出水口→PTC加热器→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。在图1所示结构中,冷却液首先在PTC加热器中获得加热,然后先流经电池组的第一冷却液接口K,再流经电池组的第二冷却液接口M。即电池组的第一冷却液接口K侧的电池首先获得加热,然后才是电池组的第二冷却液接口M侧的电池获得加热。经过一段时间加热后,由于串联管路内部温度的不均匀性,电池组内部也出现了温度不均匀性,表现为电池组进水口附近温度高而出水口附近温度低,即第一冷却液接口K侧的电池温度相对较高,而第二冷却液接口M侧的电池温度相对较低。
温度差检测元件持续检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差(比如,检测最接近第一冷却液接口K的电池与最接近第二冷却液接口的电池之间的电池温度差)。其中,该电池温度差可以被理解为绝对值,即(第一冷却液接口K侧的电池温度-第二冷却液接口M侧之间的电池)的绝对值。
当温度差检测元件检测到的电池温度差(简称温差)小于等于预定的门限值a时,换向阀控制器生成保持命令,此时换向阀不执行换向操作。当温度差检测元件检测到的温差大于预定的门限值a时,换向阀控制器生成换向命令,将换向阀V1换向,使电池组出入水口互换。
图2为图1中换向阀执行换向操作后的热管理水路示意图。
由图2可见,被执行换向操作之后,冷却液的流动次序被调整为:水泵P1的出水口→加热元件(比如PTC加热器)→换向阀V1的A口→换向阀V1的D口→电池组的第二冷却液接口M→电池组的第一冷却液接口K→换向阀V1的C口→换向阀V1的B口→水泵P1的回水口。此时,冷却液首先在PTC加热器中获得加热,然后流经电池组的第二冷却液接口M,再流经电池组的第一冷却液接口K。即电池组的第二冷却液接口M侧电池首先获得加热,然后才是电池组的第一冷却液接口K侧的电池获得加热。经过一段时间加热后,由于串联管路内部温度的不均匀性,如此运行一段时间后,电池组内部的电池温差将减小(即第一冷却液接口K侧的电池温度与第二冷却液接口M侧的电池温度逐步接近),保持图2所示状态继续运行。然后,温差将变为零,即第一冷却液接口K侧的电池温度与第二冷却液接口M侧的电池温度相同,此时保持此状态继续运行,温差将从零开始再增大(第二冷却液接口M侧的电池温度逐渐开始大于第一冷却液接口M侧的电池温度),当温差达到大于特定门限值a时,再执行换向操作,如此往复,直至热管理系统被关闭。
基于上述描述,本发明实施方式提出了一种新能源车辆串联式热管理管路的控制方法。热管理管路包括:水泵;加热元件,加热元件的入水口与水泵的出水口串联;包含多个电池的电池组,包含布置在电池组的第一侧的第一冷却液接口和布置在第一侧的相对侧的第二冷却液接口,电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与加热元件的出水口、水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
第一步:温度差检测元件检测所述电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;
第二步:换向阀控制器基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
第三步:换向阀基于保持命令保持水路方向为从第一冷却液接口流到第二冷却液接口,并基于换向命令将水路方向变换为从第二冷却液接口流到第一冷却液接口。
在一个实施方式中,换向阀控制器基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:当电池温度差小于等于预定温差门限值时,换向阀控制器生成保持命令。
在一个实施方式中,换向阀控制器基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:当电池温度差大于所述预定温差门限值时,换向阀控制器生成换向命令,并在生成换向命令后的预定时间内持续生成保持命令。
在一个实施方式中,在基于换向命令将水路方向变换为从第二冷却液接口流到第一冷却液接口之后,该方法还包括:当电池温度差出现先减小再增大的变化且当电池温度差再次大于所述预定温差门限值时,换向阀控制器生成第二换向命令;换向阀基于第二换向命令将水路方向变换为从第一冷却液接口流到第二冷却液接口。
图3为根据本发明新能源车辆串联式热管理系统的第一控制流程示意图。
图3所示流程可以应用与图1和图2所示的切换过程。该加热元件可以具体实施为PTC加热器。
如图3所示,该方法包括:
步骤301:检测电池组的温度T,比如温度T可以为电池组的平均温度。
步骤302:当电池组的温度T大于预定门限值A时,可以认定不需要针对电池组执行加热处理,此时执行步骤308及其后续步骤;当电池组的温度T小等于预定门限值A时,可以认定需要针对电池组执行加热处理,此时执行步骤303及其后续步骤。
