WO2018182084A1 - 냉온동시 히트펌프 시스템 - Google Patents

냉온동시 히트펌프 시스템 Download PDF

Info

Publication number
WO2018182084A1
WO2018182084A1 PCT/KR2017/004052 KR2017004052W WO2018182084A1 WO 2018182084 A1 WO2018182084 A1 WO 2018182084A1 KR 2017004052 W KR2017004052 W KR 2017004052W WO 2018182084 A1 WO2018182084 A1 WO 2018182084A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
water tank
heat
compressor
refrigerant
Prior art date
Application number
PCT/KR2017/004052
Other languages
English (en)
French (fr)
Inventor
김선철
Original Assignee
위드케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위드케이 주식회사 filed Critical 위드케이 주식회사
Publication of WO2018182084A1 publication Critical patent/WO2018182084A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat pump system, and more particularly, to a heat pump system capable of maintaining a balance between a heat load and a cold load so that heat and cold demand can be simultaneously satisfied.
  • the heat pump is a device that recovers the waste heat of the low-temperature heat source by sending the heat energy of the low-temperature heat source to the high-temperature heat source by the compressor driven by the power to compress the gas refrigerant. Therefore, the heat pump recovers waste heat and also removes heat from a space or material requiring low temperature through heat recovery.
  • the high temperature demand to be heated by heating and the low temperature demand to be maintained at low temperature are difficult to match the heat supply and supply, so the heat pump generally performs only one of heating and cooling operations.
  • the prior art is provided separately from the wastewater collection tank 100 and the wastewater collection tank 100 to which the wastewater inlet pipe 102 into which the used hot water is introduced is connected to the wastewater supply pipe 202 and is connected to a heat exchanger ( Waste water heat recovery tank 200 is installed, and waste heat recovery apparatus of the hot water comprising a wastewater discharge pipe 204 connected to the wastewater heat exchange tank 200, it is possible to recover the heat obtained through the heat exchanger 210 It is effective.
  • the waste heat recovery apparatus proposed in the prior art has the effect that the thermal energy recovered from the waste water can be provided and the waste water is cooled to some extent, but heat that can simultaneously satisfy different demands that require cold and warm heat at the same time. There is a limitation that the supply and demand configuration cannot be presented.
  • the present invention is to improve the problems of the prior art, not only can the heat demand and the heat demand that are separated from each other at the same time can be satisfied at the same time, this simultaneous fulfillment action is made in both winter and summer with a large temperature difference To provide a heat pump system that can be cold and hot.
  • a heat and cold simultaneous heat pump system includes a compressor for compressing a gas refrigerant, a plurality of condensers connected in parallel to receive and condense the compressed gas refrigerant from the compressor, and a liquid refrigerant condensed with the condenser.
  • a plurality of expansion valves connected in parallel to receive and expand a plurality, a plurality of evaporators connected to each of the expansion valves to vaporize the expanded liquid refrigerant, and then transfer the refrigerant to the compressor, and between the plurality of evaporators and the compressors.
  • the heat pump is composed of a core filter dryer installed, a heat demand unit consisting of a plurality of heat demand destinations to recover the heat energy from the plurality of condensers, and cold heat to maintain the cold temperature by transferring heat energy to the plurality of evaporators Demand unit, but the core filter dryer and An accumulator is installed between the accumulators, a receiver is installed between the plurality of condensers and the plurality of expansion valves, and a bypass tube directly connecting the outlet side of the receiver and the inlet side of the accumulator, and an expansion tube installed in the bypass tube.
  • By-pass module consisting of a valve and a shut-off valve is installed, when the heat load is increased in the winter than the cold load, some of the refrigerant is circulated without passing through the evaporator, thereby maintaining a balance between the heat load and the cold load in summer and winter It is characterized by meeting both the hot and cold demand without distinction.
  • a dual pressure sensor in which the refrigerant pressure flowing from the accumulator to the condenser and the pressure of the refrigerant flowing from the plurality of condensers to the plurality of expansion valves is simultaneously measured, and a temperature sensor for measuring the temperature of the refrigerant discharged from the compressor is installed.
  • the refrigerant stored in the receiver may be additionally extracted or a portion of the refrigerant circulating in the heat pump may be stored in the receiver according to the pressure value of the dual pressure sensor and the temperature value of the temperature sensor.
  • the amount of the refrigerant entering the accumulator is increased by opening the on-off valve, the pressure of the refrigerant discharged from the compressor And the temperature is increased.
  • the cold and hot simultaneous heat pump system is a compressor for compressing the gas refrigerant, a plurality of condensers connected in parallel to receive and condensing the compressed gas refrigerant from the compressor, and receives and expands the liquid refrigerant condensed by the condenser
  • a plurality of expansion valves connected in parallel, a plurality of evaporators connected to each of the expansion valves to vaporize the expanded liquid refrigerant, and then transfer the refrigerant to the compressor, and a core filter dryer installed between the plurality of evaporators and the compressor.
  • It consists of a cold and hot copper heat pump consisting of, a ground water tank to be buried underground, a high temperature water tank to be submerged in the ground water tank, and a low temperature water tank to be submerged in the ground water tank, the high temperature water tank is a thermal energy from one of the condenser
  • the cold water tank is heated and the low temperature water tank is discharged from the ground water tank.
  • the ground water is recovered after being cooled, and the hot water inside the hot water tank and the low temperature water inside the cold water tank are maintained for a long time to provide cold water for producing hot water and cold air.
  • a triple water tank a drying chamber supplied with thermal energy from one of the condensers, a cold store receiving cold heat from one of the evaporators, and a freezer receiving cold heat from one of the evaporators, the core
  • An accumulator is installed between the filter drier and the compressor, and a receiver is installed between the plurality of condensers and the plurality of expansion valves, and a bypass pipe that directly connects the outlet side of the receiver and the inlet side of the accumulator, Bypass module consisting of expansion valve and on-off valve is installed
  • Bypass module consisting of expansion valve and on-off valve
  • a dual pressure sensor for measuring the pressure of the refrigerant flowing from the accumulator to the condenser and the pressure of the refrigerant flowing from the plurality of condensers to the plurality of expansion valves at the same time, and a temperature sensor for measuring the temperature of the refrigerant discharged from the compressor, According to the pressure value of the dual pressure sensor and the temperature value of the temperature sensor, the refrigerant stored in the receiver is additionally extracted or a part of the refrigerant circulating in the heat pump is stored in the receiver.
  • the amount of the refrigerant entering the accumulator is increased while the on-off valve is opened, whereby Pressure and temperature are increased.
  • the hot water tank is preferably connected to the hot water tank to receive and store the hot water in the hot water tank or deliver the stored hot water to the hot water tank, and solar heat for heating the hot water inside the hot water tank with solar heat.
  • a solar heat recovery unit comprising a dust collector is installed, and any one of the evaporators receives and cools the hot water in the hot water tank during the summer, and then the cooled hot water is transferred into the underground water tank constituting the triple water tank. Supply and cooling load can be supplied.
  • the cold and hot simultaneous heat pump system it is possible to meet both the heat demand and the cold heat demand with one heat pump at the same time, and to always use the heat pump as it is, regardless of seasonal changes, and the demand for hot and cold heat and seasonal As both hot and cold demands are met, there is no need to use two heat pumps, maximizing efficiency, significantly reducing equipment costs and significantly reducing power requirements.
  • FIG. 1 is a block diagram showing a prior art
  • FIG. 2 is a conceptual diagram of a heat pump system according to the present invention.
  • FIG. 3 is a configuration diagram specifically showing FIG.
  • FIG. 4 is a conceptual diagram of a heat pump system according to a further embodiment
  • 5 is a temperature-entropy graph showing a refrigerant circulation of a heat pump
  • 6 is a pressure-enthalpy graph showing refrigerant circulation in a heat pump.
  • Heat pump system is characterized in that the load control means that can satisfy the heat demand and the heat demand with a single heat pump regardless of seasonal changes.
  • Heat pump system according to the present invention can be implemented in the first embodiment and the second embodiment presented below.
  • the first embodiment will be described with reference to FIGS. 2 and 3, and the second embodiment will be described with reference to FIG. 4.
  • the heat pump system includes a heat pump 10, a heat demand unit 20, and a cold heat demand unit 40 during cold and hot operation.
  • the heat pump 10 is a compressor 11 for compressing the gas refrigerant, and a plurality of condensers connected in parallel to receive and condense the gas refrigerant compressed by the compressor 11 ( 21, a plurality of expansion valves 13 connected in parallel to receive and expand the liquid refrigerant condensed by the plurality of condensers 21, and one expansion valve connected to each of the expansion valves to vaporize the expanded liquid refrigerant.
  • 11 and a core filter drier 16 provided between the plurality of evaporators 14 and the compressor 11.
  • the heat demand unit 20 refers to a drying chamber 21 and a hot water tank 22 that receive thermal energy from each condenser of the plurality of condensers 12.
  • the condenser connected to the drying chamber is called the first condenser 121 and the condenser connected to the hot water tank 22 is called the second condenser 122.
  • the remaining condenser is referred to as a third condenser 123, and the heat demand portion receiving heat energy from the third condenser 123 may be a facility requiring heat energy, such as a drying furnace or an evaporator of a generator.
  • the cold heat demand unit 40 is a facility in which a low temperature is maintained while taking heat energy into the plurality of evaporators 14. Specifically, it is the refrigerator 41, the freezer 42, and the cold water tank 43. At this time, the evaporator connected to the cold store 41 is called the first evaporator 141, the evaporator connected to the freezer 42 is called the second evaporator 142, and the evaporator connected to the cold water tank 43 Called the evaporator 143. Water supplied to the cold water tank 43 is supplied from the ground water tank 45 and the water supplied from the ground water tank 45 is cooled while passing through the third evaporator 143 is moved to the cold water tank 43.
