WO2017147776A1 - 飞行控制方法、系统和无人飞行器 - Google Patents
飞行控制方法、系统和无人飞行器 Download PDFInfo
- Publication number
- WO2017147776A1 WO2017147776A1 PCT/CN2016/075140 CN2016075140W WO2017147776A1 WO 2017147776 A1 WO2017147776 A1 WO 2017147776A1 CN 2016075140 W CN2016075140 W CN 2016075140W WO 2017147776 A1 WO2017147776 A1 WO 2017147776A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unmanned aerial
- aerial vehicle
- rotational speed
- rotor
- preset
- Prior art date
Links
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000004891 communication Methods 0.000 claims description 15
- 239000000446 fuel Substances 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims 2
- 230000006870 function Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/04—Control of altitude or depth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C19/00—Aircraft control not otherwise provided for
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- Embodiments of the present invention relate to the field of drones, and more particularly to a flight control method, system, and unmanned aerial vehicle.
- Unmanned aerial vehicles such as drones have been widely used in aerial photography, detection and other fields. During the actual flight, due to the continuous consumption of the battery power of the unmanned aerial vehicle, it is often the case that the battery power is insufficient to support the unmanned aerial vehicle to continue flying.
- Embodiments of the present invention provide a flight control method, system, and an unmanned aerial vehicle to improve flight safety of an unmanned aerial vehicle under low power conditions.
- a first aspect of the present invention provides a flight control method, including:
- the unmanned aerial vehicle is automatically controlled to enter a corresponding security protection mode.
- a second aspect of the present invention provides a flight control system comprising:
- One or more processors working individually or in concert, for:
- the unmanned aerial vehicle is automatically controlled to enter a corresponding security protection mode.
- a third aspect of the present invention provides an unmanned aerial vehicle comprising:
- One or more processors working individually or in conjunction;
- the power device is configured to: power the unmanned aerial vehicle under control of the processor;
- the processor is used to:
- the unmanned aerial vehicle is automatically controlled to enter a corresponding security protection mode.
- a fourth aspect of the present invention provides another flight control method, including:
- the battery is controlled to continue to supply power, and the UAV is controlled to fall at a preset flight speed.
- a fifth aspect of the present invention provides another flight control system comprising:
- One or more processors operating separately or in concert, and a voltmeter that is in communication with the processor control for real-time acquisition of current voltage information of the battery of the UAV during flight;
- the processor is configured to: when the current voltage information indicates that the battery is in a voltage over-discharge operation state, control the battery to continue to supply power, and control the UAV to drop at a preset flight speed.
- a sixth aspect of the present invention provides another unmanned aerial vehicle comprising:
- One or more processors working individually or in conjunction;
- the voltmeter is configured to: acquire real-time voltage information of the battery of the unmanned aerial vehicle during flight;
- the power device is configured to: provide motion to the unmanned aerial vehicle under the control of the processor force;
- the processor is configured to: when the current voltage information indicates that the battery is in a voltage over-discharge operation state, control the battery to continue to supply power, and control the output power of the power device to enable the UAV to The preset flight speed drops.
- the flight control method, system and unmanned aerial vehicle obtained by the embodiments of the present invention obtain the current state of the unmanned aerial vehicle by using the unmanned aerial vehicle when the current electric quantity information of the obtained unmanned aerial vehicle meets a certain electric quantity alarm condition
- the current state controls the unmanned aerial vehicle to enter the corresponding safety protection mode, that is, when the unmanned aerial vehicle is detected to be in a low power state, the unmanned aerial vehicle enters the safety protection mode corresponding to its current state by control, thereby ensuring the unmanned aerial vehicle Flight safety reduces the probability of an UAV crash.
- FIG. 1 is a flowchart of Embodiment 1 of a flight control method according to an embodiment of the present invention
- Embodiment 2 is a flowchart of Embodiment 2 of a flight control method according to an embodiment of the present invention
- FIG. 3 is a flowchart of Embodiment 3 of a flight control method according to an embodiment of the present invention.
- Embodiment 4 is a flowchart of Embodiment 4 of a flight control method according to an embodiment of the present invention.
- FIG. 5 is a flowchart of Embodiment 5 of a flight control method according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of Embodiment 1 of a flight control system according to an embodiment of the present disclosure
- FIG. 7 is a schematic structural diagram of Embodiment 1 of an unmanned aerial vehicle according to an embodiment of the present invention.
- FIG. 8 is a flowchart of Embodiment 1 of another flight control method according to an embodiment of the present invention.
- FIG. 9 is a flowchart of Embodiment 2 of another flight control method according to an embodiment of the present invention.
- FIG. 10 is a flowchart of Embodiment 3 of another flight control method according to an embodiment of the present invention.
- FIG. 11 is a schematic structural diagram of Embodiment 1 of another flight control system according to an embodiment of the present invention.
- FIG. 12 is a schematic structural diagram of Embodiment 1 of another UAV according to an embodiment of the present invention.
- FIG. 1 is a flowchart of Embodiment 1 of a flight control method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes the following steps:
- Step 101 Obtain current power information of the unmanned aerial vehicle battery.
- Step 102 When the current power quantity information meets the first power quantity alarm condition, obtain the current state of the unmanned aerial vehicle.
- Step 103 Control the unmanned aerial vehicle to enter a corresponding security protection mode according to the current state of the unmanned aerial vehicle.
- the flight control method in this embodiment is provided from the viewpoint of protecting both the UAV battery and the UAV.
- the unmanned aerial vehicle is installed with a fuel gauge for detecting the electric quantity information of the unmanned aerial vehicle, and the fuel gauge is used for real-time detecting the electric quantity information of the unmanned aerial vehicle battery, and can transmit the detected electric quantity information to the above processing. , so that the processor performs the processing of steps 101 to 103 above.
- the current power information of the unmanned aerial vehicle battery obtained in real time may include a current percentage of remaining power and a current voltage value. That is to say, the power of the UAV battery can be characterized by the percentage of remaining battery and the battery voltage.
- whether the UAV is in a low battery state is determined by comparing the obtained current power information with a corresponding threshold. That is, if the current remaining battery percentage is less than the first percentage threshold, such as 3%, and the current voltage value is less than the first voltage threshold, such as 3.3V, it is determined that the current power information meets the power alarm condition, and the unmanned aerial vehicle is at a low level. Electricity state.
- the first percentage threshold such as 3%
- the current voltage value is less than the first voltage threshold, such as 3.3V
- the battery alarm condition is referred to herein as the first battery alarm condition. That is, the first battery alarm condition includes: the current remaining battery percentage is less than the first percentage threshold, and the current voltage value is less than the first voltage threshold.
- the current state of acquiring the UAV is performed.
- the current state indicates whether the UAV is in a state of flying in the air.
- the acquisition of the current state of the UAV can be obtained by sensor detection installed in an unmanned aerial vehicle, such as an altimeter, an image sensor, an attitude sensor.
- the altimeter is implemented, for example, as a GPS module, or a barometric pressure sensor to determine whether the UAV is currently in flight by detecting altitude information of the UAV.
- the current state of the UAV may also be acquired based on an analysis of the image taken by the image sensor, or the current state of the UAV may be determined by analysis of the UAV attitude obtained by the attitude sensor.
- the current state of the UAV characterizes whether the UAV is in flight, simply, the current state of the UAV may include an air flight state, an untaken state that stays on the ground. Therefore, for the difference of the current state of the obtained UAV, the UAV can be controlled to enter the corresponding safety protection mode to ensure the safety of the UAV and also protect the UAV battery.
- the UAV when it is determined that the UAV is in the low battery condition corresponding to the first power alarm condition, whether the UAV is in the air flight state or in the non-takeoff state, it can be forcibly controlled.
- the UAV enters a security mode that corresponds to its current state. It can be understood that if the UAV is currently in the air flight state, in general, the corresponding safety protection mode will be to control the UAV landing, that is, the landing mode; and if the UAV is currently in the non-takeoff state, the corresponding safety The protection mode will be to prevent the UAV from taking off, ie the shutdown mode. Control the landing by flying, and when it is not flying, control the way it shuts down to avoid unsafe flying of the UAV.
- the UAV since it is determined that the UAV is forced to control the UAV into the corresponding security protection mode when it is determined that the UAV is in the low battery condition corresponding to the first battery alarm condition, it means that, if in the case, The current unmanned aerial vehicle is in an airborne state. At this time, if the unmanned aerial vehicle receives the non-landing flight control command sent by the remote control device, the non-descending flight should be ignored. Fall flight control instructions.
- the non-landing flight control command is, for example, a user-triggered control command such as hovering, raising flight, and the like.
- the current state of the UAV is acquired to control the UAV to enter the corresponding security protection according to the current state of the UAV.
- the mode that is, when the unmanned aerial vehicle is detected to be in a low battery state, the unmanned aerial vehicle enters the safety protection mode corresponding to its current state by control, thereby ensuring the flight safety of the unmanned aerial vehicle and reducing the probability of the UAV crash. .
- the UAV when the UAV is currently in different flight states, that is, when different UAVs are acquired, the UAV is controlled to enter the corresponding security protection mode for general description.
- FIG. 2 is a flowchart of Embodiment 2 of a flight control method according to an embodiment of the present invention.
- step 103 may correspond to the following two specific implementation manners, specifically Reflected as follows:
- Step 201 When the current state of the UAV is an air flight state, the control reduces the output power of the UAV to cause the UAV to land at a preset flight speed.
- Step 202 When the current state of the UAV is not in the take-off state, control the UAV battery to turn on the over-discharge protection function, so that the UAV battery stops supplying power.
- the detection of the current state of the unmanned aerial vehicle can be realized based on the above-mentioned sensors such as an altimeter and an attitude sensor.
- the altimeter when it is detected that the unmanned aerial vehicle has a height difference greater than 0 from the ground, the unmanned aerial vehicle is considered to be in an air flight state.
- the height difference of the unmanned aerial vehicle from the ground is detected to be 0, the unmanned aerial vehicle is considered to be at Not taken off.
- the unmanned aerial vehicle when the unmanned aerial vehicle is in the air flight state, the unmanned aerial vehicle is lowered at a preset flight speed by forcibly controlling the output power of the unmanned aerial vehicle, that is, entering the landing mode; when the unmanned aerial vehicle is in the untaken state
- the unmanned aerial vehicle battery is powered off by controlling the unmanned aerial vehicle battery to turn on the over-discharge protection function, the shutdown mode is entered.
- the unmanned aerial vehicle battery in the present embodiment is a battery having an over-discharge protection function, and the meaning of the over-discharge protection function of the battery is not described in this embodiment.
- the UAV protection strategy provided by this embodiment is: when the UAV is in a low battery condition, if the UAV is currently in an air flight state, the UAV output power is controlled to cause the UAV to land. If the UAV is currently in the non-takeoff state, control the UAV battery to stop supplying power and shut down the UAV.
- the rotor unmanned aerial vehicle can be lowered at a preset flight speed by reducing the rotational speed of the rotor;
- the fixed-wing UAV can be lowered at a preset flight speed by reducing the propulsion speed of the fixed-wing UAV.
- step 201 specifically corresponds to the unmanned aerial vehicle being a rotorcraft unmanned aerial vehicle
- step 201 specifically corresponds to the unmanned aerial vehicle being a rotorcraft unmanned aerial vehicle
- how to reduce the rotational speed of the rotor to reduce the rotational speed of the rotor unmanned aerial vehicle at a preset flight speed is detailed.
- the UAV is a fixed-wing UAV
- the control of the propulsion speed of the fixed-wing UAV is similar to that of the Rotor of the Rotor unmanned aerial vehicle, except that the controlled power device is different. No longer.
- FIG. 3 is a flowchart of Embodiment 3 of a flight control method according to an embodiment of the present invention. As shown in FIG. 3, the method includes the following steps:
- Step 301 Obtain current power information of the rotorcraft unmanned aerial vehicle battery.
- Step 302 When the current power information meets the first power alarm condition, obtain the current state of the rotor unmanned aerial vehicle.
- Step 303 When the current state of the rotorcraft unmanned aerial vehicle is an air flight state, the height information of the rotorcraft unmanned aerial vehicle is obtained in real time.
- the timing of obtaining the height information is related to the acquisition of the current state of the rotorcraft unmanned aerial vehicle: when it is determined that the current power information of the rotorcraft unmanned aerial vehicle meets the first power alarm condition, the triggering acquisition of the rotor is unmanned.
- the current state of the aircraft if the current state characterizes that the rotorcraft unmanned aerial vehicle is in flight, it also acquires the altitude information of the current rotorcraft unmanned aerial vehicle from the ground, and then needs to acquire the height of the rotorcraft unmanned aerial vehicle in real time. Information to adjust the control of the rotational speed of the rotor in time based on the real-time altitude information of the rotorcraft. Therefore, the current state of the rotorcraft unmanned aerial vehicle characterizes the unmanned aerial vehicle In the state of flight in the air, the current state may also specifically include the height information of the rotorcraft unmanned aerial vehicle.
- the purpose of acquiring the height information of the rotorcraft unmanned aerial vehicle in real time is to determine the rotational speed of the rotor according to the height information of the rotor unmanned aerial vehicle acquired in real time, so that the rotor unmanned aerial vehicle has different pre-preparations.
- Set the flight speed to drop includes the following steps:
- Step 304 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, the rotation speed of the rotor is reduced to a first rotation speed, so that the rotor unmanned aircraft is lowered to a preset height at a first preset flight speed. .
- Step 305 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotation speed of the rotor is raised to a second rotation speed, so that the rotor unmanned aircraft is lowered to the second preset flight speed to ground.
- the rotational speed of the rotor can be dynamically adjusted to control the rotor unmanned aerial vehicle at different flight speeds in real time.