步骤303:开启水泵P1,并启动PTC加热器。此时,水泵P1和PTC加热器工作,同时换向阀V1保持初始状态,热管理系统可以为电池组提供热量。此时,冷却液的流动次序为水泵P1的出水口→PTC加热器→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。冷却液首先在PTC加热器中获得加热,然后先流经电池组的第一冷却液接口K,再流经电池组的第二冷却液接口M。即电池组的第一冷却液接口K侧电池首先获得加热,然后才是电池组的第二冷却液接口M侧的电池获得加热。经过一段时间加热后,由于串联管路内部温度的不均匀性,电池组内部也出现了温度不均匀性,表现为电池组进水口附近温度高而出水口附近温度低,即第一冷却液接口K侧的电池温度高,而第二冷却液接口M侧的电池温度低。
步骤304:温度差检测元件持续检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差dT(比如,检测最接近第一冷却液接口K的电池与检测最接近第二冷却液接口的电池之间的电池温度差)。其中,该电池温度差dT被理解为绝对值,即(第一冷却液接口K侧的电池温度-第二冷却液接口M侧之间的电池)的绝对值。
步骤305:当温度差检测元件检测到的温差dT小于预定的门限值B时,换向阀控制器生成保持命令,并执行步骤307:当温度差检测元件检测到的温差dT大于等于预定的门限值a时,换向阀控制器生成换向命令,并执行步骤306;
步骤306:换向阀V1基于换向命令换向,使电池组出入水口互换。即,冷却液的流动次序为水泵P1的出水口→PTC加热器→换向阀V1的A口→换向阀V1的D口→电池组的第二冷却液接口M→电池组的第一冷却液接口K→换向阀V1的C口→换向阀V1的B口→水泵P1的回水口。然后,返回执行步骤301。
步骤307:换向阀V1基于保持命令不执行换向操作,保持V1方向,即冷却液的流动次序依然为水泵P1的出水口→PTC加热器→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。然后,返回执行步骤301。
步骤308:关闭PTC,关闭水泵P1,并返回步骤301。
基于上述描述,本发明还提出一种新能源车辆串联式热管理管路的控制装置。热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该控制装置包括:温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
应该指出,图1和图2所示仅为一种本发明的典型结构,所有以串联水路加换向阀的方案,均应被视为包含于发明实施方式。而且,图1和图2所示工况仅为一种典型工况,所有以串联水路加换向阀的方案,且无论热管理系统具有加热、制冷、或仅具有液体循环功能,均应被视为包含于发明实施方式。
图4为根据本发明新能源车辆串联式热管理系统的第二示范性结构图。
如图4所示,该系统包括:
水泵P1;
致冷元件;致冷元件的入水口与水泵P1的出水口串联;
包含多个电池的电池组,包含布置在电池组的第一侧的第一冷却液接口K和布置在第一侧的相对侧的第二冷却液接口M;电池组中用于冷却各个电池的各个水室的各个管路相互串联(比如,在图4中,水室1、水室2到水室n的管路相互串联,其中水室1连接第一冷却液接口K,水室n连接第二冷却液接口M,n为电池的个数);
换向阀V1,与致冷元件的出水口、水泵P1的回水口、第一冷却液接口K和第二冷却液接口M分别连接;
温度差检测元件,用于检测电池组中位于第一侧的电池与位于相对侧的电池之间的电池温度差;
换向阀控制器,用于基于电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中换向阀基于保持命令保持水路方向为从第一冷却液接口K流到第二冷却液接口M,并基于换向命令将水路方向变换为从第二冷却液接口M流到第一冷却液接口K。
可见,本发明实施方式的电池组包含多个电池,电池组中用于冷却各个电池的各个水室的各个管路相互串联,因此本发明实现了一种新能源车辆串联式热管理系统,可以克服并联冷却系统的流量非均一性问题。
在一个实施方式中,换向阀V1可以实施为电磁换向阀、机动换向阀、电液换向阀或手动换向阀,等等。
优选的,换向阀V1实施为二位四通电磁换向阀、二位六通电磁换向阀、三位四通电磁换向阀或三位六通电磁换向阀,等等。
以上示范性示出换向阀的具体实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
在一个实施方式中,换向阀控制器,用于当电池温度差小于等于预定温差门限值时生成保持命令,当电池温度差大于预定温差门限值时,生成换向命令,并在生成换向命令后的预定时间内持续生成保持命令。
因此,通过在生成换向命令后的预定时间内持续生成保持命令,可以防止换向阀的频发切换。
优选的,致冷元件可以具体实施为冷水机。当加热元件具体实施为冷水机时,图4所示的新能源车辆的电池水路包含P1水泵、冷水机、换向阀V1、电池组、管路,其中电池组包含多个电池,电池组中用于冷却各个电池的各个水室的各个管路相互串联。此时,工作过程如下:
在热管理系统启动的初始时刻,水泵P1和冷水机工作,同时换向阀V1保持初始状态,热管理系统可以为电池组提供冷媒。此时,冷却液的流动次序如图4所示,具体为:水泵P1的出水口→冷水机→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。此时,冷却液首先在冷水机中被冷却,然后先流经电池组的第一冷却液接口K,再流经电池组的第二冷却液接口M。即电池组的第一冷却液接口K侧电池首先被冷却,然后才是电池组的第二冷却液接口M侧的电池获得冷却。经过一段时间冷却后,由于串联管路内部温度的不均匀性,电池组内部也出现了温度不均匀性,表现为电池组进水口附近温度低而出水口附近温度高,即第一冷却液接口K侧的电池温度相对较低,而第二冷却液接口M侧的电池温度相对较高。
