WO2017146424A1 - 레이저 가공용 노즐 - Google Patents

레이저 가공용 노즐 Download PDF

Info

Publication number
WO2017146424A1
WO2017146424A1 PCT/KR2017/001820 KR2017001820W WO2017146424A1 WO 2017146424 A1 WO2017146424 A1 WO 2017146424A1 KR 2017001820 W KR2017001820 W KR 2017001820W WO 2017146424 A1 WO2017146424 A1 WO 2017146424A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
assist gas
processing
flow
boundary
Prior art date
Application number
PCT/KR2017/001820
Other languages
English (en)
French (fr)
Inventor
이원재
이학재
조성준
신양재
Original Assignee
주식회사 에이치케이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170012904A external-priority patent/KR101946898B1/ko
Application filed by 주식회사 에이치케이 filed Critical 주식회사 에이치케이
Priority to US16/075,991 priority Critical patent/US11179804B2/en
Publication of WO2017146424A1 publication Critical patent/WO2017146424A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a nozzle for laser processing, and more particularly, when processing a workpiece by using a laser beam, the processing assist gas can be sufficiently supplied to a portion to which the laser beam is irradiated, and the surface of the workpiece It can lower the roughness, minimize the occurrence of burrs formed by processing the workpiece, and process the workpiece while maintaining the minimum distance between the laser processing nozzle and the workpiece. It relates to a nozzle for laser processing.
  • an oscillator used in a laser processing apparatus is largely a YAG laser having a wavelength of approximately 1,030 nm, a fiber laser having a wavelength of approximately 1,070 nm, a disk laser having a wavelength of approximately 1,060 nm, and a wavelength of approximately 800 to 900 nm.
  • Examples include a semiconductor laser having a wavelength (or a direct diode laser (DDL)) and a C0 2 laser having a wavelength of approximately 10,600 nm.
  • the laser processing apparatus has already been widely used to process a workpiece by irradiating a laser beam oscillated and collected from a laser oscillator toward a workpiece through a nozzle provided at a lower end of the processing head.
  • the processing assist gas is injected from the nozzle toward the workpiece with irradiation of the laser beam.
  • the processing assist gas plays an important role in improving the processing quality and processing performance of the workpiece.
  • the processing quality is affected by various cutting parameters.
  • a component of the laser processing apparatus that affects the processing quality in the processing parameters is a nozzle installed at the lower end of the processing head.
  • the method of cutting stainless steel or aluminum as a workpiece uses nitrogen as a processing assist gas.
  • nitrogen as a processing assist gas.
  • the diameter of the flow path in a nozzle is examined so that the processing assist gas using nitrogen may be injected at high pressure, the examination of the flow path shape of a nozzle has not been considered in particular.
  • An object of the present invention is to solve a conventional problem, and when processing a workpiece by using a laser beam, the processing assist gas can be sufficiently supplied to a portion to which the laser beam is irradiated, and the surface of the workpiece It can lower the roughness, minimize the occurrence of burrs formed by processing the workpiece, and process the workpiece while maintaining the minimum distance between the laser processing nozzle and the workpiece.
  • the present invention provides a nozzle for laser processing.
  • the nozzle for laser processing according to the present invention is such that the processing assist gas is ejected at the same time as the laser beam is irradiated toward the workpiece and the nozzle body coupled to the processing head;
  • a nozzle for laser machining comprising a flow passage formed along a longitudinal axis of the nozzle body, the flow passage comprising: a first flow passage formed along a flow direction of the processing assist gas and generating a supersonic flow of the processing assist gas;
  • a second passage connected to the first passage along a flow direction of the processing assist gas and expanding a volume of the processing assist gas passing through the first passage;
  • a flow path boundary unit forming a boundary between the first flow path and the second flow path.
  • the second passage may include: a first extension part extending in a direction crossing the flow direction of the processing assist gas in the flow path boundary part; And a second extension part extending from the first extension part toward the end of the flow path where the second flow path ends.
  • first extension part is substantially perpendicular to the flow direction of the processing assist gas
  • second extension part is substantially parallel to the flow direction of the processing assist gas
  • the angle formed between the first extension portion and the second extension portion forms an obtuse angle.
  • first extension part and the second extension part have an arc shape between the flow path boundary part and the flow path end part.
  • the second flow passage includes a third extension portion which is formed to be inclined so that the passage cross-sectional area is increased from the flow path boundary portion toward the end of the flow passage where the second flow passage ends.
  • the flow path further includes a flow path terminating portion at which the second flow path ends, wherein the flow path cross-sectional area of the second flow path at the flow path termination part is larger than the flow path cross-sectional area of the first flow path at the flow path boundary. do.
  • the first flow path may include: a subsonic forming part in which a flow path cross-sectional area gradually decreases along a flow direction of the processing assist gas from a gas inlet part through which the processing assist gas is introduced; A supersonic forming portion connected to the subsonic forming portion, the flow passage cross-sectional area gradually increasing along the flow direction of the processing assist gas from the subsonic forming portion; And a sound speed boundary forming a boundary between the subsonic forming portion and the supersonic forming portion, wherein the processing assist gas is changed from subsonic flow to supersonic flow.
  • the pressure of the processing assist gas supplied to the gas inlet is 18 bar or more and 22 bar or less
  • the flow path length of the subsonic forming part is L1 based on the flow direction of the processing assist gas, and the flow path length of the supersonic forming part is defined as L1.
  • D1 the diameter of the subsonic forming portion in the sound speed boundary portion
  • D2 / D1 is larger than 1.7 and smaller than 2.0.
  • the nozzle body, the coupling portion coupled to the processing head A gripping portion extending from the coupling portion to be formed larger than the cross-sectional area of the coupling portion; And an outlet portion extending from the grip portion so as to have a smaller cross-sectional area than the grip portion, wherein the coupling portion, the grip portion, and the outlet portion are formed of a single body.
  • the processing assist gas when processing a workpiece by using a laser beam, can be sufficiently supplied to a portion to which the laser beam is irradiated, and the surface roughness of the workpiece can be reduced.
  • the degree of occurrence of burrs formed by processing the workpiece can be minimized, and the workpiece can be processed while maintaining a minimum distance between the laser processing nozzle and the workpiece.
  • the present invention can stabilize the volume expandability of the supersonic flow processing assist gas, and improve the processing speed for the workpiece.
  • the present invention serves as a surge tank of the processing assist gas through the edge portion of the second flow path which is larger than the flow path cross-sectional area of the first flow path, and increases the discharge rate of the melt produced by the laser beam on the processing surface of the workpiece. You can.
  • the present invention can be changed to the supersonic flow with respect to the processing assist gas flowing through the gas inlet to subsonic flow, it is possible to ensure the straightness of the processing assist gas is supersonic flow.
  • the present invention can stabilize the supersonic flow of the processing assist gas through the relationship between the pressure of the processing assist gas and the length of the first flow passage, and improve the straightness of the processing assist gas discharged through the second flow passage.
  • the present invention prevents the generation of the Mach shot disc when the processing assist gas passes through the flow path, prevents the flow of the processing assist gas to be converted to sound, and thus reduces the momentum of the processing assist gas. Loss of flow energy can be prevented.
  • the present invention can prevent the processing assist gas from converging toward the longitudinal axis as it passes through the second flow passage and prevents the processing assist gas from concentrating on a specific portion of the workpiece when the processing assist gas is supersonicly flowed. .
  • the present invention also prevents the processing assist gas from diffusing in the second flow passage while passing through the second flow passage and preventing the loss of the processing assist gas supplied to the processing surface of the workpiece. Can be.
  • FIG. 1 is a plan perspective view showing a nozzle for laser processing according to an embodiment of the present invention.
  • Figure 2 is a bottom perspective view showing a nozzle for laser processing according to an embodiment of the present invention.
  • Figure 3 is a longitudinal sectional view showing a nozzle for laser processing according to an embodiment of the present invention.
  • FIG. 4 is a view showing a processing state of the workpiece using the laser processing nozzle according to an embodiment of the present invention.
  • FIG 5 is a view showing the flow of the processing assist gas according to the position of the sonic boundary in the laser processing nozzle according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a modified form of the second flow path in the laser processing nozzle according to the embodiment of the present invention.
  • FIG. 1 is a plan perspective view showing a laser processing nozzle according to an embodiment of the present invention
  • Figure 2 is a bottom perspective view showing a laser processing nozzle according to an embodiment of the present invention
  • Figure 3 is an embodiment of the present invention 4 is a longitudinal cross-sectional view illustrating a laser processing nozzle according to an embodiment