  • the other evaporator is called a fourth evaporator 144, and the cold heat demand portion connected to the fourth evaporator 144 may be an additional freezer or a cold store (not shown), or may be a facility in which a low temperature is to be maintained. .
  • the accumulator 17, the receiver 18, and the bypass module 15 are installed in the heat pump at the same time.
  • the accumulator 17 is installed between the core filter drier 16 and the compressor 11 as shown in FIGS. 2 and 3.
  • the accumulator 17 separates the refrigerant into a liquid and a gas when the refrigerant entering the compressor 11 contains liquid refrigerant that has not been evaporated, and passes only the gas refrigerant to the compressor 11, and temporarily the liquid refrigerant in the liquid state. It is a container in the form of a tank to store.
  • the receiver 18 is installed between the plurality of condensers 12 and the plurality of expansion valves 13 to temporarily store the high temperature and high pressure refrigerant liquid liquefied in the plurality of condensers 12. 14) It absorbs the change in the amount of refrigerant in accordance with the load variation in the.
  • the bypass module 15 includes a bypass tube 151 for directly connecting the outlet side of the receiver 18 and the inlet side of the accumulator 17, and an expansion valve installed in the bypass tube 151 (fifth) Expansion valve 152) and on-off valve 154.
  • the on-off valve 154 is opened, a portion of the refrigerant discharged from the plurality of condensers 12 and transferred to the plurality of expansion valves 13 is adjusted in flow rate according to the opening degree of the on / off valve 154 and thus a plurality of expansions. It moves along the bypass pipe 151 without passing through the valve 13 and immediately enters the accumulator 17.
  • the bypass module 15 By installing the bypass module 15, firstly, when the load of the plurality of condensers 12 is increased, especially when the heating or hot water consumption is increased in winter, if some of the plurality of evaporators 14 are not operated in winter, the refrigerant Is moved directly along the bypass pipe 151 without passing through the plurality of evaporator 14 is passed directly through the accumulator 17 to the compressor 11 can be controlled supply and demand of the heat load and cold load. At this time, since the expansion pipe (fifth expansion valve 152) is in the bypass pipe 151, the refrigerant evaporates to a certain degree and becomes a gas state, but the liquid refrigerant is still mixed, so the accumulator 17 is a liquid refrigerant.
  • the bypass module 15 may have a greater amount of load control through interaction with the receiver 18. If the bypass module 15 alone transfers some of the refrigerant to the compressor 11 through the bypass pipe 151 while discharging the refrigerant stored in the receiver 18 when there is a limit in the load control in a winter heat protection surge. As the demand for heat is increased, the amount of refrigerant can be increased, and in the meantime, the load of cooling can be made to meet the small demand required in winter. In other words, the increase in the demand for heat during the winter will be able to be satisfied without affecting the cold load.
  • points A, B, C, D1, D2, D3, and D4 shown in FIG. 2 correspond to A, B, C, and D shown in the graphs of FIGS. 5 and 6, respectively.
  • the evaporator is one, not a plurality, and the points D1, D2, D3, and D4 in FIGS. 2 and 3 will be denoted as D in FIGS. 5 and 6.
  • the plurality of evaporators 14 may have a refrigerant entering the compressor 11 due to a decrease in ambient temperature or lower than the pressure P2 in FIG. 5 or discharged from the plurality of condensers 12.
  • the output of the compressor 11 may be increased to compress the refrigerant to a higher pressure, thereby adjusting the refrigerant pressure discharged from the compressor 11 to be P1.
  • a dual pressure sensor 31 for simultaneously measuring the pressure at the point A and the point C is provided.
  • the pressure P2 shown in FIGS. 5 and 6 is the pressure at point A and P1 is the pressure at point C.
  • a temperature sensor 32 for measuring the refrigerant temperature and an interlock controller 153 for automatically controlling the opening and closing degree of the opening / closing valve 154 installed in the bypass pipe 151 according to the measured value of the temperature sensor 32 are installed. Can be.
  • the temperature of the gaseous refrigerant discharged from the compressor 11 is the temperature at the point marked B in FIGS. 5 and 6.
  • the temperature and the pressure are lowered together.
  • the pressure of the circulating coolant continues to be lowered.
  • the amount of heat discharged is lowered in the graph of FIG.
  • the configurations of the heat pump 10 for cold and hot operation, the bypass module 15, the dual pressure sensor 31, and the temperature sensor 32 installed in the heat pump 10 for cold and hot operation are all the first embodiment. Since it is the same as the example, description thereof will be omitted.
  • the hot water tank 22 and the cold water tank 43 are installed in separate configurations, and as shown in FIG. 4, the hot water tank and the cold water tank have one ground water tank 51. It is installed in a structure arranged inside.
  • the hot water tank and the cold water tank in the first embodiment will be referred to as a high temperature water tank 52 and a low temperature water tank 53, respectively.
  • the hot water tank 52 and the cold water tank 53 are heated or cooled by the second condenser 122 and the third evaporator 143, respectively, the hot water tank 52 and the low temperature water tank 53 are brought into contact with the external atmosphere.
  • the high temperature water tank 52 cools under the influence of cold air in winter, and the low temperature water tank 53 increases in summer under the influence of hot outside air.
  • the ground water tank 51 is buried in the lower part of the ground, and the high temperature water tank 52 and the low temperature water tank 53 are installed to be locked in the ground water tank 51.
  • the temperature change of the high temperature tank 52 and the low temperature tank 53 is small because the change in ambient temperature is slow and the temperature change range is small in the point of being disposed in water. Can be kept constant for a long time.
  • the groundwater inside the groundwater tank 51 may be groundwater lifted from the groundwater source S or rainwater collected in the rainwater tank R as shown in FIG. 4.
  • the hot water tank 52 is disposed at the upper portion and the cold water tank 53 is disposed at the lower portion, so that the groundwater having a relatively high temperature is collected around the hot water tank 52 due to the tropical flow inside the ground water tank 51.
  • the low temperature groundwater is collected around the low temperature water tank 53 so that the temperature of the high temperature water tank 52 and the low temperature water tank 53 can be maintained for a longer time.
  • Ascending pipe 54 is the water temperature of the upper temperature of the low temperature tank 53 in the lower temperature of the water sinking in the lower portion of the high temperature tank 52 and the high temperature of water collected in the upper portion of the low temperature tank (53).
  • the temperature is higher than the water temperature, the water in the upper portion of the low temperature water tank 53 rises to the high temperature water tank 52 so that the relative temperature difference between the high temperature water tank 52 and the low temperature water tank 53 can be maintained for a longer time.
  • the phenomenon passes through a direct air type air conditioner (not shown) installed in a neighborhood living facility or other space requiring cooling in order to meet the cooling demand, and then returns to the low temperature tank 53. It may occur while the process of returning is repeated.
  • the hot water tank 52 and the cold water tank 53 may be used as a source of hot water and cold water, respectively, may need replenishment.
  • the hot water tank 52 and the low temperature water tank 53 are respectively provided with a hot water tank supplement valve 55 and a cold water tank supplement valve 56 to receive water from the surrounding ground water.
  • the foreign material removal filter may be installed in the hot water tank supplement valve 55 and the cold water tank supplement valve 56 so that foreign substances in the ground water can be filtered out.
  • the second condenser 122 maintains the water in the high temperature water tank 52 at a high temperature
  • the third evaporator 143 maintains the water inside the low temperature water tank 53 at a low temperature.
  • the hot water tank 152 may provide hot water in winter, or may provide heating to an air conditioner (not shown), and the cold water tank 53 may provide cold water, especially in summer or an air conditioner (not shown). Provide cooling.
  • a solar heat recovery unit 60 including a 61 and a solar dust collector 62 may be provided.
  • the high temperature water tank 61 basically stores the water heated by the solar dust collector 62 therein, and supplies the hot water and the heating to each user with the stored water. However, when the hot water stored in the hot water tank 61 is left after meeting the demand for hot water and heating, the hot water tank 61 as shown in FIG. 4 to transfer the remaining hot water into the hot water tank 52. And the hot water tank 52 is connected to the hot water supply pipe 63 and the hot water recovery pipe (64).
  • the second condenser 122 and the third condenser 123 are fully operated, so that the evaporator may also correspond to this.
  • the same amount of refrigerant must be evaporated to ensure that the entire heat pump system is fully operational.
  • the first evaporator 141 and the second evaporator 142 are operated for the cold storage 41 and the freezer 42, which need to be operated in both winter and summer.
  • the 143 and the fourth evaporator 144 do not need to be operated.
  • the evaporator must be operated to correspond to the capacities of the first to third condensers 121, 122, and 123.
  • the ground water in the ground water tank 51 is the winter season.
  • the temperature can be maintained without being affected by the temperature, and the operation of the first to third condensers 121, 122, 123 is balanced with the operation of the first, second, and fourth evaporators 141, 142, 144 due to the operation of the fourth evaporator 144.
  • the operation of the drying chamber 21, which is used in all four seasons, may also be normally performed while meeting hot water and heating demand.
  • the 'room temperature' is about 15 degrees Celsius to 20 degrees Celsius since the room temperature is an average level through four seasons. It refers to the postwar period, not the temperature below freezing in winter.
  • the second embodiment of the cold and hot simultaneous heat pump system according to the present invention is configured as described above so that both the heat and cold demand can be satisfied even with one heat pump, and the simultaneous fulfillment of the cold and heat demand is both winter and summer. Can be done.
  • the specific embodiment in which the present invention is implemented is not limited to the first and second embodiments, and if the known technology is an embodiment of a form added to common technical features of the first and second embodiments, the type of the embodiments to be implemented. There is no limit to form.
  • first expansion valve 132 second expansion valve
  • first evaporator 142 second evaporator
  • bypass pipe 152 fifth expansion valve
  • interlock controller 154 on-off valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

