WO2017146450A1 - 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템 - Google Patents

냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템 Download PDF

Info

Publication number
WO2017146450A1
WO2017146450A1 PCT/KR2017/001925 KR2017001925W WO2017146450A1 WO 2017146450 A1 WO2017146450 A1 WO 2017146450A1 KR 2017001925 W KR2017001925 W KR 2017001925W WO 2017146450 A1 WO2017146450 A1 WO 2017146450A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low stage
low
heat exchanger
raw water
Prior art date
Application number
PCT/KR2017/001925
Other languages
English (en)
French (fr)
Inventor
임경빈
Original Assignee
함성철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 함성철 filed Critical 함성철
Publication of WO2017146450A1 publication Critical patent/WO2017146450A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Definitions

  • the present invention relates to a cascade heat pump system for simultaneous production of cold water and steam.
  • the cascade heat pump system refers to a system in which a heat pump is connected in multiple stages.
  • Korean Patent No. 10-1117032 name of the invention: a heat pump system having a cascade heat exchanger
  • a heat pump system having a cascade heat exchanger is an example of such a cascade heat pump system. Can be presented.
  • the cascade heat pump system has a disadvantage in that its utilization is limited because its function is limited, such as only for producing cold water.
  • Cascade heat pump system for simultaneous production of cold water and steam in accordance with an aspect of the present invention is a low-end raw water supply pipe that is supplied from the outside raw water;
  • a cold water storage tank capable of receiving the low stage raw water supplied through the low stage raw water supply pipe;
  • a low stage raw water branch pipe branched from the low stage raw water supply pipe, through which at least a portion of the low stage raw water flowing through the low stage raw water supply pipe may flow;
  • a low stage side supercooled heat exchanger capable of being supercooled by radiating the low stage side water flowing through the low stage side water branch pipe;
  • a low stage heat exchanger in which the low stage raw water and the low stage refrigerant exchange heat so that the low stage raw water contained in the cold water storage tank is converted into cold water;
  • the low stage refrigerant directed to the low stage expansion valve is heat-exchanged with the low stage raw water in the low stage subcooled heat exchanger to obtain heat and then is supplied to the low stage expansion valve.
  • Cascade heat pump system for simultaneous production of cold water and steam is a low-stage heat exchanger heat exchanged between the low-stage raw water and the low-stage refrigerant so that low-end raw water is converted into cold water;
  • a cold water storage tank capable of storing the cold water formed in the low stage side heat exchanger;
  • a low stage raw water branch pipe branched from a pipe from the cold water storage tank to the low stage heat exchanger, through which at least a portion of the low stage raw water from the cold water storage tank to the low stage heat exchanger may flow;
  • a low stage compressor in which the low stage refrigerant obtained by the low stage heat exchanger is compressed;
  • An intermediate heat exchanger in which the low stage refrigerant and the high stage refrigerant are heat-exchanged such that the low stage refrigerant compressed by the low stage compressor is radiated;
  • a low stage expansion valve configured to expand the low stage refrigerant radiated from the intermediate heat exchanger;
  • Low stage raw water lamination pipe flowing A high stage compressor in which the high stage refrigerant obtained by obtaining heat from the intermediate heat exchanger is compressed; A high stage heat exchanger in which the high stage refrigerant and the high stage raw water are heat-exchanged such that the high stage refrigerant compressed by the high stage compressor is radiated and the high stage refrigerant is steam; A high stage expansion valve configured to expand the high stage refrigerant radiated from the high stage heat exchanger; And a steam storage tank in which the steam formed in the high stage heat exchanger is stored.
  • the cascade heat pump system for simultaneous production of cold water and steam includes a low stage heat exchanger, a cold water storage tank, a low stage compressor, an intermediate heat exchanger, and a low stage expansion.
  • a valve, a high stage compressor, a high stage heat exchanger, a high stage expansion valve, and a steam storage tank it is possible to produce and store cold water as well as to simultaneously produce and store steam, thereby making the cascade heat for simultaneous production of cold water and steam.
  • the pump system can be multipurpose and function simultaneously.
  • FIG. 1 is a view showing a cascade heat pump system for simultaneous production of cold water and steam according to a first embodiment of the present invention.
  • Figure 2 shows a cascade heat pump system for simultaneous production of cold water and steam according to a second embodiment of the present invention.
  • FIG. 3 is a view showing a cascade heat pump system for simultaneous production of cold water and steam according to a third embodiment of the present invention.
  • FIG. 1 is a view showing a cascade heat pump system for simultaneous production of cold water and steam according to a first embodiment of the present invention.
  • the cascade heat pump system 100 for simultaneously producing cold water and steam includes a low stage heat exchanger 120, a cold water storage tank 110, a low stage compressor 130, and an intermediate heat exchange. And a stage 140, a low stage expansion valve 102, a high stage compressor 150, a high stage heat exchanger 160, a high stage expansion valve 103, and a steam storage tank 170.
  • the low stage heat exchanger 120 is the low-stage raw water and the low-stage refrigerant is heat-exchanged so that the low-stage raw water supplied from the outside, such as tap water.
  • the cold water storage tank 110 may store the cold water formed in the low stage heat exchanger 120. Cold water stored in the cold water storage tank 110 may be supplied to the external cold water demand destination.
  • the low stage raw water supplied from the outside such as tap water is stored in the cold water storage tank 110, and the low stage raw water is between the cold water storage tank 110 and the low stage heat exchanger 120. As it is circulated, the low-stage raw water is cold watered and flowed back into the cold water storage tank 110 and stored.
  • Reference numeral 101 is a cold water circulation pump for circulating the low stage raw water between the cold water storage tank 110 and the low stage heat exchanger (120).
  • the low stage compressor 130 compresses the low stage refrigerant obtained by obtaining heat from the low stage heat exchanger 120.
  • the low stage refrigerant and the high stage refrigerant are heat-exchanged such that the low stage refrigerant compressed by the low stage compressor 130 is radiated.
  • the low stage expansion valve 102 is to expand the low stage refrigerant radiated from the intermediate heat exchanger (140).
  • the low stage refrigerant expanded through the low stage expansion valve 102 may obtain heat while passing through the low stage heat exchanger 120 again.
  • the high stage compressor 150 compresses the high stage raw water obtained by obtaining heat from the intermediate heat exchanger 140.
  • the high stage heat exchanger 160 is heat-exchanged with the high stage refrigerant and the high stage raw water so that the high stage refrigerant compressed by the high stage compressor 150 is radiated and the high stage raw water supplied from the outside such as tap water becomes steam. will be.
  • the high stage expansion valve 103 is to expand the high stage refrigerant radiated from the high stage heat exchanger (160).
  • the high stage refrigerant expanded through the high stage expansion valve 103 may obtain heat while passing through the intermediate heat exchanger 140 again.
  • Numeral 104 is a high stage side supercooled heat exchanger, the high stage side refrigerant directed from the high stage heat exchanger 160 to the high stage expansion valve 103 and the high stage side directed from the high stage compressor 150 to the high stage heat exchanger 160.
  • the refrigerant is heat-exchanged to supercool the high stage refrigerant directed from the high stage heat exchanger 160 to the high stage expansion valve 103.
  • the steam storage tank 170 is to store the steam formed in the high stage heat exchanger 160 in the form of steam. Steam stored in the steam storage tank 170 may be supplied to the external steam demand destination in the form of steam.
  • Reference numeral 105 is a high temperature circulation pump for circulating the high stage raw water between the high stage heat exchanger 160 and the steam storage tank 170, and reference numeral 106 is a high stage side such as tap water to the steam storage tank 170. It is a high stage raw water supply pump for supplying raw water.
  • the drive motor 151 of the high stage compressor 150 is inverter controlled according to the steam pressure in the steam storage tank 170.
  • the steam storage tank 170 will be provided with a pressure sensor (not shown) for detecting the internal pressure, such a pressure sensor may be employed that is used universally, so the detailed description and illustration are omitted here. do.
  • the drive motor 151 of the high stage compressor 150 is controlled within a range of 60 to 100% of the maximum rotational speed of the drive motor 151 according to the steam pressure in the steam storage tank 170, As a result, the driving motor 151 of the high stage compressor 150 may be controlled within a range of 40 to 60 Hz.
  • the drive motor 151 of the high stage compressor 150 is inverter-controlled in real time, thereby reducing the load of the high stage compressor 150 and improving durability, while enabling efficient operation.
  • the cascade heat pump system 100 for simultaneous production of cold water and steam further includes an auxiliary heater 115.
  • the auxiliary heater 115 may supply heat into the cold water storage tank 110 and may generate heat by receiving electric energy from the outside.
  • the auxiliary heater 115 may be operated when the storage demand for the cold water in the cold water storage tank 110 is relatively lower than the storage requirement for the steam in the steam storage tank 170.
  • the demand for the steam in the steam storage tank 170 is still high so that the storage demand of the steam is not reduced, the demand for the cold water in the cold water storage tank 110 is relatively low, thereby storing the always cold water.
  • the auxiliary heater 115 is operated so that the cold water production and storage amount is reduced while the steam production and storage amount can be adjusted to the required amount.
  • the low stage raw water supplied from the outside is stored in the cold water storage tank 110 and flows according to the operation of the cold water circulation pump 101 to pass through the low stage heat exchanger 120.
  • the low stage raw water loses heat and becomes cold water, and the low stage refrigerant passing through the low stage heat exchanger 120 also obtains heat.
  • the low stage raw water radiated as described above is converted into cold water and stored in the cold water storage tank 110.
  • the low stage refrigerant obtained by the low stage heat exchanger 120 is compressed while passing through the low stage compressor 130 and then passes through the intermediate heat exchanger 140.
  • the low stage refrigerant loses heat, and the high stage refrigerant passing through the intermediate heat exchanger 140 also obtains heat.
  • the low stage refrigerant radiated as described above is expanded while passing through the low stage expansion valve 102 and then expanded to obtain heat while passing through the low stage heat exchanger 120, thereby circulating as described above.
  • the high stage refrigerant obtained from the intermediate heat exchanger 140 is compressed while passing through the high stage compressor 150, and then passes through the high stage heat exchanger (160).
  • the high stage refrigerant loses heat, and is stored in the steam storage tank 170 and is also passed through the high stage heat exchanger 160.
  • the raw water gets its heat and turns into steam.
  • the high stage refrigerant radiated as described above is expanded while passing through the high stage expansion valve 103, and then expanded to obtain heat while passing through the intermediate heat exchanger 140, thereby circulating as described above.
  • the steam formed in the high stage heat exchanger 160 is stored in the steam storage tank 170.
  • the cascade heat pump system 100 for simultaneous production of cold water and steam includes a low stage heat exchanger 120, a cold water storage tank 110, a low stage compressor 130, an intermediate heat exchanger 140, By including the low stage expansion valve 102, the high stage compressor 150, the high stage heat exchanger 160, the high stage expansion valve 103, and the steam storage tank 170, cold water production and storage, as well as Simultaneously with steam production and storage, the cascade heat pump system 100 for simultaneous production of cold water and steam can function simultaneously for multiple purposes.
  • FIG. 2 is a view showing a cascade heat pump system for simultaneous production of cold water and steam according to a second embodiment of the present invention.
  • the cascade heat pump system 200 for simultaneously producing cold water and steam includes a low stage raw water supply pipe 211, a cold water storage tank 210, and a low stage raw water branch pipe 272. ), The low stage side supercooled heat exchanger 270, the low stage raw water lamination pipe 271, the low stage heat exchanger 220, the low stage compressor 230, the intermediate heat exchanger 240, and the low stage expansion valve ( 202, high stage compressor 250, high stage heat exchanger 260, high stage expansion valve 203, and steam storage tank 280.
  • the low stage raw water supply pipe 211 is a pipe in which low stage raw water is supplied from the outside, such as an external faucet, is connected to the lower end of the cold water storage tank 210, and is supplied through the low stage raw water supply pipe 211.
  • the low stage raw water may be accommodated in the cold water storage tank 210.
  • the low stage raw water branch pipe 272 is a pipe which is branched from the low stage raw water supply pipe 211 and flows at least a portion of the low stage raw water flowing through the low stage raw water supply pipe 211. .
  • the low stage side supercooled heat exchanger 270 may radiate and supercool while passing through the low stage side water flowing through the low stage side water branch pipe 272.
  • the low stage side supercooled heat exchanger (270) also passes through the low stage refrigerant from the intermediate heat exchanger (240) to the low stage expansion valve (202), and the low stage refrigerant cools the heat released by the low stage raw water. To obtain.
  • the low stage raw water lamination pipe 271 is passed through the low stage side supercooling heat exchanger 270 and the low stage raw water is re-introduced into the low stage raw water supply pipe 211 to the cold water storage tank 210. In order to be supplied, it is laminated to the low stage raw water supply pipe 211.
  • the low stage refrigerant flowing into the low stage expansion valve 202 after being radiated through the intermediate heat exchanger 240 is heat-exchanged with the low stage raw water in the low stage side supercooled heat exchanger 270. It is obtained and then supplied to the low stage expansion valve 202, thereby enabling efficient operation.
  • a first open / close valve 273 is installed in the low stage raw water supply pipe 211, and a second open source valve 273 is provided in one of the low stage raw water branch pipes 272 and the low stage raw water mixing pipe 271.
  • An on-off valve 274 is installed.
  • the low stage raw water flowing through the low stage raw water supply pipe 211 is the low stage side supercooled heat exchanger 270.
  • FIG. 3 is a view showing a cascade heat pump system for simultaneous production of cold water and steam according to a third embodiment of the present invention.
  • the cascade heat pump system 300 for simultaneously producing cold water and steam includes a low stage heat exchanger 320, a cold water storage tank 310, and a low stage raw water branch pipe 371.
  • the low stage raw water branch pipe 371 is branched in a pipe 312 from the cold water storage tank 310 to the low stage heat exchanger 320, and the low stage heat exchanger 320 in the cold water storage tank 310. At least a portion of the low-stage raw water headed to the pipe can flow.
  • the low stage side supercooled heat exchanger 370 is directed from the intermediate heat exchanger 340 to the low stage expansion valve 302 so that the low stage side water flowing through the low stage side water branch pipe 371 can be supercooled.
  • the low stage raw water flowing through the low stage side refrigerant and the low stage raw water branch pipe 371 is heat-exchanged.
  • the low stage side coolant flowing from the intermediate heat exchanger (340) to the low stage expansion valve (302) flows through the low stage side water branch pipe (371). The heat released is obtained.
  • the low stage raw water lamination pipe 372 is laminated to the pipe 313 from the low stage heat exchanger 320 to the cold water storage tank 310, and the super cooled side is cooled by the low stage side supercooled heat exchanger 370. Low stage raw water flows from the low stage heat exchanger 320 to the cold water storage tank 310 through the pipe 313 toward the cold water storage tank 310.
  • a first 'opening and closing valve 377 is installed in the pipe 312 from the cold water storage tank 310 to the low stage heat exchanger 320, and the low stage raw water branch pipe 371 and the One of the low stage side raw water lamination pipes 372 is provided with a second 'opening and closing valve 376.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

개시되는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 의하면, 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템이 저단측 원수 공급 배관, 냉수 저장 탱크, 저단측 원수 분지관, 저단측 과냉각 열교환기, 저단측 원수 합지관, 저단 열교환기, 저단 압축기, 중간 열교환기, 저단 팽창 밸브, 고단 압축기, 고단 열교환기, 고단 팽창 밸브, 스팀 저장 탱크를 포함함으로써, 냉수 생산 및 저장은 물론, 그와 동시에 스팀 생산 및 저장도 가능하게 되고, 이로 인해 상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템이 다목적으로 동시 기능할 수 있는 장점이 있다.

Description

냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템
본 발명은 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 관한 것이다.
캐스케이드 열펌프 시스템은 열펌프(heat pump)가 다단으로 연결된 시스템을 말하는 것으로 대한민국등록특허 제 10-1117032호(발명의 명칭: 캐스케이드 열교환기를 구비한 히트펌프시스템) 등이 이러한 캐스케이드 열펌프 시스템의 예로 제시될 수 있다.
그러나, 종래의 캐스케이드 열펌프 시스템에 의하면, 캐스케이드 열펌프 시스템이 오직 냉수 생산을 목적으로 하는 등 그 기능이 한정되어 있어서 활용도가 떨어지는 단점이 있었다.
특히, 스팀 생산이 요구되는 분야에서는, 종래의 캐스케이드 열펌프 시스템이 적용되지 못하는 단점이 있었다.
본 발명은 냉수 및 스팀을 동시에 생산하여 다목적으로 기능할 수 있는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 제공하는 것을 일 목적으로 한다.
본 발명의 일 측면에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템은 저단측 원수가 외부에서 공급되는 저단측 원수 공급 배관; 상기 저단측 원수 공급 배관을 통해 공급되는 상기 저단측 원수가 수용될 수 있는 냉수 저장 탱크; 상기 저단측 원수 공급 배관에서 분지되어, 상기 저단측 원수 공급 배관을 통해 유동되던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 저단측 원수 분지관; 상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 경유되면서 방열하여 과냉각될 수 있는 저단측 과냉각 열교환기; 상기 저단측 과냉각 열교환기를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단측 원수 공급 배관으로 다시 유입되어 상기 냉수 저장 탱크로 공급될 수 있도록, 상기 저단측 원수 공급 배관에 합지되는 저단측 원수 합지관; 상기 냉수 저장 탱크에 수용된 상기 저단측 원수가 냉수로 변환되도록, 상기 저단측 원수와 저단측 냉매가 열교환되는 저단 열교환기; 상기 저단 열교환기에서 열을 수득한 상기 저단측 냉매가 압축되는 저단 압축기; 상기 저단 압축기에서 압축된 상기 저단측 냉매가 방열되도록, 상기 저단측 냉매와 고단측 냉매가 열교환되는 중간 열교환기; 상기 중간 열교환기에서 방열된 상기 저단측 냉매가 팽창되는 저단 팽창 밸브; 상기 중간 열교환기에서 열을 수득한 상기 고단측 냉매가 압축되는 고단 압축기; 상기 고단 압축기에서 압축된 상기 고단측 냉매가 방열되고 고단측 냉매가 스팀이 되도록, 상기 고단측 냉매와 상기 고단측 원수가 열교환되는 고단 열교환기; 상기 고단 열교환기에서 방열된 상기 고단측 냉매가 팽창되는 고단 팽창 밸브; 및 상기 고단 열교환기에서 형성된 상기 스팀이 저장되는 스팀 저장 탱크;를 포함하고,
상기 중간 열교환기를 경유하며 방열된 후 상기 저단 팽창 밸브로 향하는 상기 저단측 냉매가 상기 저단측 과냉각 열교환기에서 상기 저단측 원수와 열교환되면서 열을 수득한 다음 상기 저단 팽창 밸브로 공급되는 것을 특징으로 한다.
본 발명의 다른 측면에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템은 저단측 원수가 냉수로 변환되도록, 상기 저단측 원수와 저단측 냉매가 열교환되는 저단 열교환기; 상기 저단측 열교환기에서 형성된 상기 냉수가 저장될 수 있는 냉수 저장 탱크; 상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하는 배관에서 분지되어, 상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 저단측 원수 분지관; 상기 저단 열교환기에서 열을 수득한 상기 저단측 냉매가 압축되는 저단 압축기; 상기 저단 압축기에서 압축된 상기 저단측 냉매가 방열되도록, 상기 저단측 냉매와 고단측 냉매가 열교환되는 중간 열교환기; 상기 중간 열교환기에서 방열된 상기 저단측 냉매가 팽창되는 저단 팽창 밸브; 상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 과냉각될 수 있도록, 상기 중간 열교환기를 경유하며 방열된 후 상기 저단 팽창 밸브로 향하는 상기 저단측 냉매와 상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 열교환되어, 상기 저단측 냉매가 상기 저단측 원수의 열을 수득하게 되는 저단측 과냉각 열교환기; 상기 저단 열교환기에서 상기 냉수 저장 탱크로 향하는 배관에 합지되어, 상기 저단측 과냉각 열교환기를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단 열교환기에서 상기 냉수 저장 탱크로 향하는 배관을 통해 상기 냉수 저장 탱크로 유동되는 저단측 원수 합지관; 상기 중간 열교환기에서 열을 수득한 상기 고단측 냉매가 압축되는 고단 압축기; 상기 고단 압축기에서 압축된 상기 고단측 냉매가 방열되고 고단측 냉매가 스팀이 되도록, 상기 고단측 냉매와 상기 고단측 원수가 열교환되는 고단 열교환기; 상기 고단 열교환기에서 방열된 상기 고단측 냉매가 팽창되는 고단 팽창 밸브; 및 상기 고단 열교환기에서 형성된 상기 스팀이 저장되는 스팀 저장 탱크;를 포함한다.
