WO2018135850A1 - 폐열회수형 하이브리드 히트펌프시스템 - Google Patents

폐열회수형 하이브리드 히트펌프시스템 Download PDF

Info

Publication number
WO2018135850A1
WO2018135850A1 PCT/KR2018/000786 KR2018000786W WO2018135850A1 WO 2018135850 A1 WO2018135850 A1 WO 2018135850A1 KR 2018000786 W KR2018000786 W KR 2018000786W WO 2018135850 A1 WO2018135850 A1 WO 2018135850A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
load
cooling
circulation line
Prior art date
Application number
PCT/KR2018/000786
Other languages
English (en)
French (fr)
Inventor
윤유빈
Original Assignee
윤유빈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤유빈 filed Critical 윤유빈
Priority to CN201880007232.6A priority Critical patent/CN110226068B/zh
Publication of WO2018135850A1 publication Critical patent/WO2018135850A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Definitions

  • the present invention relates to a waste heat recovery type hybrid heat pump system, and more particularly, a waste heat recovery type hybrid heat which is provided to perform cooling and heating operation by recovering and storing heat from a heat source by a simple configuration. It relates to a pump system.
  • a heat pump system is a device (or system) that absorbs or releases heat through a phase change of a refrigerant circulating through a compressor, a condenser, an evaporator, and an expansion valve to supply hot / cold water or heating and cooling.
  • the compressor 11, the first heat exchanger 12, the second heat exchanger 13, and the expansion valve 14 which are interconnected by the circulation line 20 to form a circulation cycle of the refrigerant.
  • a switching valve 16 for switching the flow of the refrigerant in accordance with cooling (or cold water) and heating (or hot water) is provided, each of the expansion valve (14, 15) side according to the cooling and heating Check valves 17 and 18 are provided to change the flow of the refrigerant.
  • the first heat exchanger 12 and the second heat exchanger 13 is operated as a condenser or evaporator according to the cooling or heating mode, the expansion valve (14, 15) according to the cooling and heating Separate expansion valves 14 and 15 are expanded to circulate the refrigerant by expanding the refrigerant.
  • Such a heat pump is connected to either the first heat exchanger 12 or the second heat exchanger 13 and a line with a load R side such as cooling (or cold water) and heating (or hot water),
  • a load R side such as cooling (or cold water) and heating (or hot water)
  • a separate heat source such as geothermal heat, waste hot water, or outside air is not connected to the other one that is not connected to the load R side, it is difficult to expect the effect of improving the heating and cooling ability according to the waste heat storage or recovery.
  • a single heat source is connected and there is a limit to using different heat sources as needed or optionally.
  • the heat pump typically has a drop in the first heat exchanger 12 or the second heat exchanger 13 that is installed outdoors due to the low outdoor temperature during heating (or hot water production) in winter. Generated, whereby the heating capacity is drastically lowered or requires a separate defrosting operation for defrosting.
  • the conventional heat pump exhibits a remarkable difference in operating capability due to seasonal factors (outdoor temperature), which means that the hot gas generated by the compressor 11 is located on the outdoor side.
  • the defrosting (normal hot gas defrosting) is conducted to the side of the second heat exchanger 13.
  • the conventional heat pump uses the first heat exchanger 13 to supply hot gas to the second heat exchanger 13. Due to the temporary interruption of the heating by 12) there is a problem that the continuous heating supply is impossible.
  • the present invention is to solve the problems as described above, the present invention is provided to perform the cooling and heating operation by recovering and storing heat from the heat source by a simple configuration to improve the heating and cooling ability and at the same time reduce the power consumption of the device It is to provide a waste heat recovery hybrid heat pump system that can significantly increase the coefficient of performance.
  • the heat pump system comprising a compressor 31, a condenser, an evaporator interconnected by a circulation line 20 through which the heat medium is circulated;
  • Is connected to the circulation line 20 is provided to operate as the condenser or evaporator during the cooling or heating operation, connected to the load (R) side to supply cooling (cold water) or heating (hot water) or outside air or geothermal
  • a first heat exchanger 32 connected to a heat source S, S1, S2, including a heat exchanger;
  • the second heat exchanger is provided to correspond to the first heat exchanger 32 to operate as an evaporator or a condenser, and is connected to a heat source S, S1, S2 including outside air or geothermal heat, or connected to the load R side.
  • a first expansion valve (35) provided on the circulation line (20) so as to be located between the first heat exchanger (32) and the third heat exchanger (34);
  • a second expansion valve (36) provided on the circulation line (20) so as to be located between the second heat exchanger (33) and the third heat exchanger (34);
  • a first automatic opening and closing valve (37) positioned at the side of the first expansion valve (35) and controlling to bypass the heat medium flow on the circulation line (20);
  • Waste heat recovery type hybrid heat pump system characterized in that it comprises a second automatic opening and closing valve 38 which is located on the second expansion valve 36 side and controls to bypass the heat medium flow on the circulation line (20). This is provided.
  • the heat pump system comprising a compressor 31, a condenser, an evaporator interconnected by a circulation line 20 through which the heat medium is circulated;
  • Is connected to the circulation line 20 is provided to operate as the condenser or evaporator during the cooling or heating operation, connected to the load (R) side to supply cooling (cold water) or heating (hot water) or outside air or geothermal
  • a first heat exchanger 32 connected to a heat source S, S1, S2, including a heat exchanger;
  • the second heat exchanger is provided to correspond to the first heat exchanger 32 to operate as an evaporator or a condenser, and is connected to a heat source S, S1, S2 including outside air or geothermal heat, or connected to the load R side.
  • An expansion valve provided on the circulation line 20 to be positioned between the first heat exchanger 32 and the third heat exchanger 34 or the second heat exchanger 32 and the third heat exchanger 34 ( 35a);
  • First and second automatic switching valves 37a provided on the circulation line 20 so as to be located at one side of the third heat exchanger 34 and controlling to bypass the heat medium flow on the expansion valve 35a side; 37b);
  • Third and fourth automatic open / close valves 38a and 38b positioned on the other side of the third heat exchanger 34 opposite to the expansion valve 35a and controlled to bypass the heat medium flow on the circulation line 20.
  • a waste heat recovery type hybrid heat pump system comprising a.
  • each heat exchanger (32, 33, 34) is connected to the load (R) side by a load supply line 40 through which the feed water is circulated;
  • waste heat recovery type hybrid heat pump system In the load supply line 40, supply water continuously passes through the first heat exchanger 32 and the third heat exchanger 33 or continuously passes through the second heat exchanger 32 and the third heat exchanger 34. Waste heat recovery type hybrid heat pump system is provided, characterized in that the high temperature supply line 43 is extended to pass through.
  • the supply water passing through the first heat exchanger 32 or the second heat exchanger between the load supply line 40 and the high temperature supply line 43, the third heat exchanger 34 Bypass line 44 which is bypassed without passing through to be circulated to the load (R) side is connected;
  • a hot water supply line 45 connected to the first heat exchanger 33 or the second heat exchanger 34 to supply hot water H during a process of supplying cooling (cold water) or heating (hot water);
  • Waste heat recovery characterized in that a plurality of control valves (50, 51, 52) are provided on the load supply line 40, the high temperature supply line 43 and the bypass line 44 to control the flow of the supply water.
  • Type hybrid heat pump system is provided.
  • the first heat exchanger 33 and the third heat exchanger or the second heat exchanger and the third heat exchanger 34, the first heat source different from each other among the heat sources (S, S1, S2) Waste heat recovery type hybrid heat pump system is provided, characterized in that (S1) and the second heat source (S2) are respectively connected.
  • the operation switching valve 39 is provided to switch the flow of the heat medium supplied from the compressor 31 side in accordance with the cooling or heating operation
  • a waste heat recovery hybrid heat pump system is provided.
  • the third heat exchanger 34 has an upper port 60 and a lower port 61 to which the circulation line 20 is connected at the top and the bottom thereof so that the heat medium is in the vertical direction.
  • a plate heat exchanger flows in and out;
  • the first and second expansion valves 35 and 36 are connected to the lower port 61, respectively, and the first and second automatic opening and closing valves 37 and 38 are connected to the upper port 60 side.
  • a waste heat recovery type hybrid heat pump system is provided.
  • the third heat exchanger 34 has an upper port 60 and a lower port 61 to which the circulation line 20 is connected at the top and the bottom thereof so that the heat medium is in the vertical direction.
  • a plate heat exchanger flows in and out;
  • the expansion valves 35 and 36 and the first and second automatic opening and closing valves 37a and 37b are connected to the lower port 61, respectively, and the third and fourth automatic opening and closing valves 38a and 38b are respectively Waste heat recovery type hybrid heat pump system is provided, characterized in that connected to the upper port (60).
  • the first heat exchanger 32 and the second heat exchanger 33 which are operated as a condenser or an evaporator, are connected on the circulation line 20, and the first heat exchanger 32 and The third heat exchanger 34 connected to the load R or the heat source S, S1, S2 is connected between the second heat exchanger 33, so that the load R is connected to the third heat exchanger 34.
  • the present invention is a heat source (S, S1, S2), such as geothermal heat, wastewater heat or outside air to the second heat exchanger (33) and the third heat exchanger (34) different from each other first heat source (S1) and second heat source (S2) in a heat exchangeable manner, the second heat exchanger 33 or the third heat exchanger 34 may be selectively used in consideration of the seasonal characteristics and the characteristics of the operating environment, whereby There is an advantage that can be operated in an optimized state without heat exchange efficiency.
  • S, S1, S2 such as geothermal heat, wastewater heat or outside air
  • the present invention is connected to the high-temperature supply line 43 so that the supply water passing through the first heat exchanger 32 additionally passes through the second heat exchanger 33 or the third heat exchanger 34, the load (R).
  • the present invention is connected to the high-temperature supply line 43 so that the supply water passing through the first heat exchanger 32 additionally passes through the second heat exchanger 33 or the third heat exchanger 34, the load (R).
  • FIG. 1 is a configuration diagram showing an example of a conventional heat pump system
  • FIG. 2 is a block diagram showing a configuration according to an embodiment of the present invention
  • FIG. 3 is a block diagram showing another configuration according to another embodiment of the present invention.
  • FIG 5 is another heat exchange flowchart according to another embodiment of the present invention.
  • FIG. 6 is another heat exchange flow diagram according to an embodiment of the present invention.
  • FIG 10 is another heat exchange flowchart according to another embodiment of the present invention.
  • FIG. 15 is a heat exchange flow diagram according to another embodiment of the present invention.
  • 17 is a heat exchange flow diagram according to another embodiment of the present invention.
  • FIG. 19 is a heat exchange flowchart according to another embodiment of the present invention.
  • FIG. 20 is a heat exchange flow diagram according to another embodiment of the present invention.
  • 21 is a configuration diagram according to another embodiment of the present invention.
  • the present invention includes a second heat exchanger 33 corresponding to a first heat exchanger 32 operated as a condenser or an evaporator, and a second heat exchanger 33 operated as an evaporator or a condenser.
  • a load R or a heat source S, S1, S2 is coupled between the 32 and the second heat exchanger 33 to easily supply various loads R or recover waste heat from the heat sources S, S1, S2. Or you can save it.
  • the present invention is the compressor 31, the first heat exchanger 32, the expansion valves (35, 36), the second heat exchanger (33) and the third heat exchanger on the circulation line 20 is formed so that the heat medium is circulated (34) are interconnected, the expansion valves (35, 36) is a first expansion valve (35) located between the first heat exchanger (32) and the third heat exchanger (34), the first expansion And a second expansion valve 36 positioned between the second heat exchanger 33 and the third heat exchanger 34 so as to be operated opposite to the operating state of the valve 35.
  • the first automatic opening and closing valve 37 and the second automatic opening and closing valve 38 are provided to bypass the flow of the heat medium or block the flow.
  • the present invention supplies cooling or heating by circulating the heat medium supplied from the compressor 31 in a predetermined direction, which means that the flow direction of the heat medium is constant according to the cooling operation and the heating operation.
  • an operation switching valve 39 may be provided on the circulation line 20 to change the flow of the heat medium so as to selectively operate cooling or heating by one system.
  • each of the heat exchangers 32 to 34 is connected to a load R or a heat source S, S1, S2 according to a cooling or heating mode to supply cooling and heating, or to recover or store waste heat.
  • the first heat exchanger 32 is connected to a load supply line 40 through which the supply water is circulated so as to supply cooling / heating (or cold / hot water) according to the load R of the user corresponding to a conventional indoor unit.
  • the second and third heat exchangers 33 and 34 may be heat sources S1 and S2 connected to each other so as to emit heat of the heat medium to the outside or absorb external heat in correspondence with a general outdoor unit.
  • the second and third heat exchangers 33 and 34 may be provided to connect heat sources S1 and S2 such as geothermal heat, wastewater heat (waste water), or outside air to enable heat exchange.
  • the first heat source S1 corresponding to any one of the heat sources S1 and S2 is connected to the heat exchanger 33 in a heat exchangeable manner, and the third heat exchanger 34 is a second heat source different from the first heat source S1. (S2) is connected so that heat exchange is possible.
  • the heat source (S1, S2) such as geothermal heat and wastewater heat is connected to a separate heat source supply line 41, but when using the outside air, a separate heat source supply line 41 may not be directly connected, such as
  • a separate heat source supply line 41 may not be directly connected, such as
  • first and second heat sources S1 and S2 which are different from each other are respectively coupled to the second and third heat exchangers 33 and 34, supply states or seasonal characteristics of the respective heat sources S1 and S2 are provided.
  • the heat exchange is possible by the second heat exchanger 33 and the third heat exchanger 34 according to the operating environment, such as the temperature change or the installation place.
  • heat sources S, S1, and S2 may be connected to the first heat exchanger 32 side or the load R may be connected to the second heat exchanger 33 side.
  • the load 34 may be connected to the other load R instead of the heat sources S, S1, and S2.
  • expansion valves 35 and 36 are provided on the circulation line 20 to expand and supply the heat medium condensed by any one of the heat exchangers 32 to 34 to the evaporator side.
  • 36 is electronically in a state in which one of the first expansion valve 35 or the second expansion valve 36 is operated according to an operation mode such as cooling operation, heating operation or defrosting operation.
  • the heating medium is bypassed by the first automatic opening and closing valve 37 or the second automatic opening and closing valve 38 which is automatically opened and closed. You can do it.
  • FIG. 4 and 5 show a heating operation according to an embodiment of the present invention
  • Figure 4 shows a conventional heating system in which the flow of the heat medium flows only in a predetermined direction
  • Figure 5 is the operation switching It shows a system that can selectively change the flow of the heat medium by the valve according to the heating or cooling mode.
  • the first heat exchanger 32 operates as a condenser to heat the supply water on the load supply line 40, thereby heating and By supplying hot water, after the heat medium supplied from the compressor 31 is circulated to the first heat exchanger 32 side to supply heating and hot water to the load R side, the first automatic opening / closing valve 37 Bypassing the first expansion valve 35 through the heat exchange with the second heat source (S2) is made on the third heat exchanger 34 side, the second expansion valve 36 and the second heat exchanger (33) Return to the compressor (31) via.
  • the high temperature and high pressure heat medium (hot gas) supplied from the compressor 31 supplies heating and hot water to the load R side through heat exchange in the first heat exchanger 32, and the first heat exchange.
  • the heat exchange is again performed on the third heat exchanger 34 side by the heat of the heat medium passing through the air 32 to supply to another load R or heat through heat exchange with the second heat source S2 such as geothermal heat.
  • the heat storage tank may be stored, and the evaporation efficiency may be increased through heat exchange with another first heat source S1 such as air heat connected to the second heat exchanger 33.
  • the third heat exchanger 34 is operated as an evaporator, and the heat medium passes as it is while the fan motor 42 on the second heat exchanger 33 side is stopped. Defrost work is performed in the process.
  • the first expansion valve 35 is operated with the first automatic opening and closing valve 37 closed, and the second automatic opening and closing valve 38 is opened to bypass the second expansion valve 36.
  • the heat medium is circulated, and the effects of the waste heat storage and recovery operation in the third heat exchanger 34 according to the present invention will be described with reference to FIGS. 7 and 8 as follows.
  • the point 1 indicates the inlet side of the compressor 31 in which the heat medium returns to the compressor 31 side, and the point 2 is supplied with the heat medium compressed to high temperature and high pressure by the compressor 31.
  • Compressor 31 is shown the exit side. Therefore, the X component at the points 1 and 2 represents the power consumption and the amount of compression of the compressor 31, and the Y component represents the pressure change amount of the heat medium by the compressor 31.
  • the point 3 indicates the state of the heat medium at the outlet side of the first heat exchanger 32, and the line from the point 2 to the point 3 is heated by the heat exchange with the load R side by the heat medium which changes statically. It shows the degree of ability.
  • the point 4 indicates the outlet side of the third heat exchanger 34, the present invention is the heat exchange in the third heat exchanger 34 side again to save the waste heat is made to the overall heating capacity is 2 point 4 point It can be seen that the increase to.
  • point 5 represents the outlet side of the second expansion valve 36, which shows that the pressure is lowered axially from the point 4 by the second expansion valve 36, line segment from point 5 to point 1 Is the degree of freezing capacity that the heat medium evaporates statically in the course of passing through the second heat exchanger (33).
  • the heat medium exchanges heat in a state in which the temperature is raised to a predetermined temperature or higher by heat storage through heat exchange with the second heat source S2 on the third heat exchanger 34 side. It is made possible to circulate in the state of increasing the evaporation pressure, the heat medium is introduced into the compressor 31 at a higher pressure P 1 than the pressure (P 0 ) at the point 1 as described above, the compressor ( 31) It is possible to reduce the power consumption of the compressor (31) by reducing the amount of compression work by the compressor, and as the evaporation pressure increases, the specific volume of the heat medium becomes smaller, thereby increasing the refrigerant circulation amount, and accordingly heating by the device Increase their ability and grade point.
  • the first heat exchanger 32 is operated as an evaporator to supply cooling and cold water to the load R side, and the heat medium supplied from the compressor 31. Is circulated to the second heat exchanger 33 to exchange heat with the first heat source S1, and then bypass the second expansion valve 36 through the second automatic opening / closing valve 38 so as to bypass the third heat exchanger.
  • the heat exchange with the other second heat source (S2) is made on the side of (34), and cooling to the load (R) side on the side of the first heat exchanger (32) operated by the evaporator through the first expansion valve (35). After the supply, the compressor 31 returns to the compressor 31.
  • the first heat source S1 such as air heat connected to the second heat exchanger 33 side and the second heat source S2 such as geothermal heat connected to the third heat exchanger 34 side may be used.
  • the cooling efficiency can be increased. This will be described with reference to FIGS. 11 and 12.
  • the point 1 indicates the inlet side of the compressor 31 in which the heat medium returns to the compressor 31 side, and the point 2 is supplied with the heat medium compressed to high temperature and high pressure by the compressor 31.
  • Compressor 31 is shown the exit side.
  • point 3 indicates the state of the heat medium on the outlet side of the second heat exchanger 33
  • point 4 indicates the outlet side of the third heat exchanger 34
  • point 5 indicates the outlet of the first expansion valve 35. The side is shown.
  • the line segment from the point 5 to the point 1 indicates the degree of freezing capacity in which the heat medium is evaporated statically in the course of passing through the first heat exchanger 32, and the heat of air to the second heat exchanger 33.
  • a heat source and geothermal heat is connected to the third heat exchanger 34 as a heat source.
  • the heat medium on the circulation line 20 is a first heat source such as air heat by the second heat exchanger 33.
  • the third heat exchanger 34 is connected to the supply water on the load supply line 40 continuously instead of the heat source supply line 41, and the second heat exchanger 33 is connected to the third heat exchanger 34.
  • the heat source supply line 41 is connected to the heat source (S) only on the) side, wherein the load supply line 40 is connected to the third heat exchanger 34 from the load (R) side
  • the high temperature supply line 43 extending to the first heat exchanger 32 side and extending from the first heat exchanger 34 to the load R side is connected.
  • the heat exchange is performed, the feed water supplied from the load (R) side passes through the third heat exchanger 34 and the first heat exchanger 32 in sequence, which is the heat medium on the circulation line 20 While sequentially passing through the first heat exchanger 32 and the third heat exchanger 34, the supply water on the load R side forms a counter flow with the heat medium and is preliminary in the third heat exchanger 34 as it flows.
  • the main heat with the hot gas is performed in the first heat exchanger 32 to produce hot water of high temperature.
  • a separate bypass line 44 is connected on the high temperature supply line 43
  • a plurality of control valves 50 to 52 may be provided to control the flow of the supply water according to cooling or heating operation.
  • the supply water of the load R side flows sequentially through the third heat exchanger 34 and the first heat exchanger 32.
  • the control valves 51 and 52 on the high temperature supply line 43 are opened, and the control valve 50 on the bypass line 44 is closed.
  • bypass line instead of closing the control valves 51 and 52 on the high temperature supply line 43 to block the supply of water to the second heat exchanger 33.
  • the control valve 50 on the 44 is opened to supply the cooling water to bypass the supply water.
  • the hot water supply H may be supplied by the first heat exchanger 32.
  • a separate hot water supply line 45 is connected to the first heat exchanger 32 to heat or Hot water (H) can be provided even during cooling, the hot water supply line 45 is connected to the pump 46 for pumping hot water as needed.
  • cooling and hot water supply H can be simultaneously supplied.
  • hot gas is supplied to the first heat exchanger 32 to supply hot water H.
  • the third heat exchanger 34 to supply the cooling to the load (R) side for this purpose, by closing the first automatic opening and closing valve 37 for the heat medium flows through the first expansion valve (35) 3 heat exchanger 34 is controlled to operate as an evaporator.
  • the third heat exchanger 34 has a header in which a heat medium and a supply water are supplied to one side of the main body, and a plurality of heat exchange panels in a plate shape are arranged between the headers so that the heat medium and
  • the heat exchanger is provided with a conventional plate heat exchanger having a structure in which the supply water or the circulation water of the second heat source S2 such as the load R or the geothermal heat is circulated, and the headers have upper and lower upper ports to allow the heat medium to flow in and out. 60 and the lower port 61 is formed.
  • the third heat exchanger 34 in the form of a plate heat exchanger is connected to the first and second expansion valves 35 and 36 on the circulation line 20 on the lower port 61 side, and the upper port 60.
  • the circulation line 20 is branched to the side so that the first and second automatic opening and closing valves 37 and 38 are connected, and a load R on one side of each of the upper port 60 and the lower port 61.
  • Water supply ports 62 and 63 are provided for supplying or circulating water on the second heat source S2 side.
  • the heat medium expanded at low temperature and low pressure by the first and second expansion valves 35 and 36 is introduced from the lower portion of the plate heat exchanger, and the first and second automatic switching valves 37 and 38)
  • the heat medium condensed at high temperature and high pressure flows, not only the uniform heat medium flows from the inlet side to the outlet side of the plate heat exchanger, but also the top and bottom flow of the heat medium can be smoothly increased to increase the cooling and heating efficiency.
  • one expansion valve 35a is provided on the circulation line 20, and the expansion valve 35a includes the first heat exchanger 32 and the third heat exchanger ( 34 and positioned between the second heat exchanger 33 and the third heat exchanger 34 and on one side of the third heat exchanger 34 where the expansion valve 35a is located.
  • the second automatic opening and closing valves 37a and 37b are positioned, and the third and fourth automatic opening and closing valves 37a and 38b may be provided on the other side of the third heat exchanger 34 facing the expansion valve 35a.
  • the heat medium supplied from the compressor 31 in the state in which the second automatic opening and closing valve 37b and the third automatic opening and closing valve 38a are closed is connected to the first heat exchanger.
  • the third heat exchanger 34 passes through the fourth automatic switching valve 38b, and then the expansion valve 35a and It returns to the compressor 31 via the 2nd heat exchanger 33 through the 1st automatic switching valve 37a.
  • the heat medium supplied from the compressor 31 in the state in which the first automatic opening / closing valve 37a and the fourth automatic opening / closing valve 38b are closed is the second heating medium. After being circulated to the heat exchanger side, it passes through the third heat exchanger 34 through the third automatic open / close valve 38a, and then through the expansion valve 35a and the second automatic open / close valve 37b. After cooling is supplied to the load R side from the first heat exchanger 33 side, the compressor 31 returns to the compressor 31.
  • the expansion valve 35a and the first and second automatic opening and closing valves 37a and 37b are provided on the lower port 61 side of the third heat exchanger 34 in the form of a plate heat exchanger.
  • the third and fourth automatic opening and closing valves 37 and 38 are connected to the upper port 60, and the thermal medium expanded at a low temperature and low pressure flows into the lower portion of the plate heat exchanger as described above. The heat medium condensed at high temperature and high pressure is introduced from the upper portion of the.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 간단한 구성에 의해 열원으로부터 열을 회수 및 저장하여 냉난방 운전을 행하도록 구비되어 냉난방 능력을 개선함과 동시에 소비동력을 절감하여 장치의 성적계수를 대폭적으로 증가시킬 수 있는 폐열회수형 하이브리드 히트펌프시스템에 관한 것이다. 본 발명에 따르면, 냉방(냉수) 또는 난방(온수)를 공급하도록 부하(R) 측에 연결되거나 또는 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되어 열교환이 이루어지도록 된 제1 열교환기(32) 및 제2 열교환기(33)와; 상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 위치되어 폐열을 회수하거나 저장할 수 있도록 된 제3 열교환기(34)를 포함하여 이루어진 폐열회수형 하이브리드 히트펌프시스템이 제공된다.

Description

폐열회수형 하이브리드 히트펌프시스템
본 발명은 폐열회수형 하이브리드 히트펌프시스템에 관한 것으로, 보다 상세하게는 간단한 구성에 의해 열원으로부터 열을 회수 및 저장하여 냉난방 운전을 행하도록 구비되어 냉난방 능력을 개선할 수 있도록 된 폐열회수형 하이브리드 히트펌프시스템에 관한 것이다.
일반적으로 히트펌프시스템은 압축기, 응축기, 증발기 그리고 팽창밸브를 순환하는 냉매의 상변화를 통해 열을 흡수 또는 방출하여 냉온수 또는 냉난방을 공급하도록 된 장치(또는 시스템)로, 이러한 종래의 히트펌프 일례를 도시된 도면에 의해 설명하면 다음과 같다.
도 1에 도시된 바와 같이, 냉매의 순환사이클을 형성하도록 순환라인(20)에 의해 상호 연결되는 압축기(11), 제1 열교환기(12), 제2 열교환기(13) 및 팽창밸브(14,15)가 구비되고, 냉방(또는 냉수)과 난방(또는 온수)에 따라 냉매의 흐름을 절환할 수 있는 절환밸브(16)가 구비되며, 상기 각 팽창밸브(14,15) 측에는 냉난방에 따른 냉매의 흐름이 변경하도록 체크밸브(17,18)가 구비되어 있다.
이러한 구성에 있어서, 상기 제1 열교환기(12)와 제2 열교환기(13)는 냉방 또는 난방모드에 따라 응축기 또는 증발기로 작동하게 되고, 상기 팽창밸브(14,15)는 냉방과 난방에 따라 별도의 팽창밸브(14,15)에 의해 냉매를 팽창하여 순환이 이루어지도록 결합되어 있다.
이와 같은 히트펌프는 상기 제1 열교환기(12) 또는 제2 열교환기(13) 중의 어느 하나에 냉방(또는 냉수)과 난방(또는 온수) 등과 같은 부하(R) 측과의 라인이 연결되는데, 종래에는 상기 부하(R) 측에 연결되지 않은 다른 하나에 지열이나 폐온수 또는 외기 등과 같은 별도의 열원이 전혀 연결되지 않음에 따라 폐열저장이나 회수에 따른 냉난방 능력을 개선효과를 기대하기 어려울 뿐만 아니라 단일의 열원이 연결되어 필요에 따라 또는 선택적으로 서로 다른 열원을 사용하는 데에 한계가 있는 것이다.
또한 통상적으로 히트펌프는 겨울철의 난방시(또는 온수 생산시)에 실외온도가 낮음에 따라 실외에 설치되는 상기 제1 열교환기(12) 또는 제2 열교환기(13)에 적상(積霜)이 발생되고, 이에 의해 난방능력이 급격히 저하되거나 또는 제상하기 위한 별도의 제상운전을 요하게 된다.
그런데 종래의 히트펌프는 계절적 요인(실외의 온도)에 의한 작동능력이 현저한 차이를 나타내는 것으로, 이는 상기 압축기(11)에 의해 생성된 고온 고압의 가스(hot gas)를 실외측에 위치된 상기 제2 열교환기(13) 측으로 유도하여 제상(통상의 핫가스제상)을 행하게 되는데, 이러한 경우에 종래의 히트펌프는 핫가스를 제2 열교환기(13) 측에 공급하기 위해 상기 제1 열교환기(12)에 의한 난방이 일시적으로 중단됨으로 인해 연속적인 난방공급이 불가능하게 되는 문제점이 있는 것이다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로, 본 발명은 간단한 구성에 의해 열원으로부터 열을 회수 및 저장하여 냉난방 운전을 행하도록 구비되어 냉난방 능력을 개선함과 동시에 소비동력을 절감하여 장치의 성적계수를 대폭적으로 증가시킬 수 있는 폐열회수형 하이브리드 히트펌프시스템을 제공하는 것이다.
본 발명의 특징에 따르면, 열매체가 순환되는 순환라인(20)에 의해 상호 연결되는 압축기(31), 응축기, 증발기를 포함하여 이루어진 히트펌프시스템에 있어서;
상기 순환라인(20) 상에 연결되어 냉방 또는 난방운전시에 상기 응축기 또는 증발기로 작동되도록 구비되고, 냉방(냉수) 또는 난방(온수)를 공급하도록 부하(R) 측에 연결되거나 또는 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되어 열교환이 이루어지도록 된 제1 열교환기(32)와;
상기 제1 열교환기(32)에 대응되어 증발기 또는 응축기로 작동되도록 구비되고, 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되거나 또는 상기 부하(R) 측에 연결되는 제2 열교환기(33)와;
상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 위치되도록 상기 순환라인(20) 상에 직렬로 연결되고, 냉방 또는 난방모드에 따라 상기 제1 열교환기(32) 또는 제2 열교환기(33)에 유사하게 상기 부하(R) 측에 연결되어 냉방(냉수)이나 난방(온수)를 공급하거나 또는 상기 열원(S,S1,S2) 측에 연결되어 폐열을 회수하거나 저장할 수 있도록 된 제3 열교환기(34)와;
상기 제1 열교환기(32)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 제1 팽창밸브(35)와;
상기 제2 열교환기(33)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 제2 팽창밸브(36)와;
상기 제1 팽창밸브(35) 측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제1 자동개폐밸브(37)와;
상기 제2 팽창밸브(36) 측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제2 자동개폐밸브(38)를 포함하여 이루어진 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 다른 특징에 따르면, 열매체가 순환되는 순환라인(20)에 의해 상호 연결되는 압축기(31), 응축기, 증발기를 포함하여 이루어진 히트펌프시스템에 있어서;
상기 순환라인(20) 상에 연결되어 냉방 또는 난방운전시에 상기 응축기 또는 증발기로 작동되도록 구비되고, 냉방(냉수) 또는 난방(온수)를 공급하도록 부하(R) 측에 연결되거나 또는 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되어 열교환이 이루어지도록 된 제1 열교환기(32)와;
상기 제1 열교환기(32)에 대응되어 증발기 또는 응축기로 작동되도록 구비되고, 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되거나 또는 상기 부하(R) 측에 연결되는 제2 열교환기(33)와;
상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 위치되도록 상기 순환라인(20) 상에 직렬로 연결되고, 냉방 또는 난방모드에 따라 상기 제1 열교환기(32) 또는 제2 열교환기(33)에 유사하게 상기 부하(R) 측에 연결되어 냉방(냉수)이나 난방(온수)를 공급하거나 또는 상기 열원(S,S1,S2) 측에 연결되어 폐열을 회수하거나 저장할 수 있도록 된 제3 열교환기(34)와;
상기 제1 열교환기(32)와 제3 열교환기(34) 또는 상기 제2 열교환기(32)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 팽창밸브(35a)와;
상기 제3 열교환기(34)의 일측에 위치되도록 상기 순환라인(20) 상에 구비되어 상기 팽창밸브(35a) 측의 열매체 흐름을 우회시키도록 제어하는 제1 및 제2 자동개폐밸브(37a,37b)와;
상기 팽창밸브(35a)에 대향된 상기 제3 열교환기(34)의 타측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제3 및 제4 자동개폐밸브(38a,38b)를 포함하여 이루어진 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 각 열교환기(32,33,34)는 공급수가 순환되는 부하공급라인(40)에 의해 상기 부하(R) 측에 연결되고;
상기 부하공급라인(40)에는 공급수가 상기 제1 열교환기(32)와 제3 열교환기(33)를 연속적으로 통과하거나 또는 상기 제2 열교환기(32)와 제3 열교환기(34)를 연속적으로 통과하도록 연장되는 고온공급라인(43)이 연결되는 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 부하공급라인(40)과 고온공급라인(43) 사이에는 상기 제1 열교환기(32) 또는 제2 열교환기를 통과한 공급수가 상기 제3 열교환기(34)를 거치지 않은 상태로 우회하여 부하(R) 측으로 순환되도록 된 바이패스라인(44)이 연결되고;
상기 제1 열교환기(33) 또는 제2 열교환기(34) 측에는 냉방(냉수) 또는 난방(온수)를 공급하는 과정 중에 급탕(H)을 공급할 수 있도록 된 급탕공급라인(45)이 연결되며;
상기 부하공급라인(40)과 고온공급라인(43) 및 바이패스라인(44) 상에는 공급수의 흐름을 제어하도록 된 다수의 제어밸브(50,51,52)가 구비된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 제1 열교환기(33)와 제3 열교환기 또는 제2 열교환기와 제3 열교환기(34)에는 상기 열원(S,S1,S2) 중에서 상호 다른 제1 열원(S1)과 제2 열원(S2)이 각각 연결되는 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 순환라인(20) 상에는 냉방 또는 난방운전에 따라 상기 압축기(31) 측에서 공급되는 열매체의 흐름을 절환하도록 된 운전절환밸브(39)가 구비된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 제3 열교환기(34)는 상부와 하부에 상기 순환라인(20)이 연결되는 상부포트(60)와 하부포트(61)가 형성되어 열매체가 상하방향으로 유출입되는 판형 열교환기로 이루어지며;
상기 제1 및 제2 팽창밸브(35,36)는 상기 하부포트(61) 측에 각각 연결되고, 상기 제1 및 제2 자동개폐밸브(37,38)는 상기 상부포트(60) 측에 연결된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 제3 열교환기(34)는 상부와 하부에 상기 순환라인(20)이 연결되는 상부포트(60)와 하부포트(61)가 형성되어 열매체가 상하방향으로 유출입되는 판형 열교환기로 이루어지며;
상기 팽창밸브(35,36)와 제1 및 제2 자동개폐밸브(37a,37b)는 상기 하부포트(61) 측에 각각 연결되고, 상기 제3 및 제4 자동개폐밸브(38a,38b)는 상기 상부포트(60) 측에 연결된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템이 제공된다.
이상에서와 같이 본 발명에 의하면, 순환라인(20) 상에 응축기나 증발기로 작동되는 제1 열교환기(32)와 제2 열교환기(33)가 연결되고, 상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 부하(R) 또는 열원(S,S1,S2) 측에 연결되는 제3 열교환기(34)가 연결됨으로써, 상기 제3 열교환기(34) 측에 부하(R)가 연결되는 경우에 상기 다른 열교환기(32,33)에 의한 가열효과를 증대시키거나 다양한 부하(R)를 동시에 공급하는 것이 가능할 뿐만 아니라 상기 제3 열교환기(34) 측에 열원(S,S1,S2)이 연결되는 경우에 열원(S,S1,S2)으로부터 폐열을 회수하거나 저장하여 냉방 또는 난방모드에서 냉난방 능력을 증대시킬 수 있는 장점이 있다.
또한 본 발명은 상기 제2 열교환기(33)와 제3 열교환기(34)에 지열이나 폐수열 또는 외기와 같은 열원(S,S1,S2) 중에서 상호 다른 제1 열원(S1)과 제2 열원(S2)을 열교환 가능하게 연결함으로써, 계절적 특성이나 운전환경의 특성을 고려하여 상기 제2 열교환기(33)나 제3 열교환기(34)를 선택적으로 사용할 수 있으며, 이에 의해 계절이나 운전환경 등에 관계없이 열교환 효율을 최적화한 상태로 운전이 가능한 장점이 있다.
또한 본 발명은 상기 제1 열교환기(32)를 통과한 공급수가 상기 제2 열교환기(33) 또는 제3 열교환기(34)를 추가적으로 통과하도록 고온공급라인(43)이 연결됨으로써, 부하(R) 측에 공급되는 공급수가 다수의 열교환기(32~34)를 연속적으로 통과하는 과정에서 가열효과 및 고온가열이 가능하여 고온수 및 급탕(H)을 공급하는 데에 효과를 발휘할 수 있는 것이다.
도 1은 종래의 히트펌프시스템 일례를 도시한 구성도
도 2는 본 발명의 일실시예에 따른 구성을 도시한 구성도
도 3은 본 발명의 다른 실시예에 따른 다른 구성을 도시한 구성도
도 4는 본 발명의 일실시예에 따른 열교환 흐름도
도 5는 본 발명의 다른 실시예에 따른 다른 열교환 흐름도
도 6은 본 발명의 일실시예에 따른 또 다른 열교환 흐름도
도 7은 본 발명의 일실시예에 따른 또 다른 열교환 흐름도
도 8은 본 발명의 일실시예에 따른 몰리엘 선도
도 9는 본 발명의 일실시예에 따른 또 다른 열교환 흐름도
도 10은 본 발명의 다른 실시예에 따른 또 다른 열교환 흐름도
도 11은 본 발명의 일실시예에 따른 또 다른 열교환 흐름도
도 12는 본 발명의 일실시예에 따른 다른 몰리엘 선도
도 13은 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 14는 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 15는 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 16은 본 발명의 또 다른 실시예에 따른 구성도
도 17은 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 18은 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 19는 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 20은 본 발명의 또 다른 실시예에 따른 열교환 흐름도
도 21은 본 발명의 또 다른 실시예에 따른 구성도
상술한 본 발명의 목적, 특징들 및 장점은 다음의 상세한 설명을 통하여 보다 분명해질 것이다. 이하, 첨부된 도면에 의거하여 설명하면 다음과 같다.
도 2 내지 도 21은 본 발명의 다양한 실시예를 도시한 것이다. 도 2에 도시된 바와 같이, 본 발명은 응축기나 증발기로 작동되는 제1 열교환기(32)에 대응되어 증발기나 응축기로 작동되는 제2 열교환기(33)가 구비되고, 상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 부하(R)나 열원(S,S1,S2)을 결합하여 다양한 부하(R)를 용이하게 공급하거나 열원(S,S1,S2)으로부터 폐열을 회수 또는 저장할 수 있도록 된 것이다.
이러한 본 발명은 열매체가 순환되도록 연장 형성된 순환라인(20) 상에 압축기(31)와 제1 열교환기(32), 팽창밸브(35,36), 제2 열교환기(33) 및 제3 열교환기(34)가 상호 연결된 것이고, 상기 팽창밸브(35,36)는 상기 제1 열교환기(32)와 제3 열교환기(34) 사이에 위치되는 제1 팽창밸브(35)와, 이 제1 팽창밸브(35)의 작동상태와는 상반되도록 작동되도록 상기 제2 열교환기(33)와 제3 열교환기(34) 사이에 위치되는 제2 팽창밸브(36)로 이루어진 것이며, 상기 각 팽창밸브(35,36) 측에는 열매체의 흐름을 우회시키거나 흐름을 차단하도록 된 제1 자동개폐밸브(37)와 제2 자동개폐밸브(38)가 구비되게 된다.
이러한 구성에 따라, 본 발명은 상기 압축기(31)로부터 공급되는 열매체를 일정 방향으로 순환시킴에 따라 냉방 또는 난방을 공급하게 되는데, 이는 열매체의 흐름방향이 냉방운전과 난방운전에 따라 일정하게 한정된 것이나, 도 3에 도시된 바와 같이 하나의 시스템에 의해 냉방 또는 난방을 선택적으로 운전할 수 있도록 상기 순환라인(20) 상에 열매체의 흐름을 바꿀 수 있는 운전절환밸브(39)가 구비될 수 있는 것이다.
이와 같은 본 발명은 냉방 또는 난방모드에 따라 상기 각 열교환기(32~34)가 부하(R)나 열원(S,S1,S2)에 연결되어 냉난방을 공급하거나 폐열회수 또는 저장(축열)이 이루어지는데, 일례로 상기 제1 열교환기(32)는 통상의 실내기에 상응하여 사용처의 부하(R)에 따라 냉난방(또는 냉온수)를 공급하도록 공급수가 순환되는 부하공급라인(40)이 연결되고, 상기 제2 및 제3 열교환기(33,34)는 통상의 실외기에 상응하여 열매체의 열을 외부로 방출하거나 외부열을 흡수하도록 열원(S1,S2)이 연결될 수 있는 것이다.
또한 상기 제2 및 제3 열교환기(33,34)에는 지열이나 폐수열(폐온수) 또는 외기 등과 같은 열원(S1,S2)을 연결하여 열교환이 가능하도록 구비될 수 있는데, 상기 제2 열교환기(33)에는 열원(S1,S2) 중의 어느 하나에 해당되는 제1 열원(S1)이 열교환 가능하게 연결되고, 상기 제3 열교환기(34)에는 상기 제1 열원(S1)과는 다른 제2 열원(S2)이 열교환 가능하게 연결된다.
이때에 지열이나 폐수열과 같은 열원(S1,S2)은 별도의 열원공급라인(41)으로 연결되지만, 외기를 사용할 때에는 별도의 열원공급라인(41)이 직접적으로 연결되지 않을 수도 있는 것으로, 이와 같은 열원(S1,S2)이 상기 제2 및 제3 열교환기(33,34)에 결합되는 경우에는 열원(S1,S2)과의 열교환에 의해 상기 각 열교환기(33,34)의 열효율을 증대시켜 상기 제1 열교환기(32)에 의한 냉난방효과를 극대화시킬 수 있을 뿐만 아니라 이로 인해 장치의 전체적인 성적계수를 향상시킬 수 있게 된다.
특히, 상기 제2 및 제3 열교환기(33,34)에 상호 다른 제1 열원(S1)과 제2 열원(S2)을 각각 결합하게 되면, 각 열원(S1,S2)의 공급상태나 계절적 특성에 따른 온도변화 또는 설치장소 등의 운전환경에 따라 상기 제2 열교환기(33)와 제3 열교환기(34)에 의해 열교환이 가능하게 된다.
이외에도 상기 제1 열교환기(32) 측에 열원(S,S1,S2)이 연결되거나 상기 제2 열교환기(33) 측에 부하(R)가 연결될 수 있음은 당연한 것이고, 상기 제3 열교환기(34) 측에도 열원(S,S1,S2) 대신에 다른 부하(R)가 연결될 수 있음은 당연한 것이다.
한편 상기 순환라인(20) 상에는 상기 각 열교환기(32~34) 중의 어느 하나에 의해 응축된 열매체를 팽창시켜 증발기 측으로 공급하도록 된 팽창밸브(35,36)가 구비되는데, 상기 팽창밸브(35,36)는 냉방운전이나 난방운전 또는 제상운전 등의 운전모드에 따라 상기 제1 팽창밸브(35) 또는 제2 팽창밸브(36) 중에서 어느 하나가 작동될 때에 다른 하나는 작동이 정지된 상태로 전자적으로 자동 개폐되는 제1 자동개폐밸브(37) 또는 제2 자동개폐밸브(38)에 의해 열매체가 우회되며, 상기 운전절환밸브(39)는 통상의 사방밸브와 같이 열매체를 다방향으로 흐름을 유도할 수 있는 것이다.
이와 같은 본 발명의 실시예에 따른 구체적인 운전상태를 도 4 내지 도 15를 더하여 설명하면 다음과 같다. 도 4와 도 5는 본 발명의 일실시예에 의한 난방운전을 도시한 것으로, 도 4는 열매체의 흐름이 정해진 방향으로만 흐르도록 된 통상의 난방용 시스템을 도시한 것이고, 도 5는 상기 운전절환밸브에 의해 열매체의 흐름을 난방 또는 냉방모드에 따라 선택적으로 변경 가능한 시스템을 도시한 것이다.
도 4와 도 5에 도시된 바와 같이, 이러한 난방운전에서는 상기 제1 열교환기(32)가 응축기로 작동되어 상기 부하공급라인(40) 상의 공급수를 가열함에 따라 부하(R) 측에 난방 및 온수를 공급하는 것으로, 상기 압축기(31)로부터 공급되는 열매체가 상기 제1 열교환기(32) 측으로 순환되어 부하(R) 측에 난방 및 온수를 공급한 후에, 상기 제1 자동개폐밸브(37)를 통해 제1 팽창밸브(35)를 우회하여 제3 열교환기(34) 측에서 제2 열원(S2)과의 열교환이 이루어지며, 상기 제2 팽창밸브(36)와 제2 열교환기(33)를 거쳐 압축기(31)로 복귀하게 된다.
이러한 난방운전에서는 상기 압축기(31)로부터 공급되는 고온 고압의 열매체(핫가스)가 상기 제1 열교환기(32)에서 열교환을 통해 부하(R) 측에 난방과 온수를 공급하고, 상기 제1 열교환기(32)를 통과한 열매체의 여열에 의해 상기 제3 열교환기(34) 측에서 재차 열교환이 이루어져 다른 부하(R)에 공급하거나 지열 등과 같은 제2 열원(S2)과의 열교환을 통한 열을 축열탱크 등에 저장할 수 있는 것이고, 상기 제2 열교환기(33) 측에 연결된 공기열과 같은 다른 제1 열원(S1)과의 열교환을 통해 증발효율을 증대시킬 수 있는 것이다.
한편, 전술된 바와 같은 난방운전에서는 계절적인 특성에 따라 증발기로 작동되는 제2 열교환기(33)에 발생된 적상을 제거하기 위한 제상운전을 요하게 되는데, 이를 도 6에 의해 설명하면 다음과 같다.
도 6에 도시된 바와 같이, 제상운전시에는 상기 제3 열교환기(34)가 증발기로 작동되고, 상기 제2 열교환기(33) 측의 팬모터(42)가 정지된 상태로 열매체가 그대로 통과되는 과정에서 제상작업이 이루어지게 된다. 이를 위해 상기 제1 자동개폐밸브(37)가 닫힌 상태로 상기 제1 팽창밸브(35)가 작동되고, 상기 제2 자동개폐밸브(38)가 개방되어 상기 제2 팽창밸브(36)를 우회하여 열매체가 순환되는데, 이와 같은 본 발명에 따른 제3 열교환기(34)에서의 폐열저장 및 회수운전에 의한 효과를 도 7과 도 8에 의해 설명하면 다음과 같다.
도 7과 도 8에 도시된 바와 같이, ①지점은 압축기(31) 측으로 열매체가 복귀하는 압축기(31) 입구측을 나타낸 것이고, ②지점은 압축기(31)에 의해 고온 고압으로 압축된 열매체가 공급되는 압축기(31) 출구측을 나타낸 것이다. 그러므로 ①지점과 ②지점의 X성분은 압축기(31)의 소비동력이나 압축일량을 나타낸 것이고, Y성분은 압축기(31)에 의한 열매체의 압력변화량을 나타낸 것이다.
또한 ③지점은 제1 열교환기(32)의 출구측에서의 열매체의 상태를 나타낸 것으로, ②지점으로부터 ③지점에 이르는 선은 정압적으로 변하는 열매체에 의해 부하(R) 측과의 열교환이 이루어짐에 따른 난방능력 정도를 나타낸 것이다. 또한 ④지점은 상기 제3 열교환기(34) 출구측을 나타낸 것으로, 본 발명은 제3 열교환기(34) 측에서 재차 열교환이 이루어짐에 따라 폐열을 저장이 이루어져 전체적인 난방능력이 ②지점에서 ④지점에 이르도록 증대됨을 알 수 있는 것이다.
또한 ⑤지점은 상기 제2 팽창밸브(36) 출구측을 나타낸 것으로, 이는 상기 제2 팽창밸브(36)에 의해 ④지점으로부터 교축적으로 압력이 낮아진 것을 보여주고, ⑤지점으로부터 ①지점에 이어지는 선분은 열매체가 상기 제2 열교환기(33)를 통과하는 과정에서 정압적으로 증발하는 냉동능력의 정도를 나타내는 것이다.
그런데 도 8의 몰리엘(Mollier) 선도에서 나타난 바와 같이, 상기 제3 열교환기(34) 측에서 제2 열원(S2)과의 열교환을 통해 축열에 의해 일정 온도 이상으로 승온된 상태로 열매체가 열교환이 이루어져 증발압력을 높인 상태로 순환이 가능하게 되고, 전술된 바와 같은 ①지점에서의 압력(P0)에 비해 상대적으로 더 높은 압력(P1)으로 압축기(31)에 열매체가 투입되어 압축기(31)에 의한 압축일량을 줄임에 따른 압축기(31)의 소비동력을 줄일 수 있고, 또한 증발압력이 증가함에 따라 열매체의 비체적이 작아져 냉매순환량을 증가시킬 수 있을 뿐만 아니라 그에 따라 장치에 의한 난방능력 및 성적계수를 증대시킬 수 있게 된다.
한편, 본 발명에 의한 냉방운전의 일례를 도 9 내지 12에 의해 설명하면 다음과 같다. 도 9와 도 10에 도시된 바와 같이, 냉방운전에서는 상기 제1 열교환기(32)가 증발기로 작동되어 부하(R) 측에 냉방 및 냉수를 공급하는 것으로, 상기 압축기(31)로부터 공급되는 열매체가 상기 제2 열교환기(33) 측으로 순환되어 제1 열원(S1)과의 열교환이 이루어진 후에, 상기 제2 자동개폐밸브(38)를 통해 제2 팽창밸브(36)를 우회하여 제3 열교환기(34) 측에서 다른 제2 열원(S2)과의 열교환이 이루어지며, 상기 제1 팽창밸브(35)를 통해 증발기로 작동되는 제1 열교환기(32) 측에서 부하(R) 측에 냉방을 공급한 후에 압축기(31)로 복귀하게 된다.
이러한 냉방운전에서는 상기 제2 열교환기(33) 측에 연결된 공기열과 같은 제1 열원(S1)과 상기 제3 열교환기(34) 측에 연결되는 지열과 같은 다른 제2 열원(S2)에 의해 2차로 열교환이 이루어져 열매체가 과냉각된 상태로 공급됨에 따라 냉방효율을 증대시킬 수 있게 되는데, 이를 도 11과 도 12에 의해 설명하면 다음과 같다.
도 11과 도 12에 도시된 바와 같이, ①지점은 압축기(31) 측으로 열매체가 복귀하는 압축기(31) 입구측을 나타낸 것이고, ②지점은 압축기(31)에 의해 고온 고압으로 압축된 열매체가 공급되는 압축기(31) 출구측을 나타낸 것이다.
또한 ③지점은 제2 열교환기(33)의 출구측에서의 열매체의 상태를 나타낸 것이고, ④지점은 상기 제3 열교환기(34) 출구측을 나타낸 것이며, ⑤지점은 상기 제1 팽창밸브(35) 출구측을 나타낸 것이다.
여기에서, ⑤지점으로부터 ①지점에 이어지는 선분은 열매체가 상기 제1 열교환기(32)를 통과하는 과정에서 정압적으로 증발하는 냉동능력의 정도를 나타내는 것인데, 상기 제2 열교환기(33)에 공기열을 열원으로 연결하고, 상기 제3 열교환기(34)에 지열을 열원으로 연결한 경우를 설명하면 상기 순환라인(20) 상의 열매체는 상기 제2 열교환기(33)에 의해서 공기열과 같은 제1 열원(S1)과의 열교환을 통해 70% 정도의 열을 대기로 방출하고, 상기 제3 열교환기(34)에서 지열과 같은 열원(S2)과의 열교환 과정에서 30%의 열만이 지중으로 순환됨에 따라 지중온도 상승을 억제하여 대략 20%이상의 냉방효율을 개선할 수 있을 뿐만 아니라 이로 인해 열교환파이프를 지중에 묻기 위해 생성하는 천공홀 등을 감소시켜 작업상의 번거로움이나 설치비용 등을 절감할 수 있게 된다.
한편 도 13에 도시된 바와 같이, 상기 제3 열교환기(34) 측에는 열원공급라인(41) 대신에 상기 부하공급라인(40) 상의 공급수가 연속적으로 통과되도록 연결되고, 상기 제2 열교환기(33) 측에만 열원(S)에 연결되는 열원공급라인(41)이 연결될 수 있는데, 이때에 상기 부하공급라인(40)은 부하(R) 측으로부터 상기 제3 열교환기(34)에 연결된 상태에서 상기 제1 열교환기(32) 측으로 연장되고, 상기 제1 열교환기(34)로부터 부하(R) 측으로 연장되는 고온공급라인(43)이 연결되는 것이다.
이러한 구성에 따르면, 난방운전시에 부하(R) 측에 난방 또는 온수를 공급할 때에 상기 제1 및 제3 열교환기(32,34)를 연속적으로 공급수가 거치는 과정에서 상기 각 열교환기(32,34)에서 연속적으로 열교환이 이루어져 고온의 온수를 공급할 수 있게 된다.
구체적으로, 상기 압축기(31)로부터 공급되는 고온의 핫가스(열매체)는 상기 제1 열교환기(32)과 제3 열교환기(34)를 순차적으로 통과하는 과정에서 2차에 걸쳐 공급수와의 열교환이 이루어지는데, 상기 부하(R) 측으로부터 공급되는 공급수는 상기 제3 열교환기(34)와 제1 열교환기(32)를 순차적으로 통과하게 되고, 이는 상기 순환라인(20) 상의 열매체가 상기 제1 열교환기(32)와 제3 열교환기(34)를 순차적으로 거치는 동안에 부하(R) 측의 공급수가 열매체와는 대향류를 형성하여 흐름에 따라 상기 제3 열교환기(34)에서 예비가열이 이루어진 후에 상기 제1 열교환기(32)에서 핫가스와의 본가열이 이루어져 고온의 온수의 생산할 수 있게 된다.
또한 도 14과 도 15에 도시된 바와 같이, 상기 운전절환밸브(39)에 의해 냉방과 난방운전이 선택적으로 가능한 경우에는 상기 고온공급라인(43) 상에 별도의 바이패스라인(44)이 연결되고, 상기 고온공급라인(43)과 바이패스라인(44) 상에는 냉방 또는 난방운전에 따라 공급수의 흐름을 제어할 수 있는 다수의 제어밸브(50~52)가 구비될 수 있는 것이다.
구체적으로, 도 14와 같은 난방운전의 경우에는 전술된 바와 같이 상기 부하(R) 측의 공급수가 제3 열교환기(34)와 제1 열교환기(32)를 순차적으로 흐르도록 하는데, 이를 위해 상기 고온공급라인(43) 상의 제어밸브(51,52)를 개방하고, 상기 바이패스라인(44) 상의 제어밸브(50)를 폐쇄하게 된다.
또한 도 15와 같은 냉방운전의 경우에는 상기 고온공급라인(43) 상의 제어밸브(51,52)를 폐쇄하여 상기 제2 열교환기(33) 측으로 공급수가 흐르는 것을 차단하는 대신에 상기 바이패스라인(44) 상의 제어밸브(50)를 개방하여 공급수가 우회되도록 하여 냉방을 공급하게 된다.
이러한 난방운전 또는 냉방운전 중에도 상기 제1 열교환기(32)에 의해 급탕(H)을 공급할 수도 있는데, 이를 위해 상기 제1 열교환기(32) 상에는 별도의 급탕공급라인(45)을 연결하여 난방 또는 냉방 중에도 급탕(H)이 가능하도록 구비할 수 있으며, 상기 급탕공급라인(45) 상에는 필요에 따라 고온수를 펌핑하는 펌프(46)가 연결될 수 있는 것이다.
또한 냉방운전의 경우에도 냉방과 급탕(H)을 동시에 공급할 수 있는데, 냉방과 급탕(H)을 동시에 공급할 때에는 핫가스를 상기 제1 열교환기(32) 측으로 공급하여 급탕(H)을 공급한 이후에 제3 열교환기(34)에서 부하(R) 측에 냉방을 공급하며, 이를 위해 상기 제1 자동개폐밸브(37)를 폐쇄하여 제1 팽창밸브(35)를 통해 열매체가 흐름으로 인해 상기 제3 열교환기(34)가 증발기로 작동되도록 제어하게 된다.
또한 도 16에 도시된 바와 같이, 상기 제3 열교환기(34)는 본체의 일측에 열매체와 공급수가 공급되는 헤더가 위치되고, 상기 헤더 사이에 판상으로 된 다수의 열교환패널이 다수 배열되어 열매체와 이에 열교환되는 부하(R) 또는 지열과 같은 제2 열원(S2) 측의 공급수 또는 순환수가 순환되는 구조의 통상의 판형 열교환기로 구비되는데, 상기 헤더에는 열매체의 유출입이 가능하도록 상하에 각각 상부포트(60)와 하부포트(61)가 형성된 것이다.
이러한 판형 열교환기 형태의 제3 열교환기(34)에는 상기 하부포트(61) 측에 순환라인(20) 상의 제1 및 제2 팽창밸브(35,36)가 연결되고, 상기 상부포트(60) 측에 상기 순환라인(20)이 분기하여 상기 제1 및 제2 자동개폐밸브(37,38)가 연결되게 되며, 상기 각 상부포트(60)와 하부포트(61)의 일측에는 부하(R)나 제2 열원(S2) 측의 공급수나 순환수가 유출입되는 급수포트(62,63)가 구비된 것이다.
이와 같은 연결구조에 따르면, 상기 제1 및 제2 팽창밸브(35,36)에 의해 저온 저압으로 팽창된 열매체가 판형 열교환기의 하부에서 유입되고, 상기 제1 및 제2 자동개폐밸브(37,38)를 통해 고온 고압으로 응축된 열매체가 유입됨에 따라 판형 열교환기의 입구측으로부터 출구측에 전체적으로 균일한 열매체의 흐름이 가능할 뿐만 아니라 열매체의 상하흐름이 원활하게 이루어져 냉난방 효율을 증대시킬 수 있게 된다.
또한 도 17 내지 도 21에 도시된 바와 같이, 상기 순환라인(20) 상에는 하나의 팽창밸브(35a)구비되는데, 상기 팽창밸브(35a)는 상기 제1 열교환기(32)와 제3 열교환기(34) 사이에 위치되거나 상기 제2 열교환기(33)와 제3 열교환기(34) 사이에 위치되고, 상기 팽창밸브(35a)가 위치되는 상기 제3 열교환기(34)의 일측에 제1 및 제2 자동개폐밸브(37a,37b)가 위치되며, 상기 팽창밸브(35a)에 대향된 제3 열교환기(34)의 타측에 제3 및 제4 자동개폐밸브(37a,38b)가 구비될 수 있는 것으로, 이 구성에 따른 냉난방운전 상태를 설명하면 다음과 같다.
도 17과 도 18에 도시된 바와 같이, 난방운전에서는 상기 제2 자동개폐밸브(37b)와 제3 자동개폐밸브(38a)가 닫힌 상태에서 상기 압축기(31)로부터 공급되는 열매체가 상기 제1 열교환기에서 부하(R) 측과의 열교환이 이루어져 난방을 공급한 후에, 상기 제4 자동개폐밸브(38b)를 통해 상기 제3 열교환기(34)를 통과하고, 이후에 상기 팽창밸브(35a)와 제1 자동개폐밸브(37a)를 통해 상기 제2 열교환기(33)를 거쳐 압축기(31)로 복귀하게 된다.
한편 도 19와 도 20에 도시된 바와 같이, 냉방운전에서는 상기 제1 자동개폐밸브(37a)와 제4 자동개폐밸브(38b)가 닫힌 상태에서 상기 압축기(31)로부터 공급되는 열매체가 상기 제2 열교환기 측으로 순환된 후에, 상기 제3 자동개폐밸브(38a)를 통해 상기 제3 열교환기(34)를 통과하고, 이후에 상기 팽창밸브(35a)와 제2 자동개폐밸브(37b)를 통해 상기 제1 열교환기(33) 측에서 부하(R) 측에 냉방을 공급한 후에 압축기(31)로 복귀하게 된다.
또한 도 21에 도시된 바와 같이, 판형 열교환기 형태의 제3 열교환기(34)에는 하부포트(61) 측에 상기 팽창밸브(35a)와 제1 및 제2 자동개폐밸브(37a,37b)가 연결되고, 상기 상부포트(60) 측에 제3 및 제4 자동개폐밸브(37,38)가 연결되어 전술된 바와 같이 판형 열교환기의 하부로 저온 저압으로 팽창된 열매체가 유입되고, 판형 열교환기의 상부에서 고온 고압으로 응축된 열매체가 유입되는 것이다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.

Claims (7)

  1. 열매체가 순환되는 순환라인(20)에 의해 상호 연결되는 압축기(31), 응축기, 증발기를 포함하여 이루어진 히트펌프시스템에 있어서;
    상기 순환라인(20) 상에 연결되어 냉방 또는 난방운전시에 상기 응축기 또는 증발기로 작동되도록 구비되고, 냉방(냉수) 또는 난방(온수)를 공급하도록 부하(R) 측에 연결되거나 또는 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되어 열교환이 이루어지도록 된 제1 열교환기(32)와;
    상기 제1 열교환기(32)에 대응되어 증발기 또는 응축기로 작동되도록 구비되고, 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되거나 또는 상기 부하(R) 측에 연결되는 제2 열교환기(33)와;
    상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 위치되도록 상기 순환라인(20) 상에 직렬로 연결되고, 냉방 또는 난방모드에 따라 상기 제1 열교환기(32) 또는 제2 열교환기(33)에 유사하게 상기 부하(R) 측에 연결되어 냉방(냉수)이나 난방(온수)를 공급하거나 또는 상기 열원(S,S1,S2) 측에 연결되어 폐열을 회수하거나 저장할 수 있도록 된 제3 열교환기(34)와;
    상기 제1 열교환기(32)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 제1 팽창밸브(35)와;
    상기 제2 열교환기(33)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 제2 팽창밸브(36)와;
    상기 제1 팽창밸브(35) 측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제1 자동개폐밸브(37)와;
    상기 제2 팽창밸브(36) 측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제2 자동개폐밸브(38)를 포함하며;
    상기 제1 열교환기(32)와 제3 열교환기(34) 또는 상기 제2 열교환기(33)와 제3 열교환기(34)는 상기 열원(S,S1,S2)이 연결될 때에 상호 다른 종류의 제1 열원(S1)과 제2 열원(S2)이 각각 연결되는 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  2. 열매체가 순환되는 순환라인(20)에 의해 상호 연결되는 압축기(31), 응축기, 증발기를 포함하여 이루어진 히트펌프시스템에 있어서;
    상기 순환라인(20) 상에 연결되어 냉방 또는 난방운전시에 상기 응축기 또는 증발기로 작동되도록 구비되고, 냉방(냉수) 또는 난방(온수)를 공급하도록 부하(R) 측에 연결되거나 또는 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되어 열교환이 이루어지도록 된 제1 열교환기(32)와;
    상기 제1 열교환기(32)에 대응되어 증발기 또는 응축기로 작동되도록 구비되고, 외기나 지열을 포함한 열원(S,S1,S2) 측에 연결되거나 또는 상기 부하(R) 측에 연결되는 제2 열교환기(33)와;
    상기 제1 열교환기(32)와 제2 열교환기(33) 사이에 위치되도록 상기 순환라인(20) 상에 직렬로 연결되고, 냉방 또는 난방모드에 따라 상기 제1 열교환기(32) 또는 제2 열교환기(33)에 유사하게 상기 부하(R) 측에 연결되어 냉방(냉수)이나 난방(온수)를 공급하거나 또는 상기 열원(S,S1,S2) 측에 연결되어 폐열을 회수하거나 저장할 수 있도록 된 제3 열교환기(34)와;
    상기 제1 열교환기(32)와 제3 열교환기(34) 또는 상기 제2 열교환기(32)와 제3 열교환기(34) 사이에 위치되도록 상기 순환라인(20) 상에 구비된 팽창밸브(35a)와;
    상기 제3 열교환기(34)의 일측에 위치되도록 상기 순환라인(20) 상에 구비되어 상기 팽창밸브(35a) 측의 열매체 흐름을 우회시키도록 제어하는 제1 및 제2 자동개폐밸브(37a,37b)와;
    상기 팽창밸브(35a)에 대향된 상기 제3 열교환기(34)의 타측에 위치되어 상기 순환라인(20) 상의 열매체 흐름을 우회시키도록 제어하는 제3 및 제4 자동개폐밸브(38a,38b)를 포함하며;
    상기 제1 열교환기(32)와 제3 열교환기(34) 또는 상기 제2 열교환기(33)와 제3 열교환기(34)는 상기 열원(S,S1,S2)이 연결될 때에 상호 다른 종류의 제1 열원(S1)과 제2 열원(S2)이 각각 연결되는 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  3. 제1항 또는 제2항에 있어서, 상기 각 열교환기(32,33,34)는 공급수가 순환되는 부하공급라인(40)에 의해 상기 부하(R) 측에 연결되고;
    상기 부하공급라인(40)에는 공급수가 상기 제1 열교환기(32)와 제3 열교환기(33)를 연속적으로 통과하거나 또는 상기 제2 열교환기(32)와 제3 열교환기(34)를 연속적으로 통과하도록 연장되는 고온공급라인(43)이 연결되는 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  4. 제3항에 있어서, 상기 부하공급라인(40)과 고온공급라인(43) 사이에는 상기 제1 열교환기(32) 또는 제2 열교환기를 통과한 공급수가 상기 제3 열교환기(34)를 거치지 않은 상태로 우회하여 부하(R) 측으로 순환되도록 된 바이패스라인(44)이 연결되고;
    상기 제1 열교환기(33) 또는 제2 열교환기(34) 측에는 냉방(냉수) 또는 난방(온수)를 공급하는 과정 중에 급탕(H)을 공급할 수 있도록 된 급탕공급라인(45)이 연결되며;
    상기 부하공급라인(40)과 고온공급라인(43) 및 바이패스라인(44) 상에는 공급수의 흐름을 제어하도록 된 다수의 제어밸브(50,51,52)가 구비된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  5. 제1항 또는 제2항에 있어서, 상기 순환라인(20) 상에는 냉방 또는 난방운전에 따라 상기 압축기(31) 측에서 공급되는 열매체의 흐름을 절환하도록 된 운전절환밸브(39)가 구비된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  6. 제1항에 있어서, 상기 제3 열교환기(34)는 상부와 하부에 상기 순환라인(20)이 연결되는 상부포트(60)와 하부포트(61)가 형성되어 열매체가 상하방향으로 유출입되는 판형 열교환기로 이루어지며;
    상기 제1 및 제2 팽창밸브(35,36)는 상기 하부포트(61) 측에 각각 연결되고, 상기 제1 및 제2 자동개폐밸브(37,38)는 상기 상부포트(60) 측에 연결된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
  7. 제2항에 있어서, 상기 제3 열교환기(34)는 상부와 하부에 상기 순환라인(20)이 연결되는 상부포트(60)와 하부포트(61)가 형성되어 열매체가 상하방향으로 유출입되는 판형 열교환기로 이루어지며;
    상기 팽창밸브(35a)와 제1 및 제2 자동개폐밸브(37a,37b)는 상기 하부포트(61) 측에 각각 연결되고, 상기 제3 및 제4 자동개폐밸브(38a,38b)는 상기 상부포트(60) 측에 연결된 것을 특징으로 하는 폐열회수형 하이브리드 히트펌프시스템.
PCT/KR2018/000786 2017-01-17 2018-01-17 폐열회수형 하이브리드 히트펌프시스템 WO2018135850A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880007232.6A CN110226068B (zh) 2017-01-17 2018-01-17 废热回收型混合热泵系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170007963A KR101864636B1 (ko) 2017-01-17 2017-01-17 폐열회수형 하이브리드 히트펌프시스템
KR10-2017-0007963 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135850A1 true WO2018135850A1 (ko) 2018-07-26

Family

ID=62621355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000786 WO2018135850A1 (ko) 2017-01-17 2018-01-17 폐열회수형 하이브리드 히트펌프시스템

Country Status (3)

Country Link
KR (1) KR101864636B1 (ko)
CN (1) CN110226068B (ko)
WO (1) WO2018135850A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20190100273A (el) * 2019-06-21 2021-01-19 Μακαριος Θεοδωρου Τσοπουλιδης Νεου τυπου συνδυαστικη αντλια παραγωγης ψυξης, θερμανσης και ζεστου νερου χρησης
CN113028511A (zh) * 2021-04-29 2021-06-25 哈尔滨商业大学 一种节能环保供热全新风空调器
US11408657B2 (en) * 2020-06-30 2022-08-09 Trane International Inc. Dynamic liquid receiver and control strategy
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100137099A (ko) * 2009-06-22 2010-12-30 서진욱 순환유로가 구비된 판형 열교환기
KR20110100934A (ko) * 2010-03-05 2011-09-15 윤덕민 냉온수 및 냉난방 히트펌프시스템
KR20110126880A (ko) * 2010-05-18 2011-11-24 윤덕민 히트펌프시스템
KR101148714B1 (ko) * 2010-12-31 2012-05-21 윤덕민 디슈퍼히터를 이용한 히트펌프시스템
WO2014054176A1 (ja) * 2012-10-05 2014-04-10 三菱電機株式会社 ヒートポンプ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2293761Y (zh) * 1996-11-10 1998-10-07 中国科学技术大学 一种空调用制冷蓄冷装置
KR100389271B1 (ko) 2001-03-17 2003-06-27 진금수 히트 펌프 장치
KR20140090792A (ko) * 2013-01-10 2014-07-18 박정해 열교환기 교번타입 핫가스제상 히트펌프
JP2017026159A (ja) * 2013-12-04 2017-02-02 三菱電機株式会社 ヒートポンプ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100137099A (ko) * 2009-06-22 2010-12-30 서진욱 순환유로가 구비된 판형 열교환기
KR20110100934A (ko) * 2010-03-05 2011-09-15 윤덕민 냉온수 및 냉난방 히트펌프시스템
KR20110126880A (ko) * 2010-05-18 2011-11-24 윤덕민 히트펌프시스템
KR101148714B1 (ko) * 2010-12-31 2012-05-21 윤덕민 디슈퍼히터를 이용한 히트펌프시스템
WO2014054176A1 (ja) * 2012-10-05 2014-04-10 三菱電機株式会社 ヒートポンプ装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927377B2 (en) 2014-09-26 2024-03-12 Waterfurnace International, Inc. Air conditioning system with vapor injection compressor
US11953239B2 (en) 2018-08-29 2024-04-09 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
GR20190100273A (el) * 2019-06-21 2021-01-19 Μακαριος Θεοδωρου Τσοπουλιδης Νεου τυπου συνδυαστικη αντλια παραγωγης ψυξης, θερμανσης και ζεστου νερου χρησης
US11408657B2 (en) * 2020-06-30 2022-08-09 Trane International Inc. Dynamic liquid receiver and control strategy
US20220381495A1 (en) * 2020-06-30 2022-12-01 Trane International Inc. Dynamic liquid receiver and control strategy
US11885545B2 (en) 2020-06-30 2024-01-30 Trane International Inc. Dynamic liquid receiver and control strategy
CN113028511A (zh) * 2021-04-29 2021-06-25 哈尔滨商业大学 一种节能环保供热全新风空调器
CN113028511B (zh) * 2021-04-29 2022-05-31 哈尔滨商业大学 一种节能环保供热全新风空调器

Also Published As

Publication number Publication date
CN110226068B (zh) 2022-05-31
CN110226068A (zh) 2019-09-10
KR101864636B1 (ko) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2018135850A1 (ko) 폐열회수형 하이브리드 히트펌프시스템
WO2014051188A1 (ko) 축열식 냉난방 장치
WO2017078349A1 (ko) 지열 에너지를 활용한 2단 가열식 지열 시스템
WO2014065548A1 (en) Air conditioner
WO2012169764A2 (en) Air conditioner in electric vehicle
WO2012020955A2 (ko) 냉난방 및 급탕용 히트펌프시스템 및 그 제어방법
WO2012036361A1 (ko) 지열을 이용한 히트펌프 시스템
WO2014010767A1 (ko) 태양열 및 축열 2원 시스템 냉난방장치
WO2022114563A1 (ko) 열관리 시스템
US4454728A (en) Air conditioning system
WO2018026137A1 (ko) 열교환기 교번타입 히트펌프시스템
WO2019208939A1 (ko) 열관리 시스템
KR20090105628A (ko) 히트펌프시스템의 보조열원공급장치 및 그 제어방법
WO2012165684A1 (ko) 태양열 냉방겸용 급탕시스템
KR101078165B1 (ko) 히트펌프시스템
WO2013062242A1 (ko) 공기조화기 및 그 운전 방법
WO2022265140A1 (ko) 프리쿨링 냉동기를 구비한 데이터센터 국부 냉각시스템
KR101188258B1 (ko) 히트펌프시스템
WO2010050663A1 (ko) 하이브리드 히트펌프식 냉난방장치
WO2018048173A1 (ko) 하이브리드타입 공기조화 및 히트펌프시스템
CN112066583A (zh) 双热源的空调机组及其控制方法
WO2014148704A1 (ko) 하이브리드형 공기열 히트펌프 시스템
CN107014020A (zh) 建筑领域的综合能源系统
WO2019027085A1 (ko) 공기열원 축냉운전과 수열원 축냉축열 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
CN113154547B (zh) 一种新排风分级热回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741157

Country of ref document: EP

Kind code of ref document: A1