温度差检测元件持续检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差(比如,检测最接近第一冷却液接口K的电池与最接近第二冷却液接口的电池之间的电池温度差)。其中,该电池温度差可以被理解为绝对值,即(第一冷却液接口K侧的电池温度-第二冷却液接口M侧之间的电池)的绝对值。
当温度差检测元件检测到的电池温度差(简称温差)小于等于预定的门限值a时,换向阀控制器生成保持命令,此时换向阀不执行换向操作。当温度差检测元件检测到的温差大于预定的门限值a时,换向阀控制器生成换向命令,将换向阀V1换向,使电池组出入水口互换。
图5为图4中换向阀执行换向操作后的热管理水路示意图。
由图5可见,被执行换向操作之后,冷却液的流动次序被调整为:水泵P1的出水口→冷水机→换向阀V1的A口→换向阀V1的D口→电池组的第二冷却液接口M→电池组的第一冷却液接口K→换向阀V1的C口→换向阀V1的B口→水泵P1的回水口。此时,冷却液首先在冷水机中获得冷却,然后流经电池组的第二冷却液接口M,再流经电池组的第一冷却液接口K。即电池组的第二冷却液接口M侧电池首先获得冷却,然后才是电池组的第一冷却液接口K侧的电池获得冷却。经过一段时间冷却后,由于串联管路内部温度的不均匀性,如此运行一段时间后,电池组内部的电池温差将减小(即第一冷却液接口K侧的电池温度与第二冷却液接口M侧的电池温度逐步接近),保持此状态继续运行。然后温差将变为零,即第一冷却液接口K侧的电池温度与第二冷却液接口M侧的电池温度相同,此时保持此状态继续运行,温差将从零开始再增大(第二冷却液接口M侧的电池温度逐渐开始低于第一冷却液接口M侧的电池温度),当温差达到大于特定门限值a时,再执行换向操作,如此往复,直至热管理系统被关闭。
基于上述描述,本发明还提出了一种新能源车辆串联式热管理管路的控制方法。所述热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
第一步:温度差检测元件检测电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差。
第二步:换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令。
第三步:所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:当所述电池温度差小于等于所述预定温差门限值时,所述换向阀控制器生成保持命令。
在一个实施方式中,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:当所述电池温度差大于所述预定温差门限值时,所述换向阀控制器生成换向命令,并在生成所述换向命令后的预定时间内持续生成保持命令。
在一个实施方式中,在基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口之后,该方法还包括:当所述电池温度差出现先减小再增大的变化且当所述电池温度差再次大于所述预定温差门限值时,所述换向阀控制器生成第二换向命令;所述换向阀基于所述第二换向命令将水路方向变换为从所述第一冷却液接口流到所述第二冷却液接口。
图6为根据本发明新能源车辆串联式热管理系统的第二控制流程示意图。
图6所示流程可以应用与图4和图5所示的切换过程。此时,该致冷元件可以具体实施为冷水机。
如图6所示,该方法包括:
步骤601:检测电池组的温度T,比如温度T可以为电池组的平均温度。
步骤602:当电池组的温度T小于预定门限值A时,可以认定不需要针对电池组执行冷却处理,此时执行步骤608;当电池组的温度T大于等于预定门限值A时,可以认定需要针对电池组执行冷却处理,此时执行步骤603及其后续步骤。
步骤603:开启水泵P1,并启动冷水机。此时,水泵P1和冷水机工作,同时换向阀V1保持初始状态,热管理系统可以为电池组提供冷媒。此时,冷却液的流动次序为水泵P1的出水口→冷水机→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。此时,冷却液首先在冷水机中被冷却,然后先流经电池组的第一冷却液接口K,再流经电池组的第二冷却液接口M。即电池组的第一冷却液接口K侧电池首先被冷却,然后才是电池组的第二冷却液接口M侧的电池获得冷却。经过一段时间冷却后,由于串联管路内部温度的不均匀性,电池组内部也出现了温度不均匀性,表现为电池组进水口附近温度低而出水口附近温度高,即第一冷却液接口K侧的电池温度低,而第二冷却液接口M侧的电池温度高。
步骤604:温度差检测元件持续检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差(比如,检测最接近第一冷却液接口K的电池与检测最接近第二冷却液接口的电池之间的电池温度差)。其中,该电池温度差可以被理解为绝对值。
