WO2014148704A1 - 하이브리드형 공기열 히트펌프 시스템 - Google Patents

하이브리드형 공기열 히트펌프 시스템 Download PDF

Info

Publication number
WO2014148704A1
WO2014148704A1 PCT/KR2013/007925 KR2013007925W WO2014148704A1 WO 2014148704 A1 WO2014148704 A1 WO 2014148704A1 KR 2013007925 W KR2013007925 W KR 2013007925W WO 2014148704 A1 WO2014148704 A1 WO 2014148704A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
pipe
hot water
evaporator
Prior art date
Application number
PCT/KR2013/007925
Other languages
English (en)
French (fr)
Inventor
김현준
Original Assignee
(주)지산에너텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지산에너텍 filed Critical (주)지산에너텍
Publication of WO2014148704A1 publication Critical patent/WO2014148704A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D15/00Other domestic- or space-heating systems
    • F24D15/04Other domestic- or space-heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heat pump system, in particular, by using air heat and water heat as a heat source, can produce cold and hot water at the same time, so-called continuous cold, hot water production type hybrid air heat that can produce hot water even in defrost mode A heat pump system.
  • heat pumps are used to pump heat from air, groundwater, and storage water, and are mainly used for cooling and heating of buildings, facility cultivation houses, and industrial facilities, supplying cold and hot water, and other heat exchange.
  • the heat pump for this purpose basically includes an evaporator, a compressor, a condenser, an expansion valve, and the like, and the heat medium, which is a working fluid, circulates each element in a circuit to perform endothermic and heat dissipation as necessary.
  • the air heat heat pump produces only one of hot water or cold water using air heat, and one of the heat is discarded into the air.
  • the conventional air heat heat pump mainly converts the refrigerant cycle of the refrigeration cycle and removes the drop by supplying hot gas to the evaporator when the drip occurs in the evaporator during operation of the hot gas defrost. It is a cause of, and because the cold water is generated in the situation where hot water must be produced during defrosting may cause problems in continuous heating. This results in deterioration of the equipment and burnout of the compressor.
  • Republic of Korea Utility Registration No. 339347 discloses a hybrid heat pump using water heat and air heat.
  • the device uses heat from the wastewater during the day and heat from the air at night, which improves the mechanical efficiency of the heat pump by continuous heat exchange and at the same time reduces energy costs.
  • this structure is not appropriately mixed with heat and air heat, but is configured to be selectively used. Thus, this can be said to be substantially no different from the apparatus using a conventional single heat source.
  • Korean Patent No. 1093211 discloses a hybrid cold / hot water system using heat pumps using air heat and water heat sources.
  • the published hot and cold water system combines two heat pump units, each using air heat and water heat, allowing for continuous supply of heat sources, mechanical stability and cross-use of heat sources.
  • each heat pump unit also contains many components, which is large and complex and not practical for practical application.
  • each heat pump unit also contains many components, which is large and complex and not practical for practical application.
  • a large load is momentarily applied to the compressor due to the instantaneous high and low pressure conversion during the heat pump cycle operation, which is a major cause of damage to the compressor.
  • An object of the present invention is to solve the problems described above, it is possible to improve the energy efficiency and operation efficiency by using air heat and water heat, hybrid type air heat heat capable of removing the frost of the evaporator during operation In providing a pump system.
  • Another object of the present invention is to provide a hybrid air heat heat pump system capable of removing frost attached to a surface of an evaporator by increasing the temperature of a refrigerant gas of a refrigerant that is a heat exchange medium supplied to an evaporator.
  • Still another object of the present invention is to provide a hybrid air heat heat pump system capable of producing cold water or hot water while removing the defrost of the evaporator.
  • the system of the present invention for achieving the above object is a circulation pipe constituting a closed circuit by connecting the evaporator, the first heat exchanger and the compressor, and is installed between the first heat exchanger and the evaporator is installed in the circulation pipe to the flow of the refrigerant
  • the heat pump unit includes a second heat exchanger installed between the evaporator and the first heat exchanger, and a defrost unit that removes frost of the evaporator by heating and superheating a heat exchange medium supplied to the evaporator through the second heat exchanger. do.
  • the defrost unit is provided with a first and a second branch pipe for connecting the circulation pipe and the second heat exchanger in parallel, the hot water tank in which hot water is stored, and installed so that heat exchange with the second heat exchanger is possible. It is provided with a heat exchanger, a hot water supply and return pipe connecting the hot water tank and the heat exchanger, and a first pump installed in the hot water supply pipe or return pipe.
  • the defrost unit is a heat exchanger and a first supply gas pipe installed to allow heat exchange with the second heat exchanger, in which a heated heat exchange medium discharged from the compressor and supplied to a first heat exchanger is connected to a circulation pipe through which gas is supplied. And a first return gas pipe.
  • the first storage tank connected by the heat exchange unit, the first water supply line and the first return line so that heat exchange with the first heat exchanger, and is installed in the first water supply line or the first return line With a pump.
  • Another embodiment of the regeneration unit is provided with a second heat exchanger connected in parallel to the circulation pipe between the evaporator and the expansion valve by the first and second branch pipes, and a heat exchanger to exchange heat with the first heat exchanger.
  • a first storage tank connected by the first water supply line and the first water return line, and a pump installed in the first water supply line or the first water return line, wherein the heat exchange part may be formed of the second heat exchanger and the heat exchanger.
  • a defrost water supply pipe connecting the first return pipe and the defrost water return pipe connected to the heat exchange unit and the first return line.
  • the defrost unit is provided with a second heat exchanger connected in parallel to the circulation pipe between the evaporator and the expansion valve by the first and second branch pipes,
  • a hot water tank for storing hot water for storing hot water, a hot water supply connecting the heat exchange part installed to allow heat exchange with the second heat exchanger, and a return pipe, and a first pump installed in the hot water supply pipe or the return pipe.
  • a sixth valve connected to a supply pipe and a second water supply line, and installed in a second storage tank connected by the return pipe and a second water return line, and a linton pipe between the hot water tank and the first water supply line connection.
  • a first storage tank connected by a heat exchange part, a first water supply line, and a first return line so as to exchange heat with the first heat exchanger, and a pump installed in the first water supply line or the first return line. Equipped.
  • the hybrid type air heat heat pump system uses air heat and a water heat source together, while applying one heat pump unit, hot water production, cold water production, and defrosting operation can be performed at the same time, thereby increasing the operation rate of the heat pump system. Furthermore, design freedom can be increased.
  • the present invention improves the operation efficiency and the operating efficiency of the machine, and even during defrosting, defrosting is possible without changing the refrigeration cycle due to switching between low pressure and high pressure, thereby preventing damage to the equipment due to the pressure difference, and its structure. Is relatively simple.
  • FIG. 1 is a view showing an embodiment of a hybrid type air heat heat pump system according to the present invention
  • FIGS. 2 to 6 are views showing other embodiments of a hybrid air heat heat pump system according to the present invention.
  • FIGS 12 to 15 are views showing the operation mode of the hybrid air heat heat pump system according to another embodiment of the present invention.
  • Hybrid type air heat heat pump system according to the present invention is to produce hot or cold water and the production of cold, hot water at the same time or to heat and cool the fan coil unit facility, building, etc. An embodiment is shown in FIG.
  • the hybrid type air heat heat pump system 10 is connected to the evaporator 25, the first heat exchanger 22 and the compressor 21 by the circulation pipe 30 constituting a closed circuit,
  • An expansion valve 24 installed between the first heat exchanger 22 and the evaporator 25 and installed in the circulation pipe 30 to control the flow of the refrigerant, and between the evaporator 25 and the compressor 21.
  • It is provided in the circulation pipe 30 of the heat pump unit 20 having a four-way valve 26 for switching the flow of the refrigerant to the evaporator 25 and the first heat exchanger (22).
  • the circulation pipe 30 is provided with a receiver 29 and an expansion valve 24, the first circulation pipe 31 connecting them and the evaporator 25, the evaporator 25, the four-way valve 26 ), A second circulation pipe 32 connecting the compressor 21 and the first heat exchanger 22.
  • the circulation pipe 30 composed of the first and second circulation pipes 31 and 32 includes an evaporator 25, a four-way valve 26, a compressor 21, a first heat exchanger 22, and a receiver 29. And a closed circuit connecting the expansion valve and the expansion valve 24, the refrigerant is switched to the evaporator 25 and the first heat exchanger 22 by changing the direction of the refrigerant as the heat exchange medium by the switching by the four-way valve 26. It can be made to be switched (optional) by selectively switching the.
  • the heat pump unit may have a known configuration.
  • the heat pump unit 20 includes a second heat exchanger 201 installed between the evaporator 25 and the first heat exchanger 22, and an evaporator 25 through the second heat exchanger 201.
  • a defrosting unit 200 is provided to remove frost deposited on the surface of the evaporator 25 by heating and superheating a refrigerant that is a heat exchange medium supplied to the evaporator 25.
  • the defrost unit 200 includes the expansion valve 24 and the evaporator 25 by the first branch pipe 202 and the second branch pipe 203. It is connected in parallel with the circulation pipe 30, that is, the first circulation pipe 31 in between, the first branch pipe 202 on the first circulation pipe 31 by the first valve (V1) is a three-way valve Connected. As shown in FIG. 3, instead of the first valve V1, the first valve V1 and the first branch pipe (1) located in a section between the two branch pipes 202 and 203 in the first circulation pipe 31 and the first branch pipe ( A second valve V2 located on 202 may be used.
  • the defrosting unit 200 includes a heat supply unit 210 for superheating or heating the refrigerant, which is a heat exchange medium passing through the second heat exchanger 201.
  • the heat supply unit 210 is connected to the heat exchanger 211 for heat exchange with the second heat exchanger 201 or is installed adjacent to the second heat exchanger 201, the compressor 21 and the first
  • the first supply gas pipe 212 and the first recan gas pipe for supplying the gas of the refrigerant, which is a heat exchange medium heated in connection with the circulation pipe 30 between the first heat exchanger 22, that is, the second circulation pipe 32. 213, the first supply gas pipe 212 on the second circulation pipe 32 is connected by a second valve (V2) which is a three-way valve.
  • the first heat exchanger 22 includes a hot water production unit 40 for producing hot water by heat exchange therewith, and the hot water production unit 40 includes the first heat exchanger 22.
  • a first storage tank 44 connected by a heat exchanger 41, a first supply water line 42, and a first return line 43 to perform heat exchange is installed.
  • the first pump 45 is installed on at least one side of the first supply line 42 or the first return line 43.
  • the heat supply unit 220 for supplying heat to the second heat exchanger 201 is a hot water tank 221 is stored hot water, and A hot water supply pipe 223 and a hot water return pipe 224 connecting the heat exchange part 511 and the hot water tank 221 installed to allow heat exchange with the second heat exchanger 201, and the hot water supply pipe 223 or A second pump 225 is installed in the hot water return pipe 224.
  • the heat supply unit for supplying heat to the second heat exchanger 201 is not limited to the above-described embodiment, but may be made of an electrothermal heater.
  • the heat supply unit 230 may include a heat exchanger 211 for exchanging heat with the second heat exchanger 201 connected by the first and second branch pipes 202 and 203.
  • the defrost water supply pipe 231 and the defrost water return pipe 232 connecting the first supply water line 42 and the first return line 43 may be provided.
  • fan coil units 300 may be installed at installation portions of the first heat exchanger to generate warm air.
  • the refrigerant which is a heat exchange medium of the gaseous phase compressed from the compressor 21, may use the first heat exchanger 22. Heat passes through and liquefies and is stored in receiver 29. The liquid refrigerant is evaporated after absorbing the latent heat of evaporation while passing through the evaporator 25 through the expansion valve 24 and the first circulation pipe 31, and the vaporized refrigerant is introduced into the compressor 21.
  • the first valve V1 blocks the supply of refrigerant to the first branch pipe 202 connected to the second heat exchanger 201.
  • the water of the first storage tank 44 flows into the first heat exchanger 22 through the first supply water line 42 and is heated, and then returns through the first return line 43. As illustrated in FIGS. 2 and 3, when the fan coil unit 300 is installed at the installation position of the first heat exchanger, warm air may be produced.
  • the first valve V1 passes through the second heat exchanger 201 to the evaporator 25 after the liquid refrigerant passing through the expansion valve 24 passes through the second heat exchanger 201. It is operated to be supplied.
  • the heat supply unit 210 may supply the hot gas compressed by the compressor 21 to the first supply gas pipe by a second valve V2 installed at a connection portion between the first supply gas pipe 212 and the circulation pipe 30. The heat exchange with the refrigerant passing through the second heat exchanger 201 after being bypassed to the heat exchanger 211 through 212.
  • the heating of the refrigerant supplied to the evaporator after passing through the second heat exchanger 201 supplies water from the hot water tank 222 to the hot water supply pipe 223 and the hot water return pipe 224 as shown in FIG. 2. It can be made by circulating to the second heat exchanger side through), and as shown in Figure 4, the first feed water supply line 42 is connected to the first supply water line 42 and the first return line 43 for producing hot water 231 and the first defrost water return line 232 may be made by circulating the hot water produced by the second heat exchanger 201 and the heat exchanger 211 adjacent to the second heat exchanger 201.
  • the hybrid air heat heat pump system 10 is connected to the evaporator 25, the first heat exchanger 22 and the compressor 21 by the circulation pipe 30 constituting a closed circuit and the first heat exchange
  • An expansion valve 24 installed in the circulation pipe 30 between the gas 22 and the evaporator 25 to control the flow of the refrigerant, and the circulation pipe 30 between the evaporator 25 and the compressor 21.
  • a heat pump unit 20 having a four-way valve 26 for switching the flow of the refrigerant to the evaporator 25 and the first heat exchanger 22.
  • the heat pump unit 20 includes a defrost unit 200 including a second heat exchanger 201 installed in parallel between the evaporator 25 and the first heat exchanger 22.
  • the defrost unit 200 includes the expansion valve 24 and the evaporator 25 in which the second heat exchanger 201 is formed by the first branch pipe 202 and the second branch pipe 203. It is connected in parallel with the circulation pipe 30, that is, the first circulation pipe 31, the first valve (V1) is installed in the connection between the first branch pipe 202 and the circulation pipe (30).
  • the defrost unit 200 includes a heat supply unit 220 for superheating or heating the refrigerant, which is a heat exchange medium passing through the second heat exchanger 201.
  • the heat supply unit 220 is a hot water tank 221, a hot water supply pipe 223 for connecting the heat exchange unit 211 and the hot water tank 222 is installed so that heat exchange with the second heat exchanger 201 and It is provided with a hot water return pipe 224, the second pump 225 is installed in the hot water supply pipe 223 or hot water return pipe 224.
  • the first branch pipe 202 and the second branch pipe 203 which connect the second heat exchanger 201, that is, the first circulation pipe, are the third branch pipe 203 and the fourth branch pipe. 204 is connected to the second circulation pipe 32, respectively.
  • a third valve V3 is installed at the connection portion between the first branch pipe 202 and the third branch pipe 204, and a third valve V3 is installed at the connection portion between the second branch pipe 202 and the fourth branch pipe 205.
  • Four valves (V4) is provided, the fifth valve (V5) is provided at the connecting portion of the fourth branch pipe and the third circulation pipe (32).
  • the valves are three way valves.
  • the first heat exchanger 22 includes a hot water production unit 40 that generates heat by heat exchange with the first heat exchanger 22, and the hot water production unit 40 includes a first heat exchanger (The first storage tank connected by the heat exchange part 41 and the first supply water line 42 and the first return line 43 installed in the first heat exchanger 22 to exchange heat with the 22) 44) is installed.
  • the first pump 45 is installed on at least one side of the first supply water line 42 or the first return line 43.
  • the heat pump system includes a cold water production unit 50 that generates heat by performing heat exchange with the second heat exchanger 201, and the cold water production unit 50 includes the hot water supply pipe 223 and the second storage tank 53.
  • the cold water cooling and cooling unit 50 is provided with a sixth valve (V6) in the hot water return pipe 224 between the hot water return pipe 224 and the connection portion of the second supply water line 52 and the hot water tank 221,
  • the seventh valve V7 is installed in the second supply water line 52.
  • an auxiliary heat exchanger 250 is installed in the hot water tank 221, and the auxiliary heat exchanger 250 is discharged from the compressor 21 to be used as the first heat exchanger 22.
  • the heated heat exchange medium supplied to) is connected to the circulation pipe 30 through which the gas is supplied, the second supply gas pipe 251, and the second return gas pipe 252.
  • An eighth valve V8 is installed at the connection portion between the second supply gas pipe 251 and the circulation pipe 30, that is, the second circulation pipe 32.
  • Heating of hot water for defrosting in the hot water tank is not limited by the embodiment, it may be made of a means capable of heating the water, that is, a heater.
  • the heat pump system 10 of the present invention configured as described above can efficiently perform necessary operations such as hot water production, cold water production, defrosting operation and the like by a relatively simple configuration. Referring to the operation mode that can be performed and control including the defrosting operation mode through the heat pump system 10 of the present invention in detail as follows.
  • the seventh valve V7 for controlling the water supply from the second storage tank 53 is closed and the sixth portion of the defrost unit 200 is closed.
  • the valve V6 is opened, the water in the hot water tank 221 circulates through the hot water supply pipe 223, the hot water return pipe 224, and the heat exchanger 221.
  • the second heat exchanger 201 performs heat exchange with the low-pressure heat medium.
  • the first valve V1 of the first circulation pipe 31 is closed and the third valve V3 of the first branch pipe 202 and the fourth switching valve V4 of the second branch pipe 203 are closed. Open. Therefore, the refrigerant heated while passing through the second heat exchanger 201 removes frost on its surface while passing through the evaporator 25.
  • an operation of shortening the defrosting time may be possible by opening the second expansion valve V9 to increase the refrigerant supply amount.
  • This heat medium changes after vaporization, and the 2nd circulation pipe 32 is sucked into the compressor 21 through the four-way valve 26.
  • This defrosting operation is continuously driven according to the refrigeration cycle of the heat pump.
  • Water in the hot water tank 221 may be supplied from the second storage tank 53, as shown in Figure 6 discharged from the compressor to the auxiliary heat exchanger 250 installed in the hot water tank 221, the first The heated heat exchange medium supplied to the heat exchanger 22 is heated by circulating the compressed hot gas by the second supply gas pipe 251 and the second return gas pipe 252 connected to the circulation pipe through which the gas is supplied.
  • the first valve V1 of the first circulation pipe 31 is opened, and the third valve V3 of the first branch pipe 202 and the fourth valve V4 of the second branch pipe passage 203 are opened. Is closed and the fifth valve V5 communicates with the second circulation pipe 32. Therefore, after the heat exchange, the heat exchange medium is sucked into the compressor 21 at low pressure through the receiver 29, the expansion valve 24, and the evaporator 25. Then, while circulating in a cycle passing through the first heat exchanger 22, hot water production is continued.
  • the first valve V1 of the circulation pipe 31 is closed, is supplied to the second heat exchanger 201 through the third valve V3 of the first branch pipe 202, and the second heat exchanger outlet And a fifth valve V5 of the fourth branch pipe 205 to the compressor 21 through the second circulation pipe 32.
  • the heat medium passes through the receiver 29-expansion valve 24 and is supplied to the second heat exchanger 201 in a state of low temperature and low pressure.
  • the first supply line 52 of the cold water production unit 50 is provided. Heat exchange with water supplied to Therefore, cold water may be output through the second return line 51.
  • the low-pressure refrigerant is supplied to the second branch pipe 203 passing through the fourth valve V4 and the evaporator 25 or the fourth branch pipe 205 not passing through the evaporator 25 and the fifth valve V5.
  • the compressor 21 is sucked in. Then, while circulating in a cycle passing through the first heat exchanger 22, the production of hot water and cold water can be continued.
  • the first valve V1 of the first circulation pipe 31 is supplied to the evaporator 25 through heat exchange with the air heat to draw a low pressure gas into the compressor in a gaseous state. If there are many drops in the evaporator, the liquid is present in the gas at low pressure, and the performance of the heat pump is reduced.
  • the low-pressure low-temperature refrigerant gas at the outlet of the evaporator 25 is supplied to the second heat exchanger 201 through the second circulation pipe 32 and the fourth branch pipe 205 through the fifth valve V5, thereby providing a low pressure.
  • the gas exchanged with the low temperature is sucked into the compressor 21 through the third branch pipe 204 and the second circulation pipe 32 connected to the third valve V3.
  • the heat medium is supplied to the second heat exchanger 201 in a state of low temperature and low pressure evaporated from the evaporator through the receiver 29-expansion valve 24, in which the second supply line of the cold water production unit 50 Heat exchange is effected with the water supplied to 52. Therefore, cold water may be output through the second return line 51.
  • the low-temperature heat medium passes through the evaporator 25 and then re-evaporates in the second heat exchanger 201 to increase the temperature of the suction gas, thereby improving the performance of the heat pump, and since the liquid is not sucked into the compressor 21, the compressor is burned out. It will be possible to continue to produce hot and cold water while preventing.
  • the high temperature and high pressure heat medium supplied through the compressor 21 exchanges heat with air in the evaporator 25, enters the receiver 29, and passes through the expansion valve 24 to a low temperature low pressure. Pass through heat exchanger (22). At this time, heat is exchanged with water supplied to the first supply line 42 of the hot water production unit 40. Therefore, the cold water can be output through the first return line (43).
  • the fifth valve V5 of the second circulation pipe 32 is opened, the first valve V1 of the first circulation pipe 31 is open, and the third and fourth valves ( V3, V4) are closed.
  • the high temperature and high pressure heating medium supplied through the compressor 21 is transferred from the cold water producing unit 50 to the second heat exchanger 201 through the fourth valve V4 and the third valve V3. Heat exchange is performed with the water supplied to the feed water line 52. Therefore, hot water may be output through the second return line 51.
  • the heat medium used for hot water production as above passes through the first heat exchanger 22 through the receiver 29-expansion valve 24 to produce cold water as above, and is then sucked into the compressor under low pressure.
  • the cold water production unit 50 is circulated again in the production cycle of the hot water, cold water in the hot water production unit 40, it is possible to continue to produce hot water and cold water.
  • the heat pump system 10 of the present invention is designed to use air heat and water heat appropriately, and to efficiently use a circuit as needed, thereby operating optimally in response to the operation state. Therefore, there is an advantage that can be operated for the purpose of hot water production, cold water production, defrosting.
  • the hybrid air heat heat pump system 100 includes a heat pump unit 110, a cold / hot water supply unit 120, and a defrost unit 130.
  • the heat pump unit 110 includes an evaporator 25, first and second compressors 21a and 21b, a first heat exchanger 22, an expansion valve 24, a circulation pipe 30, and a circulation pipe.
  • First and second four-way valves 26a and 26b for adjusting the flow direction of the refrigerant at 30 are provided.
  • the evaporator 25, the first compressor 21a, the second compressor 21b, the first heat exchanger 22, and the expansion valve 24 are sequentially disposed in one circulation direction on the circulation pipe 30 through which the refrigerant flows. do.
  • the first four-way valve 26a is provided corresponding to the first compressor 21a
  • the second four-way valve 26b is provided corresponding to the second compressor 21b.
  • the high temperature or low temperature refrigerant flows through the first heat exchanger 22 depending on the positions of the two four-way valves 26a and 26b.
  • the cold and hot water supply unit 120 includes a first heat exchanger 41 for allowing heat exchange with the first heat exchanger 22, a first supply water line 42 connected to the first heat exchanger 41, and a first heat exchanger 41.
  • a return line 43, a first storage tank 44, and a first pump 45 are provided. Heat exchange with the first heat exchanger 22 is performed in the first heat exchanger 41. Water stored in the first storage tank 44 is supplied to the first heat exchanger 41 through the first supply line 42. The water passing through the first heat exchange part 41 is returned to the first storage tank 44 through the first return line 43. Water flows from the cold / hot water supply unit 120 by the first pump 45.
  • the defrost unit 130 has a second heat exchanger 201.
  • the defrosting unit 130 removes frost deposited on the surface of the evaporator 25 by heating and superheating the refrigerant supplied to the evaporator 25.
  • the second heat exchanger 201 is connected in parallel to the section between the expansion valve 24 and the evaporator 25 in the circulation pipe (30).
  • the second heat exchanger 201 and the circulation pipe 30 are connected in parallel by the first branch pipe 202 and the second branch pipe 203.
  • the first branch pipe 202 is connected to the circulation pipe 30 at a position closer to the expansion valve 24 relative to the second branch pipe 203 in the circulation pipe 30 and the second branch pipe 203.
  • the second branch pipe 203 and the circulation pipe 30 are connected by a control valve V which is a three-way valve.
  • the second heat exchanger 201 is provided with a heat exchanger 211 through which heat exchange with the refrigerant passing through the second heat exchanger 201 is performed.
  • the heat exchanger 211 is connected by the first supply line 42 and the defrost water supply pipe 231, and is connected by the first return line 43 and the defrost return pipe 232.
  • the refrigerant passes through the first compressor 21a, the second compressor 21b, the first heat exchanger 22, the expansion valve 24, and the evaporator 25 in order.
  • the circulation direction of this refrigerant is controlled by two four-way valves 26a and 26b.
  • the control valve V10 adjusts the flow of the refrigerant to pass through the circulation pipe 30 without passing through the second heat exchanger 201.
  • the refrigerant passes through the second compressor 21b, the first compressor 21a, the evaporator 25, the expansion valve 24, and the first heat exchanger 22 in order.
  • the circulation direction of this refrigerant is controlled by two four-way valves 26a and 26b.
  • the control valve V10 adjusts the flow of the refrigerant to pass through the circulation pipe 30 without passing through the second heat exchanger 201.
  • Cold water is supplied to the storage tank 44 by heat exchange in the first heat exchanger 22.
  • the refrigerant passes through the first compressor 21a, the second compressor 21b, the first heat exchanger 22, the expansion valve 24, and the evaporator 25 in order.
  • the circulation direction of this refrigerant is controlled by two four-way valves 26a and 26b.
  • the control valve V10 adjusts the flow of the refrigerant to pass through the circulation pipe 30 without passing through the second heat exchanger 201.
  • Hot water is supplied to the storage tank 44 by heat exchange in the first heat exchanger 22.
  • the refrigerant passes through the first compressor 21a, the second compressor 21b, the first heat exchanger 22, the expansion valve 24, the second heat exchanger 201, and the evaporator 25 in order. do.
  • the circulation direction of this refrigerant is controlled by two four-way valves 26a and 26b.
  • the control valve V10 regulates the flow of the refrigerant to pass through the second heat exchanger 201. Since the refrigerant is heated through heat exchange with the heat exchanger 211 where hot water is supplied from the second heat exchanger 201 and is supplied to the evaporator 25, frost accumulated on the surface of the evaporator 25 is effectively removed.
  • the hybrid air heat heat pump system of the present invention can be widely used as an apparatus for producing hot water and cold water as well as for defrosting a device driven by a refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

본 발명은 하이브리드형 히트펌프 시스템에 관한 것이다. 본 발명의 하이브리드형 히트펌프 시스템은 증발기와 제 1열교환기 및 압축기를 연결하여 폐회로를 구성하는 순환관과, 상기 제1열교환기와 증발기의 사이에 설치되어 순환관에 설치되어 냉매의 흐름을 제어하는 팽창밸브와, 상기 증발기와 압축기 사이의 순환관로에 설치되어 증발기와 제1열교환기로의 냉매의 흐름을 절환시키기 위한 사방밸브를 구비한 히트펌프유닛과, 상기 히트펌프유닛은 증발기와 제1열교환기의 사이에 설치되는 제 2열교환기와, 상기 제 2열교환기를 통하여 증발기로 공급되는 열교환매체를 가열하여 과열증기화시킴으로써 증발기의 성에를 제거하는 제상유닛을 구비한다.

Description

하이브리드형 공기열 히트펌프 시스템
본 발명은 히트펌프 시스템에 관한 것으로 특히, 열원으로서 공기열과 수열을 이용하여 필요 시 냉,온수를 동시에 생산할 수 있으며, 제상모드 시에도 온수를 생산 할 수 있는 소위 연속 냉, 온수 생산형 하이브리드형 공기열 히트펌프 시스템에 관한 것이다.
일반적으로 히트펌프란 공기, 지하수, 저장수 등으로부터 열을 펌핑하는 것으로, 주로 건축물이나 시설재배 하우스, 산업시설 등의 냉·난방, 냉·온수 공급, 기타 열교환 등의 목적으로 사용되는 것이다. 이 용도의 히트펌프는 기본적으로는 증발기, 압축기, 응축기, 팽창밸브 등을 포함하여 구성되며, 작동유체인 열매체는 각 요소를 회로적으로 순환하면서 필요에 따라 흡열 및 방열을 수행하게 되어 있다.
특히, 공기열 히트펌프는 공기열을 이용하여 온수 또는 냉수중 한가지만 생산하고 그중 한가지 열은 대기중으로 버리는 장비로 냉, 온수를 동시에 생산하지 못하는 단점이 있다.
또한 종래의 공기열 히트펌프는 주로 핫가스 제상으로 운전 중 증발기에 적상이 생기면 냉동 싸이클의 냉매순환을 변환시켜 증발기에 핫가스를 공급함으로써 적상을 제거하므로 냉동 싸이클의 고압과 저압의 바란스 변화로 압축기 소손의 원인이 되고 있으며, 제상 시 온수를 생산하여야 하는 상황에서 냉수가 발생되므로 연속 난방에 문제가 발생될 수 있다. 이로인한 장비의 성능 저하 및 압축기 소손을 초래하는 결과가 발생한다.
대한민국 실용등록 제339347호에는 수열과 공기열을 이용하는 하이브리드 히트펌프가 개시되어 있다. 이 장치는 낮에는 폐온수를 이용하고 밤에는 공기열을 이용하여 열교환이 이루어지도록 함으로써, 지속적인 열교환에 의한 히트펌프의 기계효율을 향상시키고 동시에 에너지 비용을 절감한다는 것이다.
그러나 이 구조는 수열과 공기열이 적절하게 혼용되는 것이 아니라, 단지 선택적으로 사용되도록 구성되어 있다. 따라서 이는 종래의 단일 열원을 이용하는 장치에 비하여 실질적으로 다를 바가 없다고 할 수 있다.
대한민국 특허 제1093211호에는 공기열 및 수열원을 이용한 히트펌프들을 이용한 하이브리드형 냉·온수 시스템이 개시되어 있다. 게시된 냉.온수 시스템은 각각 공기열과 수열을 이용하는 두 개의 히트펌프 유닛을 결합함으로써 열원의 지속적인 공급, 기계적 안정 및 열원 상호간의 교차이용 등이 가능하다는 것이다.
그러나 이 시스템은 두 개의 히트펌프 유닛 및 또 하나의 제상 유닛을 결합하는 구조이며 이 경우 각 히트펌프 유닛 역시 많은 구성요소들을 포함함에 따라, 규모가 크고 복잡하여 실제로 적용하기에는 실용적이지 못하다. 더욱이 상기 제상 유닛이 가동되는 경우 히트펌프 사이클 운전 중 순간적인 고저압 변환에 따른 압축기에 순간적으로 큰 부하가 걸리게 됨으로써 압축기 손상의 주요원인이 된다.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위한 것으로, 공기열과 수열을 이용하여 에너지효율 및 가동효율을 효율을 향상시킬 수 있으며, 운전중 증발기의 적층된 성에의 제거가 가능한 하이브리드형 공기열 히트펌프 시스템을 제공함에 있다.
본 발명의 다른 목적은 증발기 측으로 공급되는 열교환매체인 냉매의 냉매가스의 온도를 높여 증발기의 표면에 부착된 성에를 제거할 수 있는 하이브리드형 공기열 히트펌프 시스템을 제공함에 있다.
본 발명의 또 다른 목적은 증발기의 성에를 제거하면서 냉수 또는 온수의 생산이 가능한 하이브리드형 공기열 히트 펌프 시스템를 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 시스템은 증발기와 제 1열교환기 및 압축기를 연결하여 폐회로를 구성하는 순환관과, 상기 제1열교환기와 증발기의 사이에 설치되어 순환관에 설치되어 냉매의 흐름을 제어하는 팽창밸브와, 상기 증발기와 압축기 사이의 순환관로에 설치되어 증발기와 제1열교환기로의 냉매의 흐름을 절환시키기 위한 사방밸브를 구비한 히트펌프유닛과,
상기 히트펌프유닛은 증발기와 제1열교환기의 사이에 설치되는 제 2열교환기와, 상기 제 2열교환기를 통하여 증발기로 공급되는 열교환매체를 가열하여 과열증기화시킴으로써 증발기의 성에를 제거하는 제상유닛을 구비한다.
본 발명에 있어서, 상기 제상유닛은 상기 순환관과 제 2열교환기를 병렬로 연결하는 제 1,2분기관을 구비하며, 온수가 저장되는 온수탱크와, 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부와, 상기 온수탱크와 열교환부를 연결하는 온수공급 및 리턴관과, 상기 온수공급관 또는 리턴관에 설치되는 제1펌프를 구비한다.
그리고 상기 제상유닛은 상기 압축기로부터 토출되어 제 1열교환기로 공급되는 가열된 열교환매체가 가스가 공급되는 순환관과 연결되는 것으로 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부와 제1공급가스관과 제1리턴 가스관을 구비할 수 있다. 이러한 구조에 있어서, 상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1급수라인 또는 제1환수라인에 설치되는 펌프를 구비한다.
상기 재상유닛의 다른 실시예로서는 상기 증발기와 팽창밸브 사이의 순환관에 제 1,2분기관에 의해 연결되어 병렬로 설치되는 제 2열교환기를 구비하고, 상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1급수라인 또는 제1환수라인에 설치되는 펌프을 구비하며, 상기 제 2열교환기와 열교환기 이루어질 수 있도하는 열교환부와 상기 제1리턴관을 연결하는 제상수공급관과 상기 열교환부와 상기 제 1환수라인과 연결된 제상수리턴관으로 이루어질 수 있다.
또한 상기 제상유닛은 상기 증발기와 팽창밸브 사이의 순환관에 제 1,2분기관에 의해 연결되어 병렬로 설치되는 제 2열교환기를 구비하고,
온수가 저장되는 온수탱크와, 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부를 연결하는 온수공급과 및 리턴관과, 상기 온수공급관 또는 리턴관에 설치되는 제1펌프를 구비하며, 상기 온수공급관과 제 2급수라인에 의해 연결되고, 상기 리턴관과 제 2환수라인에 의해 연결되는 제 2저장탱크와, 상기 온수탱크와, 제 1급수라인 연결부 사이의 린턴관에 설치되는 제 6밸브를 구비하며, 상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1급수라인 또는 제1환수라인에 설치되는 펌프를 구비한다.
본 발명에 따른 하이브리드형 공기열 히트펌프 시스템은 공기열과 수열원을 함께 이용하되 하나의 히트펌프 유닛을 적용하면서 온수생산, 냉수생산, 제상운전이 동시에 이루어질 수 있어 히트펌프 시스템의 가동율을 높일 수 있으며, 나아가서는 설계자유도를 높일 수 있다.
그리고 본 발명은 운전효율 및 기계가동 효율을 향상시키는 한편, 제상 시에도 저압과 고압의 절환에 따른 냉동사이클의 변화가 없이 제상이 가능하므로 압력차에 의한 장비의 손상을 방지 할 수 있으며, 그 구조가 상대적으로 간단하다.
도 1은 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템의 일실시예를 나타내 보인 도면이고,
도 2 내지 도 6은 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템의 다른 실시예들을 나타내 보인 도면이며,
도 7 내지도 11은 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템의 운전모드를 나타내 보인 도면이고,
도 12 내지 도 15는 본 발명의 또 다른 실시예에 따른 하이브리드형 공기열 히트펌프 시스템의 운전모드를 나타내 보인 도면이다.
본 발명에 따른 하이브리드형 공기열 히트펌프 시스템은 온수 또는 냉수의 생산 및 냉,온수를 동시에 생산하거나 팬코일 유닛을 시설재배지, 건축물 등을 냉난방할 수 있는 것으로, 실시예를 도 1에 나타내 보였다.
도면을 참조하면, 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템(10)은 증발기(25)와 제 1열교환기(22) 및 압축기(21)를 연결하여 폐회로를 구성하는 순환관(30)과, 상기 제1열교환기(22)와 증발기(25)의 사이에 설치되어 순환관(30)에 설치되어 냉매의 흐름을 제어하는 팽창밸브(24)와, 상기 증발기(25)와 압축기(21) 사이의 순환관(30)에 설치되어 증발기(25)와 제1열교환기(22)로의 냉매의 흐름을 절환시키기 위한 사방밸브(26)를 구비한 히트펌프유닛(20)을 구비한다. 상기 순환관(30)은 수액기(29)와 팽창밸브(24)가 설치되며 이들과 증발기(25)를 연결하는 제 1순환관(31)과, 상기 증발기(25)와, 사방밸브(26), 압축기(21) 및 제 1열교환기(22)를 연결하는 제 2순환관(32)으로 이루어질 수 있다. 상기 제 1,2순환관(31)(32)으로 이루어진 순환관(30)은 증발기(25), 사방밸브(26), 압축기(21),제 1열교환기(22), 수액기(29)들 및 팽창밸브(24)를 연결하는 폐회로를 구성하게 되며, 상기 사방밸브(26)에 의한 절환으로 상기 열교환매체인 냉매를 방향을 절환하여 증발기(25)와 제 1열교환기(22)측으로 냉매를 선택적으로 절환하여 공급(순환)될 수 있도록 이루어질 수 있다. 상기 히트펌프유닛의 구성은 공지의 구성으로 이루어질 수 있다.
한편, 상기 히트펌프유닛(20)은 증발기(25)와 제1열교환기(22)의 사이에 설치되는 제 2열교환기(201)와, 상기 제 2열교환기(201)를 통하여 증발기(25)로 공급되는 열교환매체인 냉매를 가열하여 과열증기화시킴으로써 증발기(25)의 표면에 적층된 성에를 제거하는 제상유닛(200)을 구비하다.
상기 제상유닛(200)은 도 1에 도시된 바와 같이 상기 제 2열교환기(201)는 제 1분기관(202)과 제 2분기관(203)에 의해 팽창밸브(24)와 증발기(25) 사이의 순환관(30) 즉, 제 1순환관(31)과 병렬로 연결되며, 제1 순환관(31) 상에서 제 1분기관(202)은 3웨이 밸브인 제 1밸브(V1)에 의해 연결된다. 제 1 밸브(V1) 대신 도 3에 도시된 바와 같이 제 1순환관(31)에서 두 분기관(202, 203)의 사이의 구간에 위치하는 제 1밸브(V1)와, 제1 분기관(202) 상에 위치하는 제 2밸브(V2)가 사용될 수도 있다. 그리고 제상유닛(200)은 상기 제 2열교환기(201)를 통과하는 열교환매체인 냉매를 과열증기화 또는 가열하기 위한 열공급부(210)를 구비한다. 상기 열공급부(210)는 상기 제 2열교환기(201)와 인접되게 설치되거나 이를 감싸 제 2열교환기(201)와의 열교환을 위한 열교환부(211)와 연결되는 것으로, 상기 압축기(21)와 제 1열교환기(22) 사이의 순환관(30) 즉, 제 2순환관(32)와 연결되어 가열된 열교환매체인 냉매의 가스를 공급하는 위한 제 1공급가스관(212)과 제1리컨가스관(213)을 구비하며, 제2 순환관(32) 상에서 제 1공급가스관(212)은 3웨이 밸브인 제 2밸브(V2)에 의해 연결된다.
그리고 도 1에 도시된 바와 같이 상기 제 1열교환기(22)는 이와의 열교환에 의해 온수를 생산하는 온수생산부(40)를 구비하는데, 이 온수생산부(40)는 제 1열교환기(22)와 열교환이 이루어질 수 있도록 하는 열교환부(41)와 제 1공급수라인(42)과 제 1환수라인(43)에 의해 연결되는 제 1저장탱크(44)가 설치된다. 상기 제 1공급라인(42) 또는 제1환수라인(43)의 적어도 일측에는 제1펌프(45)가 설치된다. 상기 온수생산부(40)는 사방밸브(26)에 절환으로 제 1열교환기가 증발기로 이용될 경우, 냉수가 생산될 수도 있다.
한편, 상술한 바와 같은 제상유닛에 있어서, 도 2에 도시된 바와 같이 상기 제 2열교환기(201)에 열을 공급하기 위한 열공급부(220)는 온수가 저장되는 온수탱크(221)와, 상기 제 2열교환기(201)와 열교환이 이루어질 수 있도록 설치되는 열교환부(511)와 온수탱크(221)를 연결하는 온수공급관(223) 및 온수리턴관(224)과, 상기 온수공급관(223) 또는 온수리턴관(224)에 설치되는 제2펌프(225)를 구비한다. 상기 제 2열교환기(201)에 열을 공급하기 위한 열공급부는 상술한 실시예에 의해 한정되지 않고, 전열히터로 이루어질 수도 있다.
예컨대, 도 4에 도시된 바와 같이 열공급부(230)는 제 1,2분기관(202)(203)에 의해 연결된 제2열교환기(201)와 열교환이 이루어질 수 있도록 하는 열교환부(211)와 상기 제 1공급수라인(42)과 제 1환수라인(43)를 연결하는 는 제상수공급관(231)과 제상수리턴관(232)을 구비할 수 있다.
도 2, 3에 도시된 바와 같이 제 1열교환기의 설치부위에 팬코일유닛(300)들이 설치되어 온풍을 발생시킬 수도 있다.
상술한 바와 같이 구성된 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템은 도 1에 도시된 바와 같이 온수를 생산하기 위해서는 압축기(21)로부터 압축된 기상의 열교환매체인 냉매는 제 1열교환기(22)를 통과하면서 열을 방출하고 액화된 후 수액기(29)에 저장된다. 이 액상의 냉매는 팽창밸브(24)와 제 1순환관(31)을 통하여 증발기(25)를 통과하면서 증발잠열을 흡수한 후 기화되고, 기화된 냉매는 압축기(21)로 유입된다. 이러한 과정에서 상기 제 1밸브(V1)은 제 2열교환기(201)와 연결된 제 1분기관(202)로의 냉매공급을 차단하게 된다. 그리고 제 1저장탱크(44)의 물은 제 1공급수라인(42)을 통해 제 1열교환기(22)로 유입되어 가열된 후 제 1환수라인(43)을 거쳐서 복귀한다. 도 2 및 도 3에 도시된 바와 같이 제 1열교환기의 설치위치에 팬코일 유닛(300)이 설치되는 경우 온풍을 생산할 수 있다.
그리고 상기 증발기(25)에 적상되어 제상이 필요한 경우, 상기 제 1밸브(V1)는 팽창밸브(24)를 통과한 액상의 냉매가 제 2열교환기(201)를 통과한 후 증발기(25)로 공급되도록 조작된다. 그리고 열공급부(210)는 압축기(21)에 의해 압축되는 핫가스를 상기 제 1공급가스관(212)과 순환관(30)의 연결부위에 설치된 제 2밸브(V2)에 의해 제 1공급 가스관(212)을 통하여 열교환부(211)로 우회된 후 제 2열교환기(201)를 통과하는 냉매와 열교환이 이루어지도록 한다. 이와 같이 하면, 상기 증발기(25)에는 상대적으로 높은 온도의 냉매가 공급되게 되므로 증발기(25)의 표면에 적상된 성에를 제거하게 된다. 이러한 제상작업은 하이브리드형 공기열 히트펌프 시스템이 정상적으로 작동된 상태에서 이루어지게 된다. 따라서 종래와 같이 핫가스제상을 위해 사방밸브를 절환함으로써 압축기에 가하여지는 충격 및 제상이 이루어지는 동안 정상적인 구동이 이루어지지 않은 것을 근본적으로 방지할 수 있다.
상기 제상모드 시 상기 제 2열교환기(201)를 통과한 후 증발기로 공급되는 냉매의 가열은 도 2에 도시된 바와 같이 온수탱크(222)의 물을 온수공급관(223)과 온수리턴관(224)를 통하여 제 2열교환기측으로 순환시킴으로써 이루어질 수 있으며, 도 4에 도시된 바와 같이 온수를 생산하기 위한 제 1공급수라인(42)와 제 1환수라인(43)과 연결된 제 1제 상수공급라인(231)과 제1 제상수리턴라인(232)을 통하여 생산된 온수를 제 2열교환기(201)와 인접된 열교환부(211)로 순환시킴으로써 이루어질 수 있다.
도 5 및 도 6에는 본 발명에 따른 하이브리드형 공기열 히트펌프 시스템의 다른 실시예들을 나타내 보였다. 상기 실시예와 동일한 도면부호는 동일한 구성요소를 가리킨다.
도면을 참조하면, 하이브리드형 공기열 히트펌프 시스템(10)은 증발기(25)와 제 1열교환기(22) 및 압축기(21)를 연결하여 폐회로를 구성하는 순환관(30)과, 상기 제1열교환기(22)와 증발기(25)의 사이의 순환관(30)에 설치되어 냉매의 흐름을 제어하는 팽창밸브(24)와, 상기 증발기(25)와 압축기(21) 사이의 순환관(30)에 설치되어 증발기(25)와 제1열교환기(22)로의 냉매의 흐름을 절환시키기 위한 사방밸브(26)를 구비한 히트펌프유닛(20)을 구비한다.
상기 히트펌프유닛(20)은 증발기(25)와 제1열교환기(22)의 사이에 병렬로 설치되는 제 2열교환기(201)를 포함하는 제상유닛(200)을 구비한다. 상기 제상유닛(200)은 도 5에 도시된 바와 같이 상기 제 2열교환기(201)가 제 1분기관(202)과 제 2분기관(203)에 의해 팽창밸브(24)와 증발기(25) 사이의 순환관(30) 즉, 제 1순환관(31)과 병렬로 연결되며, 상기 제 1분기관(202)과 순환관(30)사이의 연결부에는 제 1밸브(V1)가 설치된다. 그리고 제상유닛(200)은 상기 제 2열교환기(201)를 통과하는 열교환매체인 냉매를 과열증기화 또는 가열하기 위한 열공급부(220)를 구비한다. 상기 열공급부(220)는 온수탱크(221)와, 상기 제 2열교환기(201)와 열교환이 이루어질 수 있도록 설치되는 열교환부(211)와 온수탱크(222)를 연결하는 온수공급관(223) 및 온수리턴관(224)과, 상기 온수공급관(223) 또는 온수리턴관(224)에 설치되는 제2펌프(225)를 구비한다.
상기 제 2열교환기(201)를 연결하는 순환관 즉, 제 1순환관을 연결하는 제 1분기관(202)과 제 2분기관(203)은 제 3분기관(203)과 제 4분기관(204)에 의해 제 2순환관(32)과 각각 연결된다. 상기 제 1분기관(202)과 제 3분기관(204)의 연결부위에는 제 3밸브(V3)가 설치되고, 상기 제 2분기관(202)와 제 4분기관(205)의 접속부에는 제 4밸브(V4)가 설치되며, 제 4분기관과 제 3순환관(32)의 접속부위에는 제 5밸브(V5)가 설치된다. 밸브들은 3웨이밸브가 이용된다.
그리고 상기 제 1열교환기(22)는 상술한 바와 같이 제 1열교환기(22)와 열교환이 이루어져 온수를 생산하는 온수생산부(40)를 구비하는데, 이 온수생산부(40)는 제 1열교환기(22)와 열교환이 이루어질 수 있도록 하는 제 1열교환기(22)에 설치되는 열교환부(41)와 제 1공급수라인(42)과 제 1환수라인(43)에 의해 연결되는 제 1저장탱크(44)가 설치된다. 상기 제 1공급수라인(42) 또는 제1환수라인(43)의 적어도 일측에는 제1펌프(45)가 설치된다. 상기 온수생산부(40)는 사방밸브(26)에 절환으로 제 1열교환기가 증발기로 이용될 경우, 냉수가 생산될 수도 있다.
그리고 상기 히트펌프 시스템은 상기 제 2열교환기(201)와 열교환이 이루어져 냉수를 생산하는 냉수생산부(50)를 구비하는데, 냉수 생산부(50)는 상기 온수공급관(223)와 제 2저장탱크(53)의 상부측을 연결하는 제 2환수라인(51)과 상기 온수리턴관(224)와 제 2저장탱크(53)의 하부를 연결하는 제 2공급수라인(52)를 구비한다. 상기 냉수냉산부(50)는 온수리턴관(224)와 제 2공급수라인(52)의 연결부와 온수탱크(221) 사이의 온수리턴관(224)에 제 6밸브(V6)가 설치되고, 제 2공급수라인(52)에는 제 7밸브(V7)가 설치된다.
한편, 도 6에 도시된 바와 같이 상기 온수탱크(221)의 내부에 보조 열교환기(250)가 설치되고, 상기 보조열교환기(250)는 상기 압축기(21)로부터 토출되어 제 1열교환기(22)로 공급되는 가열된 열교환매체가 가스가 공급되는 순환관(30)과 제2 공급가스관(251)과 제2리턴가스관(252)에 의해 연결된다. 그리고 상기 제 2공급가스관(251)과 순환관(30) 즉, 제 2순환관(32)의 접속부위에는 제 8밸브(V8)가 설치된다. 상기 온수탱크 내의 제상을 위한 온수의 가열은 실시예에 의해 한정되지 않고, 물을 가열할 수 있는 수단 즉, 히터로 이루어질 수 있다.
상술한 바와 같이 구성된 본 발명의 히트펌프 시스템(10)이, 비교적 간단한 구성에 의하여, 필요에 따라 온수생산, 냉수생산, 제상운전 등의 필요한 운전을 효율적으로 수행할 수 있다. 본 발명의 히트펌프 시스템(10)을 통하여 제상운전모드를 포함하는 제어 및 수행될 수 있는 운전모드를 상세하게 설명하면 다음과 같다.
1)공기열 제상운전 모드
도 5를 참조하면, 예컨대 온수생산 운전 중 증발기(25)에 일정량 적상되면, 제2저장탱크(53)로부터 급수를 제어하는 제 7밸브(V7)는 폐쇄되고, 제상부(200)의 제 6밸브(V6)가 개방되면서 온수탱크(221)의 물이 온수공급관(223)과 온수리턴관(224) 및 열교환부(221)를 순환한다. 이때 제2열교환기(201)에서 저압의 열매체와 열교환이 이루어진다. 당연히, 제1순환관(31)의 제 1밸브(V1)는 폐쇄되고 제1분기관(202)의 제 3밸브(V3)와 제2분기관(203)의 제 4전환밸브(V4)는 개방된다. 따라서 제 2열교환기(201)를 통과하면서 가열된 냉매는 증발기(25)를 통과하면서 이의 표면의 성에를 제거하게 된다.
이때 제상시간을 단축하기 위하여 제2팽창밸브(V9)를 개방하여 냉매 공급량을 증가하여 제상시간을 단축하는 운전이 가능 할 것이다. 이 열매체는 기화된 후 변화하며, 제 2순환관(32)를 사방밸브(26)를 통하여 압축기(21)로 흡입된다. 이러한 제상작업은 히트펌프의 냉동사이클에 따른 구동이 지속적으로 일어지게 된다. 상기 온수탱크(221)내의 물은 제 2저장탱크(53)으로부터 공급될 수 있는데, 도 6에 도시된 바와 같이 온수탱크(221)에 설치된 보조열교환기(250)에 상기 압축기로부터 토출되어 제 1열교환기(22)로 공급되는 가열된 열교환매체가 가스가 공급되는 순환관과 연결된 제2 공급가스관(251)과 제2리턴 가스관(252)에 의해 압축된 핫가스가 순환됨으로써 가열된다.
2)공기열 - 온수생산 운전 모드
도 7를 참조하면, 압축기(21)를 통하여 공급된 고온고압의 열매체가 제1열교환기(22)를 통과하면서, 온수생산부(40)의 제 1 공급라인(42)으로 공급된 물과 열교환이 이루어진다. 따라서 제 1환수라인(43)을 통하여 온수가 출력될 수 있는 것이다.
도면에서 제1순환관(31)의 제1 밸브(V1)는 개방되고, 제1분기관(202)의 제 3밸브(V3) 및 제 2분기관로(203)의 제 4밸브(V4)는 폐쇄되며 제 5밸브(V5)는 제 2순환관(32)을 연통시킨다. 따라서 열교환 후 열교환매체는 수액기(29)-팽창밸브(24)-증발기(25)를 차례로 거쳐 저압상태로 압축기(21)에 흡입된다. 그리고 다시 제1열교환기(22)를 통과하게 되는 사이클로 순환하면서, 계속하여 온수생산이 가능하게 된다.
3)수열 - 온수/냉수생산 운전
도 8을 참조하면, 압축기(21)를 통하여 공급된 고온고압의 열매체가 제1열교환기(22)를 통과하면서, 온수생산부(40)의 제1공급라인(42)으로 공급된 물과 열교환이 이루어진다. 따라서 제1환수라인(43)을 통하여 온수가 출력될 수 있는 것이다.
도면에서 순환관(31)의 제1밸브(V1)는 폐쇄이고, 제1분기관(202)의 제3밸브(V3)를 통하여 제2열교환기(201)로 공급되고, 제2열교환기 출구와 제 4분기관(205)의 제 5밸브(V5)에 의해 제2순환관(32)을 통하여 압축기(21)로 연결된다.
따라서 열교환 후 열매체는 수액기(29)-팽창밸브(24)를 통과한 후, 저온저압의 상태로 제2열교환기(201)로 공급되는데, 이때 냉수생산부(50)의 제1공급라인(52)으로 공급된 물과 열교환이 이루어진다. 따라서 제 2환수라인(51)을 통하여 냉수가 출력될 수 있는 것이다.
그 후 저압의 냉매는 그 제4밸브(V4)와 증발기(25)를 거치는 제 2분기관(203) 또는 증발기(25)를 거치지 않는 제4분기관(205) 및 그 제5밸브(V5)를 거쳐, 압축기(21)에 흡입된다. 그리고 다시 제1열교환기(22)를 통과하게 되는 사이클로 순환하면서, 계속하여 온수 및 냉수의 생산이 가능하게 되는 것이다.
4)공기열-온수/냉수생산 운전
도 9를 참조하면, 압축기(21)를 통하여 공급된 고온고압의 열매체가 제1열교환기(22)를 통과하면서, 온수생산부(40)의 제1공급라인(42)으로 공급된 물과 열교환이 이루어진다. 따라서 제1환수라인(43)을 통하여 온수가 출력될 수 있는 것이다.
도면에서 제 1순환관(31)의 제1밸브(V1)는 통하여 증발기(25)로 공급하여 공기열과 열교환하여 저압의 저온가스로 상태변화를 가스 상태로 압축기로 흡인되는데, 외기 온도가 낮거나, 증발기에 적상이 많을 경우 저압의 가스에 액이 존재하여 히트펌프 성능이 저하하여 진다.
이때 증발기(25)의 출구의 저압 저온의 냉매가스를 제 5밸브(V5)를 통하여 제 2순환관(32)와 제 4분기관(205)을 통하여 제2열교환기(201)로 공급하여 저압 저온과 열교환한 가스를 제3밸브(V3)에 연결된 제 3분기관(204)과 제 2순환관(32)을 통하여 압축기(21)로 흡입되어진다.
따라서 열교환 후 열매체는 수액기(29)-팽창밸브(24)를 통과하여 증발기에서 증발한 저온저압의 상태로 제2열교환기(201)로 공급되는데, 이때 냉수생산부(50)의 제2공급라인(52)으로 공급된 물과 열교환이 이루어진다. 따라서 제2환수라인(51)을 통하여 냉수가 출력될 수 있는 것이다.
그 후 저압의 열매체는 증발기(25)를 거친 후 제2열교환기(201)에서 재 증발하여 흡입가스의 온도를 높여 히트펌프의 성능을 향상시키며, 압축기(21)로 액이 흡입되지 않아 압축기 소손을 방지하면서 계속하여 온수 및 냉수의 생산이 가능하게 되는 것이다.
5)공기열 - 냉수생산 운전
도 10을 참조하면, 압축기(21)를 통하여 공급된 고온고압의 열매체가 증발기(25)에서 공기와 열교환한 후 수액기(29)로 유입되고 팽창밸브(24)를 거치면서 저온저압으로 제1열교환기(22)를 통과한다. 이때 온수생산부(40)의 제1공급라인(42)으로 공급된 물과 열교환이 이루어진다. 따라서 그 제1환수라인(43)을 통하여 냉수가 출력될 수 있는 것이다. 단지 냉수생산을 필요로 하는 경우, 제2순환관(32)의 제5밸브(V5)가 열리고, 제1순환관(31)의 제1밸브(V1)는 개방이고, 제3,4밸브(V3, V4)는 폐쇄이다.
6)공기열 - 냉/온수생산 운전
도 11을 참조하면, 압축기(21)를 통하여 공급된 고온고압의 열매체가 제 4밸브(V4)와 제3밸브(V3)를 통하여 제2열교환기(201)에서 냉수생산부(50)의 제2공급수라인(52)으로 공급된 물과 열교환이 이루어진다. 따라서 제2환수라인(51)을 통하여 온수가 출력될 수 있는 것이다.
수열과 열교환한 후 수액기(29)로 유입되고 팽창밸브(24)를 거치면서 저온저압으로 제1열교환기(22)를 통과한다.
이때 온수생산부(40)의 제1공급라인(42)으로 공급된 물과 열교환이 이루어진다. 따라서 그 제1환수라인(43)을 통하여 냉수가 출력될 수 있는 것이다.
여기에서 온수 사용량에 따라 증발기(25)로 냉매 순환 여부가 결정되어진다.
위와 같이 온수생산에 사용된 열매체는 다시 수액기(29)-팽창밸브(24)를 거쳐 제1열교환기(22)를 통과하면서 위와 같이 냉수를 생산하게 되며, 그 후 저압상태로 압축기에 흡입되고 다시 냉수생산부(50)에서 온수, 온수생산부(40)에서 냉수의 생산 사이클로 순환하면서, 계속하여 온수 및 냉수의 생산이 가능하게 되는 것이다.
이상 설명한 운전상태 또는 방법에서 알 수 있듯이, 본 발명의 히트펌프 시스템(10)은 공기열과 수열을 적절히 이용하고, 회로를 필요에 따라 효율적으로 이용할 수 있도록 설계함으로써, 운전상태에 대응하여 최적으로 작동하여 온수생산, 냉수생산, 제상 등의 목적으로 가동될 수 있는 장점이 있는 것이다.
도 12 내지 도 15에는 본 발명의 또 다른 실시예에 따른 하이브리드형 공기열 히트펌프 시스템의 운전모드가 각각 도시되어 있다. 먼저, 도 12를 참조하여, 하이브리드형 공기열 히트펌프 시스템의 구성을 설명한다. 도 12를 참조하면, 하이브리드형 공기열 히트펌프 시스템(100)은 히트펌프유닛(110)과, 냉온수 공급부(120)와, 제상유닛(130)을 포함한다.
히트펌프유닛(110)은 증발기(25)와, 제1, 제2 압축기(21a, 21b)와, 제 1열교환기(22), 팽창밸브(24)와, 순환관(30)와, 순환관(30)에서 냉매의 흐름 방향을 조절하는 제1, 제2 사방밸브(26a, 26b)를 구비한다. 냉매가 흐르는 순환관(30) 상에서 일측 순환방향을 따라서 증발기(25), 제1 압축기(21a), 제2 압축기(21b), 제 1열교환기(22), 팽창밸브(24)가 차례대로 배치된다. 제1 사방 밸브(26a)은 제1 압축기(21a)에 대응하여 설치되고, 제2 사방 밸브(26b)는 제2 압축기(21b)에 대응하여 설치된다. 두 사방 밸브(26a, 26b)의 위치에 따라서 제 1열교환기(22)에는 고온 또는 저온의 냉매가 흐르게 된다.
냉온수 공급부(120)는 제 1열교환기(22)와 열교환이 이루어질 수 있도록 하는 제 1열교환부(41)와, 제 1열교환부(41)와 연결되는 제 1공급수라인(42) 및 제 1환수라인(43)과, 제 1저장탱크(44)와, 제1펌프(45)를 구비한다. 제 1열교환부(41)에서 제 1열교환기(22)와의 열교환이 이루어진다. 제 1공급라인(42)을 통해 제 1저장탱크(44)에 저장된 물이 제 1열교환부(41)로 공급된다. 제 1환수라인(43)을 통해 제 1열교환부(41)를 거친 물이 제 1저장탱크(44)로 복귀한다. 제1펌프(45)에 의해 냉온수 공급부(120)에서 물이 흐른다.
제상유닛(130)은 제 2열교환기(201)을 구비한다. 제상유닛(130)은 증발기(25)로 공급되는 냉매를 가열하여 과열증기화시킴으로써 증발기(25)의 표면에 적층된 성에를 제거한다.
제 2열교환기(201)는 순환관(30)에서 팽창밸브(24)와 증발기(25)의 사이 구간에 병렬로 연결된다. 제 2열교환기(201)와 순환관(30)은 제 1분기관(202)와 제 2분기관(203)에 의해 병렬로 연결된다. 제 1분기관(202)은 순환관(30)에서 제 2분기관(203)에 비해 상대적으로 팽창밸브(24)에 가까운 위치에 순환관(30)에 연결되며, 제 2분기관(203)은 순환관(30)에서 제 1분기관(202)에 비해 상대적으로 증발기(25)에 가까운 위치에 순환관(30)에 연결된다. 제 2분기관(203)과 순환관(30)은 3웨이 밸브인 조절밸브(V)에 의해 연결된다. 제 2열교환기(201)에는 제 2열교환기(201)를 통과하는 냉매와의 열교환이 이루어지는 열교환부(211)가 구비된다. 열교환부(211)는 제1공급라인(42)과 제상수공급관(231)에 의해 연결되고 제1환수라인(43)과 제상수리턴관(232)에 의해 연결된다.
도 12에는 한냉운전 모드가 도시되어 있다. 한냉운전 모드에서는 냉매가 제1 압축기(21a), 제2 압축기(21b), 제 1열교환기(22), 팽창밸브(24), 증발기(25)를 차례대로 지나게 된다. 이러한 냉매의 순환 방향은 두 사방밸브(26a, 26b)에 의해 제어된다. 조절밸브(V10)는 냉매가 제 2열교환기(201)를 거치지 않고 순환관(30)을 통과하도록 흐름을 조절한다.
도 13에는 독립 냉수운전 모드가 도시되어 있다. 독립 냉수운전 모드에서는 냉매가 제2 압축기(21b), 제1 압축기(21a), 증발기(25), 팽창밸브(24), 제 1열교환기(22)를 차례대로 지나게 된다. 이러한 냉매의 순환 방향은 두 사방밸브(26a, 26b)에 의해 제어된다. 조절밸브(V10)는 냉매가 제 2열교환기(201)를 거치지 않고 순환관(30)을 통과하도록 흐름을 조절한다. 제 1열교환기(22)에서의 열교환에 의해 저장탱크(44)에는 냉수가 공급된다.
도 14에는 독립 온수운전 모드가 도시되어 있다. 독립 온수운전 모드에서는 냉매가 제1 압축기(21a), 제2 압축기(21b), 제 1열교환기(22), 팽창밸브(24), 증발기(25)를 차례대로 지나게 된다. 이러한 냉매의 순환 방향은 두 사방밸브(26a, 26b)에 의해 제어된다. 조절밸브(V10)는 냉매가 제 2열교환기(201)를 거치지 않고 순환관(30)을 통과하도록 흐름을 조절한다. 제 1열교환기(22)에서의 열교환에 의해 저장탱크(44)에는 온수가 공급된다.
도 15에는 제상 운전 모드가 도시되어 있다. 제상 운전 모드에서는 냉매가 제1 압축기(21a), 제2 압축기(21b), 제 1열교환기(22), 팽창밸브(24), 제 2열교환기(201), 증발기(25)를 차례대로 지나게 된다. 이러한 냉매의 순환 방향은 두 사방밸브(26a, 26b)에 의해 제어된다. 조절밸브(V10)는 냉매가 제 2열교환기(201)를 거치도록 흐름을 조절한다. 냉매는 제 2열교환기(201)에서 온수가 공급되는 열교환부(211)와의 열교환을 통해 가열되어서 증발기(25)로 공급되므로 증발기(25)의 표면에 적상된 성에가 효과적으로 제거된다.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
본 발명의 하이브리드 공기열 히트펌프 시스템은 온수 및 냉수를 생산하는 장치 뿐만아니라 냉동사이클에 의해 구동되는 장치의 제상을 위한 장치로 널리 사용가능하다.

Claims (11)

  1. 증발기와 제 1열교환기 및 압축기를 연결하여 폐회로를 구성하는 순환관과, 상기 제1열교환기와 증발기의 사이에 설치되어 순환관에 설치되어 냉매의 흐름을 제어하는 팽창밸브와, 상기 증발기와 압축기 사이의 순환관로에 설치되어 증발기와 제1열교환기로의 냉매의 흐름을 절환시키기 위한 사방밸브를 구비한 히트펌프유닛과,
    상기 히트펌프유닛은 증발기와 제1열교환기의 사이에 설치되는 제 2열교환기와, 상기 제 2열교환기를 통하여 증발기로 공급되는 열교환매체를 가열하여 과열증기화시킴으로써 증발기의 성에를 제거하는 제상유닛을 구비한 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  2. 제1항에 있어서,
    상기 제상유닛은 상기 순환관과 제 2열교환기를 병렬로 연결하는 제 1,2분기관을 구비하며,
    온수가 저장되는 온수탱크와, 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부와, 상기 온수탱크와 열교환부를 연결하는 온수공급관 및 온수리턴관과, 상기 온수공급관 또는 온수리턴관에 설치되는 제2펌프를 구비한 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  3. 제1항에 있어서,
    상기 제상유닛은 상기 압축기로부터 토출되어 제 1열교환기로 공급되는 가열된 열교환매체가 가스가 공급되는 순환관과 연결되는 것으로 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부와 제1공급가스관과 제1리턴 가스관을 구비한 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  4. 제3항에 있어서,
    상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1공급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1공급수라인 또는 제1환수라인에 설치되는 제1펌프를 구비한 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  5. 제1항에 있어서,
    상기 제상유닛은 상기 증발기와 팽창밸브 사이의 순환관에 제 1,2분기관에 의해 연결되어 병렬로 설치되는 제 2열교환기를 구비하고,
    상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1공급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1공급수라인 또는 제1환수라인에 설치되는 제1펌프를 구비하며,
    상기 제 2열교환기와 열교환기 이루어질 수 있도록 하는 열교환부와 상기 제1공급수라인을 연결하는 제상수공급관과 상기 열교환부와 상기 제 1환수라인과 연결된 제상수리턴관을 구비한 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  6. 제1항에 있어서,
    상기 제상유닛은 상기 증발기와 팽창밸브 사이의 순환관에 제 1,2분기관에 의해 연결되어 병렬로 설치되는 제 2열교환기를 구비하고,
    온수가 저장되는 온수탱크와, 상기 제 2열교환기와 열교환이 이루어질 수 있도록 설치되는 열교환부를 연결하는 온수공급과 및 온수리턴관과, 상기 온수공급관 또는 온수리턴관에 설치되는 제1펌프를 구비하며.
    상기 온수공급관과 제 2공급수라인에 의해 연결되고, 상기 온수리턴관과 제 2환수라인에 의해 연결되는 제 2저장탱크와,
    상기 온수탱크와, 제 1공급수라인 연결부 사이의 온수린턴관에 설치되는 제 6밸브를 구비하며,
    상기 제1열교환기와 열교환이 이루어질 수 있도록 열교환부와 제 1급수라인과 제 1환수라인에 의해 연결되는 제 1저장탱크와, 상기 제 1공급수라인 또는 제1환수라인에 설치되는 제1펌프를 구비한 것을 특징으로 하이브리드형 공기열 히트펌프 시스템.
  7. 제6항에 있어서,
    상기 온수탱크의 내부에 보조 열교환기가 설치되고, 상기 보조열교환기는
    상기 압축기로부터 토출되어 제 1열교환기로 공급되는 가열된 열교환매체가 가스가 공급되는 순환관과 제2 공급가스관과 제2리턴 가스관에 의해 연결된 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  8. 제 5항 내지 제 8항중 어느 한 항에 있어서,
    상기 팽창밸브와 증발기를 연결하는 제 1,2분기관 사이의 순환관에는 제 1밸브가 설치되고, 상기 제 1,2분기관에는 제 3,4밸브가 설치되며, 상기 제 1분기관과 증발기와 압축기 사이의 순환관을 연결하는 제 3분기관과, 상기 제 2분기관과 증발기와 압축기 사이의 순환관을 연결하는 제 4분기관을 구비하며, 상기 제 4분할관과 순환관의 연결부위에는 제 5밸브가 설치된 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  9. 제 3항에 있어서,
    상기 1열교환기는 팬코일 유닛들로 이루어진 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  10. 제 1항에 있어서,
    상기 히트펌프유닛은 상기 압축기와 직렬로 연결되는 추가 압축기를 더 구비하는 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
  11. 제 10항에 있어서,
    상기 히트펌프유닛은 상기 추가 압축기에 대응하여 설치되는 추가 사방밸브를 더 구비하는 것을 특징으로 하는 하이브리드형 공기열 히트펌프 시스템.
PCT/KR2013/007925 2013-03-22 2013-09-03 하이브리드형 공기열 히트펌프 시스템 WO2014148704A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0030656 2013-03-22
KR1020130030656A KR20140115714A (ko) 2013-03-22 2013-03-22 하이브리드형 공기열 히트펌프 시스템

Publications (1)

Publication Number Publication Date
WO2014148704A1 true WO2014148704A1 (ko) 2014-09-25

Family

ID=51580346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007925 WO2014148704A1 (ko) 2013-03-22 2013-09-03 하이브리드형 공기열 히트펌프 시스템

Country Status (2)

Country Link
KR (1) KR20140115714A (ko)
WO (1) WO2014148704A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643990A1 (en) * 2018-10-22 2020-04-29 LG Electronics Inc. Hybrid heating system
CN113685891A (zh) * 2021-07-16 2021-11-23 河北壬昌科技有限公司 一种智能并联群控供热系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102625274B1 (ko) 2018-10-22 2024-01-12 엘지전자 주식회사 히트펌프 보일러

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190526A (ja) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd 非共沸混合冷媒を用いた冷凍サイクル装置
JP2008224050A (ja) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp ヒートポンプ装置
KR20110034099A (ko) * 2009-09-28 2011-04-05 진금수 히트 펌프 시스템
KR20110091390A (ko) * 2010-02-05 2011-08-11 엘지전자 주식회사 냉각장치
JP2012255603A (ja) * 2011-06-09 2012-12-27 Denso Corp 冷凍サイクル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190526A (ja) * 1993-12-27 1995-07-28 Matsushita Electric Ind Co Ltd 非共沸混合冷媒を用いた冷凍サイクル装置
JP2008224050A (ja) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp ヒートポンプ装置
KR20110034099A (ko) * 2009-09-28 2011-04-05 진금수 히트 펌프 시스템
KR20110091390A (ko) * 2010-02-05 2011-08-11 엘지전자 주식회사 냉각장치
JP2012255603A (ja) * 2011-06-09 2012-12-27 Denso Corp 冷凍サイクル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643990A1 (en) * 2018-10-22 2020-04-29 LG Electronics Inc. Hybrid heating system
US11415374B2 (en) 2018-10-22 2022-08-16 Lg Electronics Inc. Hybrid heating system
CN113685891A (zh) * 2021-07-16 2021-11-23 河北壬昌科技有限公司 一种智能并联群控供热系统

Also Published As

Publication number Publication date
KR20140115714A (ko) 2014-10-01

Similar Documents

Publication Publication Date Title
WO2017078349A1 (ko) 지열 에너지를 활용한 2단 가열식 지열 시스템
EP2171361B1 (en) Air supply unit
WO2012020955A2 (ko) 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2018135850A1 (ko) 폐열회수형 하이브리드 히트펌프시스템
WO2022114563A1 (ko) 열관리 시스템
WO2014051188A1 (ko) 축열식 냉난방 장치
WO2018182084A1 (ko) 냉온동시 히트펌프 시스템
WO2014148704A1 (ko) 하이브리드형 공기열 히트펌프 시스템
WO2018026137A1 (ko) 열교환기 교번타입 히트펌프시스템
WO2013062287A1 (en) Regenerative air-conditioning apparatus
WO2012165684A1 (ko) 태양열 냉방겸용 급탕시스템
WO2010050663A1 (ko) 하이브리드 히트펌프식 냉난방장치
WO2013081332A1 (ko) 공기조화기 및 그 운전 방법
WO2018190540A1 (ko) 차량용 공조장치
WO2011019226A2 (ko) 태양열 시스템의 온수를 이용한 냉방기
WO2018048173A1 (ko) 하이브리드타입 공기조화 및 히트펌프시스템
WO2013010329A1 (zh) 热水空调系统
WO2010143841A2 (ko) 복수 개의 증발부재를 구비한 히트펌프
CN108332327A (zh) 一种空气处理设备
WO2017146450A1 (ko) 냉수 및 스팀 동시 생산용 캐스케이드 열펌프 시스템
WO2019027085A1 (ko) 공기열원 축냉운전과 수열원 축냉축열 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
WO2014098315A1 (ko) 히트 파이프를 이용한 에너지 절약형 제습장치
WO2017007194A1 (ko) 공기열 히트펌프를 이용한 온수공급장치
WO2015147483A1 (ko) 해수를 이용한 아이스링크의 냉각 및 공조시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13878905

Country of ref document: EP

Kind code of ref document: A1