본 발명의 일 측면에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 의하면, 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템이 저단 열교환기와, 냉수 저장 탱크와, 저단 압축기와, 중간 열교환기와, 저단 팽창 밸브와, 고단 압축기와, 고단 열교환기와, 고단 팽창 밸브와, 스팀 저장 탱크를 포함함으로써, 냉수 생산 및 저장은 물론, 그와 동시에 스팀 생산 및 저장도 가능함으로써, 상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템이 다목적으로 동시 기능할 수 있는 효과가 있다.
도 1은 본 발명의 제 1 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면.
도 2는 본 발명의 제 2 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면.
도 3은 본 발명의 제 3 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면.
이하에서는 도면을 참조하여 본 발명의 실시예들에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 대하여 설명한다.
도 1은 본 발명의 제 1 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면이다.
도 1을 참조하면, 본 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(100)은 저단 열교환기(120)와, 냉수 저장 탱크(110)와, 저단 압축기(130)와, 중간 열교환기(140)와, 저단 팽창 밸브(102)와, 고단 압축기(150)와, 고단 열교환기(160)와, 고단 팽창 밸브(103)와, 스팀 저장 탱크(170)를 포함한다.
상기 저단 열교환기(120)는 수돗물 등 외부에서 공급되는 저단측 원수가 냉수로 변환되도록, 상기 저단측 원수와 저단측 냉매가 열교환되는 것이다.
상기 냉수 저장 탱크(110)는 상기 저단 열교환기(120)에서 형성된 상기 냉수가 저장될 수 있는 것이다. 상기 냉수 저장 탱크(110)에 저장된 냉수가 외부의 냉수 수요처에 공급될 수 있다.
본 실시예에서는 수돗물 등 외부에서 공급되는 상기 저단측 원수가 상기 냉수 저장 탱크(110)에 저장되어 있다가, 상기 냉수 저장 탱크(110)와 상기 저단 열교환기(120)와의 사이에서 상기 저단측 원수가 순환되면서, 상기 저단측 원수가 냉수화하여 다시 상기 냉수 저장 탱크(110)에 유입되어 저장된다.
도면 번호 101은 상기 냉수 저장 탱크(110)와 상기 저단 열교환기(120) 사이에서 상기 저단측 원수가 순환되도록 하는 냉수 순환 펌프이다.
상기 저단 압축기(130)는 상기 저단 열교환기(120)에서 열을 수득한 상기 저단측 냉매가 압축되는 것이다.
상기 중간 열교환기(140)는 상기 저단 압축기(130)에서 압축된 상기 저단측 냉매가 방열되도록, 상기 저단측 냉매와 고단측 냉매가 열교환되는 것이다.
상기 저단 팽창 밸브(102)는 상기 중간 열교환기(140)에서 방열된 상기 저단측 냉매가 팽창되는 것이다. 상기 저단 팽창 밸브(102)를 경유하며 팽창된 상기 저단측 냉매는 상기 저단 열교환기(120)를 다시 경유하면서 열을 수득하게 된다.
상기 고단 압축기(150)는 상기 중간 열교환기(140)에서 열을 수득한 상기 고단측 원수가 압축되는 것이다.
상기 고단 열교환기(160)는 상기 고단 압축기(150)에서 압축된 상기 고단측 냉매가 방열되고 수돗물 등 외부에서 공급되는 고단측 원수가 스팀이 되도록, 상기 고단측 냉매와 상기 고단측 원수가 열교환되는 것이다.
상기 고단 팽창 밸브(103)는 상기 고단 열교환기(160)에서 방열된 상기 고단측 냉매가 팽창되는 것이다. 상기 고단 팽창 밸브(103)를 경유하며 팽창된 상기 고단측 냉매는 상기 중간 열교환기(140)를 다시 경유하면서 열을 수득하게 된다.
도면 번호 104는 고단측 과냉각 열교환기로서, 상기 고단 열교환기(160)에서 상기 고단 팽창 밸브(103)로 향하는 고단측 냉매와 상기 고단 압축기(150)에서 상기 고단 열교환기(160)로 향하는 고단측 냉매를 열교환시켜, 상기 고단 열교환기(160)에서 상기 고단 팽창 밸브(103)로 향하는 고단측 냉매를 과냉각시켜 주는 것이다.
상기 스팀 저장 탱크(170)는 상기 고단 열교환기(160)에서 형성된 상기 스팀이 그 스팀 형태로 저장되는 것이다. 상기 스팀 저장 탱크(170)에 저장된 스팀이 외부의 스팀 수요처로 스팀 형태로 공급될 수 있다.
도면 번호 105는 상기 고단 열교환기(160)와 상기 스팀 저장 탱크(170) 사이에서 상기 고단측 원수가 순환되도록 하는 고온 순환 펌프이고, 도면 번호 106은 상기 스팀 저장 탱크(170)로 수돗물 등 고단측 원수를 공급하는 고단측 원수 공급 펌프이다.
본 실시예에서는, 상기 스팀 저장 탱크(170) 내의 스팀 압력에 따라 상기 고단 압축기(150)의 구동 모터(151)가 인버터 제어된다. 이를 위해, 상기 스팀 저장 탱크(170)에는 그 내부 압력을 감지하는 압력 센서(미도시)가 설치될 것인데, 이러한 압력 센서는 범용적으로 이용되는 것이 채용될 수 있으므로 여기서는 그 구체적 설명 및 도시를 생략한다.
상세히, 상기 스팀 저장 탱크(170) 내의 스팀 압력에 따라 상기 고단 압축기(150)의 상기 구동 모터(151)는 상기 구동 모터(151)의 최고 회전 속도 대비 60 내지 100% 범위 내에서 제어되고, 구체적으로 상기 고단 압축기(150)의 상기 구동 모터(151)는 40 내지 60Hz 범위 내에서 제어될 수 있다.
상기와 같이 상기 고단 압축기(150)의 구동 모터(151)가 실시간으로 인버터 제어됨으로써, 상기 고단 압축기(150)의 부하를 감소시켜 내구성을 향상시킬 수 있으면서도, 효율적인 운전이 가능해진다.
본 실시예에서는, 상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(100)이 보조 히터(115)를 더 포함한다.
상기 보조 히터(115)는 상기 냉수 저장 탱크(110) 내에 열기를 공급할 수 있는 것으로, 외부에서 전기 에너지 등을 공급받아 발열할 수 있는 것이다.
상기 보조 히터(115)는 상기 스팀 저장 탱크(170) 내의 상기 스팀의 저장 요구량 대비 상기 냉수 저장 탱크(110) 내의 상기 냉수의 저장 요구량이 상대적으로 떨어지는 경우 작동될 수 있다.
상세히, 상기 스팀 저장 탱크(170) 내의 상기 스팀에 대한 수요는 여전이 많아서 상기 스팀의 저장 요구량은 줄지 않음에도, 상기 냉수 저장 탱크(110) 내의 상기 냉수에 대한 수요가 상대적으로 떨어져서 상시 냉수의 저장 요구량이 떨어지게 되는 경우, 상기 보조 히터(115)가 가동됨으로써, 상기 냉수 생산 및 저장량은 감소되면서, 상기 스팀 생산 및 저장량은 요구되는 양으로 맞추어질 수 있다.
이하에서는 도면을 참조하여 본 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(100)의 작동에 대하여 설명한다.
먼저, 외부에서 공급된 상기 저단측 원수가 상기 냉수 저장 탱크(110)에 저장되어 있다가 상기 냉수 순환 펌프(101)의 작동에 따라 유동되어 상기 저단 열교환기(120)를 경유하게 된다.
이러한 상기 저단 열교환기(120)의 경유 과정에서, 상기 저단측 원수는 열을 잃게 되어 냉수화되고, 역시 상기 저단 열교환기(120)를 경유하는 상기 저단측 냉매가 그 열을 수득하게 된다.
상기와 같이 방열한 상기 저단측 원수는 냉수로 변환되어 상기 냉수 저장 탱크(110)에 저장된다.
한편, 상기 저단 열교환기(120)에서 열을 수득한 상기 저단측 냉매는 상기 저단 압축기(130)를 경유하면서 압축된 다음 상기 중간 열교환기(140)를 경유하게 된다.
이러한 상기 중간 열교환기(140)의 경유 과정에서, 상기 저단측 냉매는 열을 잃게 되고, 역시 상기 중간 열교환기(140)를 경유하는 상기 고단측 냉매가 그 열을 수득하게 된다.
상기와 같이 방열한 상기 저단측 냉매는 상기 저단 팽창 밸브(102)를 경유하면서 팽창된 다음 다시 상기 저단 열교환기(120)를 경유하면서 열을 수득하여 팽창하게 되면서, 다시 위와 같이 순환하게 된다.
한편, 상기 중간 열교환기(140)에서 열을 수득한 상기 고단측 냉매는 상기 고단 압축기(150)를 경유하면서 압축된 다음 상기 고단 열교환기(160)를 경유하게 된다.
*이러한 상기 고단 열교환기(160)의 경유 과정에서, 상기 고단측 냉매는 열을 잃게 되고, 상기 스팀 저장 탱크(170)에 저장되어 있다가 역시 상기 고단 열교환기(160)를 경유하게 되는 상기 고단측 원수가 그 열을 수득하게 되어 스팀으로 변화된다.
상기와 같이 방열한 상기 고단측 냉매는 상기 고단 팽창 밸브(103)를 경유하면서 팽창된 다음 다시 상기 중간 열교환기(140)를 경유하면서 열을 수득하여 팽창하게 되면서, 다시 위와 같이 순환하게 된다.
상기와 같이 상기 고단 열교환기(160)에서 형성된 상기 스팀이 상기 스팀 저장 탱크(170)에 저장된다.
상기와 같이, 상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(100)이 저단 열교환기(120)와, 냉수 저장 탱크(110)와, 저단 압축기(130)와, 중간 열교환기(140)와, 저단 팽창 밸브(102)와, 고단 압축기(150)와, 고단 열교환기(160)와, 고단 팽창 밸브(103)와, 스팀 저장 탱크(170)를 포함함으로써, 냉수 생산 및 저장은 물론, 그와 동시에 스팀 생산 및 저장도 가능함으로써, 상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(100)이 다목적으로 동시 기능할 수 있다.
이하에서는 도면을 참조하여 본 발명의 다른 실시예들에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 대하여 설명한다. 이러한 설명을 수행함에 있어서 상기된 본 발명의 제 1 실시예에서 이미 기재된 내용과 중복되는 설명은 그에 갈음하고 여기서는 생략하기로 한다.
도 2는 본 발명의 제 2 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면이다.
도 2를 참조하면, 본 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(200)은 저단측 원수 공급 배관(211)과, 냉수 저장 탱크(210)와, 저단측 원수 분지관(272)과, 저단측 과냉각 열교환기(270)와, 저단측 원수 합지관(271)과, 저단 열교환기(220)와, 저단 압축기(230)와, 중간 열교환기(240)와, 저단 팽창 밸브(202)와, 고단 압축기(250)와, 고단 열교환기(260)와, 고단 팽창 밸브(203)와, 스팀 저장 탱크(280)를 포함한다.
상기 저단측 원수 공급 배관(211)은 저단측 원수가 외부 수전 등 외부에서 공급되는 배관으로, 상기 냉수 저장 탱크(210)의 하단에 연결되어, 상기 저단측 원수 공급 배관(211)을 통해 공급되는 상기 저단측 원수가 상기 냉수 저장 탱크(210)에 수용될 수 있다.
상기 저단측 원수 분지관(272)은 상기 저단측 원수 공급 배관(211)에서 분지되어, 상기 저단측 원수 공급 배관(211)을 통해 유동되던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 배관이다.
상기 저단측 과냉각 열교환기(270)는 상기 저단측 원수 분지관(272)을 통해 유동되던 상기 저단측 원수가 경유되면서 방열하여 과냉각될 수 있는 것이다. 상기 저단측 과냉각 열교환기(270)에는 상기 중간 열교환기(240)에서 상기 저단 팽창 밸브(202)로 향하는 상기 저단측 냉매도 경유하게 되어, 그 저단측 냉매가 상기 저단측 원수가 방출한 열을 수득하게 된다.
상기 저단측 원수 합지관(271)은 상기 저단측 과냉각 열교환기(270)를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단측 원수 공급 배관(211)으로 다시 유입되어 상기 냉수 저장 탱크(210)로 공급될 수 있도록, 상기 저단측 원수 공급 배관(211)에 합지되는 것이다.
본 실시예에서는, 상기 중간 열교환기(240)를 경유하며 방열된 후 상기 저단 팽창 밸브(202)로 향하는 상기 저단측 냉매가 상기 저단측 과냉각 열교환기(270)에서 상기 저단측 원수와 열교환되면서 열을 수득한 다음 상기 저단 팽창 밸브(202)로 공급되게 됨으로써, 효율적인 운전이 가능해진다.
본 실시예에서는, 상기 저단측 원수 공급 배관(211)에 제 1 개폐 밸브(273)가 설치되고, 상기 저단측 원수 분지관(272)과 상기 저단측 원수 합지관(271) 중 하나에는 제 2 개폐 밸브(274)가 설치된다.
상기 제 1 개폐 밸브(273)가 열리고 상기 제 2 개폐 밸브(274)가 닫히면, 상기 저단측 원수 공급 배관(211)을 통해 유동되던 상기 저단측 원수는 상기 냉수 저장 탱크(210)로 바로 공급된다.
반면, 상기 제 1 개폐 밸브(273)가 닫히고 상기 제 2 개폐 밸브(274)가 열리면, 상기 저단측 원수 공급 배관(211)을 통해 유동되던 상기 저단측 원수는 상기 저단측 과냉각 열교환기(270)로 유동되고, 그에 따라 상기 저단측 원수는 상기 저단측 과냉각 열교환기(270)를 경유하며 과냉각된 상태로 상기 저단측 원수 합지관(271) 및 상기 저단측 원수 공급 배관(211)을 통해 상기 냉수 저장 탱크(210)로 공급된다.
도 3은 본 발명의 제 3 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템을 보이는 도면이다.
도 3을 참조하면, 본 실시예에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템(300)은 저단 열교환기(320)와, 냉수 저장 탱크(310)와, 저단측 원수 분지관(371)과, 저단 압축기(330)와, 중간 열교환기(340)와, 저단 팽창 밸브(302)와, 저단측 과냉각 열교환기(370)와, 저단측 원수 합지관(372)과, 고단 압축기(350)와, 고단 열교환기(360)와, 고단 팽창 밸브(303)와, 스팀 저장 탱크(380)를 포함한다.
상기 저단측 원수 분지관(371)은 상기 냉수 저장 탱크(310)에서 상기 저단 열교환기(320)로 향하는 배관(312)에서 분지되어, 상기 냉수 저장 탱크(310)에서 상기 저단 열교환기(320)로 향하던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 배관이다.
상기 저단측 과냉각 열교환기(370)는 상기 저단측 원수 분지관(371)을 통해 유동되던 상기 저단측 원수가 과냉각될 수 있도록 상기 중간 열교환기(340)에서 상기 저단 팽창 밸브(302)로 향하는 상기 저단측 냉매와 상기 저단측 원수 분지관(371)을 통해 유동되던 상기 저단측 원수가 열교환되는 것이다. 상기 저단측 과냉각 열교환기(370)에서는, 상기 중간 열교환기(340)에서 상기 저단 팽창 밸브(302)로 향하는 상기 저단측 냉매가 상기 저단측 원수 분지관(371)을 통해 유동되던 상기 저단측 원수가 방출한 열을 수득하게 된다.
상기 저단측 원수 합지관(372)은 상기 저단 열교환기(320)에서 상기 냉수 저장 탱크(310)로 향하는 배관(313)에 합지되어, 상기 저단측 과냉각 열교환기(370)를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단 열교환기(320)에서 상기 냉수 저장 탱크(310)로 향하는 배관(313)을 통해 상기 냉수 저장 탱크(310)로 유동되는 배관이다.
본 실시예에서는, 상기 냉수 저장 탱크(310)에서 상기 저단 열교환기(320)로 향하는 배관(312)에 제 1' 개폐 밸브(377)가 설치되고, 상기 저단측 원수 분지관(371)과 상기 저단측 원수 합지관(372) 중 하나에는 제 2' 개폐 밸브(376)가 설치된다.
상기 제 1' 개폐 밸브(377)가 닫히고 상기 제 2' 개폐 밸브(376)가 열리면, 상기 냉수 저장 탱크(310)에서 상기 저단 열교환기(320)로 향하는 배관(312)을 통해 유동되던 상기 저단측 원수는 상기 저단측 원수 분지관(371)을 통해 유동되어, 상기 저단측 과냉각 열교환기(370)에서의 열교환이 이루어진다.
상기 제 1' 개폐 밸브(377)가 열리고 상기 제 2' 개폐 밸브(376)가 닫히면, 상기 냉수 저장 탱크(310)에서 상기 저단 열교환기(320)로 향하는 배관(312)을 통해 유동되던 상기 저단측 원수는 상기 저단측 과냉각 열교환기(370)를 경유하지 아니하고, 상기 저단 열교환기(320)로 바로 공급된다.
상기에서 본 발명은 특정한 실시예에 관하여 도시되고 설명되었지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 알 수 있을 것이다. 그렇지만 이러한 수정 및 변형 구조들은 모두 본 발명의 권리범위 내에 포함되는 것임을 분명하게 밝혀두고자 한다.
본 발명의 일 측면에 따른 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템에 의하면, 냉수 및 스팀을 동시에 생산하여 다목적으로 기능할 수 있으므로, 그 산업상 이용가능성이 높다고 하겠다.

Claims (13)

  1. 저단측 원수가 외부에서 공급되는 저단측 원수 공급 배관;
    상기 저단측 원수 공급 배관을 통해 공급되는 상기 저단측 원수가 수용될 수 있는 냉수 저장 탱크;
    상기 저단측 원수 공급 배관에서 분지되어, 상기 저단측 원수 공급 배관을 통해 유동되던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 저단측 원수 분지관;
    상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 경유되면서 방열하여 과냉각될 수 있는 저단측 과냉각 열교환기;
    상기 저단측 과냉각 열교환기를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단측 원수 공급 배관으로 다시 유입되어 상기 냉수 저장 탱크로 공급될 수 있도록, 상기 저단측 원수 공급 배관에 합지되는 저단측 원수 합지관;
    상기 냉수 저장 탱크에 수용된 상기 저단측 원수가 냉수로 변환되도록, 상기 저단측 원수와 저단측 냉매가 열교환되는 저단 열교환기;
    상기 저단 열교환기에서 열을 수득한 상기 저단측 냉매가 압축되는 저단 압축기;
    상기 저단 압축기에서 압축된 상기 저단측 냉매가 방열되도록, 상기 저단측 냉매와 고단측 냉매가 열교환되는 중간 열교환기;
    상기 중간 열교환기에서 방열된 상기 저단측 냉매가 팽창되는 저단 팽창 밸브;
    상기 중간 열교환기에서 열을 수득한 상기 고단측 냉매가 압축되는 고단 압축기;
    상기 고단 압축기에서 압축된 상기 고단측 냉매가 방열되고 고단측 냉매가 스팀이 되도록, 상기 고단측 냉매와 고단측 원수가 열교환되는 고단 열교환기;
    상기 고단 열교환기에서 방열된 상기 고단측 냉매가 팽창되는 고단 팽창 밸브; 및
    상기 고단 열교환기에서 형성된 상기 스팀이 저장되는 스팀 저장 탱크;를 포함하고,
    상기 중간 열교환기를 경유하며 방열된 후 상기 저단 팽창 밸브로 향하는 상기 저단측 냉매가 상기 저단측 과냉각 열교환기에서 상기 저단측 원수와 열교환되면서 열을 수득한 다음 상기 저단 팽창 밸브로 공급되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  2. 제 1 항에 있어서,
    상기 저단측 원수 공급 배관에 제 1 개폐 밸브가 설치되고,
    상기 저단측 원수 분지관과 상기 저단측 원수 합지관 중 하나에는 제 2 개폐 밸브가 설치되고,
    상기 제 1 개폐 밸브가 열리고 상기 제 2 개폐 밸브가 닫히면, 상기 저단측 원수 공급 배관을 통해 유동되던 상기 저단측 원수는 상기 냉수 저장 탱크로 바로 공급되고,
    상기 제 1 개폐 밸브가 닫히고 상기 제 2 개폐 밸브가 열리면, 상기 저단측 원수 공급 배관을 통해 유동되던 상기 저단측 원수는 상기 저단측 과냉각 열교환기로 유동되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  3. 제 1 항에 있어서,
    상기 스팀 저장 탱크 내의 스팀 압력에 따라 상기 고단 압축기의 구동 모터가 인버터 제어되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  4. 제 3 항에 있어서,
    상기 스팀 저장 탱크 내의 스팀 압력에 따라 상기 고단 압축기의 상기 구동 모터는 상기 구동 모터의 최고 회전 속도 대비 60 내지 100% 범위 내에서 제어되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  5. 제 4 항에 있어서,
    상기 고단 압축기의 상기 구동 모터는 40 내지 60Hz 범위 내에서 제어되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  6. 제 1 항에 있어서,
    상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템은
    상기 냉수 저장 탱크 내에 열기를 공급할 수 있는 보조 히터;를 포함하는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  7. 제 6 항에 있어서,
    상기 보조 히터는 상기 스팀 저장 탱크 내의 상기 스팀의 저장 요구량 대비 상기 냉수 저장 탱크 내의 상기 냉수의 저장 요구량이 상대적으로 떨어지는 경우 작동되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  8. 저단측 원수가 냉수로 변환되도록, 상기 저단측 원수와 저단측 냉매가 열교환되는 저단 열교환기;
    상기 저단측 열교환기에서 형성된 상기 냉수가 저장될 수 있는 냉수 저장 탱크;
    상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하는 배관에서 분지되어, 상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하던 상기 저단측 원수 중의 적어도 일부가 유동될 수 있는 저단측 원수 분지관;
    상기 저단 열교환기에서 열을 수득한 상기 저단측 냉매가 압축되는 저단 압축기;
    상기 저단 압축기에서 압축된 상기 저단측 냉매가 방열되도록, 상기 저단측 냉매와 고단측 냉매가 열교환되는 중간 열교환기;
    상기 중간 열교환기에서 방열된 상기 저단측 냉매가 팽창되는 저단 팽창 밸브;
    상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 과냉각될 수 있도록, 상기 중간 열교환기를 경유하며 방열된 후 상기 저단 팽창 밸브로 향하는 상기 저단측 냉매와 상기 저단측 원수 분지관을 통해 유동되던 상기 저단측 원수가 열교환되어, 상기 저단측 냉매가 상기 저단측 원수의 열을 수득하게 되는 저단측 과냉각 열교환기;
    상기 저단 열교환기에서 상기 냉수 저장 탱크로 향하는 배관에 합지되어, 상기 저단측 과냉각 열교환기를 경유하면서 과냉각된 상기 저단측 원수가 상기 저단 열교환기에서 상기 냉수 저장 탱크로 향하는 배관을 통해 상기 냉수 저장 탱크로 유동되는 저단측 원수 합지관;
    상기 중간 열교환기에서 열을 수득한 상기 고단측 냉매가 압축되는 고단 압축기;
    상기 고단 압축기에서 압축된 상기 고단측 냉매가 방열되고 고단측 냉매가 스팀이 되도록, 상기 고단측 냉매와 고단측 원수가 열교환되는 고단 열교환기;
    상기 고단 열교환기에서 방열된 상기 고단측 냉매가 팽창되는 고단 팽창 밸브; 및
    상기 고단 열교환기에서 형성된 상기 스팀이 저장되는 스팀 저장 탱크;를 포함하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  9. 제 8 항에 있어서,
    상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하는 배관에 제 1' 개폐 밸브가 설치되고,
    상기 저단측 원수 분지관과 상기 저단측 원수 합지관 중 하나에는 제 2' 개폐 밸브가 설치되고,
    상기 제 1' 개폐 밸브가 닫히고 상기 제 2' 개폐 밸브가 열리면, 상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하는 배관을 통해 유동되던 상기 저단측 원수는 상기 저단측 원수 분지관을 통해 유동되고,
    상기 제 1' 개폐 밸브가 열리고 상기 제 2' 개폐 밸브가 닫히면, 상기 냉수 저장 탱크에서 상기 저단 열교환기로 향하는 배관을 통해 유동되던 상기 저단측 원수는 상기 저단 열교환기로 바로 공급되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  10. 제 8 항에 있어서,
    상기 스팀 저장 탱크 내의 스팀 압력에 따라 상기 고단 압축기의 구동 모터가 인버터 제어되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  11. 제 10 항에 있어서,
    상기 스팀 저장 탱크 내의 스팀 압력에 따라 상기 고단 압축기의 상기 구동 모터는 상기 구동 모터의 최고 회전 속도 대비 60 내지 100% 범위 내에서 제어되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  12. 제 8 항에 있어서,
    상기 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템은
    상기 냉수 저장 탱크 내에 열기를 공급할 수 있는 보조 히터;를 포함하는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
  13. 제 12 항에 있어서,
    상기 보조 히터는 상기 스팀 저장 탱크 내의 상기 스팀의 저장 요구량 대비 상기 냉수 저장 탱크 내의 상기 냉수의 저장 요구량이 상대적으로 떨어지는 경우 작동되는 것을 특징으로 하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템.
PCT/KR2017/001925 2016-02-26 2017-02-22 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템 WO2017146450A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0023023 2016-02-26
KR1020160023023A KR101690628B1 (ko) 2016-02-26 2016-02-26 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템

Publications (1)

Publication Number Publication Date
WO2017146450A1 true WO2017146450A1 (ko) 2017-08-31

Family

ID=57724060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001925 WO2017146450A1 (ko) 2016-02-26 2017-02-22 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템

Country Status (2)

Country Link
KR (1) KR101690628B1 (ko)
WO (1) WO2017146450A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994144B1 (ko) * 2017-10-18 2019-07-01 전주대학교 산학협력단 심부 지열 냉온 공용 지열공 구조 및 상기 심부 지열 냉온 공용 지열공 구조를 포함하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템
KR102019223B1 (ko) * 2017-12-29 2019-09-06 윤태일 소용량 고단 압축기 및 심부 지열 냉온 공용 지열공을 포함하는 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (ja) * 1988-04-28 1989-11-07 M T Akua:Kk 冷房給湯装置,暖房給湯装置及び冷暖給湯装置
KR100859311B1 (ko) * 2008-05-13 2008-09-19 김상원 케스케이드 열교환기를 이용한 냉난방기
KR101071409B1 (ko) * 2011-05-11 2011-10-07 문감사 2단 히트펌프 사이클을 이용한 온수 및 냉수 생산 시스템
JP4915680B2 (ja) * 2009-06-30 2012-04-11 株式会社東洋製作所 多元ヒートポンプ式蒸気・温水発生装置
JP5652371B2 (ja) * 2010-05-14 2015-01-14 三浦工業株式会社 ヒートポンプ式蒸気発生装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101117032B1 (ko) 2010-06-14 2012-02-28 한밭대학교 산학협력단 캐스케이드 열교환기를 구비한 히트펌프시스템
CN206012763U (zh) * 2016-08-15 2017-03-15 美国锐哲有限公司 一种卡丁车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (ja) * 1988-04-28 1989-11-07 M T Akua:Kk 冷房給湯装置,暖房給湯装置及び冷暖給湯装置
KR100859311B1 (ko) * 2008-05-13 2008-09-19 김상원 케스케이드 열교환기를 이용한 냉난방기
JP4915680B2 (ja) * 2009-06-30 2012-04-11 株式会社東洋製作所 多元ヒートポンプ式蒸気・温水発生装置
JP5652371B2 (ja) * 2010-05-14 2015-01-14 三浦工業株式会社 ヒートポンプ式蒸気発生装置
KR101071409B1 (ko) * 2011-05-11 2011-10-07 문감사 2단 히트펌프 사이클을 이용한 온수 및 냉수 생산 시스템

Also Published As

Publication number Publication date
KR101690628B1 (ko) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2017078349A1 (ko) 지열 에너지를 활용한 2단 가열식 지열 시스템
US11919360B2 (en) Vehicle heat management system
WO2012020955A2 (ko) 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법
WO2014175589A1 (en) Heat pump system for vehicle
CN107848368A (zh) 用于电动车或混合动力车的加热系统以及用于运行这种加热系统的方法
WO2014065548A1 (en) Air conditioner
WO2017146450A1 (ko) 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템
WO2020071801A1 (ko) 열관리 시스템
WO2020246792A1 (ko) 열관리 시스템
WO2019208942A1 (ko) 차량용 열교환 시스템
WO2018135850A1 (ko) 폐열회수형 하이브리드 히트펌프시스템
WO2019225867A1 (ko) 열관리 시스템
WO2022114563A1 (ko) 열관리 시스템
WO2018026137A1 (ko) 열교환기 교번타입 히트펌프시스템
WO2022114618A1 (ko) 밸브장치
WO2013062287A1 (en) Regenerative air-conditioning apparatus
WO2018190540A1 (ko) 차량용 공조장치
WO2014148704A1 (ko) 하이브리드형 공기열 히트펌프 시스템
WO2018048173A1 (ko) 하이브리드타입 공기조화 및 히트펌프시스템
CN216618646U (zh) 用于汽车冷却系统的四通阀及汽车冷却系统
KR20210004565A (ko) 차량용 히트 펌프 시스템
WO2020246793A1 (ko) 열관리 시스템
WO2011034267A1 (ko) 히터 유닛 및 이를 포함하는 공기 조화기
WO2019027085A1 (ko) 공기열원 축냉운전과 수열원 축냉축열 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
WO2021246722A1 (ko) 차량의 열관리 시스템

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756788

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/12/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 17756788

Country of ref document: EP

Kind code of ref document: A1