步骤605:当温度差检测元件检测到的温差dT小于预定的门限值B时,换向阀控制器生成保持命令,并执行步骤607:当温度差检测元件检测到的温差dT大于等于预定的门限值a时,换向阀控制器生成换向命令,并执行步骤606;
步骤606:换向阀换向命令将换向阀V1换向,使电池组出入水口互换。即,冷却液的流动次序为水泵P1的出水口→冷水机→换向阀V1的A口→换向阀V1的D口→电池组的第二冷却液接口M→电池组的第一冷却液接口K→换向阀V1的C口→换向阀V1的B口→水泵P1的回水口。然后,返回执行步骤601。
步骤607:换向阀基于保持命令不执行换向操作,保持V1方向,即冷却液的流动次序依然为水泵P1的出水口→冷水机→换向阀V1的A口→换向阀V1的C口→电池组的第一冷却液接口K→电池组的第二冷却液接口M→换向阀V1的D口→换向阀V1的B口→水泵P1的回水口。然后,返回执行步骤601。
步骤608:关闭冷水机,关闭水泵P1,并返回步骤601。
基于上述描述,本发明实施方式还提出了一种新能源车辆串联式热管理管路的控制装置。热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;所述装置包括:温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
应该指出,图4和图5所示仅为一种本发明的典型结构,所有以串联水路加换向阀的方案,均应被视为包含于发明实施方式。而且,图4和图5所示工况仅为一种典型工况,所有以串联水路加换向阀的方案,且无论热管理系统具有加热、制冷、或仅具有液体循环功能,均应被视为包含于发明实施方式。
本发明实施方式提出一种可以自发排除温度传感器误差的温差(即温度差)计算方法,减少温度传感器自身误差对系统将输出的温差值造成的影响。在本发明实施方式中,利用统计学参数计算系统当前状态下的动态误差限,当温度传感器测量值超出动态阈值时,予以抛弃,而且当温度传感器测量值超出确定的阈值时,同样予以抛弃。该方法包括:
第一步:在电池组的多个预定位置处布置多个温度传感器。
第二步:接收多个温度传感器各自提供的检测值,并对检测值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的检测值。
第三步:计算第一次舍弃处理后剩余的检测值的第一均值,基于所述第一均值计算第一标准差,并对所述第一次舍弃处理后剩余的检测值执行附加处理,所述附加处理包括:执行舍弃与所述第一均值的差的绝对值大于预定倍数的所述第一标准差的检测值的第二次舍弃处理。
第四步:将附加处理后剩余的检测值中的最大值与最小值的差,确定为所述电池组温差。
在一个实施方式中,在执行所述第二次舍弃处理之后,所述附加处理还包括:计算所述第二次舍弃处理后剩余的检测值的第二均值,基于所述第二均值计算第二标准差,并对所述第二次舍弃处理后剩余的检测值执行第三次舍弃处理,所述第三次舍弃处理包括:舍弃与所述第二均值的差的绝对值大于预定倍数的所述第二标准差的检测值。优选的,预定倍数为3。
下面结合具体公式和数学定义对本发明实施方式进行说明。
假定电池组中有布置有N个传感器,其测量的温度值分别是:T1,T2,……TN。此处使用Tn指代其中的任意一个传感器的测量值。
通过以下流程计算电池组的温差:
第一步:抛弃超出确定门限值的测量值:
当Tn>Tb0或Tn<Ta0,舍弃Tn;此处的Tb0和Ta0均为基于预定经验值所确定的门限值,其中通过与Tb0比较以筛除过大的温度值,通过与Ta0比较以筛除过小的温度值。
假设舍弃了x个测量值,剩下的温度值为:
Ta1,Ta2,……,Ta(N-x);
第二步:计算初步处理后的系统均值μa,其中:
Figure BDA0001638497480000161
第三步:计算系统初始标准差σa,其中:
Figure BDA0001638497480000162
第四步:抛弃超出3倍标准差的测量值:
具体的,当|Tan-μa|>3σa时,舍弃Tan,假设舍弃了y个测量值,剩下的温度值为:
Tb1,Tb2,……,Tb(N-x-y);
第五步:计算二次处理后的系统均值μb,其中∶
Figure BDA0001638497480000163
第六步:二次计算系统标准差σb,定义3倍标准差为系统动态误差限;其中:
Figure BDA0001638497480000164
第七步:抛弃超出3倍标准差(即3σb)的测量值。
当|Tbn-μb|>3σb时,舍弃Tbn,假设舍弃了z个测量值,剩下的温度值为:
Tc1,Tc2,……,Tc(N-x-y-z);
第八步:将Tc1,Tc2,……,Tc(N-x-y-z)排序,得到最大值Tcmax和最小值Tcmin,二者相减得到电池组的温差ΔT,其中:
ΔT=Tcmax-Tcmin
可见,本发明实施方式利用统计学参数计算系统当前状态下的误差限,可以自动排除掉自身故障的传感器测量值,保证计算得到的系统温差的正确性。
可以将上述温差(即温度差)计算方法应用到图3所示流程的步骤304中,以用于检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差dT。也可以将上述温差(即温度差)计算方法应用到图6所示流程的步骤604中,以用于持续检测第一冷却液接口K侧的电池与第二冷却液接口M侧之间的电池温度差(比如,检测最接近第一冷却液接口K的电池与检测最接近第二冷却液接口的电池之间的电池温度差)。
