WO2017146050A1 - 滅菌用包装材料 - Google Patents
滅菌用包装材料 Download PDFInfo
- Publication number
- WO2017146050A1 WO2017146050A1 PCT/JP2017/006381 JP2017006381W WO2017146050A1 WO 2017146050 A1 WO2017146050 A1 WO 2017146050A1 JP 2017006381 W JP2017006381 W JP 2017006381W WO 2017146050 A1 WO2017146050 A1 WO 2017146050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nonwoven fabric
- packaging material
- sterilization
- fiber
- laminated
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/00051—Accessories for dressings
- A61F13/00072—Packaging of dressings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B50/00—Containers, covers, furniture or holders specially adapted for surgical or diagnostic appliances or instruments, e.g. sterile covers
- A61B50/30—Containers specially adapted for packaging, protecting, dispensing, collecting or disposing of surgical or diagnostic appliances or instruments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
- B32B7/14—Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/20—All layers being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/02—Coating on the layer surface on fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0276—Polyester fibres
- B32B2262/0284—Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/308—Heat stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/582—Tearability
- B32B2307/5825—Tear resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
- B32B2307/7145—Rot proof, resistant to bacteria, mildew, mould, fungi
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/718—Weight, e.g. weight per square meter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
- B32B2307/7244—Oxygen barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/726—Permeability to liquids, absorption
- B32B2307/7265—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/80—Medical packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/18—Handling of layers or the laminate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
Definitions
- the present invention relates to a packaging material for sterilization used for sterilization of medical instruments, for example.
- a sterilization method a high-temperature high-pressure steam method, an ethylene oxide gas method, or the like is used, and a packaging material for an instrument suitable for the treatment method is used.
- the fibrous sheet suitable for sterilization packaging materials has good air permeability, fine pore diameter and bubble point, good barrier properties, heat sealability, and fuzziness. Something is needed.
- non-woven fabrics and films made of synthetic fibers such as pulp and polyethylene are used as packaging materials for sterilization.
- bags are made by combining non-woven fabrics and transparent resin films so that the inside can be seen. Some are used so that they are laminated together.
- Patent Document 1 a non-woven fabric of a flash spinning method using a polyethylene resin as a fibrous sheet used in the medical field is reported.
- the yarn diameter is not uniform, the area where the average fiber diameter is 2 ⁇ m or less cannot be manufactured, the basis weight dispersibility is not good, and it is necessary to use a solvent etc. From the aspect, it is not practical.
- Patent Document 2 reports pulp-based sterilized paper and describes that heat sealability can be obtained by laminating sterilized paper and a synthetic resin film.
- pulp-based paper is used as a general sterilized packaging material, each fiber is not continuous compared to a long-fiber nonwoven fabric, and paper dust is scattered during processing, making it a deadly medical device. Problem. In an environment where alcohol, water, etc. are frequently used, pulp-based sterilized paper is very fragile and unsuitable as a packaging material.
- the problem to be solved by the present invention is that processing is suitable as a packaging material, and the sterilization of the inside is small with little change in shape and size corresponding to all sterilization methods such as high temperature conditions. It is to provide a novel sterilization packaging material capable of maintaining the state.
- the present inventors have found that a sterilization packaging material with higher production and higher performance can be obtained by using a nonwoven fabric having a specific structure as described below.
- the present invention has been completed. That is, the present invention is as follows.
- a sterilization packaging material composed of laminated nonwoven fabric.
- the packaging material for sterilization according to the present invention has a specific structure and can be applied to any sterilization method such as steam sterilization by using a laminated nonwoven fabric with a highly controlled pore diameter, and can be manufactured in a stable processing step with a yield. In addition, it can be produced at low cost, and since it has appropriate air permeability and pore size, it has very good bacterial barrier properties that can maintain the sterilized state inside the packaging material, and there is little scattering of paper dust etc. High quality and high quality due to excellent quality stability.
- the packaging material for sterilization of this embodiment is a laminated nonwoven fabric of at least two layers including an ultrafine fiber layer.
- a non-woven fabric including an ultrafine fiber layer has a fine pore diameter, a specific surface area of the fiber surface is increased, and good air permeability and bacterial barrier properties are enhanced.