  • FIG. 4 is a view illustrating a processing state of a workpiece using a laser processing nozzle according to an embodiment of the present invention
  • FIG. 5 is an embodiment of the present invention.
  • FIG. 6 is a view illustrating a flow of a processing assist gas according to a position of a sound velocity boundary unit in a laser processing nozzle
  • FIG. 6 is a cross-sectional view illustrating a modified form of a second flow path in a laser processing nozzle according to an embodiment of the present invention.
  • the nozzle for laser processing is a nozzle body 100 coupled to the processing head and a laser beam is irradiated toward the workpiece, and the processing assist gas AG is applied. It includes a flow path 150 formed to penetrate along the longitudinal axis of the nozzle body 100 to eject. Then, the flow path 150 is formed through the flow direction of the processing assist gas AG.
  • the laser beam is generated by a laser resonator (not shown) or a laser oscillator (not shown) in relation to wavelength, maximum beam quality, and the like.
  • the laser beam may use a CO 2 laser, a solid state laser, a fiber laser, a disk, a diode, or the like as a laser resonator or a laser oscillator, depending on the required power characteristics.
  • the nozzle body 100 includes a coupling part 101 coupled to the processing head, a grip part 102 extending from the coupling part 101 so as to be formed larger than the cross-sectional area of the coupling part 101, and the grip part 102. It may include an outlet 103 extending from the holding portion 102 to be formed smaller than the cross-sectional area of the.
  • the coupling portion 101 may form a coupling groove 101a for fitting coupling with a fitting coupling portion (not shown) provided in the processing head.
  • the coupling groove 101a may be formed in a ring shape along the side of the coupling portion 101. Then, the coupling stability of the nozzle body 100 and the fitting portion (not shown) can be secured.
  • the outer circumferential surface of the coupling portion 101 may be formed with a screw thread for screwing the screw coupling portion (not shown) provided in the processing head. Then, the coupling stability of the nozzle body 100 and the screw coupling portion (not shown) can be secured.
  • the gripping portion 102 may be formed gripping iron.
  • the gripping iron is formed to protrude or dent along the side of the gripping portion 102 to facilitate the gripping of the user.
  • outlet portion 103 is a portion where the laser beam passing through the inside of the processing head is finally discharged toward the workpiece.
  • the coupling portion 101, the grip portion 102 and the outlet portion 103 is formed of a single body, when the flow path 150 is formed, to form a smooth inner surface of the flow path 150, processing assist gas (AG) ) Can be flowed smoothly.
  • the flow path 150 may include a first flow path 110, a second flow path 130, and a flow path boundary part 114, and further include a flow path end part 116.
  • the first flow path 110 is formed along the flow direction of the processing assist gas AG.
  • the first passage 110 may generate a supersonic flow as the processing assist gas AG passes.
  • the first flow path 110 may include a subsonic speed forming unit 111, a supersonic speed forming unit 113, and a sound speed boundary unit 115.
  • the subsonic speed forming portion 111 gradually reduces the flow path cross-sectional area along the flow direction of the processing assist gas AG from the gas inlet 112 through which the processing assist gas AG flows.
  • the inner inclined surface is formed to be inclined in the flow direction of the processing assist gas AG.
  • the subsonic formation part 111 may have a horn shape of a light beam narrowing along the flow direction of the processing assist gas AG.
  • the subsonic forming part 111 may have a truncated conical shape in which the flow path cross-sectional area of the gas inlet 112 is wide and the flow cross-sectional area gradually decreases toward the sound speed boundary 115.
  • the gas inlet part 112 is an inlet through which the processing assist gas AG flows, and is a part where the first flow path 110 starts.
  • the subsonic forming part 111 has been described as having a circular cross section perpendicular to the flow direction of the processing assist gas AG, but is not limited thereto and may form an elliptical cross section or a polygonal cross section. have.
  • the supersonic forming unit 113 is connected to the subsonic forming unit 111.
  • the supersonic forming portion 113 gradually increases the flow passage cross-sectional area along the flow direction of the processing assist gas AG from the subsonic forming portion 111.
  • the inner inclined surface in the supersonic forming unit 113 is formed to be inclined in the flow direction of the processing assist gas AG.
  • the supersonic forming unit 113 may have a horn-shaped shape of the upper and lower light along the flow direction of the processing assist gas AG.
  • the supersonic speed forming unit 113 may have a truncated conical shape in which the flow path cross-sectional area of the sound speed boundary unit 115 is small and the flow path cross-sectional area gradually increases toward the flow path boundary unit 114.
  • the supersonic forming unit 113 has been described as having a circular cross section perpendicular to the flow direction of the processing assist gas AG, but is not limited thereto and may form an elliptical cross section or a polygonal cross section. have.
  • the cross-sectional shape of the subsonic forming unit 111 and the cross-sectional shape of the supersonic forming unit 113 may be substantially the same.
  • the sound speed boundary unit 115 forms a boundary between the subsonic speed forming unit 111 and the supersonic speed forming unit 113.
  • the sonic speed boundary unit 115 changes the subsonic flow for the processing assist gas AG into the supersonic flow as the processing assist gas AG passes.
  • the sound speed boundary unit 115 may be a portion where the subsonic speed forming unit 111 ends, or a portion where the supersonic speed forming unit 113 starts. A portion where the subsonic speed forming portion 111 ends and a portion where the supersonic speed forming portion 113 starts coincide with each other to form the sound speed boundary 115.
  • the inner inclined surface of the subsonic forming unit 111 and the inner inclined surface of the supersonic forming unit 113 exhibit a pointed attachment shape, thereby making it possible to clarify the flow change to the processing assist gas AG. Can be. Accordingly, the angle formed between the inner inclined surface of the subsonic forming unit 111 and the inner inclined surface of the supersonic forming unit 113 in the sound speed boundary unit 115 forms an obtuse angle.
  • the sound velocity boundary unit 115 may form a virtual plane without forming a space along the flow direction of the processing assist gas AG.
  • the diameter D1 of the subsonic forming part 111 in the sound speed boundary part 115 is formed smaller than the diameter D3 of the subsonic forming part 111 in the gas inlet part 112.
  • the diameter D1 of the subsonic forming unit 111 in the sound speed boundary unit 115 may be expressed as the diameter D1 of the supersonic forming unit 113 in the sound speed boundary unit 115.
  • the diameter D1 of the supersonic forming unit 113 in the sound speed boundary unit 115 is smaller than the diameter D2 of the supersonic forming unit 113 in the flow path boundary unit 114.
  • the second channel 130 is connected to the first channel 110 along the flow direction of the processing assist gas AG.
  • the second channel 130 expands the volume of the processing assist gas AG that has passed through the first channel 110.
  • the flow path boundary part 114 forms a boundary between the first flow path 110 and the second flow path 130.
  • the flow path boundary portion 114 may be a portion where the first flow passage 110 ends, a portion where the supersonic speed forming portion 113 ends, and a portion where the second flow passage 120 starts. A portion where the first flow path 110 ends, a portion where the supersonic forming portion 113 ends, and a portion where the second flow path 120 starts coincide with each other to form the flow path boundary part 114.
  • the passage terminating portion 116 is an outlet through which the processing assist gas AG is discharged, and is a portion where the second passage 130 ends.
  • the flow path cross sectional area of the second flow path 130 in the flow path end part 116 is larger than the flow path cross section area of the first flow path 110 in the flow path boundary part 114.
  • the diameter D2 of the first flow path 110 in the flow path boundary part 114 is formed to be smaller than the diameter D4 of the second flow path 130 in the flow path end part 116. Accordingly, the processing assist gas AG forms an over expansion flow in the second flow passage 130.
  • the second passage 130 extends along the direction crossing the flow direction of the processing assist gas AG in the passage boundary portion 114 so as to extend than the first passage 110.
  • 132 and a second extension portion 134 extending from the first extension portion 132 toward the end portion of the nozzle body 100 facing the workpiece.
  • the inner inclined surface of the supersonic forming portion 113 of the first flow path 110 and the second show a sharp attachment shape as the second meets, thereby making it possible to clarify the flow change to the processing assist gas AG. Can be.
  • the first extension part 132 is substantially perpendicular to the flow direction of the processing assist gas AG
  • the second extension part 134 is the flow direction of the processing assist gas AG. It may be substantially parallel to the spray to the processing surface of the workpiece in the expanded state of the processing assist gas (AG).
  • the laser beam is irradiated to the workpiece through the flow path 150, and at the same time the processing assist gas ( AG) is also injected through the flow path 150 to the workpiece, so that the laser beam LB processes the workpiece.
  • the processing assist gas ( AG) is also injected through the flow path 150 to the workpiece, so that the laser beam LB processes the workpiece.
  • processing the workpiece may include cutting the workpiece or forming a groove or a hole in the workpiece. In one embodiment of the present invention, the processing of the workpiece is described as cutting the workpiece.
  • Materials to be processed include mild steel, stainless steel, aluminum, copper, brass, and the like.
  • the workpiece may be divided into a region (Q) where the cutting is completed and a region (P) to be cut based on the processed surface.
  • the processing assist gas uses nitrogen
  • the laser processing nozzle is mild steel (Stainless Steel), aluminum (Aluminum), copper (Cu), brass (Brass) It can be efficiently used to cut stainless steel in the range of 12mm to 25mm in the workpieces made of materials such as).
  • the workpiece can be processed while maintaining the minimum distance between the laser processing nozzle and the workpiece. .
  • the portion 131 of the second passage 130 corresponding to the uncut region P of the workpiece is maintained at 0.1 mm when the workpiece is processed.
  • the portion 133, which serves as a surge tank and corresponds to the region Q in which the workpiece is cut, of the second channel 130 is further activated to be generated by the laser beam LB at the processing surface of the workpiece. It is possible to increase the discharge rate of the melt.
  • the processing head when the processing head is moved in the cutting progress direction as shown by the arrow direction of FIG. 4, the workpiece is formed with a cutting width having a constant width while forming an inclined processing surface to which the laser beam LB contacts.
  • the description of the processing surface and the cutting width is a level of technology well known in the laser processing field, and thus detailed description thereof will be omitted.
  • the cutting width is the boundary at which the laser beam LB contacts the front surface of the workpiece and the boundary at which the laser beam contacts the back side of the workpiece based on the machining direction of the workpiece.
  • the diameter D4 of the second passage 130 becomes more than twice the cutting width, so that the processing assist gas AG is sprayed on the entire processing surface of the workpiece. The melt produced on the processed surface of the workpiece can be stably discharged.
  • the relationship between the pressure, volume, and Mach number of the processing assist gas AG, which are generated when the processing assist gas AG passes through the first passage 110 and the second passage 130, are as follows.
  • the volume V1 in the subsonic forming part 111, the volume V2 in the supersonic forming part 113 and the volume in the second flow path 130 with respect to the volume of the processing assist gas AG has a relationship of V1 ⁇ V2 ⁇ V3.
  • the processing of the workpiece-for example, the cutting of stainless steel corresponding to a thick plate having a thickness of 12 mm or more-the melt produced on the processing surface of the workpiece It is possible to increase the discharge rate of, and ultimately improve the cutting speed of the workpiece.
  • the pressure of the processing assist gas AG supplied to the gas inlet 112 is 18 bar or more and should be adjusted to 22 bar or less.
  • the pressure of the processing assist gas AG supplied to the gas inlet 112 may be 19 bar or more and may be adjusted to 21 bar or less. More specifically, the pressure of the processing assist gas AG supplied to the gas inlet 112 may be substantially adjusted to 20 bar.
  • D2 / D1 is larger than 1.7 and is larger than 2.0. Should be small.
  • D2 / D1 may be greater than 1.72 and less than 1.94. More specifically, D1: D2 can be adjusted from 2.9: 5 to 3.6: 7. In other words, when the diameter D1 of the subsonic forming part 111 in the sound speed boundary part 115 becomes large, the diameter D2 of the supersonic forming part 113 in the flow path boundary part 114 becomes large, and thus, in the sound speed boundary part 115.
  • the subsonic flow for the processing assist gas AG can be changed to a supersonic flow.
  • the sound speed boundary part 115 is formed with a sound speed changing part M in which the subsonic flow with respect to the processing assist gas AG is changed to supersonic flow.
  • the processing assist gas AG discharged through 130 may generate a supersonic flow having a straightness toward the workpiece.
  • processing assist gas AG can change the subsonic flow for the processing assist gas (AG) to a supersonic flow, and by expanding the volume of the processing assist gas (AG) through the second flow path 130, processing assist
  • the processing assist gas AG can be stably supplied to the processing surface of the workpiece by increasing the injection speed of the gas AG while sufficiently including the processing surface of the workpiece in the range in which the processing assist gas AG is injected.
  • the sound speed change unit M may be formed on the supersonic speed forming unit 113.
  • the flow path length L1 of the subsonic formation part 111 becomes short with respect to the same flow path as in the embodiment of the present invention
  • the flow path length L2 of the supersonic speed forming part 113 becomes relatively long.
  • the sound speed changing unit M may be formed on the supersonic forming unit 113.
  • the sound speed changing unit M is formed on the supersonic forming unit 113, while the injection speed of the processing assist gas AG is increased, the sound speed changing unit M is injected into the workpiece by passing through the second passage 130. Since the processing assist gas AG converges toward the longitudinal axis, the processing assist gas AG results in a reduction in the range in which the processing assist gas AG is injected, and the processing assist gas AG cannot be delivered to the processing surface of the workpiece. Problems are involved.
  • the sound speed change unit M may be formed on the subsonic speed forming unit 111.
  • the flow path length L1 of the subsonic formation part 111 becomes longer with respect to the same flow path as in the embodiment of the present invention, the flow path length L2 of the supersonic formation part 113 becomes relatively short.
  • the sound speed changing unit M may be formed on the subsonic speed forming unit 111.
  • the injection speed of the processing assist gas AG is lowered, and the processing is injected into the workpiece through the second flow path 130. Since the assist gas AG is divergent based on the longitudinal axis, it causes a result of reducing the injection amount of the processing assist gas AG while expanding the range in which the processing assist gas AG is injected, and thus the processing assist gas AG. ) Has a problem that the melt formed on the processed surface of the workpiece cannot be properly discharged.
  • the second passage 130 may be modified as shown in FIG. 6.
  • the second flow path 130 extends along the flow direction of the processing assist gas AG in the flow path boundary part 114 so as to extend than the first flow path 110.
  • the first extension part 132 extends and the second extension part 134 extends toward the end of the nozzle body 100 facing the workpiece from the first extension part 132.
  • the flow path cross-sectional area of the second flow path 130 in the flow path termination portion 116 where the second flow path 130 ends is formed larger than the flow path cross-sectional area of the first flow path 110 in the flow path boundary part 114.
  • an angle formed between the first extension part 132 and the second extension part 134 may form an obtuse angle.
  • the second extension portion 134 gradually increases in flow path cross-sectional area from the first extension portion 132. It may be formed to be inclined to have.
  • the first extension part 132 may have a form in which the flow path cross-sectional area gradually increases from the flow path boundary part 114. It may be formed to be inclined.
  • first extension part 137 and the second extension part 138 may have an arc shape between the flow path boundary part 114 and the flow path end part 116.
  • the second passage 130 is inclined such that the passage cross-sectional area is gradually increased toward the passage ending portion 116 where the second passage 130 ends at the passage boundary portion 114.
  • the third extension part 139 may be formed.
  • the processing assist gas AG can be sufficiently supplied to the portion to which the laser beam LB is irradiated, and the processed surface of the workpiece It is possible to lower the surface roughness of the workpiece, to minimize the occurrence of burrs formed by processing the workpiece, and to process the workpiece while maintaining a minimum distance between the laser processing nozzle and the workpiece. can do.
  • the processing assist gas AG serves as a surge tank of the processing assist gas AG through the edge portion of the second passage 130 which is larger than the flow passage cross-sectional area of the first passage 110, and acts on the laser beam LB at the processing surface of the workpiece. It is possible to increase the discharge rate of the melt produced.
  • process assist gas AG introduced through the gas inlet 112 and subsonic flow may be changed to supersonic flow, and the straightness of the process assist gas AG supersonic may be ensured.
  • the processing assist gas discharged through the second flow path (130) The straightness to (AG) can be improved.
  • the Mach shot disc is prevented from being generated, and the flow of the processing assist gas AG is converted to sound, so that the momentum of the processing assist gas AG is small. It is possible to prevent the loss and to prevent the loss of the flow energy of the processing assist gas AG.
  • the processing assist gas AG when the processing assist gas AG is supersonically flowed, the processing assist gas AG is prevented from converging toward the longitudinal axis while passing through the second flow path 130, and the processing assist gas AG is specified in the workpiece. Concentration on the site can be prevented.
  • the processing assist gas AG when the processing assist gas AG is supersonically flowed, the processing assist gas AG is prevented from being diffused in the second passage 130 while passing through the second passage 130, and is supplied to the processed surface of the workpiece. The loss of the processing assist gas AG can be prevented.
  • the cutting speed may be improved when cutting a workpiece of about 12 mm in thickness, and the surface roughness of the cutting surface, which is a processing surface, may be lowered, and a burr may be formed on the rear surface of the workpiece. ) Can be minimized.
  • the laser processing nozzle not only the cutting of the workpiece of stainless steel material having a thickness of about 12mm, it can be applied to the cutting of the workpiece of stainless steel material of about 25mm thickness.
  • the nozzle for laser processing according to an embodiment of the present invention, it can be applied to the cutting of the workpiece made of a material such as mild steel, aluminum (Aluminum), copper (Cu), brass (Brass).
  • the present invention relates to a nozzle for laser processing, and more particularly, can be used in an industrial field for processing a workpiece by using a laser beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

본 발명은 레이저빔을 이용하여 피가공물을 가공할 때, 레이저빔이 조사되는 부분에 가공 어시스트 가스를 충분히 공급할 수 있고, 피가공물의 가공면에 대한 표면 거칠기를 낮출 수 있으며, 피가공물의 가공에 따라 형성되는 버어(burr)의 발생 정도를 최소화할 수 있고, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있는 레이저 가공용 노즐에 관한 것이다. 이를 위해 레이저 가공용 노즐에서 유로는 가공 어시스트 가스의 유동 방향을 따라 형성되고 가공 어시스트 가스의 초음속 유동을 발생시키는 제1유로와, 가공 어시스트 가스의 유동 방향을 따라 제1유로에 연결되고 제1유로를 통과한 가공 어시스트 가스의 부피를 팽창시키는 제2유로 및 제1유로와 제2유로 사이의 경계를 형성하는 유로경계부를 포함한다.

Description

레이저 가공용 노즐
본 발명은 레이저 가공용 노즐에 관한 것으로, 보다 구체적으로는 레이저빔을 이용하여 피가공물을 가공할 때, 레이저빔이 조사되는 부분에 가공 어시스트 가스를 충분히 공급할 수 있고, 피가공물의 가공면에 대한 표면 거칠기를 낮출 수 있으며, 피가공물의 가공에 따라 형성되는 버어(burr)의 발생 정도를 최소화할 수 있고, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있는 레이저 가공용 노즐에 관한 것이다.
일반적으로, 레이저 가공장치에 사용되는 발진기는 크게 대략 1,030nm의 파장을 갖는 YAG 레이저와, 대략 1,070nm의 파장을 갖는 파이버 레이저와, 대략 1,060nm의 파장을 갖는 디스크 레이저와, 대략 800~900nm의 파장을 갖는 반도체 레이저(또는 Direct Diode Laser;DDL), 대략 10,600nm의 파장을 갖는 C02 레이저를 예로 들 수 있다.
레이저 가공장치는 레이저(laser) 발진기로부터 발진되어 집광된 레이저빔을 가공헤드의 하단부에 설치된 노즐을 통해 피가공물을 향해 조사하여 피가공물을 가공하는 것으로, 이미 널리 보급되었다.
한편, 가공 어시스트 가스는 레이저빔의 조사와 함께 노즐로부터 상기 피가공물을 향해 분사된다. 상기 가공 어시스트 가스는 피가공물의 가공 품질, 가공 성능을 높여주는 중요한 역할을 한다.
최근 들어, 세계적인 레이저 메이커사들은 박판 피가공물의 가공뿐만 아니라 후판 피가공물의 가공시에도 가공 품질 및 가공 성능을 향상시킬 수 있도록 더 많은 연구 개발을 하고 있다.
이때, 가공 품질은 다양한 절단 변수에 의해 영향을 받는다.
상기 가공 변수 중의 가공 품질에 영향을 미치는 레이저 가공장치의 구성요소는 가공헤드의 하단부에 설치된 노즐이다.
일예로, 피가공물로서 스테인리스 스틸 또는 알루미늄을 절단하는 방법은 가공 어시스트 가스로 질소를 이용하고 있다. 종래에는 질소를 이용한 가공 어시스트 가스가 고압으로 분사되도록 노즐 내의 유로 지름에 대한 검토는 이루어지고 있지만, 노즐의 유로 형상에 대한 검토는 특별히 고려되고 있지 않았다.
이에, 피가공물의 가공속도가 느려지고, 피가공물의 가공면의 표면 거칠기(Surface Roughness)가 높아지며, 피가공물의 가공에 따라 버어(burr)가 많이 발생되고, 노즐과 피가공물 사이의 거리 설정 및 유지가 어려운 문제점이 있었다. 또한, 일례로 두께가 12mm~25mm 범위의 스테인리스 스틸을 절단하는 것이 곤란하였다.
본 발명의 목적은 종래의 문제점을 해결하기 위한 것으로서, 레이저빔을 이용하여 피가공물을 가공할 때, 레이저빔이 조사되는 부분에 가공 어시스트 가스를 충분히 공급할 수 있고, 피가공물의 가공면에 대한 표면 거칠기를 낮출 수 있으며, 피가공물의 가공에 따라 형성되는 버어(burr)의 발생 정도를 최소화할 수 있고, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있는 레이저 가공용 노즐을 제공함에 있다.
상술한 본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 본 발명에 따른 레이저 가공용 노즐은 가공헤드에 결합되는 노즐 본체와, 피가공물을 향해 레이저빔이 조사되는 것과 동시에 가공 어시스트 가스가 분출되도록 상기 노즐 본체의 종축을 따라 관통 형성되는 유로를 포함하는 레이저 가공용 노즐에 있어서, 상기 유로는, 상기 가공 어시스트 가스의 유동 방향을 따라 형성되고, 상기 가공 어시스트 가스의 초음속 유동을 발생시키는 제1유로; 상기 가공 어시스트 가스의 유동 방향을 따라 상기 제1유로에 연결되고, 상기 제1유로를 통과한 가공 어시스트 가스의 부피를 팽창시키는 제2유로; 및 상기 제1유로와 상기 제2유로 사이의 경계를 형성하는 유로경계부;를 포함한다.
여기서, 상기 제2유로에는, 상기 유로경계부에서 상기 가공 어시스트 가스의 유동 방향과 교차되는 방향을 따라 연장되는 제1연장부; 및 상기 제1연장부에서 상기 제2유로가 끝나는 유로종료부를 향해 연장되는 제2연장부;가 포함된다.
여기서, 상기 제1연장부는 상기 가공 어시스트 가스의 유동 방향과 실질적으로 수직을 이루고, 상기 제2연장부는 상기 가공 어시스트 가스의 유동 방향과 실질적으로 평행하다.
여기서, 상기 제1연장부와 상기 제2연장부 사이에 형성되는 각도는 둔각을 형성한다.
여기서, 상기 제1연장부와 상기 제2연장부는 상기 유로경계부와 상기 유로종료부 사이에서 호 형상을 나타낸다.
여기서, 상기 제2유로에는, 상기 유로경계부에서 상기 제2유로가 끝나는 유로종료부를 향해 유로단면적이 증가되도록 경사지게 형성되는 제3연장부;가 포함된다.
여기서, 상기 유로에는, 상기 제2유로가 끝나는 유로종료부;가 더 포함되고, 상기 유로종료부에서의 상기 제2유로의 유로단면적은 상기 유로경계부에서의 상기 제1유로의 유로단면적보다 크게 형성된다.
여기서, 상기 제1유로는, 상기 가공 어시스트 가스가 유입되는 가스입구부로부터 상기 가공 어시스트 가스의 유동 방향을 따라 유로단면적이 점차적으로 감소하는 아음속형성부; 상기 아음속형성부에 연결되고, 상기 아음속형성부로부터 상기 가공 어시스트 가스의 유동 방향을 따라 유로단면적이 점차적으로 증가하는 초음속형성부; 및 상기 아음속형성부와 상기 초음속형성부 사이의 경계를 형성하고, 상기 가공 어시스트 가스가 아음속 유동에서 초음속 유동으로 변경되는 음속경계부;를 포함한다.
여기서, 상기 가스입구부에 공급되는 상기 가공 어시스트 가스의 압력은 18bar 이상 22bar 이하이고, 상기 가공 어시스트 가스의 유동 방향을 기준으로 상기 아음속형성부의 유로길이를 L1이라 하고, 상기 초음속형성부의 유로길이를 L2라고 하면, L1:L2=3:11 인 관계를 만족한다.
여기서, 상기 음속경계부에서 상기 아음속형성부의 직경을 D1이라 하고, 상기 유로경계부에서 상기 초음속형성부의 직경을 D2라 하면, D2/D1는 1.7 보다 크고, 2.0 보다 작다.
여기서, 상기 노즐본체는, 상기 가공헤드에 결합되는 결합부; 상기 결합부의 단면적보다 크게 형성되도록 상기 결합부에서 연장되는 파지부; 및 상기 파지부의 단면적보다 작게 형성되도록 상기 파지부에서 연장되는 출구부;를 포함하고, 상기 결합부와 상기 파지부와 상기 출구부는 단일 몸체로 이루어진다.
본 발명에 따른 레이저 가공용 노즐에 따르면, 레이저빔을 이용하여 피가공물을 가공할 때, 레이저빔이 조사되는 부분에 가공 어시스트 가스를 충분히 공급할 수 있고, 피가공물의 가공면에 대한 표면 거칠기를 낮출 수 있으며, 피가공물의 가공에 따라 형성되는 버어(burr)의 발생 정도를 최소화할 수 있고, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있다.
또한, 본 발명은 초음속 유동되는 가공 어시스트 가스의 부피 확장성을 안정화시키고, 피가공물에 대한 가공 속도를 향상시킬 수 있다.
또한, 본 발명은 제1유로의 유로단면적보다 커지는 제2유로의 가장자리 부분을 통해 가공 어시스트 가스의 서지 탱크 역할을 수행하고, 피가공물의 가공면에서 레이저빔에 의해 생성되는 융융물의 배출 속도를 증가시킬 수 있다.
또한, 본 발명은 가스입구부를 통해 유입되어 아음속 유동되는 가공 어시스트 가스에 대해 초음속 유동으로 변경시키고, 초음속 유동되는 가공 어시스트 가스의 직진성을 확보할 수 있다.
또한, 본 발명은 가공 어시스트 가스의 압력과 제1유로의 길이 사이의 관계를 통해 가공 어시스트 가스의 초음속 유동을 안정화시키고, 제2유로를 통해 배출되는 가공 어시스트 가스에 대한 직진성을 향상시킬 수 있다.