可以将本发明实施方式提出的串联式热管理系统应用到各种新能源汽车中,比如混合动力电动汽车(HEV)、纯电动汽车(BEV)、燃料电池电动汽车(FCEV)和其他新能源(如超级电容器、飞轮等高效储能器)汽车等。
综上所述,本发明实施方式的热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:温度差检测元件检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。因此,本发明实施方式实现串联式热管理系统管路方案,保证了流量均一性。
而且,本发明实施方式利用换向阀对串联式水路的流向进行控制,从而减少电池系统温差。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,而并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方案或变更,如特征的组合、分割或重复,均应包含在本发明的保护范围之内。

Claims (10)

1.一种新能源车辆串联式热管理管路的控制方法,其特征在于,所述热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
温度差检测元件检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口;
其中,所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值;
其中所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值包括:接收多个温度传感器各自提供的测量值,对测量值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的测量值;计算第一次舍弃处理后剩余的测量值的第一均值,基于所述第一均值计算第一标准差,并对所述第一次舍弃处理后剩余的测量值执行附加处理,所述附加处理包括:执行舍弃与所述第一均值的差的绝对值大于预定倍数的所述第一标准差的测量值的第二次舍弃处理;将附加处理后剩余的测量值中的最大值与最小值的差,确定为所述电池温度差。
2.根据权利要求1所述的新能源车辆串联式热管理管路的控制方法,其特征在于,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差小于等于所述预定温差门限值时,所述换向阀控制器生成保持命令。
3.根据权利要求2所述的新能源车辆串联式热管理管路的控制方法,其特征在于,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差大于所述预定温差门限值时,所述换向阀控制器生成所述换向命令,并在生成所述换向命令后的预定时间内持续生成保持命令。
4.根据权利要求3所述的新能源车辆串联式热管理管路的控制方法,其特征在于,在基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口之后,该方法还包括:
当所述电池温度差出现先减小再增大的变化且当所述电池温度差再次大于所述预定温差门限值时,所述换向阀控制器生成第二换向命令;
所述换向阀基于所述第二换向命令将水路方向变换为从所述第一冷却液接口流到所述第二冷却液接口。
5.一种新能源车辆串联式热管理管路的控制装置,其特征在于,所述热管理管路包括:水泵;加热元件,所述加热元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于加热各个电池的各个水室的各个管路相互串联;换向阀,与所述加热元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该控制装置包括:
温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
其中,所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值;其中所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值包括:接收多个温度传感器各自提供的测量值,对测量值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的测量值;计算第一次舍弃处理后剩余的测量值的第一均值,基于所述第一均值计算第一标准差,并对所述第一次舍弃处理后剩余的测量值执行附加处理,所述附加处理包括:执行舍弃与所述第一均值的差的绝对值大于预定倍数的所述第一标准差的测量值的第二次舍弃处理;将附加处理后剩余的测量值中的最大值与最小值的差,确定为所述电池温度差;
换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
6.一种新能源车辆串联式热管理管路的控制方法,其特征在于,所述热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;该方法包括:
温度差检测元件检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口;
其中,所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值;
其中所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值包括:接收多个温度传感器各自提供的测量值,对测量值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的测量值;计算第一次舍弃处理后剩余的测量值的第一均值,基于所述第一均值计算第一标准差,并对所述第一次舍弃处理后剩余的测量值执行附加处理,所述附加处理包括:执行舍弃与所述第一均值的差的绝对值大于预定倍数的所述第一标准差的测量值的第二次舍弃处理;将附加处理后剩余的测量值中的最大值与最小值的差,确定为所述电池温度差。
7.根据权利要求6所述的新能源车辆串联式热管理管路的控制方法,其特征在于,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差小于等于所述预定温差门限值时,所述换向阀控制器生成保持命令。
8.根据权利要求7所述的新能源车辆串联式热管理管路的控制方法,其特征在于,所述换向阀控制器基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令包括:
当所述电池温度差大于所述预定温差门限值时,所述换向阀控制器生成换向命令,并在生成所述换向命令后的预定时间内持续生成保持命令。
9.根据权利要求8所述的新能源车辆串联式热管理管路的控制方法,其特征在于,在基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口之后,该方法还包括:
当所述电池温度差出现先减小再增大的变化且当所述电池温度差再次大于所述预定温差门限值时,所述换向阀控制器生成第二换向命令;
所述换向阀基于所述第二换向命令将水路方向变换为从所述第一冷却液接口流到所述第二冷却液接口。
10.一种新能源车辆串联式热管理管路的控制装置,其特征在于,所述热管理管路包括:水泵;致冷元件,所述致冷元件的入水口与所述水泵的出水口串联;包含多个电池的电池组,包含布置在所述电池组的第一侧的第一冷却液接口和布置在所述第一侧的相对侧的第二冷却液接口,所述电池组中用于冷却各个电池的各个水室的各个管路相互串联;换向阀,与所述致冷元件的出水口、所述水泵的回水口、第一冷却液接口和第二冷却液接口分别连接;所述装置包括:
温度差检测元件,用于检测所述电池组中位于第一侧的电池与位于所述相对侧的电池之间的电池温度差;
其中,所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值;其中所述电池温度差基于统计学的方法排除不满足误差限的传感器测量值包括:接收多个温度传感器各自提供的测量值,对测量值执行第一次舍弃处理,第一次舍弃处理包括:舍弃大于第一预定门限值或低于第二预定门限值的测量值;计算第一次舍弃处理后剩余的测量值的第一均值,基于所述第一均值计算第一标准差,并对所述第一次舍弃处理后剩余的测量值执行附加处理,所述附加处理包括:执行舍弃与所述第一均值的差的绝对值大于预定倍数的所述第一标准差的测量值的第二次舍弃处理;将附加处理后剩余的测量值中的最大值与最小值的差,确定为所述电池温度差;
换向阀控制器,用于基于所述电池温度差与预定温差门限值的比较结果生成保持命令或换向命令;
其中所述换向阀基于所述保持命令保持水路方向为从所述第一冷却液接口流到第二冷却液接口,并基于所述换向命令将水路方向变换为从所述第二冷却液接口流到第一冷却液接口。
CN201810371252.3A 2018-04-24 2018-04-24 新能源车辆串联式热管理管路的控制方法和装置 Active CN108832221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810371252.3A CN108832221B (zh) 2018-04-24 2018-04-24 新能源车辆串联式热管理管路的控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810371252.3A CN108832221B (zh) 2018-04-24 2018-04-24 新能源车辆串联式热管理管路的控制方法和装置

Publications (2)

Publication Number Publication Date
CN108832221A CN108832221A (zh) 2018-11-16
CN108832221B true CN108832221B (zh) 2020-08-25

Family

ID=64154924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810371252.3A Active CN108832221B (zh) 2018-04-24 2018-04-24 新能源车辆串联式热管理管路的控制方法和装置