- the acquired height information indicates that the height of the rotorcraft unmanned aerial vehicle from the ground is greater than a preset height, such as 1 meter, that is, when it is determined that the low power of the rotorcraft unmanned aerial vehicle is in an air flight state
- a preset height such as 1 meter
- the height of the rotor unmanned aerial vehicle is referred to as the initial height. If the initial height is higher than the preset height by 1 meter, the rotational speed of the rotor is reduced to the first rotational speed, so that the rotor unmanned aerial vehicle is lowered to the first preset flight speed to Preset height. That is to say, during the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the first preset flight speed.
- the first preset flight speed may be the maximum flight speed of the rotorcraft unmanned aerial vehicle, for example, 3 meters/second. Since the flying speed has a certain correspondence with the rotational speed of the rotor, in general, the smaller the rotational speed of the rotor, the greater the flying speed of the rotor unmanned aerial vehicle. Therefore, when it is required to make the rotor unmanned aerial vehicle fall at the maximum flying speed, At this time, it is necessary to control the first rotational speed of the rotor to be the rotational speed corresponding to the maximum flight speed.
- the rotor unmanned aerial vehicle landed to the above-mentioned preset height, since the height of the rotor unmanned aerial vehicle from the ground is relatively low at this time, in order to avoid damage caused to the rotor unmanned aerial vehicle by the rapid landing to the ground, the rotor needs to be made at this time.
- the flying speed of the unmanned aerial vehicle is reduced, with a lower flight The line speed drops to the ground. Therefore, when the height of the rotorcraft unmanned aerial vehicle from the ground is equal to or less than the preset height, the rotational speed of the rotor is raised to the second rotational speed to cause the rotor unmanned aerial vehicle to land at the second preset flight speed to the ground.
- the second preset flight speed is less than the first preset flight speed, for example, 0.5 m/sec, and correspondingly, the second rotational speed is greater than the first rotational speed.
- the altitude information of the UAV is acquired in real time to dynamically change based on the altitude.
- the ground control of the output power of the unmanned aerial vehicle enables the unmanned aerial vehicle to quickly land at different flight speeds to reduce the probability of crash and improve the flight safety of the unmanned aerial vehicle.
- the low battery condition represented by the first battery alarm condition means that the percentage of the battery of the unmanned aircraft battery is low, but not 0%, the battery voltage value is low, but the power supply termination voltage is not reached, such as 3V. .
- the above-mentioned flight control method can achieve the purpose of protecting both the UAV battery and the UAV, because it is possible to make the UAV safely landed by the above flight control method before the power is 0% and the battery voltage is 3V.
- the second battery alarm condition the flight control mode needs to be adjusted.
- the embodiment shown in FIG. 4 is specifically described.
- FIG. 4 is a flowchart of Embodiment 4 of a flight control method according to an embodiment of the present invention. As shown in FIG. 4, based on the foregoing embodiments, the flight control method may include the following steps:
- Step 401 Obtain current power information of the UAV battery.
- Step 402 When the current power information meets the first power alarm condition, obtain the current state of the unmanned aerial vehicle.
- Step 403 The current state of the UAV is an air flight state.
- the UAV battery is controlled to be in a voltage over-discharge operation state, and the output power of the UAV is controlled to be reduced.
- the human aircraft landed at a preset flight speed.
- the second battery alarm condition includes: the current remaining battery percentage is less than or equal to the second percentage threshold, and the current voltage value is less than the second voltage threshold.
- the first percentage threshold in the foregoing embodiment is greater than the second percentage threshold, and the first voltage threshold is greater than the second voltage threshold.
- the first percentage threshold is 3%
- the second percentage threshold is 1% or 0%
- the first voltage threshold is 3.3V
- the second voltage threshold is 3V.
- the second voltage threshold may correspond to a power supply termination voltage of the UAV battery.
- step 103 is described in detail, that is, according to the current state of the unmanned aerial vehicle, the unmanned aerial vehicle is controlled to enter a corresponding security protection mode, including:
- the current state is an air flight state.
- the UAV battery is controlled to be in a voltage over-discharge operation state, and the output power of the UAV is controlled to reduce the UAV at a preset flight speed. landing.
- step 403 when it is determined that the current power information of the UAV satisfies the first battery alarm condition, triggering to acquire the current state of the UAV, if the current state indicates that the UAV is in an air flight state, and the current UAV The power information further satisfies the second power alarm condition, and then directly performing step 403 to control the unmanned aircraft battery to be in a voltage over-discharge operation state, and controlling to reduce the output power of the unmanned aerial vehicle to make the unmanned aircraft at a preset flight speed. Landing security protection operations.
- controlling the unmanned aerial vehicle battery to be in a voltage over-discharge working state refers to turning off the over-discharge protection function of the unmanned aerial vehicle battery, so that the unmanned aerial vehicle battery is that the voltage has reached the power supply termination voltage, and the power supply is continued.
- step 403 the relationship between the foregoing step 403 and step 201 is:
- step 201 If the current power information of the UAV only meets the first power alarm condition and does not satisfy the second power alarm condition, step 201 is performed. If the current power information of the UAV not only satisfies the first power alarm condition but also satisfies the second power alarm condition, step 403 is performed. If the current power information of the UAV meets the second power alarm condition during the execution of step 201, Then step 403 is performed.
- the rotation speed of the unmanned aerial vehicle rotor or the landing speed of the unmanned aerial vehicle is known. , related to the real-time altitude information of the UAV. If the height information corresponding to the second battery alarm condition is greater than the preset height, the method may be performed by referring to step 304 and step 305, if the battery information of the unmanned aircraft battery satisfies the second battery alarm condition. The corresponding height is less than or equal to the preset height, and may be performed by referring to step 305. The difference is that, in the process of referring to step 304 and step 305, the step of controlling the UAV battery in the voltage over-discharge operation state is first performed. .
- the UAV when the UAV is flying in the air, if the battery voltage has reached the second voltage threshold, the power supply termination voltage is reached, and the battery over-discharge protection function is not turned on, and the power supply is continued. Abandon the way to protect the UAV battery to protect the flight safety of the UAV. Because unmanned aerial vehicles are more important than batteries.
- the control when the power information of the UAV battery satisfies the second power alarm condition, when the UAV is in the air flight state, the control reduces the output power of the UAV so that the UAV During the preset flight speed drop, the corresponding flight speed can be adjusted according to the real-time altitude information of the unmanned aerial vehicle.
- another way of controlling the output power of the unmanned aerial vehicle to cause the unmanned aerial vehicle to land at a preset flight speed is introduced. In this manner, the real-time altitude information and the real-time voltage value of the unmanned aerial vehicle are described. Together, it affects the dynamic adjustment of the flight speed of unmanned aerial vehicles.
- the control of the flight speed of the UAV is achieved by controlling the power unit of the UAV, the power units of different types of UAVs are different.
- the UAV is a rotorcraft unmanned aerial vehicle
- the flight speed of the rotor unmanned aerial vehicle is controlled by controlling the rotational speed of the rotor.
- the UAV is a fixed-wing UAV
- the fixed speed of the fixed wing is controlled by the controller propulsion speed.
- the speed of flight of a human aircraft Since the control principle is similar, in the embodiment shown in FIG. 5, only the rotorcraft unmanned aerial vehicle is taken as an example for description.
- FIG. 5 is a flowchart of Embodiment 5 of a flight control method according to an embodiment of the present invention.
- the control rotor is not provided.
- the human aircraft battery is in a voltage over-discharge operation state, reducing the rotational speed of the rotor so that In the step of the rotorcraft unmanned aerial vehicle landing at a preset flight speed, reducing the rotational speed of the rotor so that the rotor unmanned aerial vehicle can be dropped at a preset flight speed can be achieved by the following steps:
- Step 501 Obtain current power information of the rotorcraft unmanned aerial vehicle battery.
- Step 502 Acquire a current state of the rotorcraft unmanned aerial vehicle when the current power quantity information satisfies the first power quantity alarm condition.
- Step 503 The current state of the rotorcraft unmanned aerial vehicle is an air flight state, and when the current power information meets the second power alarm condition, the unmanned aerial vehicle battery is controlled to be in a voltage over-discharge working state.
- Step 504 Acquire the voltage value of the rotor unmanned aerial vehicle battery in real time, and obtain the height information of the rotorcraft unmanned aerial vehicle in real time.
- the acquisition of the voltage value and the height information can be respectively obtained by the aforementioned fuel gauge, such as an altimeter.
- the rotational speed of the rotor is determined to cause the rotor unmanned aerial vehicle to land at different preset flight speeds. This can be achieved by the following steps:
- Step 505 The current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height.
- the rotational speed of the rotor is reduced to a third rotational speed, so that the rotor unmanned aerial vehicle is The three preset flight speeds are dropped to a preset height.
- Step 506 The current height information indicates that the height of the rotorcraft unmanned aerial vehicle from the ground is greater than a preset height.
- the rotational speed of the rotor is reduced to a fourth rotational speed, so that the rotor unmanned aerial vehicle The fourth preset flight speed drops to a preset height.
- Step 507 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotation speed of the rotor is raised to a fifth rotation speed, so that the rotor unmanned aerial vehicle is lowered to the fifth preset flight speed to ground.
- steps 505 to 507 have no strict timing limitation relationship, and the timing relationship is understood as shown in FIG. 5.
- the rotational speed of the rotor is reduced to The third rotational speed is such that the rotor unmanned aerial vehicle descends to a preset altitude at a third preset flight speed.
- a preset height such as 1 meter
- the current voltage value is greater than a preset voltage value, such as 1.5V
- the rotational speed of the rotor is reduced to The third rotational speed is such that the rotor unmanned aerial vehicle descends to a preset altitude at a third preset flight speed.
- the second battery alarm condition starts when the air is flying, and the height of the rotor unmanned aerial vehicle obtained at this time is referred to as the initial height.
- the voltage value at this time is greater than the pre- Setting the voltage value to 1.5V reduces the rotational speed of the rotor to the third rotational speed to cause the rotor unmanned aerial vehicle to descend to a preset altitude at a third preset flight speed. That is to say, in the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the third preset flight speed.
- the third preset flight speed at this time may be a preset flight speed smaller than the maximum flight speed of the UAV, such as 2 meters/second.
- the rotational speed of the rotor is reduced to the first
- the four rotational speeds are such that the rotor unmanned aerial vehicle is lowered to a preset altitude at a fourth preset flight speed. That is to say, in the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the fourth preset flight speed.
- the fourth preset flight speed at this time is the maximum flight speed of the unmanned aerial vehicle, such as 3 m/s, because the battery voltage at this time has been seriously reduced, and the rapid landing demand is stronger than the third preset flight speed. .
- the acquired height information indicates that the height of the rotorcraft unmanned aerial vehicle from the ground is equal to or less than a preset height, such as 1 meter
- the rotational speed of the rotor is raised to a fifth rotational speed, so that the rotor unmanned aerial vehicle is fifth.
- the preset flight speed drops to the ground. At this time, since it is closer to the ground, it is not necessary to consider the influence of the battery voltage.
- the fifth preset flight speed is less than the third and fourth preset flight speeds, for example, 0.5 m/sec.
- the third rotational speed is greater than or equal to the first
- the fourth rotational speed is greater than the third rotational speed, and the fourth rotational speed includes a rotational speed corresponding to the maximum flight speed of the rotor unmanned aerial vehicle.
- the UAV battery is controlled to be at a voltage
- the UAV battery is controlled to be at a voltage
- the flight speed drops quickly to reduce the probability of crash and improve the flight safety of the unmanned aerial vehicle.
- FIG. 6 is a schematic structural diagram of Embodiment 1 of a flight control system according to an embodiment of the present invention. As shown in FIG. 6, the flight control system includes:
- One or more processors 11, operate individually or in concert.
- the processor 11 is configured to: acquire current power information of the UAV battery; acquire the current state of the UAV when the current power information meets the first power alarm condition; and automatically control the current state according to the current state The UAV enters the corresponding security mode.
- the flight control system further includes a fuel gauge 12, and the fuel gauge 12 controls a communication connection with the processor 11 for acquiring current power information of the unmanned aerial vehicle battery.
- the flight control system further includes a sensor 13 communicatively coupled to the processor 11 for detecting a current state of the unmanned aerial vehicle.
- the sensor 13 includes at least one of the following: an altimeter, an image sensor, and an attitude sensor.
- the processor 11 is further configured to: control to reduce an output power of the UAV to preset the UAV The flight speed dropped.
- the processor 11 is further configured to: when determining that the current power information acquired by the fuel gauge 12 meets the second power alarm condition, The UAV battery is in a voltage over-discharge operation state and controls to reduce the output power of the UAV to cause the UAV to land at a preset flight speed.
- the processor 11 is further configured to: reduce a rotational speed of the rotor to cause the rotor unmanned aerial vehicle to land at a preset flight speed.
- the processor 11 is further configured to: reduce a propulsion speed of the fixed-wing UAV to preset the fixed-wing UAV The flight speed dropped.
- the current power information includes a current percentage of remaining power and a current voltage value
- the first power alarm condition includes: the current remaining battery percentage is less than a first percentage threshold, and the current voltage value is less than the first voltage threshold.
- the second battery alarm condition includes: the current remaining battery percentage is less than or equal to a second percentage threshold, and the current voltage value is less than the second voltage threshold.
- the first percentage threshold is greater than the second percentage threshold, and the first voltage threshold is greater than the second voltage threshold.
- the processor 11 is further configured to: determine a rotation speed of the rotor according to height information of the rotor unmanned aerial vehicle acquired in real time, so that the rotor unmanned aerial vehicle flies with different presets A speed drop, wherein the current state includes the height information.
- the processor 11 is further configured to: when the height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, reduce the rotational speed of the rotor to the first rotational speed, so that the rotor is unmanned Flying the aircraft to the preset height at a first preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a second rotational speed, so that the rotor unmanned aerial vehicle falls at a second preset flight speed.
- first rotational speed is less than the second rotational speed, and the first rotational speed comprises a rotational speed corresponding to a maximum flight speed of the rotor unmanned aerial vehicle.
- the processor 11 is further configured to: determine, according to a voltage value of the rotor unmanned aerial vehicle battery acquired in real time and a height information of the rotor unmanned aerial vehicle acquired in real time, The rotor unmanned aerial vehicle is caused to land at a different preset flight speed, wherein the current state includes the altitude information.
- the processor 11 is further configured to: the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is greater than the preset voltage value, reduce the rotational speed of the rotor to the third Rotating speed to cause the rotor unmanned aerial vehicle to fall to the preset height at a third preset flight speed;
- the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is not greater than the preset voltage value, the rotational speed of the rotor is reduced to a fourth rotational speed, so that the rotor has no The human aircraft is lowered to the preset height at a fourth preset flight speed;
- the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset Raising the rotational speed of the rotor to a fifth rotational speed to cause the rotor unmanned aerial vehicle to land at the fifth preset flight speed to the ground;
- the third rotational speed is greater than or equal to the fourth rotational speed
- the fifth rotational speed is greater than the third rotational speed
- the fourth rotational speed includes a maximum flight speed with the rotor unmanned aerial vehicle Corresponding rotation speed.
- the processor 11 is further configured to: ignore the non-landing flight control instruction when receiving the non-landing flight control command sent by the remote control device.
- the processor 11 is further configured to: when the sensor 13 determines that the current state of the UAV is not in the takeoff state, control the UAV battery to turn on the over discharge protection function, so that the UAV battery Stop powering.
- the flight control system provided in this embodiment can be used to perform the technical solutions in the embodiments shown in FIG. 1 to FIG. 5, and the implementation principle and technical effects are similar, and details are not described herein again.
- FIG. 7 is a schematic structural diagram of Embodiment 1 of an unmanned aerial vehicle according to an embodiment of the present invention.
- the UAV includes: one or more processors 21, which work separately or in cooperation;
- the processor 21 controls the power unit 22 of the communication connection.
- the power unit 22 is configured to provide power to the unmanned aerial vehicle under the control of the processor 21.
- the processor 21 is configured to: acquire current power information of the UAV battery; acquire the current state of the UAV when the current power information meets the first power alarm condition; and automatically control the current state according to the current state The UAV enters the corresponding security mode.
- the UAV further includes a fuel gauge 23, and the fuel gauge 23 controls a communication connection with the processor 21 for acquiring current power information of the UAV battery.
- the UAV further includes a sensor 24 communicatively coupled to the processor 21 for detecting a current state of the UAV.
- the sensor 24 includes at least one of the following: an altimeter, an image sensor, and an attitude sensor.
- the processor 21 is further configured to: control to reduce the output power of the power device 22, so that the UAV is preset The flight speed dropped.
- the processor 21 is further configured to: when determining that the current power information acquired by the fuel gauge 23 meets the second power alarm condition, The UAV battery is in a voltage over-discharge operating state and controls to reduce the output power of the power unit to cause the UAV to land at a preset flight speed.
- the UAV is a rotor unmanned aerial vehicle; the processor 21 is further configured to: reduce a rotational speed of the rotor to cause the rotor unmanned aerial vehicle to land at a preset flight speed.
- the UAV is a fixed-wing UAV; the processor 21 is further configured to: reduce a propulsion speed of the fixed-wing UAV, so that the fixed-wing UAV is preset to fly The speed is falling.
- the current power information includes a current percentage of remaining power and a current voltage value.
- the first power alarm condition includes: the current remaining battery percentage is less than a first percentage threshold, and the current voltage value is less than the first voltage threshold.
- the second battery alarm condition includes: the current remaining battery percentage is less than or equal to a second percentage threshold, and the current voltage value is less than the second voltage threshold.
- the first percentage threshold is greater than the second percentage threshold, and the first voltage threshold is greater than the second voltage threshold.
- the processor 21 is further configured to: determine a rotation speed of the rotor according to height information of the rotor unmanned aerial vehicle acquired in real time, so that the rotor unmanned aerial vehicle flies with different presets A speed drop, wherein the current state includes the height information.
- the processor 21 is further configured to: when the height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, reduce the rotational speed of the rotor to the first rotational speed, so that the rotor is unmanned Flying the aircraft to the preset height at a first preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a second rotational speed, so that the rotor unmanned aerial vehicle falls at a second preset flight speed.
- first rotational speed is less than the second rotational speed, and the first rotational speed comprises a rotational speed corresponding to a maximum flight speed of the rotor unmanned aerial vehicle.
- the processor 21 is further configured to: determine, according to a voltage value of the rotor unmanned aircraft battery acquired in real time and a height information of the rotor unmanned aerial vehicle acquired in real time, a rotational speed of the rotor, Throwing the rotor unmanned aerial vehicle at different preset flight speeds,
- the current state includes the height information.
- the processor 21 is further configured to: the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is greater than a preset voltage value, reduce the rotational speed of the rotor to the third Rotating speed to cause the rotor unmanned aerial vehicle to fall to the preset height at a third preset flight speed;
- the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is not greater than the preset voltage value, the rotational speed of the rotor is reduced to a fourth rotational speed, so that the rotor has no The human aircraft is lowered to the preset height at a fourth preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a fifth rotational speed, so that the rotor unmanned aerial vehicle falls at a fifth preset flight speed.
- the third rotational speed is greater than or equal to the fourth rotational speed
- the fifth rotational speed is greater than the third rotational speed
- the fourth rotational speed includes a maximum flight speed with the rotor unmanned aerial vehicle Corresponding rotation speed.
- the processor 21 is further configured to: ignore the non-landing flight control instruction when receiving the non-landing flight control command sent by the remote control device.
- the processor 21 is further configured to: when the sensor 24 determines that the current state of the UAV is not in the takeoff state, control the UAV battery to turn on the over discharge protection function, so that the UAV battery Stop powering.
- the unmanned aerial vehicle provided in this embodiment can be used to perform the technical solution in the embodiment shown in FIG. 1 to FIG. 5, and the implementation principle and technical effects are similar, and details are not described herein again.
- FIG. 8 is a flowchart of Embodiment 1 of another flight control method according to an embodiment of the present invention. As shown in FIG. 8, the method includes the following steps:
- Step 601 Acquire real-time information about the current voltage of the unmanned aerial vehicle during flight.
- Step 602 When the current voltage information indicates that the battery is in the voltage over-discharge operation state, the battery is controlled to continue to supply power, and the unmanned aerial vehicle is controlled to fall at a preset flight speed.
- the flight scenario targeted by the embodiment may be: the unmanned aerial vehicle is flying in the air. At this time, if the voltage of the unmanned aircraft battery has reached the power supply termination voltage, such as 3V, the unmanned aircraft battery will be in a voltage over-discharge operation state.
- the unmanned aerial vehicle battery By controlling the unmanned aerial vehicle battery to continue power supply and controlling the unmanned aerial vehicle landing to protect the flight safety of the unmanned aerial vehicle. That is, the present embodiment achieves protection of the unmanned aerial vehicle by giving priority to protecting the unmanned aerial vehicle to abandon the protection of the unmanned aerial vehicle battery.
- a voltmeter can be installed in the unmanned aerial vehicle for real-time acquisition of the current voltage information of the battery of the UAV during flight.
- a sensor such as an altimeter can also be installed in the UAV to detect whether the UAV is in the air.
- Whether the UAV battery is in the voltage over-discharge operation state is determined by comparing the voltage value of the UAV battery obtained by the voltmeter in real time with a certain threshold, and the threshold value can generally be set as the power supply termination voltage. Therefore, when the voltage value of the UAV battery obtained by the voltmeter in real time indicates that the current voltage of the UAV battery has met the requirement of entering the voltage over-discharge working state, that is, when the power supply termination voltage has been lowered, at this time, the unmanned state is not turned on.
- the over-discharge protection function of the aircraft battery protects the UAV battery, but does not turn on the over-discharge protection function, while controlling the UAV battery to continue to supply power to the outside, and continue to provide power support for the UAV. At this time, assuming that the voltage of the UAV battery is 3V when the UAV battery is continuously controlled to continue to supply power, the UAV battery can be continuously powered until the voltage value is reduced to 0V.
- the unmanned aerial vehicle While controlling the unmanned aerial vehicle battery to continue to supply power to the outside, the unmanned aerial vehicle is also controlled to fall at a preset flight speed so that the unmanned aerial vehicle can quickly land.
- Controlling the landing of the unmanned aerial vehicle is achieved by controlling the output power of the unmanned aerial vehicle.
- the control of the output power of the UAV can vary based on the type of UAV. Specifically, when the UAV is a rotor unmanned aerial vehicle, the rotor unmanned aerial vehicle is lowered at a preset flight speed by reducing the rotational speed of the rotor. When the UAV is a fixed-wing UAV, the fixed-wing UAV is lowered at a preset flight speed by reducing the propulsion speed of the fixed-wing UAV.
- the non-landing flight control command is, for example, a user-triggered control command such as hovering, raising flight, and the like.
- the power supply is continued by controlling the battery, and the unmanned aerial vehicle is controlled to fall at a preset flight speed to abandon the pair.
- the protection of the UAV battery ensures the flight safety of the UAV and reduces the probability of the UAV crash.
- the unmanned aerial vehicle is used as an example of a rotor unmanned aerial vehicle.
- the control principle is similar, except that the controlled flight power devices of the two unmanned aerial vehicles are different.
- FIG. 9 is a flowchart of Embodiment 2 of another flight control method according to an embodiment of the present invention.
- the rotor unmanned aerial vehicle is lowered at a preset flight speed by reducing the rotational speed of the rotor.
- the specific implementation of the flight control method may include the following steps:
- Step 701 Acquire real-time voltage information of the battery of the rotorcraft unmanned aerial vehicle during flight, and obtain the height information of the rotorcraft unmanned aerial vehicle in real time.
- the acquisition of this height information can be obtained by sensors such as GPS modules, barometers, etc. installed in the rotorcraft.
- Step 702 When the front voltage information indicates that the battery is in a voltage over-discharge operation state, the battery is controlled to continue to supply power.
- the purpose of acquiring the height information of the rotorcraft unmanned aerial vehicle in real time is to determine the rotational speed of the rotor according to the height information of the rotor unmanned aerial vehicle acquired in real time, so that the rotor unmanned aerial vehicle has different pre-preparations.
- Set the flight speed to drop includes the following steps:
- Step 703 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, the rotation speed of the rotor is reduced to a first rotation speed, so that the rotor unmanned aircraft is lowered to a preset height at a first preset flight speed. .
- Step 704 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is increased to a second rotational speed to enable the rotor unmanned aerial vehicle. Landing to the ground at a second preset flight speed.
- the rotational speed of the rotor can be dynamically adjusted to control the rotor unmanned aerial vehicle at different flight speeds in real time.
- the acquired height information indicates that the height of the rotorcraft unmanned aerial vehicle from the ground is greater than a preset height, such as 1 meter, that is, when it is determined that the low power of the rotorcraft unmanned aerial vehicle is in an air flight state
- a preset height such as 1 meter
- the height of the rotor unmanned aerial vehicle is referred to as the initial height. If the initial height is higher than the preset height by 1 meter, the rotational speed of the rotor is reduced to the first rotational speed, so that the rotor unmanned aerial vehicle is lowered to the first preset flight speed to Preset height. That is to say, during the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the first preset flight speed.
- the first preset flight speed may be the maximum flight speed of the rotorcraft unmanned aerial vehicle, for example, 3 meters/second. Since the flying speed has a certain correspondence with the rotational speed of the rotor, in general, the smaller the rotational speed of the rotor, the greater the flying speed of the rotor unmanned aerial vehicle. Therefore, when it is required to make the rotor unmanned aerial vehicle fall at the maximum flying speed, At this time, it is necessary to control the first rotational speed of the rotor to be the rotational speed corresponding to the maximum flight speed.
- the rotor unmanned aerial vehicle landed to the above-mentioned preset height, since the height of the rotor unmanned aerial vehicle from the ground is relatively low at this time, in order to avoid damage caused to the rotor unmanned aerial vehicle by the rapid landing to the ground, the rotor needs to be made at this time.
- the UAV's flight speed is reduced and it drops to the ground at a lower flight speed. Therefore, when the height of the rotorcraft unmanned aerial vehicle from the ground is equal to or less than the preset height, the rotational speed of the rotor is raised to the second rotational speed to cause the rotor unmanned aerial vehicle to land at the second preset flight speed to the ground.
- the second preset flight speed is less than the first preset flight speed, for example, 0.5 m/sec, and correspondingly, the second rotational speed is greater than the first rotational speed.
- step 704 the initial height of the rotor unmanned aerial vehicle is higher than the preset height, that is, steps 703 and 704 are sequentially performed, and if the initial height is equal to or smaller than the preset height, only step 704 is performed.
- the UAV battery when it is determined that the UAV battery is in the voltage over-discharge operation state, on the one hand, the UAV battery is controlled to continue to supply power, and on the other hand, the altitude information of the UAV is acquired in real time, based on The height changes dynamically control the output power of the unmanned aerial vehicle, enabling the UAV to quickly land at different flight speeds to reduce the probability of crashes. Improve the flight safety of unmanned aerial vehicles.
- FIG. 10 is a flowchart of Embodiment 3 of another flight control method according to an embodiment of the present invention. As shown in FIG. 10, the flight control method may include the following steps:
- Step 801 Acquire current voltage information of the battery of the rotorcraft unmanned aerial vehicle during flight, and obtain the height information of the rotorcraft unmanned aerial vehicle in real time.
- Step 802 When the front voltage information indicates that the battery is in a voltage over-discharge operation state, the battery is controlled to continue to supply power.
- the real-time acquisition of the voltage value of the rotor unmanned aerial vehicle battery is not only used to judge whether the battery is in the voltage over-discharge operation state, but also to control the battery to continue to supply power, and also to obtain the height information of the rotor unmanned aerial vehicle acquired in real time. Together, the rotational speed of the rotor is determined together to cause the rotor unmanned aerial vehicle to land at different preset flight speeds.
- the specific implementation includes the following steps:
- Step 803 The current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height.
- the rotational speed of the rotor is reduced to a third rotational speed, so that the rotor unmanned aerial vehicle is The three preset flight speeds are dropped to a preset height.
- Step 804 The current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height.
- the rotation speed of the rotor is reduced to a fourth rotation speed, so that the rotor unmanned aerial vehicle The fourth preset flight speed drops to a preset height.
- Step 805 The current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotation speed of the rotor is increased to a fifth rotation speed, so that the rotor unmanned aircraft is lowered to the fifth preset flight speed to ground.
- the third rotational speed is greater than or equal to the fourth rotational speed
- the fifth rotational speed is greater than the third rotational speed
- the fourth rotational speed comprises a rotational speed corresponding to a maximum flight speed of the rotor unmanned aerial vehicle.
- steps 803 to 805 have no strict timing limitation relationship, and the timing relationship is understood as shown in FIG.
- the rotational speed of the rotor is reduced to The third rotational speed is such that the rotor unmanned aerial vehicle descends to a preset altitude at a third preset flight speed.
- a preset height such as 1 meter
- the current voltage value is greater than a preset voltage value, such as 1.5V
- the rotational speed of the rotor is reduced to The third rotational speed is such that the rotor unmanned aerial vehicle descends to a preset altitude at a third preset flight speed.
- the second battery alarm condition starts when the air is flying, and the height of the rotor unmanned aerial vehicle obtained at this time is referred to as the initial height.
- the voltage value at this time is greater than the pre- Setting the voltage value to 1.5V reduces the rotational speed of the rotor to the third rotational speed to cause the rotor unmanned aerial vehicle to descend to a preset altitude at a third preset flight speed. That is to say, in the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the third preset flight speed.
- the third preset flight speed at this time may be a preset flight speed smaller than the maximum flight speed of the UAV, such as 2 meters/second.
- the rotational speed of the rotor is reduced to the first
- the four rotational speeds are such that the rotor unmanned aerial vehicle is lowered to a preset altitude at a fourth preset flight speed. That is to say, in the process of descending from the initial height to the preset height, the control rotor unmanned aerial vehicle is uniformly landed at the fourth preset flight speed.
- the fourth preset flight speed at this time is the maximum flight speed of the unmanned aerial vehicle, such as 3 m/s, because the battery voltage at this time has been seriously reduced, and the rapid landing demand is stronger than the third preset flight speed. .
- the acquired height information indicates that the height of the rotorcraft unmanned aerial vehicle from the ground is equal to or less than a preset height, such as 1 meter
- the rotational speed of the rotor is raised to a fifth rotational speed, so that the rotor unmanned aerial vehicle is fifth.
- the preset flight speed drops to the ground. At this time, since it is closer to the ground, it is not necessary to consider the influence of the battery voltage.
- the fifth preset flight speed is less than the third and fourth preset flight speeds, for example, 0.5 m/sec.
- the third rotational speed is greater than or equal to the first
- the fourth rotational speed is greater than the third rotational speed, and the fourth rotational speed includes a rotational speed corresponding to the maximum flight speed of the rotor unmanned aerial vehicle.
- the battery when it is determined that the UAV battery is in a voltage over-discharge operation state, on the one hand, the battery is controlled to continue to supply power, and on the other hand, the altitude information of the UAV is acquired in real time and The voltage value of the aircraft battery dynamically controls the output power of the UAV based on changes in altitude and battery voltage, enabling the UAV to quickly land at different flight speeds to reduce the probability of crashes and improve the flight of UAVs. safety.
- FIG. 11 is a schematic structural diagram of Embodiment 1 of another flight control system according to an embodiment of the present invention. As shown in FIG. 11, the flight control system includes:
- the processor 31 is configured to: when the current voltage information indicates that the battery is in a voltage over-discharge operation state, control the battery to continue to supply power, and control the UAV to drop at a preset flight speed.
- the processor 31 is further configured to: reduce an output power of the UAV to cause the UAV to land at a preset flight speed.
- the UAV is a rotor unmanned aerial vehicle; the processor 31 is further configured to: reduce a rotational speed of the rotor to cause the rotor unmanned aerial vehicle to land at a preset flight speed.
- the UAV is a fixed-wing UAV; the processor 31 is further configured to: reduce a propulsion speed of the fixed-wing UAV, so that the fixed-wing UAV is preset to fly The speed is falling.
- the flight control system further includes: a sensor 33; the sensor 33 is communicatively coupled to the processor 31 for real-time acquisition of height information of the rotor unmanned aerial vehicle.
- the processor 31 is further configured to: determine a rotation speed of the rotor according to the height information, so that the rotor unmanned aerial vehicle falls at a different preset flight speed.
- the processor 31 is further configured to: when the height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, reduce the rotational speed of the rotor to the first rotational speed, so that the rotor is unmanned Flying the aircraft to the preset height at a first preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a second rotational speed, so that the rotor unmanned aerial vehicle falls at a second preset flight speed.
- first rotational speed is less than the second rotational speed
- first rotational speed A rotational speed corresponding to a maximum flight speed of the rotorcraft unmanned aerial vehicle is included.
- the processor 31 is further configured to: determine, according to a voltage value of the rotor unmanned aerial vehicle battery acquired in real time and a height information of the rotor unmanned aerial vehicle acquired in real time, The rotorcraft unmanned aerial vehicle is caused to land at different preset flight speeds.
- the processor 31 is further configured to: the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is greater than the preset voltage value, reduce the rotational speed of the rotor to the third Rotating speed to cause the rotor unmanned aerial vehicle to fall to the preset height at a third preset flight speed;
- the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is not greater than the preset voltage value, the rotational speed of the rotor is reduced to a fourth rotational speed, so that the rotor has no The human aircraft is lowered to the preset height at a fourth preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a fifth rotational speed, so that the rotor unmanned aerial vehicle falls at a fifth preset flight speed.
- the third rotational speed is greater than or equal to the fourth rotational speed
- the fifth rotational speed is greater than the third rotational speed
- the fourth rotational speed includes a maximum flight speed with the rotor unmanned aerial vehicle Corresponding rotation speed.
- the processor 31 is further configured to ignore the non-landing flight control command when receiving the non-landing flight control command sent by the remote control device.
- the flight control system provided in this embodiment can be used to perform the technical solutions in the embodiments shown in FIG. 8 to FIG. 10, and the implementation principle and technical effects are similar, and details are not described herein again.
- FIG. 12 is a schematic structural diagram of Embodiment 1 of another UAV according to an embodiment of the present invention. As shown in FIG. 12, the UAV includes:
- One or more processors 41 either alone or in concert; and a voltmeter 42 and power unit 43 that are in communication with the processor 41, respectively.
- the voltmeter 42 is configured to: acquire real-time voltage information of the battery of the UAV during flight in real time.
- the power unit 43 is configured to provide power to the unmanned aerial vehicle under the control of the processor.
- the processor 41 is configured to: when the current voltage information indicates that the battery is in a voltage over-discharge operation state, control the battery to continue to supply power, and control the output power of the power device to enable the unmanned The aircraft landed at a preset flight speed.
- the processor 41 is further configured to: reduce an output power of the UAV to cause the UAV to land at a preset flight speed.
- the UAV is a rotorcraft unmanned aerial vehicle; the processor 41 is further configured to: reduce a rotational speed of the rotor to cause the rotor unmanned aerial vehicle to land at a preset flight speed.
- the UAV is a fixed-wing UAV; the processor 41 is further configured to: reduce a propulsion speed of the fixed-wing UAV, so that the fixed-wing UAV is preset to fly The speed is falling.
- the UAV further includes: a sensor 44; the sensor 44 is communicatively coupled to the processor 41 for real-time acquisition of height information of the rotor unmanned aerial vehicle.
- the processor 41 is further configured to: determine, according to the height information, a rotational speed of the rotor, so that the rotor unmanned aerial vehicle falls at a different preset flight speed.
- the processor 41 is further configured to: when the current altitude information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, reduce the rotational speed of the rotor to the first rotational speed, so that the rotor is unmanned Flying the aircraft to the preset height at a first preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a second rotational speed, so that the rotor unmanned aerial vehicle falls at a second preset flight speed.
- first rotational speed is less than the second rotational speed, and the first rotational speed comprises a rotational speed corresponding to a maximum flight speed of the rotor unmanned aerial vehicle.
- the processor 41 is further configured to: determine, according to a voltage value of the rotor unmanned aerial vehicle battery acquired in real time and a height information of the rotor unmanned aerial vehicle acquired in real time, The rotorcraft unmanned aerial vehicle is caused to land at different preset flight speeds.
- the processor 41 is further configured to: the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, and when the current voltage value is greater than the preset voltage value, reduce the rotational speed of the rotor to the third Rotating speed to cause the rotor unmanned aerial vehicle to fall to the preset height at a third preset flight speed;
- the current height information indicates that the height of the rotor unmanned aerial vehicle from the ground is greater than a preset height, When the current voltage value is not greater than the preset voltage value, reducing the rotational speed of the rotor to the fourth rotational speed, so that the rotor unmanned aerial vehicle falls to the preset height at a fourth preset flight speed;
- the current height information indicates that when the height of the rotor unmanned aerial vehicle from the ground is equal to or less than a preset height, the rotational speed of the rotor is raised to a fifth rotational speed, so that the rotor unmanned aerial vehicle falls at a fifth preset flight speed.
- the third rotational speed is greater than or equal to the fourth rotational speed
- the fifth rotational speed is greater than the third rotational speed
- the fourth rotational speed includes a maximum flight speed with the rotor unmanned aerial vehicle Corresponding rotation speed.
- the processor 41 is further configured to ignore the non-landing flight control command when receiving the non-landing flight control command sent by the remote control device.
- the unmanned aerial vehicle provided in this embodiment can be used to perform the technical solution in the embodiment shown in FIG. 8 to FIG. 10 , and the implementation principle and technical effects are similar, and details are not described herein again.
- the processor may be a motor control unit (MCU), a central processing unit (CPU), and It can be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- ROM read-only memory
- RAM random access memory
- flash memory hard disk, solid state hard disk, tape ( Magnetic tape), floppy disk, optical disc, and any combination thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种飞行控制方法、无人飞行器及其飞行控制系统,所述方法包括:获取无人飞行器电池的当前电量信息(101);当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态(102);根据无人飞行器的当前状态,控制无人飞行器进入相应的安全保护模式(103)。在检测到无人飞行器处于低电量情况时,通过控制无人飞行器进入与其当前状态相对应的安全保护模式,从而保证了无人飞行器的飞行安全,降低无人飞行器坠机的概率。
Description
本发明实施例涉及无人机领域,尤其涉及一种飞行控制方法、系统和无人飞行器。
诸如无人机等无人飞行器在航拍、侦查等领域已经得到广泛应用。在实际飞行过程中,由于无人飞行器的电池电量的持续消耗,往往会发生电池电量不足以支持无人飞行器继续飞行的状况。
为了避免用户由于不知道电池电量的消耗情况,在低电量情况下持续控制无人飞行器飞行而导致无人飞行器坠机的安全隐患,目前大多无人飞行器都提供了电池电量提示方式,以提示用户当前电池剩余电量情况。
但是,实际应用中往往出现这样的情况:用户在控制无人飞行器飞行时,容易忽略低电量提示,仍然控制无人飞行器飞行,出于保护电池的考虑,当电池电量低于一定阈值时,电池管理系统将电池输出关断,造成坠机。综上,目前在低电量情况下,无人飞行器仍存在安全飞行隐患。
发明内容
本发明实施例提供一种飞行控制方法、系统和无人飞行器,以提高无人飞行器在低电量情况下的飞行安全性。
本发明第一方面提供一种飞行控制方法,包括:
获取无人飞行器电池的当前电量信息;
所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;
根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
本发明第二方面提供一种飞行控制系统,包括:
一个或多个处理器,单独地或协同工作,所述处理器用于:
获取无人飞行器电池的当前电量信息;
在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;
根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
本发明第三方面提供一种无人飞行器,包括:
一个或多个处理器,单独地或协同工作;
以及与所述处理器控制通讯连接的动力装置;
所述动力装置用于:在所述处理器的控制下,为所述无人飞行器提供动力;
所述处理器用于:
获取无人飞行器电池的当前电量信息;
在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;
根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
本发明第四方面提供了另一种飞行控制方法,包括:
实时获取无人飞行器在飞行时电池的当前电压信息;
在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并控制所述无人飞行器以预设飞行速度降落。
本发明第五方面提供了另一种飞行控制系统,包括:
一个或多个处理器,单独地或协同工作,以及电压计,所述电压计与所述处理器控制通讯连接,用于实时获取无人飞行器在飞行时电池的当前电压信息;
所述处理器用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并控制所述无人飞行器以预设飞行速度降落。
本发明第六方面提供了另一种无人飞行器,包括:
一个或多个处理器,单独地或协同工作;
以及分别与所述处理器控制通讯连接的电压计和动力装置;
所述电压计用于:实时获取无人飞行器在飞行时电池的当前电压信息;
所述动力装置用于:在所述处理器的控制下,为所述无人飞行器提供动
力;
所述处理器用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并通过控制所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
本发明实施例提供的飞行控制方法、系统和无人飞行器,当获取到的无人飞行器的电池的当前电量信息满足一定电量报警条件时,通过获取无人飞行器的当前状态,以根据无人飞行器当前状态,控制无人飞行器进入相应的安全保护模式,即在检测到无人飞行器处于低电量情况时,通过控制控制无人飞行器进入与其当前状态相对应的安全保护模式,从而保证了无人飞行器的飞行安全,降低无人飞行器坠机的概率。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种飞行控制方法实施例一的流程图;
图2为本发明实施例提供的一种飞行控制方法实施例二的流程图;
图3为本发明实施例提供的一种飞行控制方法实施例三的流程图;
图4为本发明实施例提供的一种飞行控制方法实施例四的流程图;
图5为本发明实施例提供的一种飞行控制方法实施例五的流程图;
图6为本发明实施例提供的一种飞行控制系统实施例一的结构示意图;
图7为本发明实施例提供的一种无人飞行器实施例一的结构示意图;
图8为本发明实施例提供的另一种飞行控制方法实施例一的流程图;
图9为本发明实施例提供的另一种飞行控制方法实施例二的流程图;
图10为本发明实施例提供的另一种飞行控制方法实施例三的流程图;
图11为本发明实施例提供的另一种飞行控制系统实施例一的结构示意图;
图12为本发明实施例提供的另一种无人飞行器实施例一的结构示意图。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合几个具体的实施例对本发明的方案进行详细说明,其中,以下各方法实施例提供的方案可以由无人飞行器中的飞行控制单元或者可以通称为处理器来执行。
图1为本发明实施例提供的飞行控制方法实施例一的流程图,如图1所示,具体包括如下步骤:
步骤101、获取无人飞行器电池的当前电量信息。
步骤102、当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态。
步骤103、根据无人飞行器的当前状态,控制无人飞行器进入相应的安全保护模式。
为了避免无人飞行器在低电量情况下继续飞行而造成坠机等安全问题,从既可以保护无人飞行器电池,又可以保护无人飞行器的角度,提供了本实施例中的飞行控制方法。
具体来说,无人飞行器中安装有用于检测无人飞行器电池的电量信息的电量计,该电量计用于实时检测无人飞行器电池的电量信息,并可以将检测到的电量信息传输给上述处理器,以使处理器进行上述步骤101到步骤103的处理。
其中,实时获得的无人飞行器电池的当前电量信息可以包括当前的剩余电量百分比和当前的电压值。也就是说,无人飞行器电池的电量可以用剩余电量百分比、电池电压来表征。
相应的,无人飞行器是否处于低电量状态,是通过将获得的当前电量信息与对应的阈值进行比较而确定的。即如果当前的剩余电量百分比小于第一百分比阈值,比如3%,当前的电压值小于第一电压阈值,比如3.3V,则确定当前的电量信息满足了电量报警条件,无人飞行器处于低电量状
态。上述阈值仅为举例,可以根据实际情形设定上述各种阈值。
为避免与后续的另一种电量报警条件混淆,此处将该电量报警条件称为第一电量报警条件。即第一电量报警条件包括:当前的剩余电量百分比小于第一百分比阈值,当前的电压值小于第一电压阈值。
当确定无人飞行器处于第一电量报警条件对应的低电量状态时,进行获取无人飞行器的当前状态。其中,该当前状态指示了无人飞行器是否处于空中飞行的状态。该无人飞行器的当前状态的获取可以通过无人飞行器中安装的传感器检测获得,该传感器比如为高度计,图像传感器,姿态传感器。其中,高度计比如实现为GPS模块,或者气压传感器,用以通过检测无人飞行器的高度信息来确定无人飞行器当前是否处于飞行状态。另外,也可以基于对图像传感器拍摄的图像的分析获取无人飞行器的当前状态,或者,通过对姿态传感器获得的无人飞行器姿态的分析确定无人飞行器的当前状态。
由于无人飞行器的当前状态表征了无人飞行器是否处于飞行状态,即简单来说,无人飞行器的当前状态可以包括空中飞行状态、停留在地面上的未起飞状态。因此,针对获得的无人飞行器的当前状态的不同,可以控制无人飞行器进入相应的安全保护模式,以保证无人飞行器的安全,也可以保护无人飞行器电池。
值得说明的是,本实施例中,当确定无人飞行器处于第一电量报警条件对应的低电量情况时,不管无人飞行器是处于空中飞行状态,还是处于未起飞状态,都可以强制性地控制无人飞行器进入与其当前状态相对应的安全保护模式。可以理解的是,如果无人飞行器当前处于空中飞行状态,一般来说,对应的安全保护模式将是控制无人飞行器降落,即降落模式;而如果无人飞行器当前处于未起飞状态,对应的安全保护模式将是不让无人飞行器起飞,即关机模式。通过飞行时控制其降落,未飞行时,控制其关机的方式,避免无人飞行器的不安全飞行。
另外,值得说明的是,既然在确定无人飞行器处于第一电量报警条件对应的低电量情况时,要强制控制无人飞行器进入对应的安全保护模式,那么也就意味着,如果在情况下,当前无人飞行器处于空中飞行状态,此时如果无人飞行器再接收到遥控设备发送的非降落飞行控制指令,应该忽略该非降
落飞行控制指令。该非降落飞行控制指令比如为用户触发的悬停、升高飞行等控制指令。
本实施例中,当获取到的无人飞行器电池的当前电量信息满足一定电量报警条件时,通过获取无人飞行器的当前状态,以根据无人飞行器当前状态,控制无人飞行器进入相应的安全保护模式,即在检测到无人飞行器处于低电量情况时,通过控制控制无人飞行器进入与其当前状态相对应的安全保护模式,从而保证了无人飞行器的飞行安全,降低无人飞行器坠机的概率。
下面结合图2所示实施例,对无人飞行器当前处于不同的飞行状态即获取到不同的无人飞行器当前状态时,如果控制无人飞行器进入相应的安全保护模式进行概要说明。
图2为本发明实施例提供的飞行控制方法实施例二的流程图,如图2所示,在图1所示实施例的基础上,步骤103可以对应有如下两种具体的实现方式,具体体现为如下步骤:
步骤201、无人飞行器的当前状态为空中飞行状态时,控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落。
步骤202、无人飞行器的当前状态为未起飞状态时,控制无人飞行器电池开启过放保护功能,以使无人飞行器电池停止供电。
上述两个步骤之间没有时序限定关系。
具体来说,基于上述提及的高度计、姿态传感器等传感器可以实现无人飞行器当前状态的检测。以高度计为例,当检测到无人飞行器距离地面有大于0的高度差时,认为无人飞行器处于空中飞行状态,当检测到无人飞行器距离地面的高度差为0时,认为无人飞行器处于未起飞状态。
相应的,当无人飞行器处于空中飞行状态时,通过强制控制降低无人飞行器的输出动力的方式,使无人飞行器以预设飞行速度降落,即进入降落模式;当无人飞行器处于未起飞状态时,通过控制无人飞行器电池开启过放保护功能的方式,使无人飞行器电池停止供电,即进入关机模式。
其中,本实施中的无人飞行器电池是具有过放保护功能的电池,电池的过放保护功能的含义本实施例不赘述。
简单来说,本实施例提供的无人飞行器保护策略是:当无人飞行器处于低电量情况时,若无人飞行器当前为空中飞行状态,则控制无人飞行器的输出动力,使无人飞行器降落;若无人飞行器当前为未起飞状态,则控制无人飞行器电池停止供电,使无人飞行器关机。
实际应用中,对于无人飞行器的输出动力的控制,可以根据无人飞行器类型的不同而控制不同的动力装置实现,具体体现为:
当无人飞行器为旋翼无人飞行器时,可以通过降低旋翼的转动速度,以使旋翼无人飞行器以预设飞行速度降落;
当无人飞行器为固定翼无人飞行器时,可以通过降低固定翼无人飞行器的推进速度,以使固定翼无人飞行器以预设飞行速度降落。
下面结合图3所示实施例,对步骤201具体对应于无人飞行器为旋翼无人飞行器时,如何通过降低旋翼的转动速度,以使旋翼无人飞行器以预设飞行速度降落的实现方式进行详细说明。可以理解的是,当无人飞行器为固定翼无人飞行器时,对固定翼无人飞行器的推进速度的控制与对旋翼无人飞行器旋翼的转动速度的控制原理类似,只是控制的动力装置不同,不再赘述。
图3为本发明实施例提供的飞行控制方法实施例三的流程图,如图3所示,包括如下步骤:
步骤301、获取旋翼无人飞行器电池的当前电量信息。
步骤302、当前电量信息满足第一电量报警条件时,获取旋翼无人飞行器的当前状态。
步骤303、旋翼无人飞行器的当前状态为空中飞行状态时,实时获取旋翼无人飞行器所处的高度信息。
值得说明的是,此处的高度信息的获取时机,与获取旋翼无人飞行器的当前状态的关系为:当确定旋翼无人飞行器的当前电量信息满足第一电量报警条件时,触发获取旋翼无人飞行器的当前状态,如果该当前状态表征的是旋翼无人飞行器处于空中飞行状态,则同时也获取当前旋翼无人飞行器距离地面的高度信息,而且,此后需要实时获取旋翼无人飞行器所处的高度信息,以便根据旋翼无人飞行器的实时高度信息及时调整对旋翼的转动速度的控制。因此,在旋翼无人飞行器的当前状态表征无人飞行器处
于空中飞行状态时,该当前状态中还可以具体包括旋翼无人飞行器所处的高度信息。
本实施例中,实时获取旋翼无人飞行器所处的高度信息的目的在于:根据实时获取的旋翼无人飞行器所处的高度信息来确定旋翼的转动速度,以使旋翼无人飞行器以不同的预设飞行速度降落。具体实现包括如下步骤:
步骤304、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使旋翼无人飞行器以第一预设飞行速度降落至预设高度。
步骤305、当前高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使旋翼无人飞行器以第二预设飞行速度降落至地面。
在实际的旋翼无人飞行器降落过程中,可以针对旋翼无人飞行器所处高度的实时变化,动态调整旋翼的转动速度,以控制旋翼无人飞行器以不同的飞行速度降落。
具体来说,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米时,即从确定旋翼无人飞行器低电量处于空中飞行状态时开始,将此时获得的旋翼无人飞行器的高度称为初始高度,如果该初始高度高于预设高度1米,则降低旋翼的转动速度至第一转动速度,以使旋翼无人飞行器以第一预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第一预设飞行速度匀速降落。
实际应用中,该第一预设飞行速度可以是旋翼无人飞行器的最大飞行速度,比如为3米/秒。由于飞行速度与旋翼的转动速度具有一定的对应关系,一般来说,旋翼的转动速度越小,旋翼无人飞行器的飞行速度将越大,因此,当需要使得旋翼无人飞行器以最大飞行速度降落时,需控制旋翼的第一转动速度为与最大飞行速度对应的转动速度。
继而,当旋翼无人飞行器降落至上述预设高度时,由于此时旋翼无人飞行器距离地面的高度比较低,为了避免快速降落至地面对旋翼无人飞行器造成的损坏,此时需要使旋翼无人飞行器的飞行速度降低,以较低的飞
行速度降落至地面。因此,当获取到旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使旋翼无人飞行器以第二预设飞行速度降落至地面。其中,该第二预设飞行速度小于第一预设飞行速度,比如为0.5米/秒,相应的,第二转动速度大于第一转动速度。
上述介绍了旋翼无人飞行器的初始高度高于预设高度的飞行控制情况,即依次执行步骤304和步骤305,如果该初始高度等于或小于预设高度,则仅执行步骤305。
通过如上所述的实施例的方案,当确定无人飞行器处于第一电量报警条件对应的低电量情况下的空中飞行状态时,通过实时获取无人飞行器的高度信息,以基于高度的变化,动态地控制无人飞行器的输出动力,使得无人飞行器能够以不同的飞行速度快速降落,以降低坠机概率,提高无人飞行器的飞行安全性。
前述各实施例中,第一电量报警条件所表征的低电量情况是指无人飞行器电池的电量百分比较低,但不为0%,电池电压值较低,但是没有达到供电终止电压,比如3V。此时通过上述的飞行控制方法可以实现既保护无人飞行器电池也保护无人飞行器的目的,因为很可能在电量为0%,电池电压为3V前便通过上述飞行控制方式使得无人飞行器安全落地。但是,如果在执行上述飞行控制的过程中,电池的电量百分比、电压值进一步降低到满足另一电量报警条件,称为第二电量报警条件,则需要调整飞行控制方式。具体结合图4所示实施例进行说明。
图4为本发明实施例提供的飞行控制方法实施例四的流程图,如图4所示,在前述各实施例的基础上,该飞行控制方法可以包括如下步骤:
步骤401、获取无人飞行器电池的当前电量信息。
步骤402、当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态。
步骤403、无人飞行器的当前状态为空中飞行状态,当前电量信息满足第二电量报警条件时,控制无人飞行器电池处于电压过放工作状态,并控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落。
其中,第二电量报警条件包括:当前的剩余电量百分比小于或等于第二百分比阈值,当前的电压值小于第二电压阈值。其中,前述实施例中的第一百分比阈值大于第二百分比阈值,第一电压阈值大于第二电压阈值。比如,第一百分比阈值为3%,第二百分比阈值为1%或0%;第一电压阈值为3.3V,第二电压阈值为3V。该第二电压阈值可以对应于无人飞行器电池的供电终止电压。
对上述步骤403的执行以上各实施例的关联性进行说明如下:
在图1所示实施例的基础上,是对步骤103的具体实现进行了细化说明,即根据无人飞行器的当前状态,控制无人飞行器进入相应的安全保护模式,包括:
当前状态为空中飞行状态,当前电量信息满足第二电量报警条件时,控制无人飞行器电池处于电压过放工作状态,并控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落。
简单来说就是:当确定无人飞行器的当前电量信息满足第一电量报警条件时,触发获取无人飞行器的当前状态,如果该当前状态表征无人飞行器处于空中飞行状态,并且无人飞行器的当前电量信息进一步还满足第二电量报警条件,则可以直接执行步骤403中控制无人飞行器电池处于电压过放工作状态,并控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落的安全保护操作。
其中,控制无人飞行器电池处于电压过放工作状态,是指关闭无人飞行器电池的过放保护功能,使得该无人飞行器电池即是是电压已经达到供电终止电压,也继续供电。
其中,控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落的控制过程可以参见图3所示实施例中的描述,不再赘述。
此外,值得说明的是,在图2所示实施例的基础上,上述步骤403与步骤201的关系为:
如果无人飞行器的当前电量信息仅满足第一电量报警条件,而不满足第二电量报警条件,则执行步骤201。如果无人飞行器的当前电量信息不但满足第一电量报警条件,还满足第二电量报警条件,则执行步骤403。如果在执行步骤201的过程中,无人飞行器的当前电量信息满足第二电量报警条件,
则执行步骤403。
针对最后一种情况,需要说明的是:从图3所示实施例对步骤201的具体实现过程的说明中可知,对无人飞行器旋翼的转动速度,或者说对无人飞行器降落飞行速度的控制,与无人飞行器的实时高度信息相关。如果无人飞行器电池的电量信息满足第二电量报警条件时所对应的高度大于上述预设高度,则可以参照步骤304和步骤305执行,如果无人飞行器电池的电量信息满足第二电量报警条件时所对应的高度小于或等于上述预设高度,则可以参照步骤305执行,区别在于,在参考步骤304、步骤305执行的过程中,需要先执行控制无人飞行器电池处于电压过放工作状态的步骤。
本实施例中,当无人飞行器在空中飞行时,如果电池电压已经达到上述第二电压阈值,即达到供电终止电压,此时不开启电池的过放保护功能,仍另其继续供电,是通过放弃保护无人飞行器电池的方式,以实现保护无人飞行器的飞行安全的目的。因为相比于电池来说,无人飞行器更为重要。
图4所示实施例中提到,当无人飞行器电池的电量信息满足第二电量报警条件时,无人飞行器处于空中飞行状态时,控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落的过程中,可以根据无人飞行器的实时高度信息进行对应飞行速度的调整。下面结合图5所示实施例介绍另一种控制降低无人飞行器的输出动力,以使无人飞行器以预设飞行速度降落的方式,该方式中,无人飞行器的实时高度信息和实时电压值共同影响着无人飞行器飞行速度的动态调整。
由于对于无人飞行器飞行速度的控制是通过控制无人飞行器的动力装置来实现的,不同类型的无人飞行器的动力装置不同。当无人飞行器为旋翼无人飞行器时,通过控制旋翼的转动速度实现对旋翼无人飞行器飞行速度的控制,当无人飞行器为固定翼无人飞行器时,通过控制器推进速度来控制固定翼无人飞行器的飞行速度。由于控制原理相似,图5所示实施例中仅以旋翼无人飞行器为例进行说明。
图5为本发明实施例提供的飞行控制方法实施例五的流程图,如图5所示,在图4所示实施例的基础上,当无人飞行器为旋翼无人飞行器时,控制旋翼无人飞行器电池处于电压过放工作状态,降低旋翼的转动速度,以使
旋翼无人飞行器以预设飞行速度降落的步骤中,降低旋翼的转动速度,以使旋翼无人飞行器以预设飞行速度降落可以通过如下步骤实现:
步骤501、获取旋翼无人飞行器电池的当前电量信息。
步骤502、当前电量信息满足第一电量报警条件时,获取旋翼无人飞行器的当前状态。
步骤503、旋翼无人飞行器的当前状态为空中飞行状态,当前电量信息满足第二电量报警条件时,控制无人飞行器电池处于电压过放工作状态。
步骤504、实时获取旋翼无人飞行器电池的电压值,实时获取旋翼无人飞行器所处的高度信息。
电压值和高度信息的获取可以通过前述提及的电量计,诸如高度计等传感器分别获得。
进而,根据实时获取的旋翼无人飞行器电池的电压值和实时获取的旋翼无人飞行器所处的高度信息,确定旋翼的转动速度,以使旋翼无人飞行器以不同的预设飞行速度降落。具体可以通过如下步骤实现:
步骤505、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。
步骤506、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于预设电压值时,降低旋翼的转动速度至第四转动速度,以使旋翼无人飞行器以第四预设飞行速度降落至预设高度。
步骤507、当前高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。
上述步骤505至步骤507没有严格的时序限定关系,时序关系参见如图5中所示理解。
具体来说,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米,并且当前的电压值大于预设电压值,比如1.5V时,降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。实际应用中,从确定旋翼无人飞行器电池的电量满足
第二电量报警条件,且处于空中飞行状态时开始,将此时获得的旋翼无人飞行器的高度称为初始高度,如果该初始高度高于预设高度1米,且此时的电压值大于预设电压值1.5V,则降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第三预设飞行速度匀速降落。此时的第三预设飞行速度可以是小于无人飞行器最大飞行速度的预设飞行速度,比如2米/秒。
另外,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米,并且当前的电压值不大于预设电压值,比如1.5V时,降低旋翼的转动速度至第四转动速度,以使旋翼无人飞行器以第四预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第四预设飞行速度匀速降落。此时的第四预设飞行速度为无人飞行器最大飞行速度,比如3米/秒,因为此时的电池电压已经降低的很严重了,快速降落需求要强于上述第三预设飞行速度的情况。
另外,当获取到的高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度,比如1米时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。此时,由于距离地面较近,可以不用考虑电池电压的影响。也就是说,当旋翼无人飞行器从初始高度降落至上述预设高度时或者初始高度本身就小于或等于该预设高度,由于此时旋翼无人飞行器距离地面的高度比较低,为了避免快速降落至地面对旋翼无人飞行器造成的损坏,此时需要使旋翼无人飞行器的飞行速度降低,以较低的飞行速度降落至地面。因此,当获取到旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。其中,该第五预设飞行速度小于第三和第四预设飞行速度,比如为0.5米/秒,相应的,根据飞行速度与旋翼的转动速度的对应关系,第三转动速度大于或等于第四转动速度,第五转动速度大于第三转动速度,第四转动速度包括与旋翼无人飞行器的最大飞行速度对应的转动速度。
通过如上所述的实施例的方案,当确定无人飞行器处于第二电量报警条件对应的低电量情况下的空中飞行状态时,控制无人飞行器电池处于电压过
放工作状态,并通过实时获取无人飞行器的高度信息和无人飞行器电池的电压值,以基于高度和电池电压的变化,动态地控制无人飞行器的输出动力,使得无人飞行器能够以不同的飞行速度快速降落,以降低坠机概率,提高无人飞行器的飞行安全性。
图6为本发明实施例提供的一种飞行控制系统实施例一的结构示意图,如图6所示,该飞行控制系统包括:
一个或多个处理器11,单独地或协同工作。
所述处理器11用于:获取无人飞行器电池的当前电量信息;在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
具体地,该飞行控制系统还包括:电量计12,所述电量计12与所述处理器11控制通讯连接,用于获取所述无人飞行器电池的当前电量信息。
具体地,该飞行控制系统还包括:传感器13,所述传感器13与所述处理器11通讯连接,用于检测所述无人飞行器的当前状态。
其中,所述传感器13包括如下至少一种:高度计,图像传感器,姿态传感器。
可选的,当传感器13确定无人飞行器的当前状态为空中飞行状态时,所述处理器11还用于:控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,当传感器13确定无人飞行器的当前状态为空中飞行状态时,所述处理器11还用于:在确定所述电量计12获取的当前电量信息满足第二电量报警条件时,控制所述无人飞行器电池处于电压过放工作状态,并控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为旋翼无人飞行器时,所述处理器11还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为固定翼无人飞行器时,所述处理器11还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
其中,上述当前电量信息包括当前的剩余电量百分比和当前的电压值;
所述第一电量报警条件包括:所述当前的剩余电量百分比小于第一百分比阈值,所述当前的电压值小于第一电压阈值。
所述第二电量报警条件包括:所述当前的剩余电量百分比小于或等于第二百分比阈值,所述当前的电压值小于第二电压阈值。
其中,所述第一百分比阈值大于所述第二百分比阈值,所述第一电压阈值大于所述第二电压阈值。
可选的,所述处理器11还用于:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
对应的,所述处理器11还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;
其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器11还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
对应的,所述处理器11还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设
高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;
其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器11还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
可选的,所述处理器11还用于:在传感器13确定无人飞行器的当前状态为未起飞状态时,控制所述无人飞行器电池开启过放保护功能,以使所述无人飞行器电池停止供电。
本实施例提供的飞行控制系统可以用于执行图1至图5所示实施例中的技术方案,其实现原理和技术效果类似,不再赘述。
图7为本发明实施例提供的一种无人飞行器实施例一的结构示意图,如图7所示,该无人飞行器包括:一个或多个处理器21,单独地或协同工作;以及与所述处理器21控制通讯连接的动力装置22。
所述动力装置22用于:在所述处理器21的控制下,为所述无人飞行器提供动力。
所述处理器21用于:获取无人飞行器电池的当前电量信息;在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
具体的,该无人飞行器还包括:电量计23,所述电量计23与所述处理器21控制通讯连接,用于获取所述无人飞行器电池的当前电量信息。
具体的,该无人飞行器还包括:传感器24,所述传感器24与所述处理器21通讯连接,用于检测所述无人飞行器的当前状态。
其中,所述传感器24包括如下至少一种:高度计,图像传感器,姿态传感器。
可选的,当传感器24确定无人飞行器的当前状态为空中飞行状态时,所述处理器21还用于:控制降低所述动力装置22的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,当传感器24确定无人飞行器的当前状态为空中飞行状态时,所述处理器21还用于:在确定电量计23获取的当前电量信息满足第二电量报警条件时,控制所述无人飞行器电池处于电压过放工作状态,并控制降低所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为旋翼无人飞行器;所述处理器21还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为固定翼无人飞行器;所述处理器21还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
其中,上述当前电量信息包括当前的剩余电量百分比和当前的电压值。
所述第一电量报警条件包括:所述当前的剩余电量百分比小于第一百分比阈值,所述当前的电压值小于第一电压阈值。
所述第二电量报警条件包括:所述当前的剩余电量百分比小于或等于第二百分比阈值,所述当前的电压值小于第二电压阈值。
其中,所述第一百分比阈值大于所述第二百分比阈值,所述第一电压阈值大于所述第二电压阈值。
可选的,所述处理器21还用于:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
对应的,所述处理器21还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;
其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器21还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其
中,所述当前状态包括所述高度信息。
对应的,所述处理器21还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;
其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器21还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
可选的,所述处理器21还用于:在传感器24确定无人飞行器的当前状态为未起飞状态时,控制所述无人飞行器电池开启过放保护功能,以使所述无人飞行器电池停止供电。
本实施例提供的无人飞行器可以用于执行图1至图5所示实施例中的技术方案,其实现原理和技术效果类似,在此不再赘述。
下面结合几个具体的实施例对本发明提供的另一种飞行控制方法进行详细说明,其中,以下各方法实施例提供的方案可以由无人飞行器中的飞行控制单元或者可以通称为处理器来执行。
图8为本发明实施例提供的另一种飞行控制方法实施例一的流程图,如图8所示,具体包括如下步骤:
步骤601、实时获取无人飞行器在飞行时电池的当前电压信息。
步骤602、在当前电压信息指示电池处于电压过放工作状态时,控制电池继续供电,并控制无人飞行器以预设飞行速度降落。
本实施例所针对的飞行场景可以是:无人飞行器在空中飞行,此时如果无人飞行器电池的电压已经达到供电终止电压,比如3V,无人飞行器电池将处于电压过放工作状态,此时,通过控制无人飞行器电池继续供电,并控制无人飞行器降落,以保护无人飞行器的飞行安全。即本实施例是从优先考虑保护无人飞行器的角度,以放弃对无人飞行器电池的保护来实现对无人飞行器的保护。
可以在无人飞行器中安装有电压计,用于实时获取无人飞行器在飞行时电池的当前电压信息。
可以理解的是,还可以在无人飞行器中安装有高度计等传感器,以用于检测无人飞行器是否在空中。
无人飞行器电池是否处于电压过放工作状态,是通过将电压计实时获取的无人飞行器电池的电压值与一定阈值进行比较而确定的,该阈值一般可以设置为供电终止电压。因此,当电压计实时获取的无人飞行器电池的电压值表示无人飞行器电池的当前电压已经满足进入电压过放工作状态的要求,即已经降低到供电终止电压时,此时,并非开启无人飞行器电池的过放保护功能以保护无人飞行器电池,而是不开启过放保护功能,而控制无人飞行器电池继续对外供电,继续为无人飞行器提供电力支持。此时,假设触发控制无人飞行器电池继续对外供电时刻时无人飞行器电池的电压值为3V,那么可以控制无人飞行器电池一直持续供电,一直到其电压值降为0V。
在控制无人飞行器电池继续对外供电的同时,还控制无人飞行器以预设飞行速度降落,以使得无人飞行器快速降落。
控制无人飞行器降落,具体是通过控制降低无人飞行器的输出动力的方式实现的。对无人飞行器输出动力的控制,可以基于无人飞行器类型的不同而不同。具体来说,无人飞行器为旋翼无人飞行器时,通过降低旋翼的转动速度,以使旋翼无人飞行器以预设飞行速度降落。无人飞行器为固定翼无人飞行器时,通过降低固定翼无人飞行器的推进速度,以使固定翼无人飞行器以预设飞行速度降落。
另外,值得说明的是,既然在确定无人飞行器电池处于电压过放工作状态时,要强制控制无人飞行器进入降落飞行的模式,那么意味着,此时如果无人飞行器再接收到遥控设备发送的非降落飞行控制指令,应该忽略
该非降落飞行控制指令。该非降落飞行控制指令比如为用户触发的悬停、升高飞行等控制指令。
本实施例中,当获取到的无人飞行器电池的当前电压信息指示电池处于电压过放工作状态时,通过控制电池继续供电,并控制无人飞行器以预设飞行速度降落的方式,以放弃对无人飞行器电池的保护来保证了无人飞行器的飞行安全,降低无人飞行器坠机的概率。
下面分别结合图9和图10所示实施例对图8所示实施例中步骤602中控制无人飞行器以预设飞行速度降落的具体实现方式进行详细说明。这两个实施例中,以无人飞行器为旋翼无人飞行器为例进行说明,对于固定翼无人飞行器,控制原理与之类似,区别在于两种无人飞行器的受控飞行动力装置不同。
图9为本发明实施例提供的另一种飞行控制方法实施例二的流程图,对于旋翼无人飞行器,通过降低旋翼的转动速度,以使旋翼无人飞行器以预设飞行速度降落。如图9所示,具体实现时该飞行控制方法可以包括如下步骤:
步骤701、实时获取旋翼无人飞行器在飞行时电池的当前电压信息,并实时获取旋翼无人飞行器所处的高度信息。
该高度信息的获取可以通过在旋翼无人飞行器中安装的诸如GPS模块、气压计等传感器来获取。
步骤702、在前电压信息指示电池处于电压过放工作状态时,控制电池继续供电。
本实施例中,实时获取旋翼无人飞行器所处的高度信息的目的在于:根据实时获取的旋翼无人飞行器所处的高度信息来确定旋翼的转动速度,以使旋翼无人飞行器以不同的预设飞行速度降落。具体实现包括如下步骤:
步骤703、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使旋翼无人飞行器以第一预设飞行速度降落至预设高度。
步骤704、当前高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使旋翼无人飞行器
以第二预设飞行速度降落至地面。
在实际的旋翼无人飞行器降落过程中,可以针对旋翼无人飞行器所处高度的实时变化,动态调整旋翼的转动速度,以控制旋翼无人飞行器以不同的飞行速度降落。
具体来说,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米时,即从确定旋翼无人飞行器低电量处于空中飞行状态时开始,将此时获得的旋翼无人飞行器的高度称为初始高度,如果该初始高度高于预设高度1米,则降低旋翼的转动速度至第一转动速度,以使旋翼无人飞行器以第一预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第一预设飞行速度匀速降落。
实际应用中,该第一预设飞行速度可以是旋翼无人飞行器的最大飞行速度,比如为3米/秒。由于飞行速度与旋翼的转动速度具有一定的对应关系,一般来说,旋翼的转动速度越小,旋翼无人飞行器的飞行速度将越大,因此,当需要使得旋翼无人飞行器以最大飞行速度降落时,需控制旋翼的第一转动速度为与最大飞行速度对应的转动速度。
继而,当旋翼无人飞行器降落至上述预设高度时,由于此时旋翼无人飞行器距离地面的高度比较低,为了避免快速降落至地面对旋翼无人飞行器造成的损坏,此时需要使旋翼无人飞行器的飞行速度降低,以较低的飞行速度降落至地面。因此,当获取到旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使旋翼无人飞行器以第二预设飞行速度降落至地面。其中,该第二预设飞行速度小于第一预设飞行速度,比如为0.5米/秒,相应的,第二转动速度大于第一转动速度。
上述介绍了旋翼无人飞行器的初始高度高于预设高度的飞行控制情况,即依次执行步骤703和步骤704,如果该初始高度等于或小于预设高度,则仅执行步骤704。
通过如上所述的实施例的方案,当确定无人飞行器电池处于电压过放工作状态时,一方面控制无人飞行器电池继续供电,另一方面,通过实时获取无人飞行器的高度信息,以基于高度的变化,动态地控制无人飞行器的输出动力,使得无人飞行器能够以不同的飞行速度快速降落,以降低坠机概率,
提高无人飞行器的飞行安全性。
图10为本发明实施例提供的另一种飞行控制方法实施例三的流程图,如图10所示,该飞行控制方法可以包括如下步骤:
步骤801、实时获取旋翼无人飞行器在飞行时电池的当前电压信息,并实时获取旋翼无人飞行器所处的高度信息。
步骤802、在前电压信息指示电池处于电压过放工作状态时,控制电池继续供电。
本实施例中,实时获取旋翼无人飞行器电池的电压值不但用于进行电池是否处于电压过放工作状态的判断以及控制电池继续供电,还可以与实时获取的旋翼无人飞行器所处的高度信息一起,共同来确定旋翼的转动速度,以使旋翼无人飞行器以不同的预设飞行速度降落。具体实现包括如下步骤:
步骤803、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。
步骤804、当前高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于预设电压值时,降低旋翼的转动速度至第四转动速度,以使旋翼无人飞行器以第四预设飞行速度降落至预设高度。
步骤805、当前高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。
其中,第三转动速度大于或等于第四转动速度,第五转动速度大于第三转动速度,第四转动速度包括与旋翼无人飞行器的最大飞行速度对应的转动速度。
上述步骤803至步骤805没有严格的时序限定关系,时序关系参见如图10中所示理解。
具体来说,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米,并且当前的电压值大于预设电压值,比如1.5V时,降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。实际应用中,从确定旋翼无人飞行器电池的电量满足
第二电量报警条件,且处于空中飞行状态时开始,将此时获得的旋翼无人飞行器的高度称为初始高度,如果该初始高度高于预设高度1米,且此时的电压值大于预设电压值1.5V,则降低旋翼的转动速度至第三转动速度,以使旋翼无人飞行器以第三预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第三预设飞行速度匀速降落。此时的第三预设飞行速度可以是小于无人飞行器最大飞行速度的预设飞行速度,比如2米/秒。
另外,当获取到的高度信息指示旋翼无人飞行器距离地面的高度大于预设高度,比如1米,并且当前的电压值不大于预设电压值,比如1.5V时,降低旋翼的转动速度至第四转动速度,以使旋翼无人飞行器以第四预设飞行速度降落至预设高度。也就是说,从初始高度降落到预设高度的过程中,控制旋翼无人飞行器以第四预设飞行速度匀速降落。此时的第四预设飞行速度为无人飞行器最大飞行速度,比如3米/秒,因为此时的电池电压已经降低的很严重了,快速降落需求要强于上述第三预设飞行速度的情况。
另外,当获取到的高度信息指示旋翼无人飞行器距离地面的高度等于或小于预设高度,比如1米时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。此时,由于距离地面较近,可以不用考虑电池电压的影响。也就是说,当旋翼无人飞行器从初始高度降落至上述预设高度时或者初始高度本身就小于或等于该预设高度,由于此时旋翼无人飞行器距离地面的高度比较低,为了避免快速降落至地面对旋翼无人飞行器造成的损坏,此时需要使旋翼无人飞行器的飞行速度降低,以较低的飞行速度降落至地面。因此,当获取到旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使旋翼无人飞行器以第五预设飞行速度降落至地面。其中,该第五预设飞行速度小于第三和第四预设飞行速度,比如为0.5米/秒,相应的,根据飞行速度与旋翼的转动速度的对应关系,第三转动速度大于或等于第四转动速度,第五转动速度大于第三转动速度,第四转动速度包括与旋翼无人飞行器的最大飞行速度对应的转动速度。
本实施例中,当确定无人飞行器电池处于电压过放工作状态时,一方面控制电池继续供电,另一方面,通过实时获取无人飞行器的高度信息和无人
飞行器电池的电压值,以基于高度和电池电压的变化,动态地控制无人飞行器的输出动力,使得无人飞行器能够以不同的飞行速度快速降落,以降低坠机概率,提高无人飞行器的飞行安全性。
图11为本发明实施例提供的另一种飞行控制系统实施例一的结构示意图,如图11所示,该飞行控制系统包括:
一个或多个处理器31,单独地或协同工作;以及电压计32,所述电压计32与所述处理器31控制通讯连接,用于实时获取无人飞行器在飞行时电池的当前电压信息。
所述处理器31用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并控制所述无人飞行器以预设飞行速度降落。
具体的,所述处理器31还用于:降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为旋翼无人飞行器;所述处理器31还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为固定翼无人飞行器;所述处理器31还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
具体的,该飞行控制系统还包括:传感器33;所述传感器33与所述处理器31通讯连接,用于实时获取的所述旋翼无人飞行器所处的高度信息。
可选的,所述处理器31还用于:根据所述高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
具体的,所述处理器31还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;
其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度
包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器31还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
具体的,所述处理器31还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;
其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
进一步可选的,所述处理器31还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
本实施例提供的飞行控制系统可以用于执行图8至图10所示实施例中的技术方案,其实现原理和技术效果类似,不再赘述。
图12为本发明实施例提供的另一种无人飞行器实施例一的结构示意图,如图12所示,该无人飞行器包括:
一个或多个处理器41,单独地或协同工作;以及分别与所述处理器41控制通讯连接的电压计42和动力装置43。
所述电压计42用于:实时获取无人飞行器在飞行时电池的当前电压信息。
所述动力装置43用于:在所述处理器的控制下,为所述无人飞行器提供动力。
所述处理器41用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并通过控制所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
具体的,所述处理器41还用于:降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为旋翼无人飞行器;所述处理器41还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
可选的,所述无人飞行器为固定翼无人飞行器;所述处理器41还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
具体的,该无人飞行器还包括:传感器44;所述传感器44与所述处理器41通讯连接,用于实时获取的所述旋翼无人飞行器所处的高度信息。
可选的,所述处理器41还用于:根据所述高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
具体的,所述处理器41还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;
其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器41还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
具体的,所述处理器41还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,
当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;
当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;
其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
可选的,所述处理器41还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
本实施例提供的无人飞行器可以用于执行图8至图10所示实施例中的技术方案,其实现原理和技术效果类似,在此不再赘述。
在上述飞行控制系统以及无人飞行器的各实施例中,应理解,该处理器可以是电机控制器MCU(Motor control unit,简称MCU)、中央处理单元(Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称:DSP)、专用集成电路(Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:只读存储器(read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(magnetic tape)、软盘(floppy disk)、光盘(optical disc)及其任意组合。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
Claims (69)
- 一种飞行控制方法,其特征在于,包括:获取无人飞行器的电池的当前电量信息;所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
- 根据权利要求1所述的方法,其特征在于,所述根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式,包括:所述当前状态为空中飞行状态,控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求1所述的方法,其特征在于,所述根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式,包括:所述当前状态为空中飞行状态,所述当前电量信息满足第二电量报警条件时,控制所述无人飞行器电池处于电压过放工作状态,并控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求2或3所述的方法,其特征在于,所述无人飞行器为旋翼无人飞行器;所述控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落,包括:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求2或3所述的方法,其特征在于,所述无人飞行器为固定翼无人飞行器;所述控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落,包括:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述当前电量信息包括当前的剩余电量百分比和当前的电压值;所述第一电量报警条件包括:所述当前的剩余电量百分比小于第一百分比阈值,所述当前的电压值小于第一电压阈值;所述第二电量报警条件包括:所述当前的剩余电量百分比小于或等于第二百分比阈值,所述当前的电压值小于第二电压阈值;其中,所述第一百分比阈值大于所述第二百分比阈值,所述第一电压阈值大于所述第二电压阈值。
- 根据权利要求4所述的方法,其特征在于,所述降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落,包括:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求7所述的方法,其特征在于,所述根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,包括:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求4所述的方法,其特征在于,所述控制旋翼无人飞行器电池处于电压过放工作状态,降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落,包括:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求9所述的方法,其特征在于,所述根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,包括:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
- 根据权利要求1至11中任一项所述的方法,其特征在于,所述根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式包括:所述当前状态为未起飞状态,控制所述无人飞行器电池开启过放保护功能,以使所述无人飞行器电池停止供电。
- 一种飞行控制系统,其特征在于,包括:一个或多个处理器,单独地或协同工作,所述处理器用于:获取无人飞行器电池的当前电量信息;在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
- 根据权利要求13所述的系统,其特征在于,还包括:电量计,所述电量计与所述处理器控制通讯连接,用于获取所述无人飞行器电池的当前电量信息。
- 根据权利要求13所述的系统,其特征在于,还包括:传感器,所述传感器与所述处理器通讯连接,用于检测所述无人飞行器的当前状态。
- 根据权利要求15所述的系统,其特征在于,所述传感器包括如下至少一种:高度计,图像传感器,姿态传感器。
- 根据权利要求13至16中任一项所述的系统,其特征在于,所述当前状态为空中飞行状态,所述处理器还用于:控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求13至16中任一项所述的系统,其特征在于,所述当前状态为空中飞行状态,所述处理器还用于:所述当前电量信息满足第二电量报警条件时,控制所述无人飞行器电池处于电压过放工作状态,并控制降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求17或18所述的系统,其特征在于,所述无人飞行器为旋翼无人飞行器;所述处理器还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求17或18所述的系统,其特征在于,所述无人飞行器为固定翼无人飞行器;所述处理器还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求13至20中任一项所述的系统,其特征在于,所述当前电量信息包括当前的剩余电量百分比和当前的电压值;所述第一电量报警条件包括:所述当前的剩余电量百分比小于第一百分比阈值,所述当前的电压值小于第一电压阈值;所述第二电量报警条件包括:所述当前的剩余电量百分比小于或等于第二百分比阈值,所述当前的电压值小于第二电压阈值;其中,所述第一百分比阈值大于所述第二百分比阈值,所述第一电压阈值大于所述第二电压阈值。
- 根据权利要求19所述的系统,其特征在于,所述处理器还用于:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求22所述的系统,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求19所述的系统,其特征在于,所述处理器还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求24所述的系统,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求13至25中任一项所述的系统,其特征在于,所述处理器还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
- 根据权利要求13至26中任一项所述的系统,其特征在于,所述处理器还用于:所述当前状态为未起飞状态时,控制所述无人飞行器电池开启过放保护功能,以使所述无人飞行器电池停止供电。
- 一种无人飞行器,其特征在于,包括:一个或多个处理器,单独地或协同工作;以及与所述处理器控制通讯连接的动力装置;所述动力装置用于:在所述处理器的控制下,为所述无人飞行器提供动力;所述处理器用于:获取无人飞行器电池的当前电量信息;在所述当前电量信息满足第一电量报警条件时,获取无人飞行器的当前状态;根据所述当前状态,自动控制所述无人飞行器进入相应的安全保护模式。
- 根据权利要求28所述的无人飞行器,其特征在于,还包括:电量计,所述电量计与所述处理器控制通讯连接,用于获取所述无人飞行器电池的当前电量信息。
- 根据权利要求28所述的无人飞行器,其特征在于,还包括:传感器,所述传感器与所述处理器通讯连接,用于检测所述无人飞行器的当前状态。
- 根据权利要求30所述的无人飞行器,其特征在于,所述传感器包括如下至少一种:高度计,图像传感器,姿态传感器。
- 根据权利要求28至31中任一项所述的无人飞行器,其特征在于,所述当前状态为空中飞行状态,所述处理器还用于:控制降低所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求28至31中任一项所述的无人飞行器,其特征在于,所述当前状态为空中飞行状态,所述处理器还用于:所述当前电量信息满足第二电量报警条件时,控制所述无人飞行器电池处于电压过放工作状态,并控制降低所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求32或33所述的无人飞行器,其特征在于,所述无人飞行器为旋翼无人飞行器;所述处理器还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求32或33所述的无人飞行器,其特征在于,所述无人飞行器为固定翼无人飞行器;所述处理器还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求28至35中任一项所述的无人飞行器,其特征在于,所述当前电量信息包括当前的剩余电量百分比和当前的电压值;所述第一电量报警条件包括:所述当前的剩余电量百分比小于第一百分比阈值,所述当前的电压值小于第一电压阈值;所述第二电量报警条件包括:所述当前的剩余电量百分比小于或等于第二百分比阈值,所述当前的电压值小于第二电压阈值;其中,所述第一百分比阈值大于所述第二百分比阈值,所述第一电压阈值大于所述第二电压阈值。
- 根据权利要求34所述的无人飞行器,其特征在于,所述处理器还用于:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求37所述的无人飞行器,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求34所述的无人飞行器,其特征在于,所述处理器还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,其中,所述当前状态包括所述高度信息。
- 根据权利要求39所述的无人飞行器,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求28至40中任一项所述的无人飞行器,其特征在于,所述处理器还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
- 根据权利要求28至41中任一项所述的无人飞行器,其特征在于,所述处理器还用于:所述当前状态为未起飞状态时,控制所述无人飞行器电池开启过放保护功能,以使所述无人飞行器电池停止供电。
- 一种飞行控制方法,其特征在于,包括:实时获取无人飞行器在飞行时电池的当前电压信息;在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并控制所述无人飞行器以预设飞行速度降落。
- 根据权利要求43所述的方法,其特征在于,所述控制所述无人飞行器以预设飞行速度降落,包括:降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求44所述的方法,其特征在于,所述无人飞行器为旋翼无人飞行器;所述降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落,包括:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求44所述的方法,其特征在于,所述无人飞行器为固定翼无人飞行器;所述降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落,包括:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求45所述的方法,其特征在于,所述降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落,包括:根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求47所述的方法,其特征在于,所述根据实时获取的所述旋翼无人飞行器所处的高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,包括:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包 括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求45所述的方法,其特征在于,所述降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落,包括:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求49所述的方法,其特征在于,所述根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落,包括:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求43至50中任一项所述的方法,其特征在于,所述方法还包括:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
- 一种飞行控制系统,其特征在于,包括:一个或多个处理器,单独地或协同工作,以及电压计,所述电压计与所述处理器控制通讯连接,用于实时获取无人飞行器在飞行时电池的当前电压信息;所述处理器用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并控制所述无人飞行器以预设飞行速度降落。
- 根据权利要求52所述的系统,其特征在于,所述处理器还用于:降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求53所述的系统,其特征在于,所述无人飞行器为旋翼无人飞行器;所述处理器还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求53所述的系统,其特征在于,所述无人飞行器为固定翼无人飞行器;所述处理器还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求54所述的系统,其特征在于,还包括:传感器;所述传感器与所述处理器通讯连接,用于实时获取的所述旋翼无人飞行器所处的高度信息;所述处理器还用于:根据所述高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求56所述的系统,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求56所述的系统,其特征在于,所述处理器还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人 飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求58所述的系统,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求52至59中任一项所述的系统,其特征在于,所述处理器还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
- 一种无人飞行器,其特征在于,包括:一个或多个处理器,单独地或协同工作;以及分别与所述处理器控制通讯连接的电压计和动力装置;所述电压计用于:实时获取无人飞行器在飞行时电池的当前电压信息;所述动力装置用于:在所述处理器的控制下,为所述无人飞行器提供动力;所述处理器用于:在所述当前电压信息指示所述电池处于电压过放工作状态时,控制所述电池继续供电,并通过控制所述动力装置的输出动力,以使所述无人飞行器以预设飞行速度降落。
- 根据权利要求61所述的无人飞行器,其特征在于,所述处理器还用于:降低所述无人飞行器的输出动力,以使所述无人飞行器以预设飞行速 度降落。
- 根据权利要求62所述的无人飞行器,其特征在于,所述无人飞行器为旋翼无人飞行器;所述处理器还用于:降低旋翼的转动速度,以使所述旋翼无人飞行器以预设飞行速度降落。
- 根据权利要求62所述的无人飞行器,其特征在于,所述无人飞行器为固定翼无人飞行器;所述处理器还用于:降低所述固定翼无人飞行器的推进速度,以使所述固定翼无人飞行器以预设飞行速度降落。
- 根据权利要求63所述的无人飞行器,其特征在于,还包括:传感器;所述传感器与所述处理器通讯连接,用于实时获取的所述旋翼无人飞行器所处的高度信息;所述处理器还用于:根据所述高度信息确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求65所述的无人飞行器,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度时,降低旋翼的转动速度至第一转动速度,以使所述旋翼无人飞行器以第一预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第二转动速度,以使所述旋翼无人飞行器以第二预设飞行速度降落至地面;其中,所述第一转动速度小于所述第二转动速度,所述第一转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求65所述的无人飞行器,其特征在于,所述处理器还用于:根据实时获取的旋翼无人飞行器电池的电压值和实时获取的所述旋翼无人飞行器所处的高度信息,确定所述旋翼的转动速度,以使所述旋翼无人飞行器以不同的预设飞行速度降落。
- 根据权利要求67所述的无人飞行器,其特征在于,所述处理器还用于:当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值大于预设电压值时,降低旋翼的转动速度至第三转动速度,以 使所述旋翼无人飞行器以第三预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度大于预设高度,当前的电压值不大于所述预设电压值时,降低旋翼的转动速度至第四转动速度,以使所述旋翼无人飞行器以第四预设飞行速度降落至所述预设高度;当前高度信息指示所述旋翼无人飞行器距离地面的高度等于或小于预设高度时,升高旋翼的转动速度至第五转动速度,以使所述旋翼无人飞行器以第五预设飞行速度降落至地面;其中,所述第三转动速度大于或等于所述第四转动速度,所述第五转动速度大于所述第三转动速度,所述第四转动速度包括与所述旋翼无人飞行器的最大飞行速度对应的转动速度。
- 根据权利要求61至68中任一项所述的无人飞行器,其特征在于,所述处理器还用于:在接收到遥控设备发送的非降落飞行控制指令时,忽略所述非降落飞行控制指令。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680003238.7A CN107074347B (zh) | 2016-02-29 | 2016-03-01 | 飞行控制方法、系统和无人飞行器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610116068.5 | 2016-02-29 | ||
CN201610116068 | 2016-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017147776A1 true WO2017147776A1 (zh) | 2017-09-08 |
Family
ID=59743352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/075140 WO2017147776A1 (zh) | 2016-02-29 | 2016-03-01 | 飞行控制方法、系统和无人飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109625293B (zh) |
WO (1) | WO2017147776A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112799394A (zh) * | 2020-12-15 | 2021-05-14 | 广州极飞科技股份有限公司 | 一种无人作业设备控制方法、装置、设备及存储介质 |
CN113359863A (zh) * | 2021-07-29 | 2021-09-07 | 普宙科技(深圳)有限公司 | 一种无人机起飞远程控制系统 |
CN114180065A (zh) * | 2020-11-05 | 2022-03-15 | 北星空间信息技术研究院(南京)有限公司 | 一种植保类无人机的可抛外挂配件的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110673640B (zh) * | 2019-10-21 | 2022-02-08 | 深圳市道通智能航空技术股份有限公司 | 一种无人机控制方法、装置、设备和存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014045276A1 (en) * | 2012-09-23 | 2014-03-27 | Israel Aerospace Industries Ltd. | A system, a method and a computer program product for maneuvering of an air vehicle |
CN103701163A (zh) * | 2013-12-06 | 2014-04-02 | 深圳市大疆创新科技有限公司 | 电池、具有该电池的飞行器及电池控制方法 |
US20140316616A1 (en) * | 2013-03-11 | 2014-10-23 | Airphrame, Inc. | Unmanned aerial vehicle and methods for controlling same |
CN104166355A (zh) * | 2014-07-16 | 2014-11-26 | 深圳市大疆创新科技有限公司 | 电动无人机及其智能电量保护方法 |
CN104881041A (zh) * | 2015-05-27 | 2015-09-02 | 深圳市高巨创新科技开发有限公司 | 一种无人飞行器的电量预警方法及装置 |
CN105334865A (zh) * | 2015-11-24 | 2016-02-17 | 余江 | 基于电量监控的飞行控制方法及飞行控制装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103349839B (zh) * | 2013-07-06 | 2015-02-04 | 徐州飞梦电子科技有限公司 | 一种航模飞行状态安全控制方法 |
CN105259917A (zh) * | 2015-11-08 | 2016-01-20 | 杨珊珊 | 一种无人飞行器安全快速降落装置及方法 |
-
2016
- 2016-03-01 WO PCT/CN2016/075140 patent/WO2017147776A1/zh active Application Filing
- 2016-03-01 CN CN201910093355.2A patent/CN109625293B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014045276A1 (en) * | 2012-09-23 | 2014-03-27 | Israel Aerospace Industries Ltd. | A system, a method and a computer program product for maneuvering of an air vehicle |
US20140316616A1 (en) * | 2013-03-11 | 2014-10-23 | Airphrame, Inc. | Unmanned aerial vehicle and methods for controlling same |
CN103701163A (zh) * | 2013-12-06 | 2014-04-02 | 深圳市大疆创新科技有限公司 | 电池、具有该电池的飞行器及电池控制方法 |
CN104166355A (zh) * | 2014-07-16 | 2014-11-26 | 深圳市大疆创新科技有限公司 | 电动无人机及其智能电量保护方法 |
CN104881041A (zh) * | 2015-05-27 | 2015-09-02 | 深圳市高巨创新科技开发有限公司 | 一种无人飞行器的电量预警方法及装置 |
CN105334865A (zh) * | 2015-11-24 | 2016-02-17 | 余江 | 基于电量监控的飞行控制方法及飞行控制装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114180065A (zh) * | 2020-11-05 | 2022-03-15 | 北星空间信息技术研究院(南京)有限公司 | 一种植保类无人机的可抛外挂配件的方法 |
CN112799394A (zh) * | 2020-12-15 | 2021-05-14 | 广州极飞科技股份有限公司 | 一种无人作业设备控制方法、装置、设备及存储介质 |
CN112799394B (zh) * | 2020-12-15 | 2022-09-13 | 广州极飞科技股份有限公司 | 一种无人作业设备控制方法、装置、设备及存储介质 |
CN113359863A (zh) * | 2021-07-29 | 2021-09-07 | 普宙科技(深圳)有限公司 | 一种无人机起飞远程控制系统 |
Also Published As
Publication number | Publication date |
---|---|
CN109625293A (zh) | 2019-04-16 |
CN109625293B (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107074347B (zh) | 飞行控制方法、系统和无人飞行器 | |
US11511857B2 (en) | Aerial vehicle control method and aerial vehicle | |
WO2017147776A1 (zh) | 飞行控制方法、系统和无人飞行器 | |
CN111348202B (zh) | 在发动机故障期间辅助单发旋翼飞行器的辅助方法 | |
CN107291095B (zh) | 无人机起飞控制方法、装置、系统以及无人机 | |
EP2513732B1 (en) | Stall prevention/recovery system and method | |
US7195200B2 (en) | Unmanned helicopter, takeoff method of unmanned helicopter, and landing method of unmanned helicopter | |
CN103963963B (zh) | 多旋翼飞行器的飞行控制方法及系统 | |
CN111213106B (zh) | 一种无人机的降落控制方法、飞行控制设备及无人机 | |
CN104471502B (zh) | 安全起飞监控系统 | |
US10450077B2 (en) | Flight termination for air vehicles | |
WO2019134150A1 (zh) | 无人机的故障检测方法、装置及可移动平台 | |
WO2017185363A1 (zh) | 无人飞行器的控制方法、装置及系统 | |
JP5887641B1 (ja) | 無人飛行体 | |
WO2016008125A1 (zh) | 电动无人机及其智能电量保护方法 | |
US11001387B2 (en) | Aerial vehicle powering off method and device, and aerial vehicle | |
US11975866B2 (en) | Aircraft night flight control method and apparatus, control apparatus, and aircraft | |
US10338090B2 (en) | Airspeed estimation system | |
CN110254696B (zh) | 无人机模式切换控制方法、装置,存储介质及电子设备 | |
US20190054386A1 (en) | Model Airplane | |
CN205594456U (zh) | 一种可语音警报避障的四旋翼无人飞行器 | |
CN104536451B (zh) | 一种带有落地自动停转功能的多旋翼飞行器及控制方法 | |
CN113815859B (zh) | 无人设备起飞控制方法、装置、设备及存储介质 | |
TWI688519B (zh) | 定翼機起飛系統及其方法 | |
CN106965935A (zh) | 一种组合飞行器及其降落方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16891969 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16891969 Country of ref document: EP Kind code of ref document: A1 |