또한, 본 발명은 가공 어시스트 가스가 유로를 통과할 때, 마하 쇼트 디스크의 발생을 방지하고, 가공 어시스트 가스의 유동이 소리로 변환되어 가공 어시스트 가스의 운동량이 작아지는 것을 방지하며, 가공 어시스트 가스의 유동 에너지가 손실되는 것을 방지할 수 있다.
또한, 본 발명은 가공 어시스트 가스가 초음속 유동될 때, 가공 어시스트 가스가 제2유로를 통과하면서 종축을 향해 수렴되는 것을 방지하고, 가공 어시스트 가스가 피가공물의 특정 부위에 집중되는 것을 방지할 수 있다.
또한, 본 발며은 가공 어시스트 가스가 초음속 유동될 때, 가공 어시스트 가스가 제2유로를 통과하면서 제2유로에서 확산되는 것을 방지하고, 피가공물의 가공면에 공급되는 가공 어시스트 가스의 손실을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 평면사시도이다.
도 2는 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 저면사시도이다.
도 3은 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 종단면도이다.
도 4는 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 이용한 피가공물의 가공 상태를 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 레이저 가공용 노즐에서 음속경계부의 위치에 따른 가공 어시스트 가스의 유동을 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따른 레이저 가공용 노즐에서 제2유로의 변형 형태를 도시한 단면도이다.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 레이저 가공용 노즐의 일 실시예를 설명한다. 이때, 본 발명은 실시예에 의해 제한되거나 한정되는 것은 아니다. 또한, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명확하게 하기 위해 생략될 수 있다.
도 1은 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 평면사시도이고, 도 2는 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 저면사시도이며, 도 3은 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 도시한 종단면도이고, 도 4는 본 발명의 일 실시예에 따른 레이저 가공용 노즐을 이용한 피가공물의 가공 상태를 도시한 도면이며, 도 5는 본 발명의 일 실시예에 따른 레이저 가공용 노즐에서 음속경계부의 위치에 따른 가공 어시스트 가스의 유동을 나타내는 도면이고, 도 6은 본 발명의 일 실시예에 따른 레이저 가공용 노즐에서 제2유로의 변형 형태를 도시한 단면도이다.
도 1 내지 도 6을 참조하면, 본 발명의 일 실시예에 따른 레이저 가공용 노즐은 가공헤드에 결합되는 노즐 본체(100)와, 피가공물을 향해 레이저빔이 조사되는 것과 동시에 가공 어시스트 가스(AG)가 분출되도록 노즐 본체(100)의 종축을 따라 관통 형성되는 유로(150)를 포함한다. 그러면, 상기 유로(150)는 상기 가공 어시스트 가스(AG)의 유동 방향을 따라 관통 형성된다.
여기서, 상기 레이저빔은 파장, 최대 빔 품질 등과 관련하여 레이저 공진기(미도시) 또는 레이저 발진기(미도시)에 의해 생성된다. 이러한 레이저빔은 요구되는 파워의 특성에 따라 CO2 레이저 또는 솔리드 스테이트(solid state) 레이저 또는 섬유(fiber) 레이저 또는 디스크 또는 다이오드 등을 레이저 공진기 또는 레이저 발진기로 이용할 수 있다.
상기 노즐 본체(100)는 가공헤드에 결합되는 결합부(101)와, 결합부(101)의 단면적보다 크게 형성되도록 결합부(101)에서 연장되는 파지부(102)와, 파지부(102)의 단면적보다 작게 형성되도록 파지부(102)에서 연장되는 출구부(103)를 포함할 수 있다.
여기서, 상기 결합부(101)에는 가공헤드에 구비되는 끼움결합부(미도시)와의 끼움 결합을 위한 결합홈(101a)을 형성할 수 있다. 결합홈(101a)은 결합부(101)의 측면을 따라 링 형태로 함몰 형성될 수 있다. 그러면, 노즐 본체(100)와 끼움결합부(미도시)의 결합 안정성을 확보할 수 있다.
도시되지 않았지만, 상기 결합부(101)의 외주면에는 가공헤드에 구비되는 나사결합부(미도시)와의 나사 결합을 위한 나사산이 형성될 수 있다. 그러면, 노즐 본체(100)와 나사결합부(미도시)의 결합 안정성을 확보할 수 있다.
또한, 상기 파지부(102)에는 파지요철이 형성될 수 있다. 파지요철은 파지부(102)의 측면을 따라 돌출 또는 함몰 형성되어 사용자의 파지를 편리하게 한다.
또한, 상기 출구부(103)는 가공헤드 내부를 경유하는 레이저빔이 피가공물을 향해 최종적으로 배출되는 부분이다.
그러면, 결합부(101)와 파지부(102)와 출구부(103)는 단일 몸체로 이루어져 유로(150)가 형성될 때, 유로(150)의 내측면을 매끄럽게 형성하고, 가공 어시스트 가스(AG)의 유동을 원활하게 할 수 있다.
상기 유로(150)는 제1유로(110)와, 제2유로(130)와, 유로경계부(114)를 포함하고, 유로종료부(116)를 더 포함할 수 있다.
상기 제1유로(110)는 가공 어시스트 가스(AG)의 유동 방향을 따라 형성된다. 제1유로(110)는 가공 어시스트 가스(AG)가 통과됨에 따라 초음속 유동을 발생시킬 수 있다.
제1유로(110)는 아음속형성부(111)와, 초음속형성부(113)와, 음속경계부(115)를 포함할 수 있다.
상기 아음속형성부(111)는 가공 어시스트 가스(AG)가 유입되는 가스입구부(112)로부터 가공 어시스트 가스(AG)의 유동 방향을 따라 유로단면적이 점차적으로 감소한다. 아음속형성부(111)에서 내측 경사면은 가공 어시스트 가스(AG)의 유동 방향에서 경사지게 형성되도록 한다.
아음속형성부(111)는 가공 어시스트 가스(AG)의 유동 방향을 따라 상광하협의 뿔대 형상을 나타낼 수 있다. 일예로, 아음속형성부(111)는 가스입구부(112)의 유로단면적이 넓고, 음속경계부(115)로 갈수록 유로단면적이 점차로 감소하는 원뿔대 형상을 나타낼 수 있다. 여기서, 상기 가스입구부(112)는 가공 어시스트 가스(AG)가 유입되는 입구로서, 제1유로(110)가 시작되는 부분이다.
본 발명의 일 실시예에서 아음속형성부(111)는 가공 어시스트 가스(AG)의 유동 방향에 수직인 단면이 원형인 것으로 설명하였으나, 여기에 한정하는 것은 아니고, 타원형 단면 또는 다각형 단면을 형성할 수 있다.
상기 초음속형성부(113)는 아음속형성부(111)에 연결된다. 초음속형성부(113)는 아음속형성부(111)로부터 가공 어시스트 가스(AG)의 유동 방향을 따라 유로단면적이 점차적으로 증가한다. 초음속형성부(113)에서 내측 경사면은 가공 어시스트 가스(AG)의 유동 방향에서 경사지게 형성되도록 한다.
초음속형성부(113)는 가공 어시스트 가스(AG)의 유동 방향을 따라 상협하광의 뿔대 형상을 나타낼 수 있다. 일예로, 초음속형성부(113)는 음속경계부(115)의 유로단면적이 작고, 유로경계부(114)로 갈수록 유로단면적이 점차로 증가하는 원뿔대 형상을 나타낼 수 있다.
본 발명의 일 실시예에서 초음속형성부(113)는 가공 어시스트 가스(AG)의 유동 방향에 수직인 단면이 원형인 것으로 설명하였으나, 여기에 한정하는 것은 아니고, 타원형 단면 또는 다각형 단면을 형성할 수 있다. 이때, 아음속형성부(111)의 단면 형상과 초음속형성부(113)의 단면 형상은 실질적으로 동일하게 형성될 수 있다.
상기 음속경계부(115)는 아음속형성부(111)와 초음속형성부(113) 사이의 경계를 형성한다. 음속경계부(115)는 가공 어시스트 가스(AG)가 통과함에 따라 가공 어시스트 가스(AG)에 대한 아음속 유동을 초음속 유동으로 변경시킨다.
음속경계부(115)는 아음속형성부(111)가 끝나는 부분이기도 하고, 초음속형성부(113)가 시작되는 부분이기도 하다. 아음속형성부(111)가 끝나는 부분과 초음속형성부(113)가 시작되는 부분은 서로 일치되어 음속경계부(115)를 형성하게 된다.
음속경계부(115)에서는 아음속형성부(111)의 내측 경사면과 초음속형성부(113)의 내측 경사면이 만남에 따라 뾰족한 첨부 형상을 나타냄으로써, 가공 어시스트 가스(AG)에 대한 유동 변경을 명확하게 할 수 있다. 이에 따라, 음속경계부(115)에서 아음속형성부(111)의 내측 경사면과 초음속형성부(113)의 내측 경사면이 이루는 각도는 둔각을 형성하도록 한다.
본 발명의 일 실시예에서 음속경계부(115)는 가공 어시스트 가스(AG)의 유동 방향을 따라 공간을 형성하지 않고, 가상의 평면을 형성할 수 있다.
상술한 설명에 따라 음속경계부(115)에서 아음속형성부(111)의 직경(D1)은 가스입구부(112)에서 아음속형성부(111)의 직경(D3)보다 작게 형성된다. 또한, 음속경계부(115)에서 아음속형성부(111)의 직경(D1)은 음속경계부(115)에서 초음속형성부(113)의 직경(D1)으로 표현할 수 있다. 또한, 음속경계부(115)에서 초음속형성부(113)의 직경(D1)은 유로경계부(114)에서 초음속형성부(113)의 직경(D2) 보다 작게 형성된다.
상기 제2유로(130)는 가공어시스트 가스(AG)의 유동 방향을 따라 제1유로(110)에 연결된다. 제2유로(130)는 제1유로(110)를 통과한 가공 어시스트 가스(AG)의 부피를 팽창시킨다.
상기 유로경계부(114)는 제1유로(110)와 제2유로(130) 사이의 경계를 형성한다. 상기 유로경계부(114)는 제1유로(110)가 끝나는 부분이기도 하고, 초음속형성부(113)가 끝나는 부분이기도 하며, 제2유로(120)가 시작되는 부분이기도 하다. 제1유로(110)가 끝나는 부분과 초음속형성부(113)가 끝나는 부분과 제2유로(120)가 시작되는 부분은 서로 일치되어 유로경계부(114)를 형성하게 된다.
상기 유로종료부(116) 가공 어시스트 가스(AG)가 토출되는 출구로서, 제2유로(130)가 끝나는 부분이다.
유로종료부(116)에서의 제2유로(130)의 유로단면적은 유로경계부(114)에서의 제1유로(110)의 유로단면적보다 크게 형성된다. 다른 표현으로, 유로경계부(114)에서 제1유로(110)의 직경(D2)은 유로종료부(116)에서 제2유로(130)의 직경(D4)보다 작게 형성되도록 한다. 이에 따라, 가공 어시스트 가스(AG)는 제2유로(130)에서 과팽창유동(Over Expansion Flow)을 형성하게 된다.
본 발명의 일 실시예에서 제2유로(130)에는 제1유로(110)보다 확장되도록 유로경계부(114)에서 가공 어시스트 가스(AG)의 유동 방향과 교차되는 방향을 따라 연장되는 제1연장부(132)와, 제1연장부(132)에서 피가공물과 마주보는 노즐 본체(100)의 끝단부를 향해 연장되는 제2연장부(134)가 포함된다.
유로경계부(114)에서는 제1유로(110)의 초음속형성부(113)의 내측 경사면과 제2이 만남에 따라 뾰족한 첨부 형상을 나타냄으로써, 가공 어시스트 가스(AG)에 대한 유동 변경을 명확하게 할 수 있다.
이때, 도 3에 도시된 바와 같이 제1연장부(132)는 가공 어시스트 가스(AG)의 유동 방향과 실질적으로 수직을 이루고, 제2연장부(134)는 가공 어시스트 가스(AG)의 유동 방향과 실질적으로 평행을 이루어 가공 어시스트 가스(AG)의 부피가 팽창된 상태로 피가공물의 가공면에 분사되도록 할 수 있다.
본 발명의 일 실시예에 따른 레이저 가공용 노즐을 이용하여 피가공물을 가공하는 것을 살펴보면, 도 4에 도시된 바와 같이 레이저빔은 유로(150)를 통과하여 피가공물에 조사되고, 동시에 가공 어시스트 가스(AG)도 유로(150)를 통과하여 피가공물에 분사됨으로서, 레이저빔(LB)은 피가공물을 가공하게 된다.
본 발명의 일 실시예에서 피가공물의 가공한다는 것은 피가공물을 절단하거나 피가공물에 홈 또는 홀을 형성하는 것이 포함될 수 있다. 본 발명의 일 실시예에서 피가공물의 가공한다는 것은 피가공물을 절단하는 것으로 설명한다. 피가공물의 재질로는 연강(Mild Steel), 스테인리스 스틸(Stainless Steel), 알루미늄(Aluminum), 구리(Cu), 황동(Brass) 등이 있다.
여기서, 피가공물은 가공면을 기준으로 절단이 완료된 영역(Q)과 절단해야 하는 영역(P)으로 구분할 수 있다.
본 발명의 일 실시예에서, 가공 어시스트 가스(AG)는 질소를 사용하고, 레이저 가공용 노즐은 연강(Mild Steel), 스테인리스 스틸(Stainless Steel), 알루미늄(Aluminum), 구리(Cu), 황동(Brass) 등의 재질로 된 피가공물 중에서 두께가 12mm~25mm 범위의 스테인리스 스틸을 절단하는데 효율적으로 사용될 수 있다.
이때, 노즐 본체(100)와 피가공물 사이의 간격(G)은 0.1mm로 유지되도록 제어할 수 있으므로, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있다.
또한, 피가공물의 가공시 노즐 본체(100)와 피가공물 사이의 간격을 0.1mm로 유지하기 때문에, 제2유로(130) 중 피가공물의 미절단 영역(P)에 대응되는 부분(131)은 서지 탱크 역할을 하고, 제2유로(130) 중 피가공물의 절단이 완료된 영역(Q)에 대응되는 부분(133)은 더욱 더 활성화되어 피가공물의 가공면에서 레이저빔(LB)에 의해 생성되는 용융물의 배출 속도를 증가시킬 수 있다.
좀더 자세하게, 가공헤드를 도 4의 화살표 방향과 같이 절단 진행 방향으로 이동시키면, 피가공물에는 레이저빔(LB)이 접촉하는 경사진 가공면을 형성하면서 일정한 폭의 절단 폭을 형성하게 된다. 여기서, 가공면과 절단 폭에 대한 설명은 레이저 가공 분야에서 널리 알려진 기술 수준이어서 상세한 설명은 생략한다.
레이저빔(LB)이 피가공물을 가공할 때, 절단 폭은 피가공물의 가공 방향을 기준으로 레이저빔(LB)이 피가공물의 전면과 접촉되는 경계와 레이저빔이 피가공물의 이면과 접촉되는 경계 사이의 거리로써, 유로종료부(116)에서 제2유로(130)의 직경(D4)은 절단 폭의 2배 이상이 됨으로써, 가공 어시스트 가스(AG)가 피가공물의 가공면 전체에 분사됨은 물론 피가공물의 가공면에서 생성되는 용융물을 안정적으로 배출시킬 수 있다.
가공 어시스트 가스(AG)가 제1유로(110) 및 제2유로(130)를 통과하는 과정에서 나타나는 가공 어시스트 가스(AG)의 압력과 부피 및 마하수에 대한 관계는 다음과 같다.
먼저, 가공 어시스트 가스(AG)의 압력에 대하여 아음속형성부(111)에서의 압력(P1)과 초음속형성부(113)에서의 압력(P2) 사이에는 P1>P2의 관계를 갖는다.
다음으로, 가공 어시스트 가스(AG)의 부피에 대하여 아음속형성부(111)에서의 부피(V1)와, 초음속형성부(113)에서의 부피(V2)와 제2유로(130)에서의 부피(V3) 사이에는 V1<V2<V3의 관계를 가진다.
그리고 가공 어시스트 가스(AG)의 마하수(MN)에 대하여 아음속형성부(111)에서는 MN<1 이고, 음속경계부(115)에서는 MN=1 이며, 초음속형성부(113)에서는 MN>1 이고, 제2유로(130)에서는 MN>1의 관계를 가진다.
상술한 가공 어시스트 가스(AG)의 압력과 부피 및 마하수에 대한 관계에 의해 피가공물의 가공시 - 일예로, 두께 12mm 이상인 후판에 해당되는 스테인리스 스틸의 절단시 - 피가공물의 가공면에서 생성되는 용융물의 배출 속도를 증가시키며, 결국에는 피가공물의 절단 속도를 향상시킬 수 있게 된다.
본 발명의 일 실시예에서는 음속경계부(115)에서 가공 어시스트 가스(AG)에 대한 아음속 유동을 초음속 유동으로 변경시키기 위해, 다음의 음속 변경 조건을 만족하도록 한다.
첫째, 가스입구부(112)에 공급되는 가공 어시스트 가스(AG)의 압력은 18bar 이상이고, 22bar 이하로 조정해야 한다.
좀더 구체적으로, 가스입구부(112)에 공급되는 가공 어시스트 가스(AG)의 압력은 19bar 이상이고, 21bar 이하로 조정할 수 있다. 좀더 구체적으로, 가스입구부(112)에 공급되는 가공 어시스트 가스(AG)의 압력은 실질적으로 20bar 로 조정할 수 있다.
둘째, 가공 어시스트 가스(AG)의 유동 방향을 기준으로 아음속형성부(111)의 유로길이를 L1이라 하고, 상기 초음속형성부(113)의 유로길이를 L2라고 하면, L1:L2 = 3:11 인 관계를 만족하여야 한다.
셋째, 음속경계부(115)에서 아음속형성부(111)의 직경을 D1이라 하고, 유로경계부(114)에서 초음속형성부(113)의 직경을 D2라 하면, D2/D1는 1.7 보다 크고, 2.0 보다 작아야 한다.
좀더 구체적으로, D2/D1는 1.72 보다 크고, 1.94 보다 작을 수 있다. 좀더 구체적으로, D1:D2는 2.9:5 내지 3.6:7로 조정할 수 있다. 다시 말해, 음속경계부(115)에서 아음속형성부(111)의 직경(D1)이 커지면, 유로경계부(114)에서 초음속형성부(113)의 직경(D2)이 커지므로, 음속경계부(115)에서 가공 어시스트 가스(AG)에 대한 아음속 유동을 초음속 유동으로 변경시킬 수 있다.
이에 따라, 도 5의 (a)에 도시된 바와 같이 음속경계부(115)에는 가공 어시스트 가스(AG)에 대한 아음속 유동이 초음속 유동으로 변경되는 음속변경부(M)가 형성되고, 제2유로(130)를 통해 배출되는 가공 어시스트 가스(AG)는 피가공물을 향해 직진성을 갖는 초음속 유동을 발생시킬 수 있게 된다.
가공 어시스트 가스(AG)에 대한 아음속 유동에서는 유로단면적이 작아지면, 가공 어시스트 가스(AG)의 분사 속도가 증가하지만, 유로단면적에 대응하여 가공 어시스트 가스가 분사되는 범위가 좁아지는 단점이 있다. 하지만, 가공 어시스트 가스(AG)에 대한 초음속 유동에서는 유로단면적이 커지면, 가공 어시스트 가스(AG)의 분사 속도도 증가하는 특징이 있으므로, 유로단면적에 대응하여 가공 어시스트 가스(AG)가 분사되는 범위를 확대시킬 수 있는 장점이 있다.
특히, 본 발명의 일 실시예에서는 가공 어시스트 가스(AG)에 대한 아음속 유동을 초음속 유동으로 변경시킬 수 있고, 제2유로(130)를 통해 가공 어시스트 가스(AG)의 부피를 팽창시킴으로써, 가공 어시스트 가스(AG)의 분사 속도를 증가시키면서도 가공 어시스트 가스(AG)가 분사되는 범위에 피가공물의 가공면이 충분히 포함됨으로써, 가공 어시스트 가스(AG)를 안정되게 피가공물의 가공면에 공급할 수 있게 된다.
하지만, 상술한 음속 변경 조건을 벗어나는 경우, 음속변경부(M)가 초음속형성부(113) 상에서 형성될 수 있다. 일예로, 본 발명의 일 실시예와 동일한 유로에 대하여 아음속형성부(111)의 유로길이(L1)가 짧아지면, 초음속형성부(113)의 유로길이(L2)가 상대적으로 길어진다. 이 경우, 도 5의 (b)에 도시된 바와 같이 음속변경부(M)가 초음속형성부(113) 상에서 형성될 수 있다.
이와 같이, 음속변경부(M)가 초음속형성부(113) 상에 형성되는 경우, 가공 어시스트 가스(AG)의 분사 속도가 증가하는 반면, 제2유로(130)를 통과하여 피가공물에 분사되는 가공 어시스트 가스(AG)는 종축을 향해 수렴하는 형태가 되므로, 가공 어시스트 가스(AG)가 분사되는 범위를 축소시키는 결과를 초래하고, 가공 어시스트 가스(AG)가 피가공물의 가공면에 전달되지 못하는 문제점을 내포하게 된다.
또한, 상술한 음속 변경 조건을 벗어나는 경우, 음속변경부(M)가 아음속형성부(111) 상에 형성될 수 있다. 일예로, 본 발명의 일 실시예와 동일한 유로에 대하여 아음속형성부(111)의 유로길이(L1)가 길어지면, 초음속형성부(113)의 유로길이(L2)가 상대적으로 짧아진다. 이 경우, 도 5의 (c)에 도시된 바와 같이 음속변경부(M)가 아음속형성부(111) 상에서 형성될 수 있다.
이와 같이, 음속변경부(M)가 아음속형성부(111) 상에 형성되는 경우, 가공 어시스트 가스(AG)의 분사 속도가 저하되고, 제2유로(130)를 통과하여 피가공물에 분사되는 가공 어시스트 가스(AG)는 종축을 기준으로 발산하는 형태가 되므로, 가공 어시스트 가스(AG)가 분사되는 범위를 확장시키면서 가공 어시스트 가스(AG)의 분사량을 감소시키는 결과를 초래하고, 가공 어시스트 가스(AG)가 피가공물의 가공면에 형성되는 용융물을 제대로 배출시킬 수 없는 문제점을 내포하게 된다.
본 발명의 일 실시예에서 제2유로(130)는 도 6과 같이 변형이 가능하다.
먼저, 도 6의 (a)에 도시된 바와 같이 제2유로(130)에는 제1유로(110)보다 확장되도록 유로경계부(114)에서 가공 어시스트 가스(AG)의 유동 방향과 교차되는 방향을 따라 연장되는 제1연장부(132)와, 제1연장부(132)에서 피가공물과 마주보는 노즐 본체(100)의 끝단부를 향해 연장되는 제2연장부(134)가 포함된다. 그러면, 제2유로(130)가 끝나는 유로종료부(116)에서 제2유로(130)의 유로단면적은 유로경계부(114)에서 제1유로(110)의 유로단면적보다 크게 형성된다.
이때, 도 6의 (a)에 도시된 바와 같이 제1연장부(132)와 제2연장부(134) 사이에 형성되는 각도는 둔각을 형성할 수 있다. 여기서, 제1연장부(132)가 가공 어시스트 가스(AG)의 유동 방향과 실질적으로 수직을 이루면, 제2연장부(134)는 제1연장부(132)로부터 유로단면적이 점차적으로 증가하는 형태를 갖도록 경사지게 형성될 수 있다. 또한, 제2연장부(134)는 가공 어시스트 가스(AG)의 유동 방향과 실질적으로 평행을 이루면, 제1연장부(132)는 유로경계부(114)로부터 유로단면적이 점차적으로 증가하는 형태를 갖도록 경사지게 형성될 수 있다.
또한, 도 6의 (b)에 도시된 바와 같이 제1연장부(137)와 제2연장부(138)는 유로경계부(114)와 유로종료부(116) 사이에서 호 형상을 나타낼 수 있다.
또한, 도 6의 (c)에 도시된 바와 같이 제2유로(130)에는 유로경계부(114)에서 제2유로(130)가 끝나는 유로종료부(116)를 향해 유로단면적이 점차적으로 증가되도록 경사지게 형성되는 제3연장부(139)가 포함될 수 있다.
상술한 레이저 가공용 노즐에 따르면, 레이저빔(LB)을 이용하여 피가공물을 가공할 때, 레이저빔(LB)이 조사되는 부분에 가공 어시스트 가스(AG)를 충분히 공급할 수 있고, 피가공물의 가공면에 대한 표면 거칠기를 낮출 수 있으며, 피가공물의 가공에 따라 형성되는 버어(burr)의 발생 정도를 최소화할 수 있고, 레이저 가공용 노즐과 피가공물 사이의 거리를 최소한으로 설정하여 유지하면서 피가공물을 가공할 수 있다.
또한, 초음속 유동되는 가공 어시스트 가스(AG)의 부피 확장성을 안정화시키고, 피가공물에 대한 가공 속도를 향상시킬 수 있다.
또한, 제1유로(110)의 유로단면적보다 커지는 제2유로(130)의 가장자리 부분을 통해 가공 어시스트 가스(AG)의 서지 탱크 역할을 수행하고, 피가공물의 가공면에서 레이저빔(LB)에 의해 생성되는 융융물의 배출 속도를 증가시킬 수 있다.
또한, 가스입구부(112)를 통해 유입되어 아음속 유동되는 가공 어시스트 가스(AG)에 대해 초음속 유동으로 변경시키고, 초음속 유동되는 가공 어시스트 가스(AG)의 직진성을 확보할 수 있다.
또한, 가공 어시스트 가스(AG)의 압력과 제1유로(110)의 길이 사이의 관계를 통해 가공 어시스트 가스(AG)의 초음속 유동을 안정화시키고, 제2유로(130)를 통해 배출되는 가공 어시스트 가스(AG)에 대한 직진성을 향상시킬 수 있다.
또한, 가공 어시스트 가스(AG)가 유로(150)를 통과할 때, 마하 쇼트 디스크의 발생을 방지하고, 가공 어시스트 가스(AG)의 유동이 소리로 변환되어 가공 어시스트 가스(AG)의 운동량이 작아지는 것을 방지하며, 가공 어시스트 가스(AG)의 유동 에너지가 손실되는 것을 방지할 수 있다.
또한, 가공 어시스트 가스(AG)가 초음속 유동될 때, 가공 어시스트 가스(AG)가 제2유로(130)를 통과하면서 종축을 향해 수렴되는 것을 방지하고, 가공 어시스트 가스(AG)가 피가공물의 특정 부위에 집중되는 것을 방지할 수 있다.
또한, 가공 어시스트 가스(AG)가 초음속 유동될 때, 가공 어시스트 가스(AG)가 제2유로(130)를 통과하면서 제2유로(130)에서 확산되는 것을 방지하고, 피가공물의 가공면에 공급되는 가공 어시스트 가스(AG)의 손실을 방지할 수 있다.
본 발명의 일 실시예에서는 두께 12mm 정도의 스테인리스 스틸 재질의 피가공물의 절단 시 절단 속도를 향상시킬 수 있으며, 가공면인 절단면의 표면 거칠기도 낮출 수 있었으며, 피가공물의 이면에 형성되는 버어(burr)의 발생 정도를 최소화할 수 있다.
한편, 본 발명의 일 실시예에 따른 레이저 가공용 노즐에 따르면, 두께 12mm 정도의 스테인리스 스틸 재질의 피가공물의 절단뿐만 아니라, 두께 25mm 정도까지의 스테인리스 스틸 재질의 피가공물 절단에도 적용될 수 있다.
그리고 본 발명의 일 실시예에 따른 레이저 가공용 노즐에 따르면, 연강(Mild Steel), 알루미늄(Aluminum), 구리(Cu), 황동(Brass)등의 재질로 된 피가공물 절단에도 적용될 수 있다.
상술한 바와 같이 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 해당 기술분야의 숙련된 당업자라면, 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변경시킬 수 있다.
본 발명은 레이저 가공용 노즐에 관한 것으로, 보다 구체적으로는 레이저빔을 이용하여 피가공물을 가공하는 산업 분야에 이용될 수 있다.