- the nonwoven fabric layer (I) is composed of fibers having a fiber diameter of 5 to 30 ⁇ m. If the fiber diameter is 30 ⁇ m or less, the fiber diameter is not too large and a uniform inter-fiber distance can be obtained, so that a dense and uniform nonwoven fabric laminate can be obtained.
- the nonwoven fabric layer (I) and the nonwoven fabric layer When the layers (II) are laminated so as to be in contact with each other, the ultrafine fibers constituting the nonwoven fabric layer (II) are arranged more uniformly between the fibers constituting the nonwoven fabric layer (I). Thereby, the hole diameter of a laminated nonwoven fabric can be made uniform, the bubble point which means a maximum hole diameter becomes small, and favorable bacteria barrier property can be achieved.
- the nonwoven fabric layer (II) may have two or more layers.
- the fiber diameter of the fibers constituting the nonwoven fabric layer (I) is 5 ⁇ m or more, the single yarn strength becomes strong, the laminated nonwoven fabric can achieve sufficient tensile and puncture strength, and the workability is also stable.
- the fiber diameter of the nonwoven fabric constituting the nonwoven fabric layer (I) is preferably 7 to 20 ⁇ m, more preferably 9 to 18 ⁇ m.
- Nonwoven fabric layer (II) is composed of ultrafine fibers having a fiber diameter of 0.1 to 4 ⁇ m. If the fiber diameter is 4 ⁇ m or less, the distance between the fibers does not become too large, so that a micropore diameter can be achieved and good bacterial barrier properties can be achieved. If the thickness is less than 0.1 ⁇ m, it is considered that the non-woven fabric has too small a pore size of the base material, resulting in poor air permeability. If it exceeds 4 ⁇ m, the density and pore diameter uniformity will be low, and the bacterial barrier property will be significantly reduced. In this sense, the fiber diameter of the nonwoven fabric constituting the nonwoven fabric layer (II) is more preferably in the range of 0.3 to 3 ⁇ m, still more preferably in the range of 0.5 to 2.5 ⁇ m.
- a three-layer laminated nonwoven fabric in which the nonwoven fabric layer (I) is present as an intermediate layer between the two nonwoven fabric layers (I) is preferable. If both sides of the laminated nonwoven fabric are the nonwoven fabric layer (I), generation of fluff and lint can be suppressed when external force is applied to the nonwoven fabric surface during processing. Also, during production, defects in surface fluff are suppressed. It can be expected to improve the peelability, and a good quality nonwoven fabric can be obtained as a packaging material for sterilization.
- the non-woven fabric layer (I) of the packaging material for sterilization of this embodiment is composed of a continuous long-fiber non-woven fabric.
- the long fiber means that the fiber length is 15 mm or more. Since continuous yarns have continuous yarns compared to short fibers, the strength of single yarns is high, resulting in fabric strength and stabilization of the production process.
- the packaging material for sterilization is preferably made of a thermoplastic synthetic resin.
- a thermoplastic synthetic resin can be a polyolefin-based resin, a polyester-based resin, a polyphenylene sulfide-based resin, specifically, ethylene, propylene, 1-butene, 1-hexane, 4-methyl-1-pentene, 1-octene, etc.
- High-pressure process low density polyethylene linear low density polyethylene (LLDPE), high density polyethylene, polypropylene (propylene homopolymer), polypropylene random copolymer, poly 1-butene, poly Polyolefin and polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate), 4-methyl-1-pentene, ethylene / propylene random copolymer.
- copolymers or mixtures based on these resins are also preferred.
- by using a non-woven fabric made of a resin having a melting point of 140 ° C. or higher it is possible to cope with sterilization treatment that requires high temperature conditions such as steam sterilization.
- it is a polyester-based or polypropylene polymer.
- these resins heat resistance is particularly high, and high-pressure steam sterilization that is frequently used in hospitals enables higher-temperature processing than before, so that processing time can be reduced and efficient sterilization is possible. Processing is possible. In that case, a dense pore structure composed of ultrafine fibers can be maintained, and bacteria can be effectively prevented from entering even after sterilization.
- the manufacturing method of each nonwoven fabric layer is not limited.
- the production method of the nonwoven fabric layer (I) can be preferably a spunbond method, a dry method, a wet method or the like. More preferred is the spunbond method because of good productivity.
- the production method of the nonwoven fabric layer (II) is preferably a dry method using ultrafine fibers, a production method such as a wet method, an electrospinning method, a melt blown method, or the like. More preferably, the melt-blown method is used because an ultrafine nonwoven fabric can be easily and densely formed.
- the lamination / integration method of the nonwoven fabric layer (I) and the nonwoven fabric layer (II) is not particularly limited. Specifically, as thermal bonding, processing by calendar and integration with high-temperature hot air (air-through method), as chemical bonding, a method of applying an emulsion such as polyacrylate or polyurethane resin, etc. Is mentioned.
- the thermal bonding can maintain the strength and bending flexibility of the nonwoven fabric, and can be formed into a plurality of nonwoven fabric layers without using a binder, so that the inclusion of impurities is rejected.
- a particularly preferable thermal bonding method is calendering.
- the calendering is a method in which a metal roll having unevenness such as embossing or a satin pattern is pressed with a hot roll using a flat roll having smoothness.
- the surface pattern of the roll having surface irregularity is not particularly limited as long as the fibers can bond fibers. This process can also contribute to easy peelability.
- the thermal bonding step can be performed at a linear pressure of 100 to 1000 N / cm at a temperature 50 to 120 ° C. lower than the melting point of the thermoplastic resin (preferably, the thermoplastic resin long fiber). If the linear pressure in the thermal bonding process is less than 100 N / cm, it is difficult to develop sufficient strength. On the other hand, if it exceeds 1000 N / cm, the apparent density increases, the average flow pore size becomes too small, and the necessary air permeability may be impaired.
- the average flow pore size of the packaging material for sterilization of this embodiment is preferably 0.1 to 30 ⁇ m. If the thickness is less than 0.1 ⁇ m, the fiber gap is too narrow, the air permeability is lowered, and the sterilization treatment does not penetrate into the inside of the packaging material. When it exceeds 30 ⁇ m, the distance between fibers becomes too large, the bacterial barrier property is lowered, and the invasion of bacteria is allowed, and it is difficult to maintain a sterilized state. In that sense, it is more preferably in the range of 0.3 to 20 ⁇ m, still more preferably in the range of 0.5 to 15 ⁇ m. Although the bubble point has the same idea, the bubble point is more uniform as the numerical value is closer to the average flow pore size.
- the thickness is preferably 0.5 to 50 ⁇ m, more preferably 2.0 to 40 ⁇ m, still more preferably 3.0 to 50 ⁇ m.
- the basis weight of the packaging material for sterilization of this embodiment is preferably in the range of 8.0 to 100 g / m 2 . If it is less than 8 g / m 2 , the tensile strength and puncture strength are insufficient, making it difficult to process as a packaging material, which is incompatible with productivity. In that sense, it is more preferably in the range of 10 to 90 g / m 2 , more preferably 15 to 80 g / m 2 .
- the thickness is preferably in the range of 0.03 to 1.0 mm. If it is less than 0.03 mm, the density of the laminate increases and the air permeability decreases. If it exceeds 1.0 mm, the peel strength between the nonwoven fabric layers will be reduced, making it difficult to maintain the laminate. In that sense, it is more preferably in the range of 0.05 to 0.20 mm, still more preferably 0.08 to 0.15.
- the air permeability of the packaging material for sterilization is preferably 1 to 100 seconds / 100 ml when passing through a 100 ml air laminated nonwoven fabric in the Gurley air permeability test. If it is less than 1 second, a minute average flow pore size is not obtained, and the bacterial barrier property is low, which is not preferable as a sterilized packaging material. If it exceeds 100 seconds / 100ml, the gas permeability is poor and it does not function as a sterilized packaging material. In that sense, the air permeability is more preferably in the range of 1.0 to 80 seconds / 100 ml, and still more preferably in the range of 1.5 to 70 seconds / 100 ml.
- the tensile strength of the sterilization packaging material of this embodiment is preferably 10 to 300 N / 25 mm width. If the width is less than 10 N / 25 mm, the production process cannot withstand the tension in the processing process, and when it is used as a packaging material, it easily deforms and does not function as a sterile packaging material. If the width exceeds 300 N / 25 mm, the sterilized packaging material will have too many beams and its handling will be poor, and it will not function as a sterilized packaging material. In this sense, it is preferably 10 to 280 N / 25 mm width, more preferably 15 to 260 N / 25 mm width. Is in range. The same can be said for the piercing strength, which is preferably in the range of 70 to 700N, more preferably 15 to 650N, and still more preferably 20 to 600N.
- the specific surface area of the packaging material for sterilization of the present embodiment is desirably 0.01 to 10 m 2 / g.
- physical collection such as fiber gap and pore diameter and adsorption collection such as static electricity and intermolecular force can be considered.
- the latter is a collection method that effectively utilizes the fiber surface. In this case, it is possible to effectively collect bacteria entering the packaging material while maintaining high air permeability, and it is possible to achieve both high sterilization efficiency and bacteria barrier properties.
- the specific surface area is less than 0.01 m 2 / g, the adsorption area is small and the bacterial barrier property is low, allowing bacteria to enter the packaging material.
- the specific surface area is more preferably in the range of 0.05 to 9 m 2 / g. More preferably, it is in the range of 0.10 to 8 m 2 / g.
- the method for producing the nonwoven fabric in the above specific surface area range is not limited. Since the purpose is to increase the area of the fiber interface, for example, the specific surface area can be controlled by appropriately adjusting the fiber diameter of the constituted fiber. However, in long fiber melt spinning such as melt blown, fibers that are closer to each other are usually contacted and fused immediately after being discharged from a nozzle, and a fiber bundle consisting of several apparent fibers is often generated. Since it is difficult to obtain a surface area, a nonwoven fabric having a high specific surface area can be produced by appropriately adjusting various conditions (discharge amount, temperature, air volume, wind direction, etc.) relating to polymer discharge, cooling, and collection. Also, when laminating and integrating, for example, too much heat and pressure, such as calendering, will induce fiber fusion and the specific surface area will decrease. It is important to integrate them while maintaining the fiber shape.
- sterilization packaging materials such as non-woven materials such as non-breathable materials such as nonwoven fabrics, or non-breathable substrates such as transparent films.
- the base material may be required to have heat sealability.
- the laminated nonwoven fabric of the present embodiment is composed of a thermoplastic resin, and it is easy to obtain heat sealability. In particular, by adopting a resin material having a low melting point on one side, excellent heat seal strength is exhibited. When it has heat sealing properties, not only sterilized packaging materials but also surgical gowns can be sewn using laminated nonwoven fabric, and thermocompression sewing can be employed.
- the packaging material for sterilization according to this embodiment is preferably subjected to water / alcohol repellent treatment.
- the method of the water / alcohol repellent treatment is not limited.
- a coating method in which a material having water repellency is applied, or a gas treatment method in which the fiber surface is activated by a gas having water repellency / alcohol repellency or the like to perform surface treatment may be used.
- the material having water repellency / alcohol repellency, or the type of gas is not limited, and examples thereof include fluorine and silicon.
- the photographing magnification was 10,000 times for yarns having an average fiber diameter of less than 0.5 ⁇ m, 6000 times for yarns having an average fiber diameter of 0.5 to less than 1.5 ⁇ m, and 4000 times for yarns having an average fiber diameter of 1.5 ⁇ m or more.
- the field of view at each magnification was 12.7 ⁇ m ⁇ 9.3 ⁇ m at 10,000 ⁇ , 21.1 ⁇ m ⁇ 15.9 ⁇ m at 6000 ⁇ , and 31.7 ⁇ m ⁇ 23.9 ⁇ m at 4000 ⁇ . 100 or more fibers were randomly photographed and all fiber diameters were photographed. However, the fiber, which was fused in the yarn length direction, was excluded from the measurement target.
- Weight per unit (g / m 2 ) In accordance with the method specified in JIS L-1906, measure the mass by measuring 9 points per 1m x 1m in total, 3 pieces per 1m in the width direction of the sample, measuring 20cm in length and 25cm in width. It calculated
- a palm porometer (model: CFP-1200AEX) manufactured by PMI was used. This measuring device uses a non-woven fabric as a sample, immerses the non-woven fabric in an immersion liquid with a known surface tension in advance, and applies pressure to the non-woven fabric after covering all the pores of the non-woven fabric with the immersion liquid film. The pore diameter calculated from the pressure at which the liquid is destroyed and the surface tension of the immersion liquid is measured.
- the flow rate (wetting flow rate, unit L / min) when the pressure P applied to the filter immersed in the immersion liquid was continuously changed from low pressure to high pressure was measured.
- the value obtained by dividing the wetting flow rate at a certain pressure P by the dry flow rate at the same pressure is called the cumulative filter flow rate (unit%).