본 발명은 특히 온열 및 냉열수요가 동시에 충족될 수 있도록 온열부하와 냉열부하 간의 균형유지가 가능한 히트펌프 시스템에 관한 것으로서, 압축기와, 압축기에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기와, 응축기로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브와, 각 팽창밸브마다. 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 상기 압축기로 냉매를 이송시키는 복수개의 증발기 및, 상기 복수개의 증발기와 압축기 사이에 설치되는 코어 필터 건조기로 구성되는 냉온동시 히트펌프와, 상기 복수개의 응축기로부터 열에너지를 회수하여 이용하는 복수개의 열 수요처로 구성되는 온열 수요부 및, 상기 복수개의 증발기에 열에너지를 전달하여 냉온을 유지시키는 냉열 수요부로 이루어지되, 상기 코어 필터 건조기와 압축기 사이에 어큐뮬레이터가 설치되고, 상기 복수개의 응축기와 복수개의 팽창밸브 사이에 수액기가 설치되며, 수액기의 출구 측과 어큐뮬레이터의 입구 측을 직접 연결시키는 바이패스 관과, 바이패스 관에 설치되는 팽창밸브 및 개폐밸브로 이루어지는 바이패스 모듈이 설치되어, 온열부하와 냉열부하 간의 균형이 유지되어 하절기와 동절기의 구분 없이 온열수요와 냉열수요를 모두 충족시키는 냉온동시 히트펌프 시스템을 제공하고자 한다.

Description

냉온동시 히트펌프 시스템
본 발명은 히트펌프 시스템에 관한 것으로, 특히 온열 및 냉열수요가 동시에 충족될 수 있도록 온열부하와 냉열부하 간의 균형유지가 가능한 히트펌프 시스템에 관한 것이다.
히트펌프는 동력으로 구동되는 압축기가 기체 냉매를 압축시킴으로써 저온 열원의 열에너지를 고온열원으로 보내어 저온열원의 폐열을 회수하는 장치이다. 따라서 히트펌프는 폐열을 회수하는 작용도 하면서 또한 열 회수 작용을 통해서 저온이 필요한 공간이나 물질에서 열을 제거시키는 작용을 한다.
그런데 열을 공급받아 가열되어야 하는 고온 수요와 저온이 유지되어야 하는 저온 수요는 열 수급이 서로 일치되기 힘들므로 일반적으로 히트펌프는 가열작용 또는 냉각작용 중 어느 하나만 수행한다.
또한, 고온 수요와 저온 수요는 계절에 따라 차이가 크므로, 어느 하나의 히트펌프가 가열과 냉각 작용을 모두 수행하더라도 통상적으로 동절기에는 가열작용 만을 수행하고, 하절기에는 냉각작용 만을 수행한다. 따라서 고온 수요와 저온 수요를 동시에 충족시킬 수 있게 설계된 히트펌프라 하더라도 계절에 따라 열 수급이 달라지므로 가열작용과 냉각작용이 동절기와 하절기 구분없이 동시에 수행되긴 힘든 것이다.
이러한 이유로 히트펌프를 하절기에는 냉각 작용만을 수행하도록 가동하고 동절기에는 가열 작용만을 수행하도록 가동한다면, 동절기에도 냉각 작용이 필요한 냉장 또는 냉동고나, 또는 하절기에도 가열 작용이 필요한 건조실이나 건조로를 운영하기 위해서는 결국 두 대 이상의 히트펌프가 필요하게 되어 설비비가 증대될 뿐만 아니라 두 대 이상의 히트펌프 가동을 위한 전력 소모량도 히트펌프의 수만큼 증가하게 된다.
관련 종래기술을 살펴보면 도 1에 도시된 종래기술인 대한민국등록특허공보 제10-0686189호(등록일자: 2007.02.15)에 공개된 '온수의 폐열 회수 장치'를 들 수 있다.
상기 종래기술은 사용된 온수가 인입되는 폐수 인입 관(102)이 연결되는 폐수 수집 조(100)와, 폐수 수집 조(100)와 별체로 구비되어 폐수공급관(202)에 의해 접속되며 열교환기(210)가 설치된 폐수 열 교환 조(200)와, 폐수 열교환조(200)에 연결되는 폐수배출관(204)을 포함하는 온수의 폐열회수장치로서, 열교환기(210)를 통해 얻은 열의 회수가 가능하게 되는 효과가 있다.
그러나 상기 종래기술에서 제시된 폐열회수장치는 폐수에서 회수된 열에너지가 제공될 수 있는 효과와 폐수가 어느 정도 냉각되는 효과는 있지만, 적극적으로 냉열과 온열이 요구되는 서로 다른 수요처를 동시에 만족시킬 수 있는 열 부하 수급 구성이 제시되지 못하는 한계가 있다.
[선행기술문헌]
1. 대한민국등록특허공보 제10-0686189호(등록일자: 2007.02.15)
이에 본 발명은 종래기술의 문제점을 개선하기 위한 것으로써, 서로 분리된 온열 수요와 냉열 수요가 하나의 사이클로 동시에 충족될 수 있을 뿐만 아니라, 이러한 동시 충족 작용이 기온 차이가 큰 동절기와 하절기에 모두 이루어질 수 있는 냉온동시 히트펌프 시스템을 제공하고자 한다.
이러한 목적을 달성하기 위한 본 발명에 따른 냉온동시 히트펌프 시스템은, 기체 냉매를 압축시키는 압축기와, 압축기에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기와, 응축기로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브와, 각 팽창밸브 마다 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 상기 압축기로 냉매를 이송시키는 복수개의 증발기 및, 상기 복수개의 증발기와 압축기 사이에 설치되는 코어 필터 건조기로 구성되는 냉온동시 히트펌프와, 상기 복수개의 응축기로부터 열에너지를 회수하여 이용하는 복수개의 열 수요처로 구성되는 온열 수요부 및, 상기 복수개의 증발기에 열에너지를 전달하여 냉온을 유지시키는 냉열 수요부로 이루어지되, 상기 코어 필터 건조기와 압축기 사이에 어큐뮬레이터가 설치되고, 상기 복수개의 응축기와 복수개의 팽창밸브 사이에 수액기가 설치되며, 수액기의 출구 측과 어큐뮬레이터의 입구 측을 직접 연결시키는 바이패스 관과, 바이패스 관에 설치되는 팽창밸브 및 개폐밸브로 이루어지는 바이패스 모듈이 설치되어, 동절기에 온열부하가 냉열부하보다 증가될 경우, 냉매 중의 일부가 증발기를 통과하지 않고 순환됨으로써, 온열부하와 냉열부하 간의 균형이 유지되어 하절기와 동절기의 구분없이 온열수요와 냉열수요를 모두 충족시키는 것을 특징으로 한다.
이 경우 바람직하게는 상기 어큐뮬레이터로부터 응축기로 흐르는 냉매 압력과 복수개의 응축기로부터 복수개의 팽창밸브로 흐르는 냉매의 압력이 동시에 측정되는 듀얼 압력 센서와, 압축기로부터 배출되는 냉매의 온도가 측정되는 온도 센서가 설치되어, 듀얼 압력 센서의 압력 수치와 온도 센서의 온도 수치에 따라 수액기에 저장된 냉매를 추가적으로 추출하거나 또는 상기 히트펌프에서 순환중인 냉매 중의 일부가 수액기에 저장될 수 있다.
이때 바람직하게는 상기 온도 센서와 개폐밸브를 연동시켜서, 온도 센서에서 측정된 온도 수치가 일정한 값보다 작은 경우에 개폐밸브가 개방되면서 어큐뮬레이터로 진입되는 냉매 양이 증가됨으로써, 압축기에서 배출되는 냉매의 압력과 온도가 증가된다.
또한, 본 발명에 따른 냉온동시 히트펌프 시스템은 기체 냉매를 압축시키는 압축기와, 압축기에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기와, 응축기로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브와, 각 팽창밸브 마다 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 상기 압축기로 냉매를 이송시키는 복수개의 증발기 및, 상기 복수개의 증발기와 압축기 사이에 설치되는 코어 필터 건조기로 구성되는 냉온동시 히트펌프와, 지하에 매립되게 설치되는 지하수조와, 지하수조에 잠기게 설치되는 고온수조 및, 지하수조에 잠기게 설치되는 저온수조로 이루어지며, 고온수조는 상기 응축기 중 하나로부터 열에너지를 공급받아 가열되고, 저온수조는 지하수조에서 유출되는 지하수가 상기 증발기 중 하나를 통과하면서 증발기에 폐열을 전달하여 냉각된 후 회수되는 지하수를 공급받음으로써, 고온수조 내부의 고온수와 저온수조 내부의 저온수 온도가 장시간 유지되어 온수 및 냉기 생산용 냉수를 제공하는 것을 특징으로 하는 삼중수조와, 상기 응축기 중 하나로부터 열에너지를 공급받는 건조실과, 상기 증발기 중 하나로부터 냉열을 공급받는 냉장창고 및, 상기 증발기 중 하나로부터 냉열을 공급받는 냉동고로 이루어지되, 상기 코어 필터 건조기와 압축기 사이에 어큐뮬레이터가 설치되고, 상기 복수개의 응축기와 복수개의 팽창밸브 사이에 수액기가 설치되며, 수액기의 출구 측과 어큐뮬레이터의 입구 측을 직접 연결시키는 바이패스 관과, 바이패스 관에 설치되는 팽창밸브 및 개폐밸브로 이루어지는 바이패스 모듈이 설치되어, 동절기에 온열부하가 냉열부하보다 증가될 경우, 냉매 중의 일부가 증발기를 통과하지 않고 순환됨으로써, 온열 부하와 냉방 부하 간의 균형이 유지되어 하절기와 동절기의 구분없이 온열 수요와 냉열 수요를 모두 충족시키게 구성된다.
여기서 바람직하게는 상기 어큐뮬레이터로부터 응축기로 흐르는 냉매 압력과 복수개의 응축기로부터 복수개의 팽창밸브로 흐르는 냉매의 압력이 동시에 측정되는 듀얼 압력 센서와, 압축기로부터 배출되는 냉매의 온도가 측정되는 온도 센서가 설치되어, 듀얼 압력 센서의 압력 수치와 온도 센서의 온도 수치에 따라 수액기에 저장된 냉매를 추가적으로 추출하거나 또는 상기 히트펌프에서 순환중인 냉매 중의 일부가 수액기에 저장된다.
이 경우 바람직하게는 상기 온도 센서와 개폐밸브를 연동시켜서, 온도 센서에서 측정된 온도 수치가 일정한 값보다 작은 경우에 개폐밸브가 개방되면서 어큐뮬레이터로 진입되는 냉매 양이 증가됨으로써, 압축기에서 배출되는 냉매의 압력과 온도가 증가된다.
한편, 바람직하게는 상기 고온수조와 연결되어 고온수조 내부의 온수를 전달받아 저장시키거나 또는 저장된 고온수를 고온수조로 전달시키는 고온수탱크와, 태양열로 고온수탱크 내부의 고온수를 가열시키는 태양열집진기로 이루어지는 태양열회수부가 설치되며, 상기 증발기 중 어느 하나는 하절기에 고온수탱크 내부의 고온수를 전달받아 냉각시킨 후 냉각된 고온수가 상기 삼중수조를 구성하는 지하수조 내부로 이송됨으로써, 하절기에 온열부하와 냉열부하의 수급이 이루어질 수 있다.
본 발명에 따른 냉온동시 히트펌프 시스템에 따르면, 하나의 히트펌프로 온열 수요와 냉열 수요가 동시에 충족 가능함과 아울러 계절 변화에 관계없이 하나의 히트펌프를 그대로 활용하면서도 항상적인 온열 및 냉열 수요와 계절적인 온열 및 냉열 수요가 모두 충족됨으로써, 두 개의 히트펌프를 사용할 필요가 없어 효율이 극대화되고 설비비의 대폭 감소 및 소요 동력의 대폭 절감이 가능한 효과가 있다.