Country Status (1)

Country Link
CN (1) CN108832221B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534828A (zh) * 2019-08-30 2019-12-03 北京长城华冠汽车科技股份有限公司 电动汽车的动力电池主动保温方法、装置和电动汽车
CN111416176B (zh) * 2020-04-07 2021-07-27 奇瑞商用车(安徽)有限公司 一种基于vcu控制的整车散热方法
CN112038726B (zh) * 2020-08-14 2022-06-17 广汽埃安新能源汽车有限公司 一种车辆电池温度控制方法及其系统、装置
CN112977166B (zh) * 2021-04-19 2022-07-29 厦门金龙联合汽车工业有限公司 一种电动汽车充电自适应节能省时控制方法
CN113381096B (zh) * 2021-06-09 2022-10-14 上海理工大学 基于冷却路径的实时优化电池热管理系统
WO2024015392A1 (en) * 2022-07-12 2024-01-18 Paccar Inc Battery pack enclosures for modular and scalable battery packs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655668B (zh) * 2016-03-02 2017-11-28 广东合即得能源科技有限公司 电动汽车动力电池组温度控制系统及方法
CN107565191A (zh) * 2016-06-30 2018-01-09 东软集团股份有限公司 电动汽车及其动力电池主动温度均衡系统
CN106876822A (zh) * 2017-03-10 2017-06-20 上海鼎研智能科技有限公司 一种动力电池热管理系统及其控制方法

Also Published As

Publication number Publication date
CN108832221A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
CN108832221B (zh) 新能源车辆串联式热管理管路的控制方法和装置
CN111029616B (zh) 一种考虑电堆寿命的港口运输车燃料电池热管理系统
US20140038009A1 (en) Battery temperature regulating device
CN108376808B (zh) 一种汽车电池温度调节方法
WO2018076846A1 (zh) 电动汽车电池包温度的智能控制系统和方法
CN101417618B (zh) 混合动力电动车辆的推进系统
CN105932366B (zh) 控制电池系统的温度的方法、温控网关以及温度控制系统
CA3153993A1 (en) Thermal management system for electric vehicle
CN109975711A (zh) 电池组故障检测方法及装置
CN108878995B (zh) 确定新能源车辆的电池组温差的方法、装置和控制方法
CN111376692B (zh) 一种车辆、多支路温度调节液冷电源系统及其控制方法
US11462757B2 (en) Fuel cell system
CN111628237A (zh) 一种电池热管理系统的控制方法、装置及控制器
CN112537180A (zh) 一种热管理系统、控制方法、装置及汽车
Singirikonda et al. Adaptive secondary loop liquid cooling with refrigerant cabin active thermal management system for electric vehicle
CN114614055A (zh) 一种燃料电池系统控制方法及燃料电池系统、车辆
CN116512990A (zh) 一种纯电动汽车中高温环境下的电池热管理系统及其控制方法
JP5290514B2 (ja) 燃料電池制御システム及びその冷却媒体制御方法
CN113659230A (zh) 电池包热管理系统及其控制方法、车辆
CN109103541A (zh) 一种新能源车辆串联式热管理系统和新能源汽车
US20140102688A1 (en) Method and device for homogenizing the temperature distribution of bodies which have fluidic temperature control
KR102444851B1 (ko) 전지의 냉각 제어 방법
CN112721737B (zh) 一种纯电动汽车综合热能利用热管理系统及其控制方法
CN109167105A (zh) 一种新能源车辆串联式热管理系统和新能源汽车
EP3767724B1 (en) Fuel cell system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant