WO2017146459A2 - 위상 특이점 판별 시스템 및 방법 - Google Patents

위상 특이점 판별 시스템 및 방법 Download PDF

Info

Publication number
WO2017146459A2
WO2017146459A2 PCT/KR2017/001943 KR2017001943W WO2017146459A2 WO 2017146459 A2 WO2017146459 A2 WO 2017146459A2 KR 2017001943 W KR2017001943 W KR 2017001943W WO 2017146459 A2 WO2017146459 A2 WO 2017146459A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
singularity
phase singularity
action potential
signal
Prior art date
Application number
PCT/KR2017/001943
Other languages
English (en)
French (fr)
Other versions
WO2017146459A3 (ko
Inventor
박희남
송준섭
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to JP2018544565A priority Critical patent/JP6675010B2/ja
Priority to US16/078,795 priority patent/US10874321B2/en
Publication of WO2017146459A2 publication Critical patent/WO2017146459A2/ko
Publication of WO2017146459A3 publication Critical patent/WO2017146459A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/361Detecting fibrillation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods

Definitions

  • the present invention relates to a system and method for determining phase singularity, and more particularly, to a system and method for determining whether a specific point of cardiomyocyte is a phase singularity from a single action potential signal.
  • Arrhythmias are symptoms of an abnormal heart conduction that cause the heart to become faster, slower, or irregular. Atrial fibrillation is one of the most common types of arrhythmia. Despite the high possibility of ischemic stroke and sudden death, the mechanism for this is still unclear and treatment is not easy.
  • One mechanism for maintaining atrial fibrillation for the treatment of atrial fibrillation is the rotor (Rotor), which is the center of the electric whirlwind, but there is a problem that the detection of the rotor is not easy and the research and clinical application are not easy.
  • Phase singularities are mathematically defined as phase singularities, and the method of determining phase singularities is Iyer and Gray, "An Experimentalist's Approach to Accurate Localization of Phase Singularities during Reentry", Annals of Biomedical First proposed in Engineering 29 (1), 2001.
  • This paper is a kind of conventional technique that calculates all phases at each position of heart tissue, and detects phase specificity by detecting that the phase rotates one revolution continuously.
  • the present invention proposes a system and method that can significantly reduce the time and cost required for phase singularity determination compared to the prior art.
  • An object of the present invention is to propose a system and method that can significantly reduce the time and cost in determining the phase singularity of a rotor.
  • a phase singularity determination system is a signal receiving unit for receiving a single action potential signal (x [n], n is a natural number) measured through a single electrode (single electrogram) at a specific point of the cardiomyocytes
  • a phase calculation unit for calculating a phase ( ⁇ [n], n is a natural number) from a single action potential signal received by the signal receiving unit and whether the specific point of the cardiomyocyte is a phase singularity through the phase calculated by the phase calculation unit
  • a phase singularity discrimination unit for discriminating.
  • the present invention by determining the phase singularity of the rotor through the use of a single-electrode electrode conductor rather than a multi-electrode electrode conductor, it is possible to drastically reduce the time and cost consumed compared to the prior art, and to accurately determine the phase singularity of the rotor. Therefore, there is an effect that can be used in radiofrequency catheter ablation for cardiac arrhythmia treatment.
  • ⁇ [n] is the phase
  • x [n] is the single action potential diagram signal
  • is the delay constant
  • k is the base value of the single action potential diagram signal.
  • phase calculator the electrical state of the cardiomyocytes may be represented by a value of - ⁇ to ⁇
  • the phase calculator is calculated up to the phase ⁇ [n + 1] according to the equation can do.
  • phase singularity discrimination unit when n satisfies ⁇ [n + 1] - ⁇ [n] ⁇ -M (where M is a constant specified as a phase singularity discrimination condition), the specificity of the cardiomyocytes is specified.
  • M the phase singularity determination condition
  • the phase singularity determination system (a) the signal receiving unit is a single action potential signal (x [n], n is a natural number) measured by a single electrode conductor at a specific point of the cardiomyocytes Receiving, (b) a phase calculating unit calculating a phase ( ⁇ [n], n is a natural number) from a single active potential signal received by the signal receiving unit, and (c) a phase singularity determining unit calculating the phase calculating unit.
  • the phase singularity determination method may be implemented by another embodiment including the step of determining whether a specific point of the cardiomyocyte is a phase singularity through one phase and which may implement the same technical characteristics.
  • ⁇ [n] is the phase
  • x [n] is the single action potential diagram signal
  • is the delay constant
  • k is the base value of the single action potential diagram signal.
  • phase calculated in the step (b), the electrical state of the cardiomyocytes can be represented by a value of - ⁇ to ⁇
  • step (b), (b-1) phase calculation unit is The method may further include calculating a phase ⁇ [n + 1] according to the equation.
  • phase singularity discrimination unit satisfies the equation ⁇ [n + 1] - ⁇ [n] ⁇ -M (where M is a constant specified as a phase singularity discrimination condition).
  • M is a constant specified as a phase singularity discrimination condition.
  • phase singularity determination method may be implemented by a program stored in a medium for executing in a computer.
  • FIG. 1 is a view showing the overall configuration of a phase singularity determination system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a state of measuring the action potential of a specific point of myocardial cells using a conventional multi-electrode electrode conductor.
  • FIG 3 is a view showing a state of measuring the action potential of a specific point of the cardiomyocytes by using a single electrode conductor according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a single action potential diagram signal received by a signal receiver.
  • FIG. 5 is a diagram illustrating a state in which the single action potential diagram signal shown in FIG. 4 is calculated in phase according to Equation 1.
  • FIG. 6 is a diagram illustrating an anatomical image of a heart in which phase singularities are mapped three-dimensionally.
  • FIG. 7 is a diagram illustrating an embodiment in which a phase singularity determination system according to an embodiment of the present invention is implemented in the form of an electronic circuit.
  • FIG. 8 is a flowchart illustrating a phase singularity discrimination method according to another exemplary embodiment of the present invention.
  • phase singularity determination system 100 is a view showing the overall configuration of the phase singularity determination system 100 according to an embodiment of the present invention.
  • the phase singularity determination system 100 includes a signal receiver 10, a phase calculator 20, and a phase singularity determiner 30, but this is only an example and some components may be added or deleted as necessary. Of course.
  • the signal receiving unit 10 receives a single action potential signal (x [n], where n is a natural number) measured through a single electrode conductor at a specific point of the cardiomyocyte.
  • a single electrode conductor may use a known electrode conductor used in a high frequency electrode ceramic ablation procedure, and FIGS. 2 and 3 illustrate differences from the related arts of the electrode conductor.
  • FIG. 2 an action potential diagram of a specific point of cardiomyocytes is measured by using a conventional multi-electrode electrode catheter, and accordingly, No. 1 is determined to determine whether a phase singularity is observed for point 1. All action potential diagrams for the surrounding points 2-9 should be measured. However, according to FIG.
  • an embodiment of the present invention it is sufficient to measure only the action potential diagram for point 1 in order to determine whether or not the phase singularity is point 1, and thus, a multi-electrode electrode conductor is not required as in the prior art. .
  • only one electrode conductor of the multi-electrode electrode conductor may be used, and even when only one electrode conductor of the multi-electrode electrode conductor is used, it is necessary to measure the action potential of the point surrounding the point for determining the phase singularity. Not. Therefore, compared to the prior art, it is possible to drastically reduce the time and cost required for phase singularity determination.
  • FIG. 4 An example of a single action potential diagram signal received by the signal receiver 10 is as shown in FIG. 4.
  • the phase calculator 20 calculates a phase ( ⁇ [n], where n is a natural number) from the single action potential signal received by the signal receiver 10. Specifically, a phase is calculated from a single action potential signal according to Equation 1 as follows.
  • ⁇ [n] is a phase
  • x [n] is a single action potential signal
  • is a delay constant and a value corresponding to the delay time, for example, 20 to 30 ms, and can be freely adjusted by the system administrator.
  • Do. k can be set to the average value of x [n] or a specific constant, for example 0, as a single action potential as the base value of the signal, and can be freely adjusted by the system administrator as with the delay constant.
  • phase calculated according to [Equation 1] is the electrical state of the cardiomyocytes is represented by a value from - ⁇ to + ⁇ , referring to Figure 5 is a single action potential signal shown in Figure 4 It can be seen that the phase was calculated according to [Equation 1].
  • the phase calculator 20 calculates not only the phase ⁇ [n] but also the phase ⁇ [n + 1] of x [n], which is a single active potential signal, to perform the phase discrimination function of the phase singularity determiner 30 which will be described later. do.
  • the phase ⁇ [n + 1] can be calculated according to [Equation 1], and the base value of the delay constant and the single action potential signal should be set in the same way as the case of calculating the phase ⁇ [n].
  • Equation 2 may mean calculating a phase ⁇ [n + 1] according to Equation 1 below.
  • the phase singularity determining unit 30 determines whether a specific point of the cardiomyocytes is a phase singularity through the phase calculated by the phase calculating unit 20. Specifically, according to [Equation 3] as follows to determine whether the phase singularity.
  • Equation 3 ⁇ [n + 1] - ⁇ [n] ⁇ ⁇ M
  • M is a phase singularity discrimination condition, theoretically 2 ⁇ , but a single action potential may be set to a specific constant, for example, ⁇ , taking into consideration factors such as noise of signal measurement.
  • the phase singularity discrimination unit 30 determines that a specific point of the cardiomyocytes is a phase singularity when n satisfying Equation 3 exists. This is based on the physical fact that phase ⁇ [n] is a continuous function at all points in cardiomyocytes except phase singularities. Specifically, according to the definition of phase singularity, a nonzero value is obtained when ⁇ [n] is integrated on a path surrounding the phase singularity, which is mathematically a continuous function in which ⁇ [n] is well defined in a single connection region. Because it is not.
  • a phase is calculated from a single action potential diagram signal measured by a single electrode conductor by the phase singularity determination system 100 including the signal receiver 10, the phase calculator 20, and the phase singularity determiner 30 described above.
  • the phase potential can be determined faster than in the prior art by measuring the action potential of the specific surroundings of the cardiomyocytes, and the cost consumed by the single-electrode catheter can be drastically reduced. have.
  • the phase singularity determination system 100 may further include a mapping unit (not shown) capable of three-dimensionally mapping the determined phase singularity onto an anatomical image of the heart.
  • a mapping unit capable of three-dimensionally mapping the determined phase singularity onto an anatomical image of the heart.
  • the anatomical image of the heart with the phase singularity three-dimensional mapped can be seen in FIG. 6. If the phase singularity is mapped onto the anatomical image of the heart by a mapping unit (not shown), the high frequency electrode catheter ablation apparatus is connected with the phase singularity discrimination system 100 to receive the mapped image for easy use in the actual procedure.
  • a mapping unit not shown
  • phase singularity determination system 100 may be implemented in the form of electronic circuits, rather than the device configuration as the system. Since it is an electronic circuit, it can be implemented in various forms. Referring to FIG. 7, one embodiment embodied in the form of an electronic circuit can be seen.
  • phase singularity determination system 100 according to an embodiment of the present invention, although the category is different, phase singularity determination that includes substantially the same features as the phase singularity determination system 100 according to an embodiment of the present invention It can be implemented in a way.
  • a description will be given with reference to FIG. 8.
  • FIG. 8 is a flowchart illustrating a phase singularity discrimination method according to another exemplary embodiment of the present invention.
  • the signal receiver 10 receives a single action potential signal (x [n], where n is a natural number) measured by a single electrode conductor at a specific point of the cardiomyocytes (S210).
  • a single electrode conductor may use a known electrode conductor used in a high frequency electrode ceramic ablation procedure, and unlike a conventional technique using a multi-electrode electrode conductor, a single activity may be performed using a single electrode conductor only at a point for determining a phase singularity. It is enough to measure the electric potential diagram.
  • only one electrode conductor of the multi-electrode electrode conductor may be used, and even when only one electrode conductor of the multi-electrode electrode conductor is used, it is necessary to measure the action potential of the point surrounding the point for determining the phase singularity. Not. Therefore, compared to the prior art, it is possible to drastically reduce the time and cost required for phase singularity determination.
  • the phase calculator 20 calculates a phase ⁇ [n] from the single action potential signal received by the signal receiver 10 (S220). Specifically, a phase is calculated from a single action potential signal according to Equation 1 as follows.
  • ⁇ [n] is a phase
  • x [n] is a single action potential signal
  • is a delay constant and a value corresponding to the delay time, for example, 20 to 30 ms, and can be freely adjusted by the system administrator.
  • Do. k can be set to the average value of x [n] or a specific constant, for example 0, as a single action potential as the base value of the signal, and can be freely adjusted by the system administrator as with the delay constant.
  • phase calculated according to [Equation 1] is the electrical state of the cardiomyocytes is represented by a value from - ⁇ to +.
  • the phase calculator 20 calculates not only the phase ⁇ [n] but also the phase ⁇ [n + 1] of x [n], which is a single active potential signal, to perform the phase discrimination function of the phase singularity determiner 30 which will be described later. (S221).
  • the phase ⁇ [n + 1] can be calculated according to Equation 1 below, and the base value of the delay constant and the single action potential diagram signal are set in the same manner as the case of calculating the phase ⁇ [n].
  • Equation 2 may mean calculating a phase ⁇ [n + 1] according to Equation 1 below.
  • the phase singularity determiner 30 determines whether the specific point of the cardiomyocyte is the phase singularity through the phase calculated by the phase calculator 20 (S230). Specifically, according to [Equation 3] as follows to determine whether the phase singularity.
  • Equation 3 ⁇ [n + 1] - ⁇ [n] ⁇ ⁇ M
  • M is a phase singularity discrimination condition, theoretically 2 ⁇ , but a single action potential may be set to a specific constant, for example, ⁇ , taking into consideration factors such as noise of signal measurement.
  • the phase singularity discrimination unit 30 determines that a specific point of the cardiomyocytes is a phase singularity when n satisfying Equation 3 exists. This is based on the physical fact that phase ⁇ [n] is a continuous function at all points in cardiomyocytes except phase singularities. Specifically, according to the definition of phase singularity, a nonzero value is obtained when ⁇ [n] is integrated on a path surrounding the phase singularity, which is mathematically a continuous function in which ⁇ [n] is well defined in a single connection region. Because it is not.
  • the mapping unit (not shown) three-dimensionally maps the determined phase singularity on the anatomical image of the heart (S240). If the phase singularity is mapped onto the anatomical image of the heart by a mapping unit (not shown), the high frequency electrode catheter ablation apparatus is connected with the phase singularity discrimination system 100 to receive the mapped image for easy use in the actual procedure. could be.
  • phase singularity determination method may be implemented in the form of a program stored in a medium, and in such a state, a program for executing on a computer may be stored in a computer-readable recording medium on which a computer is recorded or distributed through a program providing server.
  • phase calculator 20 and the phase singularity discriminator 30 are driven by independent threads to simultaneously process a plurality of single action potential diagrams. It can contribute to improvement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)

Abstract

본 발명은 위상 특이점 판별 시스템 및 방법에 관한 것으로서, 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신하는 신호 수신부, 상기 신호 수신부가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출하는 위상 산출부 및 상기 위상 산출부가 산출한 위상을 통해 상기 심근 세포의 특정 지점이 위상 특이점인지 판별하는 위상 특이점 판별부를 포함하는 것을 특징으로 한다. 본 발명에 따르면 다전극 전극 도자가 아닌 단일 전극 전극 도자 사용을 통해 로터의 위상 특이점을 판별함으로써, 종래기술에 비해 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있으며, 로터의 위상 특이점을 정확하게 판별함으로써 심장 부정맥 치료를 위한 고주파 전극 도자 절제 시술에 활용할 수 있다는 효과가 있다.

Description

위상 특이점 판별 시스템 및 방법
본 발명은 위상 특이점 판별 시스템 및 방법에 관한 것으로서, 보다 자세하게는 단일 활동 전위도 신호로부터 심근 세포의 특정 지점이 위상 특이점인지 여부를 판별할 수 있는 시스템 및 방법에 관한 것이다.
부정맥(Arrhythmias)이란 심장 전기 전도에 이상이 생겨 심장 박동이 빨라지거나 늦어지거나 혹은 불규칙해는 증상이다. 이러한 부정맥 중 심방세동(Atrial fibrillation)은 가장 흔한 한 종류로써, 허혈성 뇌졸중과 급사의 가능성이 매우 높음에도 불구하고, 이에 대한 기작이 명확히 밝혀지지 않은 상태이며 치료 역시 쉽지 않다. 심방세동 치료를 위해 심방세동을 유지시키는 하나의 기작으로 전기 파동 회오리의 중심인 로터(Rotor)가 있지만, 로터의 검출 역시 쉽지 않아 연구와 임상적 적용이 쉽지 않다는 문제점이 있다.
심방세동 치료를 위한 로터는 수학적으로 전기 파동의 위상 특이점(Phase singularity)으로 정의되며, 위상특이점을 판별하는 방법은 Iyer and Gray, "An Experimentalist's Approach to Accurate Localization of Phase Singularities during Reentry", Annals of Biomedical Engineering 29(1), 2001. 에서 처음 제안하였다.
상기 논문은 일종의 종래기술로써 심장 조직의 각 위치에서의 위상을 모두 계산하여, 위상이 연속적으로 한 바퀴 회전하는 것을 감지해 위상특이점을 검출한다.
그러나 종래기술은 특정 지점이 위상 특이점인지 판별하기 위해 다전극 전극 도자의 동시 기록을 통한 전기 전도 맵핑을 수행할 수밖에 없으며, 그에 따라 위상 특이점 판별에 소요되는 시간이 길어지고 소모되는 비용이 증가한다는 문제점이 있다. 본 발명은 종래기술에 비해 위상 특이점 판별에 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있는 시스템 및 방법을 제안한다.
본 발명은 로터의 위상 특이점 판별에 있어서 시간 및 비용을 획기적으로 줄일 수 있는 시스템 및 방법을 제안하는 것을 목적으로 한다.
한편, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 기술적 과제가 도출될 수 있다.
본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템은 심근 세포의 특정 지점에서 단일 전극 도자(single electrogram)를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신하는 신호 수신부, 상기 신호 수신부가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출하는 위상 산출부 및 상기 위상 산출부가 산출한 위상을 통해 상기 심근 세포의 특정 지점이 위상 특이점인지 판별하는 위상 특이점 판별부를 포함하는 것을 특징으로 한다. 본 발명에 따르면 다전극 전극 도자가 아닌 단일 전극 전극 도자 사용을 통해 로터의 위상 특이점을 판별함으로써, 종래기술에 비해 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있으며, 로터의 위상 특이점을 정확하게 판별함으로써 심장 부정맥 치료를 위한 고주파 전극 도자 절제 시술에 활용할 수 있다는 효과가 있다.
또한, 상기 위상 산출부는, 수학식 θ[n] = arctan2(x[n+τ]-k, x[n]-k)를 따라 단일 활동 전위도 신호로부터 위상을 산출할 수 있다. (여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수, k는 단일 활동 전위도 신호의 기저값)
아울러, 상기 위상 산출부가 산출한 위상은, 상기 심근 세포의 전기적인 상태가 -π 내지 π까지의 값으로 나타날 수 있으며, 상기 위상 산출부는, 상기 수학식에 따라 위상 θ[n+1]까지 산출할 수 있다.
또한, 상기 위상 특이점 판별부는, 수학식 θ[n+1]-θ[n] ≤ -M(여기서, M은 위상 특이점 판별조건으로서 특정한 상수)을 만족하는 n이 존재하는 경우 상기 심근 세포의 특정 지점이 위상 특이점인 것으로 판별하며, 상기 위상 특이점 판별 조건인 M은, π일 수 있다.
한편, 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템은 (a) 신호 수신부가 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신하는 단계, (b) 위상 산출부가 상기 신호 수신부가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출하는 단계 및 (c) 위상 특이점 판별부가 상기 위상 산출부가 산출한 위상을 통해 상기 심근 세포의 특정 지점이 위상 특이점인지 판별하는 단계를 포함하며 동일한 기술적 특징을 구현할 수 있는 또 다른 실시 예인 위상 특이점 판별 방법으로 구현할 수도 있다.
이 경우, 상기 (b) 단계는, 수학식 θ[n] = arctan2(x[n+τ]-k, x[n]-k)를 따라 단일 활동 전위도 신호로부터 위상을 산출할 수 있다. (여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수, k는 단일 활동 전위도 신호의 기저값)
또한, 상기 (b) 단계에서 산출한 위상은, 상기 심근 세포의 전기적인 상태가 -π 내지 π까지의 값으로 나타날 수 있으며, 상기 (b) 단계는, (b-1) 위상 산출부가 상기 수학식에 따라 위상 θ[n+1]을 산출하는 단계를 더 포함할 수 있다.
아울러, 상기 (c) 단계는, (c-1) 위상 특이점 판별부가 수학식 θ[n+1]-θ[n] ≤ -M(여기서, M은 위상 특이점 판별조건으로서 특정한 상수)를 만족하는 n이 존재하는 경우 상기 심근 세포의 특정 지점이 위상 특이점인 것으로 판별할 수 있으며, 상기 M은, π일 수 있다.
마지막으로, 본 발명의 또 다른 실시 예에 따른 위상 특이점 판별 방법을 컴퓨터에서 실행시키기 위한 매체에 저장된 프로그램으로 구현할 수도 있다.
본 발명에 따르면 다전극 전극 도자가 아닌 단일 전극 전극 도자 사용을 통해 로터의 위상 특이점을 판별함으로써, 종래기술에 비해 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있는 효과가 있다.
또한, 로터의 위상 특이점을 정확하게 판별함으로써 심장 부정맥 치료를 위한 고주파 전극 도자 절제 시술에 활용할 수 있다는 효과가 있다.
한편, 본 발명의 효과는 이상에서 언급한 효과들로 제한되지 않으며, 이하에서 설명할 내용으로부터 통상의 기술자에게 자명한 범위 내에서 다양한 효과들이 포함될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템의 전체 구성을 나타내는 도면이다.
도 2는 종래기술인 다전극 전극 도자를 이용하여 심근 세포의 특정 지점의 활동 전위도를 측정하는 모습을 나타낸 도면이다.
도 3은 본 발명의 일 실시 예에 따른 단일 전극 도자를 이용하여 심근 세포의 특정 지점의 활동 전위도를 측정하는 모습을 나타낸 도면이다.
도 4는 신호 수신부가 수신한 단일 활동 전위도 신호의 예시를 나타낸 도면이다.
도 5는 도 4에 도시된 단일 활동 전위도 신호가 수학식 1에 따라 위상으로 산출된 모습을 나타낸 도면이다.
도 6은 위상 특이점이 3차원 맵팽된 심장의 해부학적 이미지를 나타낸 도면이다.
도 7은 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템을 전자회로 형태로 구현한 실시 예를 나타낸 도면이다.
도 8은 본 발명의 또 다른 실시 예에 따른 위상 특이점 판별 방법의 순서도를 나타낸 도면이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지 않으며, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있으며, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다.
또한, 어떤 구성요소들을 '포함'한다는 표현은, '개방형의 표현'으로서 해당 구성요소들이 존재하는 것을 단순히 지칭하는 표현이며, 추가적인 구성요소들을 배제하는 것으로 이해되어서는 안 될 것이다.
도 1은 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템(100)의 전체 구성을 나타내는 도면이다.
위상 특이점 판별 시스템(100)은 신호 수신부(10), 위상 산출부(20) 및 위상 특이점 판별부(30)를 포함하나, 이는 하나의 실시 예일 뿐이며 필요에 따라 일부 구성이 추가되거나 삭제될 수 있음은 물론이다.
신호 수신부(10)는 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신한다. 여기서 단일 전극 도자는 고주파 전극 도자 절제 시술에 이용되는 공지의 전극 도자를 이용할 수 있으며, 도 2 및 도 3에 전극 도자와 관련된 종래기술과의 차이점이 도시되어 있다. 도 2를 참조하면 종래기술인 다전극 전극 도자를 이용하여 심근 세포의 특정 지점의 활동 전위도를 측정하는 모습이 도시되어 있는바, 이에 따르면 1번 지점에 대한 위상 특이점 여부를 판별하기 위해 1번을 둘러싸고 있는 2 내지 9번 지점에 대한 활동 전위도를 모두 측정해야 한다. 그러나 본 발명의 일 실시 예인 도 3에 따르면 1번 지점에 대한 위상 특이점 여부를 판별하기 위해 1번 지점에 대한 활동 전위도만을 측정하면 충분하며, 따라서 종래기술과 같이 다전극 전극 도자가 필요하지 않다. 그러나 경우에 따라 다전극 전극 도자의 일 전극 도자만을 이용할 수도 있을 것이며, 다전극 전극 도자의 일 전극 도자만을 이용하는 경우에도 위상 특이점 여부를 판별하기 위한 지점을 둘러싸고 있는 지점에 대한 활동 전위도 측정은 필요하지 않다. 따라서 종래기술에 비해 위상 특이점 판별에 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있다.
한편, 신호 수신부(10)가 수신한 단일 활동 전위도 신호의 예시는 도 4에 도시된 바와 같다.
위상 산출부(20)는 신호 수신부(10)가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출한다. 구체적으로 하기와 같은 [수학식 1]을 따라 단일 활동 전위도 신호로부터 위상을 산출한다.
[수학식 1]: θ[n] = arctan2(x[n+τ]-k, x[n]-k)
여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수로 지연시간에 대응되는 값, 예를 들어 20 내지 30ms 등과 같이 설정할 수 있으며, 시스템 관리자가 자유롭게 조정 가능하다. k는 단일 활동 전위도 신호의 기저값으로써 x[n]의 평균치 혹은 특정한 상수, 예를 들어 0으로 설정할 수 있으며, 지연상수와 마찬가지로 시스템 관리자가 자유롭게 조정 가능하다.
한편, 상기 [수학식 1]을 따라 산출된 위상은 심근 세포의 전기적인 상태가 -π 내지 +π까지의 값으로 나타나게 되며, 도 5를 참조하면 도 4에 도시된 단일 활동 전위도 신호가 상기 [수학식 1]에 따라 위상으로 산출된 것을 확인할 수 있다.
위상 산출부(20)는 후술할 위상 특이점 판별부(30)의 위상 판별 기능 수행을 위해 단일 활동 전위도 신호인 x[n]의 위상 θ[n]뿐만 아니라 위상 θ[n+1]까지 산출한다. 이 경우 [수학식 1]을 따라 위상 θ[n+1]을 산출할 수 있으며, 지연상수 및 단일 활동 전위도 신호의 기저값은 위상 θ[n]을 산출하는 경우와 동일하게 설정해야 할 것이다. 하기 [수학식 2]는 [수학식 1]에 따라 위상 θ[n+1]을 산출하는 것을 의미할 수 있다.
[수학식 2]: θ[n+1] = arctan2(x[n+1+τ]-k, x[n+1]-k)
위상 특이점 판별부(30)는 위상 산출부(20)가 산출한 위상을 통해 심근 세포의 특정 지점이 위상 특이점인지 판별한다. 구체적으로 하기와 같은 [수학식 3]을 따라 위상 특이점 여부를 판별한다.
[수학식 3]: θ[n+1]-θ[n] ≤ -M
여기서, M은 위상 특이점 판별조건으로서 이론적으로는 2π이나, 단일 활동 전위도 신호 측정의 노이즈 등과 같은 요소를 고려하여 특정한 상수, 예를 들어 π와 같은 상수로 설정할 수 있다.
위상 특이점 판별부(30)는 상기 [수학식 3]을 만족하는 n이 존재하는 경우 심근 세포의 특정 지점이 위상 특이점인 것으로 판별한다. 이는 위상 θ[n]이 위상 특이점을 제외한 심근 세포의 모든 지점에서 연속적인 함수라는 물리적 사실을 바탕으로 한다. 구체적으로, 위상 특이점의 정의에 따르면 위상 특이점 주변을 둘러싸는 경로 상에서 θ[n]을 적분하였을 때 0 이 아닌 값이 산출되는데, 이는 수학적으로 θ[n]이 단일 연결 영역에서 잘 정의된 연속함수가 아니기 때문이다.
상기 설명한 신호 수신부(10), 위상 산출부(20) 및 위상 특이점 판별부(30)를 포함하는 위상 특이점 판별 시스템(100)에 의해 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호로부터 위상을 산출하여 심근 세포의 특정 지점이 위상 특이점인지 여부를 판별할 수 있다. 이 경우 심근 세포의 특정 지점을 둘러싸는 지점에 대한 활동 전위도를 측정하지 않으므로 위상 특이점을 종래기술보다 빠르게 판별할 수 있으며, 단일 전극 도자를 이용하기 때문에 소모되는 비용을 종래기술보다 획기적으로 줄일 수 있다.
또한, 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템(100)은 판별한 위상 특이점을 심장의 해부학적 이미지상에 3차원 맵핑할 수 있는 맵핑부(미도시)를 더 포함할 수도 있다. 위상 특이점이 3차원 맵팽된 심장의 해부학적 이미지는 도 6에서 확인할 수 있다. 맵핑부(미도시)에 의해 위상 특이점이 심장의 해부학적 이미지상에 맵핑된다면, 고주파 전극 도자 절제 시술 장치를 위상 특이점 판별 시스템(100)과 연결하여 맵핑된 이미지를 전송받아 실제 시술에 용이하게 이용할 수 있을 것이다.
한편, 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템(100)은 시스템과 같은 장치적인 구성이 아닌 전자회로의 형태로 구현할 수도 있다. 전자회로이기 때문에 다양한 형태로 구현 가능하다. 도 7을 참조하면 전자회로 형태로 구현한 하나의 실시 예를 확인할 수 있다.
또한, 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템(100)은, 카테고리는 상이하지만, 본 발명의 일 실시 예에 따른 위상 특이점 판별 시스템(100)과 실질적으로 동일한 특징을 포함하는 위상 특이점 판별 방법으로 구현할 수 있다. 이하, 도 8을 참조하여 설명하기로 한다.
도 8은 본 발명의 또 다른 실시 예에 따른 위상 특이점 판별 방법의 순서도를 나타낸 도면이다.
그러나 이는 본 발명의 목적을 달성하기 위한 가장 바람직한 실시 예일 뿐이며, 일부 단계가 추가되거나 삭제될 수 있음은 물론이다.
우선, 신호 수신부(10)가 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신한다(S210). 여기서 단일 전극 도자는 고주파 전극 도자 절제 시술에 이용되는 공지의 전극 도자를 이용할 수 있으며, 다전극 전극 도자를 이용하는 종래기술과 다르게 위상 특이점 여부를 판별하기 위한 지점에 대해서만 단일 전극 도자를 이용하여 단일 활동 전위도를 측정하면 충분하다. 그러나 경우에 따라 다전극 전극 도자의 일 전극 도자만을 이용할 수도 있을 것이며, 다전극 전극 도자의 일 전극 도자만을 이용하는 경우에도 위상 특이점 여부를 판별하기 위한 지점을 둘러싸고 있는 지점에 대한 활동 전위도 측정은 필요하지 않다. 따라서 종래기술에 비해 위상 특이점 판별에 소요되는 시간 및 소모되는 비용을 획기적으로 줄일 수 있다.
이후, 위상 산출부(20)가 신호 수신부(10)가 수신한 단일 활동 전위도 신호로부터 위상(θ[n])을 산출한다(S220). 구체적으로 하기와 같은 [수학식 1]을 따라 단일 활동 전위도 신호로부터 위상을 산출한다.
[수학식 1]: θ[n] = arctan2(x[n+τ]-k, x[n]-k)
여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수로 지연시간에 대응되는 값, 예를 들어 20 내지 30ms 등과 같이 설정할 수 있으며, 시스템 관리자가 자유롭게 조정 가능하다. k는 단일 활동 전위도 신호의 기저값으로써 x[n]의 평균치 혹은 특정한 상수, 예를 들어 0으로 설정할 수 있으며, 지연상수와 마찬가지로 시스템 관리자가 자유롭게 조정 가능하다.
한편, 상기 [수학식 1]을 따라 산출된 위상은 심근 세포의 전기적인 상태가 -π 내지 +까지의 값으로 나타나게 된다.
위상 산출부(20)는 후술할 위상 특이점 판별부(30)의 위상 판별 기능 수행을 위해 단일 활동 전위도 신호인 x[n]의 위상 θ[n]뿐만 아니라 위상 θ[n+1]까지 산출한다(S221). 이 경우 하기와 같은 [수학식 1]을 따라 위상 θ[n+1]을 산출할 수 있으며, 지연상수 및 단일 활동 전위도 신호의 기저값은 위상 θ[n]을 산출하는 경우와 동일하게 설정해야 할 것이다. 하기 [수학식 2]는 [수학식 1]에 따라 위상 θ[n+1]을 산출하는 것을 의미할 수 있다.
[수학식 2]: θ[n+1] = arctan2(x[n+1+τ]-k, x[n+1]-k)
위상 산출부(20)가 위상을 산출했다면, 위상 특이점 판별부(30)가 위상 산출부(20)가 산출한 위상을 통해 심근 세포의 특정 지점이 위상 특이점인지 판별한다(S230). 구체적으로 하기와 같은 [수학식 3]을 따라 위상 특이점 여부를 판별한다.
[수학식 3]: θ[n+1]-θ[n] ≤ -M
여기서, M은 위상 특이점 판별조건으로서 이론적으로는 2π이나, 단일 활동 전위도 신호 측정의 노이즈 등과 같은 요소를 고려하여 특정한 상수, 예를 들어 π와 같은 상수로 설정할 수 있다.
위상 특이점 판별부(30)는 상기 [수학식 3]을 만족하는 n이 존재하는 경우 심근 세포의 특정 지점이 위상 특이점인 것으로 판별한다. 이는 위상 θ[n]이 위상 특이점을 제외한 심근 세포의 모든 지점에서 연속적인 함수라는 물리적 사실을 바탕으로 한다. 구체적으로, 위상 특이점의 정의에 따르면 위상 특이점 주변을 둘러싸는 경로 상에서 θ[n]을 적분하였을 때 0 이 아닌 값이 산출되는데, 이는 수학적으로 θ[n]이 단일 연결 영역에서 잘 정의된 연속함수가 아니기 때문이다.
위상 특이점이 판별되었다면 맵핑부(미도시)가 판별된 위상 특이점을 심장의 해부학적 이미지상에 3차원 맵핑한다(S240). 맵핑부(미도시)에 의해 위상 특이점이 심장의 해부학적 이미지상에 맵핑된다면, 고주파 전극 도자 절제 시술 장치를 위상 특이점 판별 시스템(100)과 연결하여 맵핑된 이미지를 전송받아 실제 시술에 용이하게 이용할 수 있을 것이다.
중복서술을 방지하기 위하여 자세히 기재하지는 않았지만, 상기 위상 특이점 판별 시스템(100)과 관련하여 상술한 특징들은 위상 특이점 판별 방법에도 당연히 유추되어서 적용될 수 있다. 또한, 위상 특이점 판별 방법은 매체에 저장된 프로그램의 형태로 구현될 수 있으며, 이러한 상태에서 컴퓨터에 실행시키기 위한 프로그램이 기록된 컴퓨터에서 판독 가능한 기록 매체에 저장되거나, 프로그램 제공 서버를 통해 배포될 수 있다. 아울러, 위상 특이점 판별 방법을 프로그램의 형태로 구현하는 경우 위상 산출부(20) 및 위상 특이점 판별부(30)를 독립적인 스레드(Thread)로 구동하게 하여 복수의 단일 활동 전위도를 동시에 처리해 연산 속도 향상에 이바지할 수 있다.
위에서 설명된 본 발명의 실시 예들은 예시의 목적을 위해 개시된 것이며, 이들에 의하여 본 발명이 한정되는 것은 아니다. 또한, 본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 사상과 범위 안에서 다양한 수정 및 변경을 가할 수 있을 것이며, 이러한 수정 및 변경은 본 발명의 범위에 속하는 것으로 보아야 할 것이다.
본 발명에 따르면 로터의 위상 특이점 판별에 있어서 종래기술의 로터 위상 특이점 판별 방법에 비해 시간 및 비용을 획기적으로 줄이는 장점이 있는 바, 산업상 이용가능성이 있다.

Claims (13)

  1. 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신하는 신호 수신부;
    상기 신호 수신부가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출하는 위상 산출부; 및
    상기 위상 산출부가 산출한 위상을 통해 상기 심근 세포의 특정 지점이 위상 특이점인지 판별하는 위상 특이점 판별부;
    를 포함하는 위상 특이점 판별 시스템.
  2. 제1항에 있어서,
    상기 위상 산출부는,
    하기 [수학식 1]을 따라 단일 활동 전위도 신호로부터 위상을 산출하는 것을 특징으로 하는 위상 특이점 판별 시스템
    [수학식 1]
    θ[n] = arctan2(x[n+τ]-k, x[n]-k)
    (여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수, k는 단일 활동 전위도 신호의 기저값)
  3. 제1항에 있어서,
    상기 위상 산출부가 산출한 위상은,
    상기 심근 세포의 전기적인 상태가 -π 내지 π까지의 값으로 나타나는 것을 특징으로 하는 위상 특이점 판별 시스템
  4. 제2항에 있어서,
    상기 위상 산출부는,
    위상을 θ[n+1]까지 산출하는 것을 특징으로 하는 위상 특이점 판별 시스템
  5. 제4항에 있어서,
    상기 위상 특이점 판별부는,
    하기 [수학식 3]를 만족하는 n이 존재하는 경우 상기 심근 세포의 특정 지점이 위상 특이점인 것으로 판별하는 것을 특징으로 하는 위상 특이점 판별 시스템
    [수학식 3]
    θ[n+1]-θ[n] ≤ -M
    (여기서, M은 위상 특이점 판별조건으로서 특정한 상수)
  6. 제5항에 있어서,
    상기 위상 특이점 판별 조건인 M은,
    π인 것을 특징으로 하는 위상 특이점 판별 시스템
  7. (a) 신호 수신부가 심근 세포의 특정 지점에서 단일 전극 도자를 통해 측정한 단일 활동 전위도 신호(x[n], n은 자연수)를 수신하는 단계;
    (b) 위상 산출부가 상기 신호 수신부가 수신한 단일 활동 전위도 신호로부터 위상(θ[n], n은 자연수)을 산출하는 단계; 및
    (c) 위상 특이점 판별부가 상기 위상 산출부가 산출한 위상을 통해 상기 심근 세포의 특정 지점이 위상 특이점인지 판별하는 단계;
    를 포함하는 위상 특이점 판별 방법
  8. 제7항에 있어서,
    상기 (b) 단계는,
    하기 [수학식 1]을 따라 단일 활동 전위도 신호로부터 위상을 산출하는 것을 특징으로 하는 위상 특이점 판별 방법
    [수학식 1]
    θ[n] = arctan2(x[n+τ]-k, x[n]-k)
    (여기서, θ[n]은 위상, x[n]은 단일 활동 전위도 신호, τ는 지연상수, k는 단일 활동 전위도 신호의 기저값)
  9. 제7항에 있어서,
    상기 (b) 단계에서 산출한 위상은,
    상기 심근 세포의 전기적인 상태가 -π 내지 +π까지의 값으로 나타나는 것을 특징으로 하는 위상 특이점 판별 방법
  10. 제8항에 있어서,
    상기 (b) 단계는,
    (b-1) 위상 산출부가 위상 θ[n+1]을 산출하는 단계;
    를 더 포함하는 것을 특징으로 하는 위상 특이점 판별 방법
  11. 제10항에 있어서,
    상기 (c) 단계는,
    (c-1) 위상 특이점 판별부가 하기 [수학식 3]을 만족하는 n이 존재하는 경우 상기 심근 세포의 특정 지점이 위상 특이점인 것으로 판별하는 것을 특징으로 하는 위상 특이점 판별 방법
    [수학식 3]
    θ[n+1]-θ[n] ≤ -M
    (여기서, M은 위상 특이점 판별조건으로서 특정한 상수)
  12. 제11항에 있어서,
    상기 M은,
    π인 것을 특징으로 하는 위상 특이점 판별 방법
  13. 제7항 내지 제12항 중 어느 한 항의 위상 특이점 판별 방법에 있어서,
    상기 위상 특이점 판별 방법을 컴퓨터에서 실행시키기 위한 매체에 저장된 프로그램
PCT/KR2017/001943 2016-02-23 2017-02-22 위상 특이점 판별 시스템 및 방법 WO2017146459A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018544565A JP6675010B2 (ja) 2016-02-23 2017-02-22 位相特異点の判別システム及び方法
US16/078,795 US10874321B2 (en) 2016-02-23 2017-02-22 Phase singularity identification system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0021346 2016-02-23
KR1020160021346A KR101782418B1 (ko) 2016-02-23 2016-02-23 위상 특이점 판별 시스템 및 방법

Publications (2)

Publication Number Publication Date
WO2017146459A2 true WO2017146459A2 (ko) 2017-08-31
WO2017146459A3 WO2017146459A3 (ko) 2018-08-02

Family

ID=59686381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001943 WO2017146459A2 (ko) 2016-02-23 2017-02-22 위상 특이점 판별 시스템 및 방법

Country Status (4)

Country Link
US (1) US10874321B2 (ko)
JP (1) JP6675010B2 (ko)
KR (1) KR101782418B1 (ko)
WO (1) WO2017146459A2 (ko)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010118033A1 (en) * 2009-04-07 2010-10-14 Cardiac Pacemakers, Inc. Apparatus for organ-specific inflammation therapy
US9398862B2 (en) 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
US9282910B2 (en) * 2011-05-02 2016-03-15 The Regents Of The University Of California System and method for targeting heart rhythm disorders using shaped ablation
JP5695480B2 (ja) * 2011-04-26 2015-04-08 オリンパス株式会社 神経刺激装置および神経刺激装置の作動方法
JP6556624B2 (ja) * 2012-09-21 2019-08-07 カーディオインサイト テクノロジーズ インコーポレイテッド 不整脈用の生理学的マッピング
KR101443156B1 (ko) * 2013-04-05 2014-09-22 연세대학교 산학협력단 모의 부정맥 전극도자 절제 시술 장치
WO2015171492A1 (en) * 2014-05-05 2015-11-12 Cardionxt, Inc. Methods, systems, and apparatus for identification, characterization, and treatment of rotors associated with fibrillation

Also Published As

Publication number Publication date
US10874321B2 (en) 2020-12-29
KR20170099229A (ko) 2017-08-31
KR101782418B1 (ko) 2017-09-28
WO2017146459A3 (ko) 2018-08-02
US20190046063A1 (en) 2019-02-14
JP2019509796A (ja) 2019-04-11
JP6675010B2 (ja) 2020-04-01

Similar Documents

Publication Publication Date Title
FI111216B (fi) Järjestelmä EKG-monitorointia varten
WO2012036498A2 (en) Insulation resistance measurement circuit having self-test function without generating leakage current
WO2021145564A1 (en) Aerosol-generating device automatically performing heating operation
WO2022145519A1 (ko) 딥러닝을 이용한 심전도 시각화 방법 및 장치
WO2014169595A1 (zh) 心律失常分析方法和系统
WO2017160035A1 (ko) 전지모듈의 개방 회로 결함 상태를 결정하는 전지 시스템 및 방법
WO2014051284A1 (ko) 차량의 차대에 배치된 전지팩의 절연저항을 측정하기 위한 방법 및 시스템
JP7359905B2 (ja) 地上システムに接続された航空機へのセキュアな電力供給及びデータ通信
WO2017146459A2 (ko) 위상 특이점 판별 시스템 및 방법
WO2019093667A1 (ko) 릴레이 진단 회로
EP4081109A1 (en) Wearable electronic device
WO2016085116A1 (ko) 터치 센서
CN108888262A (zh) 用于双电极心电采集系统的交流导联脱落检测电路及方法
SE9602394L (sv) Apparat för frekvensanalys av förmaksflimmer
WO2022131506A1 (ko) 두뇌 임피던스 측정 기기 및 그 동작 방법
WO2013165044A1 (ko) 심전도 검출 회로 및 심전도 분석 알고리즘의 점검 장치 및 방법
WO2022182182A1 (ko) 딥러닝 알고리즘을 기반으로 하는 심전도 생성 시스템 및 그 방법
WO2022191376A1 (ko) 두뇌 임피던스 패턴을 이용하는 치매 진단 방법 및 시스템
WO2015072601A1 (ko) 부분방전 판단 장치 및 방법
WO2018143561A1 (ko) 배터리 팩 및 배터리 팩의 데이터 송신 방법
WO2019164173A1 (ko) 피부 미용 기기 및 그 제어 방법
WO2022211184A1 (ko) 힐버트 변환을 이용한 ecg 축 편위 측정 장치, 방법 및 컴퓨터로 독출 가능한 기록 매체
CN102998536A (zh) 一种高可靠性的直流母线绝缘电阻检测方法
WO2021241895A1 (ko) 휴대용 심전도 측정 장치
WO2020080648A1 (ko) 배터리 관리 시스템 및 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756797

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 17756797

Country of ref document: EP

Kind code of ref document: A2