도 1은 종래기술을 나타내는 구성도,
도 2는 본 발명에 따른 히트펌프 시스템의 개념도,
도 3은 도 2를 구체적으로 나타낸 구성도,
도 4는 추가 실시예에 따른 히트펌프 시스템의 개념도,
도 5는 히트펌프의 냉매 순환을 나타내는 온도-엔트로피 그래프,
도 6은 히트펌프의 냉매 순환을 나타내는 압력-엔탈피 그래프.
본 발명의 실시예에서 제시되는 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있다. 또한 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 되며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하에서는 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명한다.
본 발명에 따른 히트펌프 시스템은 하나의 히트펌프로 온열 수요와 냉열 수요를 계절 변화에 상관없이 충족시켜줄 수 있는 부하 조절 수단이 구비되는 것을 특징으로 한다.
본 발명에 따른 히트펌프 시스템은 아래에서 제시되는 제1실시예와 제2실시예로 구현될 수 있다. 이하에서는 도 2와 도 3을 참조하여 제1실시예를 설명하고, 도 4를 참조하여 제2실시예를 설명하기로 한다.
<제1실시예>
제1실시예에서 본 발명에 따른 히트펌프 시스템은 냉온동시 히트펌프(10)와, 온열 수요부(20) 및, 냉열 수요부(40)로 이루어진다.
냉온동시 히트펌프(10)는 도 2 및 도 3에 도시된 바와 같이 기체 냉매를 압축시키는 압축기(11)와, 압축기(11)에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기(21)와, 복수개의 응축기(21)로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브(13)와, 각 팽창밸브 마다 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 압축기(11)로 냉매를 이송시키는 복수개의 증발기(14) 및, 복수개의 증발기(14)와 압축기(11) 사이에 설치되는 코어 필터 건조기(16)로 구성된다.
온열 수요부(20)는 도 2에 도시된 바와 같이 상기 복수개의 응축기(12) 중 각각의 응축기로부터 열에너지를 공급받는 건조실(21)과 온수탱크(22)를 말한다. 이때 건조실에 연결되는 응축기를 제1응축기(121)라 하고 온수탱크(22)에 연결되는 응축기를 제2응축기(122)라 한다. 나머지 응축기를 제3응축기(123)라 하며, 제3응축기로(123)부터 열에너지를 공급받는 온열 수요부는 도시되진 않았지만 건조로 또는 발전기의 증발기와 같이 열에너지를 필요로 하는 시설물일 수 있다.
냉열 수요부(40)는 상기 복수개의 증발기(14)로 열에너지를 뺏기면서 낮은 온도가 유지되는 시설이다. 구체적으로는 냉장창고(41), 냉동고(42), 냉수탱크(43)이다. 이때 냉장창고(41)에 연결되는 증발기를 제1증발기(141)라 하고, 냉동고(42)에 연결되는 증발기를 제2증발기(142)라 하며, 냉수탱크(43)에 연결되는 증발기를 제3증발기(143)라 한다. 냉수탱크(43)에 공급되는 물은 지하수탱크(45)로부터 공급되며 지하수탱크(45)로부터 공급되는 물이 제3증발기(143)를 통과하면서 냉각되어 냉수탱크(43)로 이동된다. 나머지 하나의 증발기를 제4증발기(144)라 하며, 제4증발기(144)와 연결되는 냉열 수요부는 추가적인 냉동고 또는 냉장창고(미도시)일 수 있으며 또는 기타 낮은 온도가 유지되어야 하는 시설물일 수 있다.
그리고 냉온동시 히트펌프에는 어큐뮬레이터(17)와 수액기(18) 및 바이패스 모듈(15)이 설치된다. 어큐뮬레이터(17)는 도 2 및 도 3에 도시된 바와 같이 코어 필터 건조기(16)와 압축기(11) 사이에 설치된다. 어큐뮬레이터(17)는 압축기(11)로 진입되는 냉매 중에 미처 증발되지 않은 액상의 냉매가 함유될 경우 냉매를 액체와 기체로 분리시켜서 기체 냉매만 압축기(11)로 통과시키고 액체 상태의 냉매는 일시적으로 저장하는 탱크 형태의 용기이다.
수액기(18)는 상기 복수개의 응축기(12)와 복수개의 팽창밸브(13) 사이에 설치되어 복수개의 응축기(12)에서 액화된 고온 고압의 냉매액을 일시적으로 저장하는 용기로서 복수개의 증발기(14) 내의 부하 변동에 따른 냉매 량의 변화를 흡수하는 작용을 한다.
그리고 바이패스 모듈(15)은 수액기(18)의 출구 측과 어큐뮬레이터(17)의 입구 측을 직접 연결시키는 바이패스 관(151)과, 바이패스 관(151)에 설치되는 팽창밸브(제5팽창밸브(152)) 및 개폐밸브(154)로 이루어진다. 여기서 개폐밸브(154)가 개방되는 경우 복수개의 응축기(12)에서 배출되어 복수개의 팽창밸브(13)로 이송되는 냉매 중의 일부가 개폐밸브(154)의 개방 정도에 따라 유량이 조절되면서 복수개의 팽창밸브(13)를 거치지 않고 바이패스 관(151)을 따라 이동되어 곧바로 어큐뮬레이터(17)로 진입된다.
바이패스 모듈(15)이 설치됨으로써, 첫째로 특히 동절기에 난방이나 온수 소비가 늘어나면서 복수개의 응축기(12)의 부하가 커질 때, 만일 복수개의 증발기(14) 중 일부가 동절기에 가동되지 않는다면 냉매가 복수개의 증발기(14)를 거치지 않고 바로 바이패스 관(151)을 따라 이동됨으로써 곧바로 어큐뮬레이터(17)를 통과하여 압축기(11)로 이송되어 온열 부하와 냉열 부하의 수급이 조절될 수 있다. 이때 바이패스 관(151)에 팽창밸브(제5팽창밸브(152))가 있으므로 냉매는 일정정도 증발하여 일부는 기체 상태가 되지만 여전히 액체 상태의 냉매가 섞여 있으므로 어큐뮬레이터(17)는 액체 상태의 냉매를 분리시켜 기체 상태의 냉매만 압축기(11)로 보내고 액체 상태의 냉매는 액상냉매 바이패스 관(19)을 따라 곧바로 복수개의 응축기(12)로 진입된다. 따라서 바이패스 모듈(15)과 어큐뮬레이터(17)만으로 일차적인 부하 수급 조절이 이루어진다.
둘째로 바이패스 모듈(15)은 수액기(18)와의 상호작용을 통하여 부하조절 작용이 더욱 대량으로 이루어질 수 있다. 바이패스 모듈(15)만으로는 동절기 온열 수호 급증 상황에서 부하 조절에 한계가 있을 때 수액기(18)에 저장된 냉매를 배출시키면서 그중 일부 냉매를 바이패스 관(151)을 통하여 압축기(11)로 이송시킨다면, 온열 수요가 증가된 만큼 냉매 량을 증가시킬 수 있고, 그러는 와중에도 냉열 부하는 동절기에 요구되는 적은 수요량만큼을 충족시키는 것이 가능하게 된다. 즉 동절기에 온열 수요의 증대가 냉열 부하량에 영향을 미치지 않으면서 충족 가능하게 되는 것이다.
한편, 도 2에서 각각 A, B, C, D1,D2,D3,D4라고 표시된 지점은 도 5 및 도 6의 그래프에 표시된 A, B, C, D에 대응된다. 참고로 도 5 및 도 6의 그래프에서는 증발기는 복수개가 아니라 하나인 것으로 가정하여 도 2 및 도 3에서 D1,D2,D3,D4 지점은 도 5 및 도 6에서는 D인 것으로 표시하기로 한다.
이 경우 동절기와 같이 온열 부하가 증가되면서도 복수개의 증발기(14)는 주위 온도 저하로 인하여 압축기(11)에 진입하는 냉매가 도 5에서 압력 P2보다 낮아지거나 또는 복수개의 응축기(12)에서 배출되는 냉매 압력이 P1보다 낮을 경우 압축기(11)의 출력을 증가시켜 냉매를 더욱 고압으로 압축시킴으로써 압축기(11)에서 배출되는 냉매 압력이 P1이 되도록 조절시킬 수 있다.
이처럼 압축기(11)를 이용하여 냉매 압력을 원활하게 조절시키기 위하여 냉매 압력이 실시간으로 측정될 필요가 있다. 따라서, 도 2에 도시된 바와 같이 A 지점과 C 지점의 압력을 동시에 측정하는 듀얼 압력 센서(31)가 설치된다. 참고로 도 5 및 도 6에 도시된 압력 P2는 A 지점의 압력이고 P1은 C 지점의 압력이다.
또한, 복수개의 증발기(14)를 거치지 않고 바이패스 관(151)을 통하여 곧바로 압축기(11)를 통과한 후 복수개의 응축기(12)로 진입되는 냉매 량을 제어시키기 위하여 압축기(11)에서 배출되는 냉매 온도를 측정하는 온도 센서(32)와, 온도 센서(32)의 측정값에 따라 바이패스 관(151)에 설치된 개폐밸브(154)의 개폐 정도를 자동으로 제어시키는 연동 제어기(153)가 설치될 수 있다.
압축기(11)에서 배출되는 기체 냉매의 온도는 도 5 및 도 6에서 B로 표시된 지점의 온도이다. 특히 동절기의 경우 주위의 낮은 온도로 인하여 냉매 열 부하가 낮아지면 온도와 압력이 함께 낮아지게 된다. 이러한 현상이 누적되면 순환되는 냉매의 압력은 계속 낮아지게 되어 결국 도 5의 그래프에서 배출열량이 낮아지면서 효율이 저하된다. 이때 냉매의 압력을 높여줌으로써 냉매의 온도를 올리려면 추가적인 냉매의 공급이 필요하게 된다. 따라서 수액기(18)로부터 냉매를 추가적으로 배출시키면서 또한 냉매의 열 부하를 유지시키기 위해서 추가되는 냉매를 복수개의 증발기(14)를 거치지 않고 곧바로 압축기(11)로 보낼 필요가 있다.
따라서 B 지점에서의 온도가 낮아지면 자동적으로 수액기(18)에서 추가 냉매가 배출되면서 온도가 낮아질수록 개폐밸브(154)가 더 많이 개방되게 연동시키면 동절기에 열효율이 저하되는 것이 방지될 수 있는 것이다.
<제2실시예>
제2실시예는 냉온동시 히트펌프(10)와, 냉온동시 히트펌프(10)에 설치되는 바이패스 모듈(15)과 듀얼 압력 센서(31) 및 온도센서(32)의 구성은 모두 제1실시예와 동일하므로 이에 대한 설명은 생략하기로 한다.
제2실시예는 제1실시예에서 온수탱크(22)와 냉수탱크(43)가 별도의 구성으로 설치되는 것과 달리 도 4에 도시된 바와 같이 온수탱크와 냉수탱크가 하나의 지하수조(51) 내부에 배치되는 구조로 설치된다. 이때 제2실시예에서는 제1실시예에서의 온수탱크와 냉수탱크를 각각 고온수조(52)와 저온수조(53)로 칭하기로 한다.
고온수조(52)와 저온수조(53)는 각각 제2응축기(122)와 제3증발기(143)로 가열 또는 냉각되긴 하지만, 고온수조(52)와 저온수조(53)가 외부 대기와 접촉되게 설치되면 동절기에는 고온수조(52)가 차가운 공기의 영향으로 식어버리게 되고, 하절기에는 저온수조(53)가 더운 외부 공기의 영향으로 온도가 상승하게 된다.
따라서 본 발명에서는 이러한 현상을 방지시키기 위해서 지면 하부에 지하수조(51)를 매립시키고 고온수조(52)와 저온수조(53)가 지하수조(51) 내부에 잠기게 설치된다. 이 경우 지하에 매립되는 점에서 계절 변화에 따른 온도 영향이 대폭 감소될 뿐만 아니라, 수중에 배치되는 점에서 주위 온도 변화가 느리고 온도 변화 폭이 작아 고온수조(52)와 저온수조(53)의 온도가 오랜 시간 일정하게 유지될 수 있다. 이때 지하수조(51) 내부의 지하수는 도 4에 도시된 바와 같이 지하수원(S)에서 인양되는 지하수일 수도 있고 또는 우수 탱크(R)에 수집된 빗물일 수도 있다.
특히 본 발명에서는 고온수조(52)가 상부에 배치되고 저온수조(53)는 하부에 배치됨으로써 지하수조(51) 내부의 열대류로 인하여 상대적으로 높은 온도의 지하수가 고온수조(52) 주위에 모이고 낮은 온도의 지하수가 저온수조(53) 주위에 모이게 되어 고온수조(52)와 저온수조(53)의 온도가 더욱 장시간 유지될 수 있다.
이때 고온수조(52)의 저면과 저온수조(53)의 상면은 도 4에 도시된 바와 같이 상승관(54)이 서로 연결시킨다. 상승관(54)은 고온수조(52) 하부에 가라앉는 낮은 온도의 물과 저온수조(53) 상부에 모이는 높은 온도의 물중에서 저온수조(53) 상부의 물 온도가 고온수조(52) 하부의 물 온도보다 더 높을 경우 저온수조(53) 상부의 물이 고온수조(52)로 상승하게 되어 고온수조(52)와 저온수조(53)의 상대적 온도 차이가 더 장시간 유지될 수 있는 작용을 한다. 이러한 현상은 하절기에 냉방수요 충족을 위해서 저온수조(53) 내부의 물이 근린생활시설 또는 기타 냉방이 필요한 공간에 설치된 직팽식 공기조화기(미도시)를 통과한 후 다시 저온수조(53)로 복귀되는 과정이 반복되면서 발생될 수 있다.
그리고 고온수조(52)와 저온수조(53)는 각각 온수와 냉수의 수원으로도 사용될 수 있어 보충이 필요할 수 있다. 이때 고온수조(52)와 저온수조(53)에는 각각 온수조 보충밸브(55)와 냉수조 보충밸브(56)가 설치되어 주위의 지하수로부터 물을 보충받을 수 있다. 이 경우 지하수의 이물질이 걸러질 수 있게 온수조 보충밸브(55)와 냉수조 보충밸브(56)에는 이물질 제거 필터가 설치될 수 있다.
제2응축기(122)는 도 4에 도시된 바와 같이 고온수조(52) 내부의 물을 높은 온도로 유지시켜 주며, 제3증발기(143)는 저온수조(53) 내부의 물을 낮은 온도로 유지시켜 준다. 이때 고온수조(152)는 특히 동절기에 온수를 제공하거나 또는 공기조화기(미도시)에 난방을 제공하며, 저온수조(53)는 특히 하절기에 냉수를 제공하거나 또는 공기조화기(미도시)에 냉방을 제공한다.
그런데, 동절기에는 온수 및 난방이 대량으로 요구될 수 있으므로 추가적인 온수 제공 수단이 필요하게 된다. 이러한 경우, 온수 대량 소비를 위해서 지하수가 온수조 보충밸브(55)를 통하여 유입되면 동절기의 지하수 온도는 낮으므로 제2응축기(122)만 가동시켜 데우려면 상당히 많은 시간이 소요될 수 있다. 따라서 온수조 보충밸브(55)로 지하수가 보충되는 것이 아니라 제3응축기(123)가 지하수를 데운 다음 데워진 지하수를 곧바로 고온수조(52) 내부로 유입시킴으로써, 온수 소비로 감소되는 고온수조(52)의 유량을 보충시킴과 동시에 고온수조(52)의 수온이 온수로 사용될 수 있을 정도로 높게 유지될 수 있다.
한편, 제2실시예에서는 특히 동절기 온수 및 난방을 위한 열원으로서 고온수조(52)만 활용하였을 때 고온수조(52)의 용량 한계로 인하여 온수 및 난방 수요를 충족시키지 못하는 경우를 대비하여 고온수탱크(61)와 태양열집진기(62)로 이루어지는 태양열 회수부(60)가 마련될 수 있다.
고온수탱크(61)는 기본적으로 태양열집진기(62)로 가열된 물이 내부에 저장되고, 저장된 물로 온수와 난방을 각 수요처에 공급하게 된다. 그런데 고온수탱크(61)에 저장된 고온수가 온수와 난방 수요를 충족시킨 후 남을 경우에는 고온수조(52) 내부로 남은 고온수를 이송시킬 수 있게 도 4에 도시된 바와 같이 고온수탱크(61)와 고온수조(52)는 고온수 공급관(63)과 고온수 회수관(64)으로 연결된다.
또한, 동절기에 난방 및 온수 수요를 고온수조(52) 내부의 온수로만 충족시킬 경우, 앞서 설명된 바와 같이 제2응축기(122)와 제3응축기(123)가 풀가동되므로 증발기도 이에 대응될 수 있게 응축기와 같은 양의 냉매를 증발시켜서 전체 히트펌프 시스템이 완전히 가동될 수 있게 되어야 한다.
그러나 동절기에는 냉방 수요가 없고, 다만 동절기와 하절기에 모두 가동이 필요한 냉장창고(41)와 냉동고(42)를 위해서 제1증발기(141)와 제2증발기(142)만 가동될 뿐이어서 제3증발기(143) 및 제4증발기(144)는 가동이 필요 없게 된다. 하지만, 이런 상황에서도 제1 내지 제3응축기(121,122,123)의 용량에 대응될 수 있게 증발기도 가동되어야 한다.
이 경우 태양열로 가열된 고온수탱크(61) 내의 고온수를 제4증발기(144)로 상온까지 식혀서 지하수조(51) 내부로 고온수를 이동시킨다면, 지하수조(51) 내부의 지하수는 동절기의 기온 영향을 받지 않고 상온 상태가 유지될 수 있으며, 또한 제4증발기(144)의 가동으로 인하여 제1 내지 제3응축기(121,122,123)의 가동이 제1, 2, 4증발기(141,142,144)의 가동과 균형을 이루게 되어 결국 온수와 난방 수요도 충족시키면서 4계절 모두 사용되는 건조실(21)의 운영도 정상적으로 이루어질 수 있게 된다. 참고로 이때 고온수조(52)가 제4증발기(144)에 열에너지를 전달하여 식혀져서 상온까지 온도가 낮아질 때의 '상온'은 사계절을 거쳐서 평균적인 수준의 상온이므로 대략 섭씨 15도 내지 섭씨 20도 전후를 지칭하며 동절기의 상온인 영하의 온도는 아니다.
본 발명에 따른 냉온동시 히트펌프 시스템의 제2실시예는 이와 같이 구성됨으로써 하나의 히트펌프로도 냉열과 온열 수요가 모두 충족될 수 있고 이러한 냉열과 온열 수요의 동시 충족은 동절기와 하절기에 모두 다 이루어질 수 있다.
다만 본 발명이 구현되는 구체적인 형태는 제1 및 제2실시예로 한정되는 것은 아니며, 공지의 기술이 제1 및 제2실시예의 공통적인 기술적 특징에 부가되는 형태의 실시예라면 구현되는 실시예의 종류와 형태에 제한은 없다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.
[부호의 설명]
R : 우수 탱크 S : 지하수원
10 : 냉온동시 히트펌프 11 : 압축기
12 : 복수개의 응축기 13 : 복수개의 팽창밸브
14 : 복수개의 증발기 15 : 바이패스 모듈
16 : 코어 필터 건조기 17 : 어큐뮬레이터
18 : 수액기 19 : 액상냉매 바이패스 관
20 : 온열 수요부 21 : 건조실
22 : 온수탱크 30 : 센서부
31 : 듀얼 압력 센서 32 : 온도 센서
40 : 냉열 수요부 41 : 냉장창고
42 : 냉동고 43 : 냉수탱크
45 : 지하수 탱크 50 : 삼중수조
51 : 지하수조 52 : 고온수조
53 : 저온수조 54 : 상승관
55 : 온수조 보충밸브 56 : 냉수조 보충밸브
60 : 태양열 회수부 61 : 고온수탱크
62 : 태양열 집진기 63 : 고온수 공급관
64 : 고온수 회수관 121 : 제1응축기
122 : 제2응축기 123 : 제3응축기
131 : 제1팽창밸브 132 : 제2팽창밸브
133 : 제3팽창밸브 134 : 제4팽창밸브
141 : 제1증발기 142 : 제2증발기
143 : 제3증발기 144 : 제4증발기
151 : 바이패스관 152 : 제5팽창밸브
153 : 연동제어기 154 : 개폐밸브

Claims (8)

  1. 기체 냉매를 압축시키는 압축기와, 압축기에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기와, 응축기로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브와, 각 팽창밸브 마다 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 상기 압축기로 냉매를 이송시키는 복수개의 증발기 및, 상기 복수개의 증발기와 압축기 사이에 설치되는 코어 필터 건조기로 구성되는 냉온동시 히트펌프와;
    상기 복수개의 응축기로부터 열에너지를 회수하여 이용하는 복수개의 열 수요처로 구성되는 온열 수요부; 및,
    상기 복수개의 증발기에 열에너지를 전달하여 냉온을 유지시키는 냉열 수요부;로 이루어지되,
    상기 코어 필터 건조기와 압축기 사이에 어큐뮬레이터가 설치되고, 상기 복수개의 응축기와 복수개의 팽창밸브 사이에 수액기가 설치되며, 수액기의 출구 측과 어큐뮬레이터의 입구 측을 직접 연결시키는 바이패스 관과, 바이패스 관에 설치되는 팽창밸브 및 개폐밸브로 이루어지는 바이패스 모듈이 설치되어,
    동절기에 온열부하가 냉열부하보다 증가될 경우, 냉매 중의 일부가 증발기를 통과하지 않고 순환됨으로써, 온열부하와 냉열부하 간의 균형이 유지되어 하절기와 동절기의 구분없이 온열수요와 냉열수요를 모두 충족시키는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  2. 제1항에 있어서,
    상기 어큐뮬레이터로부터 압축기로 흐르는 냉매 압력과 수액기로부터 복수개의 팽창밸브로 흐르는 냉매의 압력이 동시에 측정되는 듀얼 압력 센서가 설치되어, 압축기로 흐르는 냉매 압력이 포화증기압에 미달되거나 또는 팽창밸브로 흐르는 냉매 압력이 포화액체압력보다 미달되는 경우 압축기 출력이 더 증가되는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  3. 제1항에 있어서,
    압축기로부터 배출되는 냉매의 온도가 측정되는 온도 센서가 상기 바이패스 모듈에 설치된 개폐밸브와 연동되게 설치되어, 온도 센서에서 측정되는 온도 값이 포화수증기 온도에 미달될 경우 자동으로 개폐밸브가 개방되는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  4. 기체 냉매를 압축시키는 압축기와, 압축기에서 압축된 기체 냉매를 공급받아 응축시키는 병렬로 연결된 복수개의 응축기와, 응축기로 응축된 액체 냉매를 공급받아 팽창시키는 병렬로 연결된 복수개의 팽창밸브와, 각 팽창밸브 마다 하나씩 연결되어 팽창된 액체냉매를 기화시킨 후 다시 상기 압축기로 냉매를 이송시키는 복수개의 증발기 및, 상기 복수개의 증발기와 압축기 사이에 설치되는 코어 필터 건조기로 구성되는 냉온동시 히트펌프와;
    지하에 매립되게 설치되는 지하수조와, 지하수조에 잠기게 설치되는 고온수조 및, 지하수조에 잠기게 설치되는 저온수조로 이루어지며, 고온수조는 상기 응축기 중 하나로부터 열에너지를 공급받아 가열되고, 저온수조는 상기 증발기 중 하나에 열에너지를 전달하면서 냉각되며, 고온수조 내부의 고온수와 저온수조 내부의 저온수 온도가 장시간 유지되어 온수 및 냉기 생산용 냉수를 제공하는 것을 특징으로 하는 삼중수조와;
    상기 응축기 중 하나로부터 열에너지를 공급받는 건조실과;
    상기 증발기 중 하나로부터 냉열을 공급받는 냉장창고; 및,
    상기 증발기 중 하나로부터 냉열을 공급받는 냉동고; 로 이루어지되,
    상기 코어 필터 건조기와 압축기 사이에 어큐뮬레이터가 설치되고, 상기 복수개의 응축기와 복수개의 팽창밸브 사이에 수액기가 설치되며, 수액기의 출구 측과 어큐뮬레이터의 입구 측을 직접 연결시키는 바이패스 관과, 바이패스 관에 설치되는 팽창밸브 및 개폐밸브로 이루어지는 바이패스 모듈이 설치되어,
    동절기에 온열부하가 냉열부하보다 증가될 경우, 냉매 중의 일부가 증발기를 통과하지 않고 순환됨으로써, 온열 부하와 냉방 부하 간의 균형이 유지되어 하절기와 동절기의 구분 없이 온열 수요와 냉열 수요를 모두 충족시키는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  5. 제4항에 있어서,
    상기 응축기 중 하나는 지하수조 내부의 물을 가열시켜 고온수조 내부로 직접 이송시킴으로써 동절기에 온수 사용 증가로 인하여 고온수조의 유량이 저하될 때 고온수조에 가열된 온수를 공급하여 열과 유량을 모두 보충시키는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  6. 제4항에 있어서,
    상기 어큐뮬레이터로부터 압축기로 흐르는 냉매 압력과 수액기로부터 복수개의 팽창밸브로 흐르는 냉매의 압력이 동시에 측정되는 듀얼 압력 센서가 설치되어, 압축기로 흐르는 냉매 압력이 포화수증기압에 미달되거나 또는 팽창밸브로 흐르는 냉매 압력이 포화액체압력보다 미달되는 경우 압축기 출력이 더 증가되는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  7. 제6항에 있어서,
    압축기로부터 배출되는 냉매의 온도가 측정되는 온도 센서가 상기 바이패스 모듈에 설치된 개폐밸브와 연동되게 설치되어, 온도 센서에서 측정되는 온도 값이 포화수증기 온도에 미달될 경우 자동으로 개폐밸브가 개방되는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
  8. 제4항에 있어서,
    상기 고온수조와 연결되어 고온수조 내부의 온수를 전달받아 저장시키거나 또는 저장된 고온수를 고온수조로 전달시키는 고온수탱크와, 태양열로 고온수탱크 내부의 고온수를 가열시키는 태양열집진기로 이루어지는 태양열회수부가 설치되며,
    상기 증발기 중 어느 하나는 하절기에 고온수탱크 내부의 물을 전달받아 상온으로 냉각시킨 후 상기 삼중수조를 구성하는 지하수조 내부로 이송시킴으로써, 동절기에 응축기 가동률이 최대로 될 때 응축기 가동률에 대응되게 증발기를 가동시킴과 동시에 지하수조의 지하수 온도가 동절기 환경의 영향을 받지 않게 상온으로 유지시킴으로써 겨울철 온열 공급 효율을 증가시키는 것을 특징으로 하는 냉온동시 히트펌프 시스템.
PCT/KR2017/004052 2017-03-28 2017-04-14 냉온동시 히트펌프 시스템 WO2018182084A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170039210A KR102109398B1 (ko) 2017-03-28 2017-03-28 냉온동시 히트펌프 시스템
KR10-2017-0039210 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018182084A1 true WO2018182084A1 (ko) 2018-10-04

Family

ID=63677778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004052 WO2018182084A1 (ko) 2017-03-28 2017-04-14 냉온동시 히트펌프 시스템

Country Status (2)

Country Link
KR (1) KR102109398B1 (ko)
WO (1) WO2018182084A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489388A (zh) * 2018-11-28 2019-03-19 青岛理工大学 一种热泵和太阳能耦合的消防水带干燥装置
CN110848846A (zh) * 2019-11-19 2020-02-28 珠海格力电器股份有限公司 一种太阳能空调热泵系统、控制方法和空调器
CN113480132A (zh) * 2021-07-15 2021-10-08 西安联盛能源科技有限公司 一种污泥真空干燥系统以及方法
CN115218643A (zh) * 2022-08-09 2022-10-21 大连海洋大学 用于海带干燥的太阳能热泵自适应控制系统及方法
CN115614859A (zh) * 2022-09-28 2023-01-17 清华大学 一种夏热冬用、冬冷夏用的跨季节供热供冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190507A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd ヒートポンプ
KR19990038277A (ko) * 1997-11-04 1999-06-05 구자홍 냉, 난방기 사이클
KR20020054288A (ko) * 2002-05-30 2002-07-06 김희정 냉동사이클을 이용한 냉온수기 겸 냉온장고
KR100914776B1 (ko) * 2008-01-24 2009-09-01 주식회사 위비전 냉난방 겸용 냉온수 생산 장치
KR20100128539A (ko) * 2009-05-28 2010-12-08 주식회사 엔비컴 대형 건물의 히트펌프식 냉온수 발생 장치
KR101041745B1 (ko) * 2011-05-04 2011-06-16 장한기술 주식회사 솔라 싱크 지열원 히트펌프 시스템과 그 제어방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100686189B1 (ko) 2006-04-28 2007-02-22 윤명혁 온수의 폐열회수장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190507A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd ヒートポンプ
KR19990038277A (ko) * 1997-11-04 1999-06-05 구자홍 냉, 난방기 사이클
KR20020054288A (ko) * 2002-05-30 2002-07-06 김희정 냉동사이클을 이용한 냉온수기 겸 냉온장고
KR100914776B1 (ko) * 2008-01-24 2009-09-01 주식회사 위비전 냉난방 겸용 냉온수 생산 장치
KR20100128539A (ko) * 2009-05-28 2010-12-08 주식회사 엔비컴 대형 건물의 히트펌프식 냉온수 발생 장치
KR101041745B1 (ko) * 2011-05-04 2011-06-16 장한기술 주식회사 솔라 싱크 지열원 히트펌프 시스템과 그 제어방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489388A (zh) * 2018-11-28 2019-03-19 青岛理工大学 一种热泵和太阳能耦合的消防水带干燥装置
CN110848846A (zh) * 2019-11-19 2020-02-28 珠海格力电器股份有限公司 一种太阳能空调热泵系统、控制方法和空调器
CN110848846B (zh) * 2019-11-19 2023-12-08 珠海格力电器股份有限公司 一种太阳能空调热泵系统、控制方法和空调器
CN113480132A (zh) * 2021-07-15 2021-10-08 西安联盛能源科技有限公司 一种污泥真空干燥系统以及方法
CN115218643A (zh) * 2022-08-09 2022-10-21 大连海洋大学 用于海带干燥的太阳能热泵自适应控制系统及方法
CN115218643B (zh) * 2022-08-09 2023-07-21 大连海洋大学 用于海带干燥的太阳能热泵自适应控制系统及方法
CN115614859A (zh) * 2022-09-28 2023-01-17 清华大学 一种夏热冬用、冬冷夏用的跨季节供热供冷系统

Also Published As

Publication number Publication date
KR102109398B1 (ko) 2020-05-12
KR20180109449A (ko) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2018182084A1 (ko) 냉온동시 히트펌프 시스템
CN106164594B (zh) 屋顶液体干燥剂系统和方法
WO2016035936A1 (ko) 태양열 하이브리드 흡수식 냉방 시스템
WO2014051188A1 (ko) 축열식 냉난방 장치
CN102914011A (zh) 热回收空调机组
EP0060110A1 (en) Environmental control system
US4285209A (en) Absorption heat pump installation
WO2012036361A1 (ko) 지열을 이용한 히트펌프 시스템
CN103344031B (zh) 一种废热回收的冷暖空调系统
WO2018135850A1 (ko) 폐열회수형 하이브리드 히트펌프시스템
WO2015037791A1 (ko) 삼중발전에 의한 에너지 공급 시스템
WO2015115688A1 (ko) 진공증발을 이용한 냉방시스템 및 냉방구현방법
WO2012165684A1 (ko) 태양열 냉방겸용 급탕시스템
WO2014058195A1 (ko) 폐열 이용 고효율 클린룸 항온항습기 정밀제어를 위한 공조장치
FI125078B (fi) Menetelmä ja järjestely matalaenergialähteen käyttämiseksi käyttötilan ilman lämpötilan säätelemiseen
CN108489132A (zh) 能源站高效特大冷量串联冷水机组
WO2010050663A1 (ko) 하이브리드 히트펌프식 냉난방장치
CN107014020A (zh) 建筑领域的综合能源系统
KR100593626B1 (ko) 지열 및 수열 복합 히트펌프장치
KR101254934B1 (ko) 폐열 이용 고효율 클린룸 항온항습기 정밀제어를 위한 공조장치
WO2014148704A1 (ko) 하이브리드형 공기열 히트펌프 시스템
WO2020111339A1 (ko) 중공사막 맴브레인 필터 제습장치가 구비된 태양열 히트 펌프 냉난방시스템
WO2019045176A1 (ko) 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
WO2014098315A1 (ko) 히트 파이프를 이용한 에너지 절약형 제습장치
JP2004216212A (ja) 圧縮空気の除湿装置および除湿再熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17904189

Country of ref document: EP

Kind code of ref document: A1