Claims (11)

  1. 가공헤드에 결합되는 노즐 본체와, 피가공물을 향해 레이저빔이 조사되는 것과 동시에 가공 어시스트 가스가 분출되도록 상기 노즐 본체의 종축을 따라 관통 형성되는 유로를 포함하는 레이저 가공용 노즐에 있어서,
    상기 유로는,
    상기 가공 어시스트 가스의 유동 방향을 따라 형성되고, 상기 가공 어시스트 가스의 초음속 유동을 발생시키는 제1유로;
    상기 가공 어시스트 가스의 유동 방향을 따라 상기 제1유로에 연결되고, 상기 제1유로를 통과한 가공 어시스트 가스의 부피를 팽창시키는 제2유로; 및
    상기 제1유로와 상기 제2유로 사이의 경계를 형성하는 유로경계부;를 포함하는 것을 특징으로 하는 레이저 가공용 노즐.
  2. 제1항에 있어서,
    상기 제2유로에는,
    상기 유로경계부에서 상기 가공 어시스트 가스의 유동 방향과 교차되는 방향을 따라 연장되는 제1연장부; 및
    상기 제1연장부에서 상기 제2유로가 끝나는 유로종료부를 향해 연장되는 제2연장부;가 포함되는 것을 특징으로 하는 레이저 가공용 노즐.
  3. 제2항에 있어서,
    상기 제1연장부는 상기 가공 어시스트 가스의 유동 방향과 실질적으로 수직을 이루고,
    상기 제2연장부는 상기 가공 어시스트 가스의 유동 방향과 실질적으로 평행한 것을 특징으로 하는 레이저 가공용 노즐.
  4. 제2항에 있어서,
    상기 제1연장부와 상기 제2연장부 사이에 형성되는 각도는 둔각을 형성하는 것을 특징으로 하는 레이저 가공용 노즐.
  5. 제2항에 있어서,
    상기 제1연장부와 상기 제2연장부는 상기 유로경계부와 상기 유로종료부 사이에서 호 형상을 나타내는 것을 특징으로 하는 레이저 가공용 노즐.
  6. 제1항에 있어서,
    상기 제2유로에는,
    상기 유로경계부에서 상기 제2유로가 끝나는 유로종료부를 향해 유로단면적이 증가되도록 경사지게 형성되는 제3연장부;가 포함되는 것을 특징으로 하는 레이저 가공용 노즐.
  7. 제1항에 있어서,
    상기 유로에는, 상기 제2유로가 끝나는 유로종료부;가 더 포함되고,
    상기 유로종료부에서의 상기 제2유로의 유로단면적은 상기 유로경계부에서의 상기 제1유로의 유로단면적보다 크게 형성되는 것을 특징으로 하는 레이저 가공용 노즐.
  8. 제1항에 있어서,
    상기 제1유로는,
    상기 가공 어시스트 가스가 유입되는 가스입구부로부터 상기 가공 어시스트 가스의 유동 방향을 따라 유로단면적이 점차적으로 감소하는 아음속형성부;
    상기 아음속형성부에 연결되고, 상기 아음속형성부로부터 상기 가공 어시스트 가스의 유동 방향을 따라 유로단면적이 점차적으로 증가하는 초음속형성부; 및
    상기 아음속형성부와 상기 초음속형성부 사이의 경계를 형성하고, 상기 가공 어시스트 가스가 아음속 유동에서 초음속 유동으로 변경되는 음속경계부;를 포함하는 것을 특징으로 하는 레이저 가공용 노즐.
  9. 제8항에 있어서,
    상기 가스입구부에 공급되는 상기 가공 어시스트 가스의 압력은 18bar 이상 22bar 이하이고,
    상기 가공 어시스트 가스의 유동 방향을 기준으로 상기 아음속형성부의 유로길이를 L1이라 하고, 상기 초음속형성부의 유로길이를 L2라고 하면,
    L1:L2=3:11 인 관계를 만족하는 것을 특징으로 하는 레이저 가공용 노즐.
  10. 제8항 또는 제9항에 있어서,
    상기 음속경계부에서 상기 아음속형성부의 직경을 D1이라 하고, 상기 유로경계부에서 상기 초음속형성부의 직경을 D2라 하면,
    D2/D1는 1.7 보다 크고, 2.0 보다 작은 것을 특징으로 하는 레이저 가공용 노즐.
  11. 제1항에 있어서,
    상기 노즐본체는,
    상기 가공헤드에 결합되는 결합부;
    상기 결합부의 단면적보다 크게 형성되도록 상기 결합부에서 연장되는 파지부; 및
    상기 파지부의 단면적보다 작게 형성되도록 상기 파지부에서 연장되는 출구부;를 포함하고,
    상기 결합부와 상기 파지부와 상기 출구부는 단일 몸체로 이루어진 것을 특징으로 하는 레이저 가공용 노즐.
PCT/KR2017/001820 2016-02-25 2017-02-20 레이저 가공용 노즐 WO2017146424A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/075,991 US11179804B2 (en) 2016-02-25 2017-02-20 Laser machining nozzle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160022454 2016-02-25
KR10-2016-0022454 2016-02-25
KR1020170012904A KR101946898B1 (ko) 2016-02-25 2017-01-26 레이저 가공용 노즐
KR10-2017-0012904 2017-01-26

Publications (1)

Publication Number Publication Date
WO2017146424A1 true WO2017146424A1 (ko) 2017-08-31

Family

ID=59686393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001820 WO2017146424A1 (ko) 2016-02-25 2017-02-20 레이저 가공용 노즐

Country Status (1)

Country Link
WO (1) WO2017146424A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665045B (zh) * 2017-11-23 2019-07-11 林育勤 雷射噴頭之導正構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136295A (en) * 1980-03-28 1981-10-24 Mitsubishi Electric Corp Laser cutting head
US4913405A (en) * 1988-02-03 1990-04-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Laser cutting nozzle, cutting head comprising said nozzle and laser cutting method using said elements
US5786561A (en) * 1994-01-25 1998-07-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Nozzle assembly for laser beam cutting
JP2000107879A (ja) * 1998-10-05 2000-04-18 Amada Co Ltd レーザ切断加工方法及び同方法に使用するレーザノズル
JP2011041963A (ja) * 2009-08-21 2011-03-03 Amada Co Ltd レーザ加工装置におけるレーザ加工ヘッド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136295A (en) * 1980-03-28 1981-10-24 Mitsubishi Electric Corp Laser cutting head
US4913405A (en) * 1988-02-03 1990-04-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Laser cutting nozzle, cutting head comprising said nozzle and laser cutting method using said elements
US5786561A (en) * 1994-01-25 1998-07-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Nozzle assembly for laser beam cutting
JP2000107879A (ja) * 1998-10-05 2000-04-18 Amada Co Ltd レーザ切断加工方法及び同方法に使用するレーザノズル
JP2011041963A (ja) * 2009-08-21 2011-03-03 Amada Co Ltd レーザ加工装置におけるレーザ加工ヘッド

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665045B (zh) * 2017-11-23 2019-07-11 林育勤 雷射噴頭之導正構造

Similar Documents

Publication Publication Date Title
CN1098742C (zh) 用于激光加工装置的激光加工头
CA2092497C (en) Method of cutting an aperture in a device by means of a laser beam
US8946588B2 (en) Method and apparatus for improving reliability of a machining process
US7214904B2 (en) Method and apparatus for laser drilling with a jet nozzle
US4913405A (en) Laser cutting nozzle, cutting head comprising said nozzle and laser cutting method using said elements
US5214263A (en) Transferred plasma arc torch
US6191380B1 (en) Plasma arc torch head
CN110170743B (zh) 激光加工头
US8378253B2 (en) Method for laser welding using a nozzle capable of stabilizing the keyhole
KR101946898B1 (ko) 레이저 가공용 노즐
WO2017146424A1 (ko) 레이저 가공용 노즐
EP0600250B1 (de) Verfahren zum Schweissen von Werkstücken mittels eines Laserstrahles und Laserschweissdüse
JPH11123578A (ja) レーザ加工ヘッド
JPH11245077A (ja) レーザ加工ヘッド
JPH0740056A (ja) プラズマトーチ
JPH06500959A (ja) 改良されたチップの制御による機械加工方法および装置
CN2774694Y (zh) 一种激光焊接超音速横向气帘装置
JP3061268B1 (ja) レーザ光とアークを用いた溶融加工装置
JP2000351090A (ja) レーザ溶射用ノズル
JPH11226770A (ja) レーザ加工ヘッド
JPH08132244A (ja) プラズマアーク切断用トーチ及びプラズマアーク切断方法
US7186946B2 (en) Laser drilling
JPH06170578A (ja) レーザ切断加工用ノズル
JP2002239770A (ja) レーザ切断用ノズル
JPS626785A (ja) レ−ザ加工装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756762

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756762

Country of ref document: EP

Kind code of ref document: A1