- the flow rate of the liquid film destroyed at a pressure at which the cumulative filter flow rate becomes 50% was defined as the average flow pore size. Further, since the initial pressure is not broken even with the liquid film having the largest pores, the flow rate is zero. When the pressure is increased, the liquid film with the largest pore is destroyed and the flow rate is generated. This pore diameter is called a bubble point.
- Specific surface area Device type Gemini 2360 Shimadzu Corporation make was used.
- the nonwoven fabric was rolled into a cylindrical shape and packed in a cell for measuring specific surface area.
- the sample weight is preferably about 0.20 to 0.60 g.
- the cell containing the sample was dried at 60 ° C. for 30 minutes, and then cooled for 10 minutes.
- Puncture strength (10) Puncture strength (N)
- a needle with a diameter of 25 mm and a tip radius of 12.5 mm is attached, and a puncture test is performed at a temperature of 23 ⁇ 2 ° C and a needle moving speed of 50 mm / min.
- a single nonwoven fabric sample was measured at five points at various different positions, and the average value was taken as the air permeability.
- Heat-sealing property The heat-sealing strength when heat-sealing at an appropriate temperature was measured by the following method according to JIS L 1086. Two specimens each having a length of 10 cm and a width of 3 cm are overlapped, and 5 pieces obtained by heat-sealing a portion 2 cm from the end in parallel to the width direction of the specimen pieces are prepared as samples. The heat sealing is performed by heat sealing at a surface pressure of 98 N / cm 2 for 1 second using a hot press machine having a pair of upper and lower press-contact bars (width 1 cm, length 30 cm) coated with polytetrafluoroethylene.
- Peel property A sheet (unstretched polypropylene by T-die method) is laminated to the packaging material obtained in Examples 1 to 14 by an appropriate method, and the peel property is peeled off from the sterilized paper after high-pressure steam sterilization treatment. The amount of fluff transferred to the sheet later was judged by visual judgment. The peelability after high-pressure steam sterilization of Comparative Examples 4 and 5 was evaluated as ⁇ , the inferior one was evaluated as ⁇ , and the further inferior one was evaluated as ⁇ .
- Heat shrinkage rate A 80 mm ⁇ 80 mm square mark is put on a sample having a length of 300 mm and a width of 210 mm, and the dimensions are measured. The sample with the square mark is allowed to stay for 15 minutes in a dryer set at a temperature of 125 ° C., and the dimensions of the square are measured, and the shrinkage rate is calculated as compared with that before putting in the dryer.
- Three of the three-way sealing materials are used as samples, and the remaining three are used as control samples.
- drill three holes each with a 24-gauge needle (outer diameter 0.54-0.58 mm).
- About 10 g of dry fine powdery soil containing gold is placed in the bottom of the vacuum desiccator, placed in each of the three desiccators of the sample containing the petri dish and the control material, and a vacuum of 560 mmHg (from atmospheric pressure to -200 mmHg) is obtained.
- 560 mmHg from atmospheric pressure to -200 mmHg
- the sample and the control sample are taken out from the desiccator, and when cultured at 37 degrees 48 hours, visible colonies are observed in the control sample, and it is confirmed whether visible colonies are observed in the sample.
- the case where it was not confirmed was judged as “good”, and the case where it was confirmed as “x”, and was judged in two stages.
- Atmospheric dust collection efficiency [1 ⁇ (number of downstream particles / number of upstream particles)] ⁇ 100
- Examples 1 to 7 Using a polyethylene terephthalate (hereinafter referred to as PET) resin, a filament long fiber group is extruded onto a moving collection net at a spinning temperature of 300 ° C. by a spunbond method, and spun at a spinning speed of 4500 m / min. In order to sufficiently open the fiber by charging about 3 ⁇ C / g, a thermoplastic long fiber web was formed on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method. PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- PET polyethylene terephthalate
- thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PET resin in the extruder, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like. Further, a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric. Thereafter, the obtained web was calendered to obtain a packaging material for sterilization.
- Example 8 Using PET resin, spunbond method, filament long fiber group is extruded onto a moving collection net, spun at a spinning speed of 4500 m / min, and charged at a corona charge of about 3 ⁇ C / g. The fiber was sufficiently opened to form a thermoplastic resin long fiber web on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method. PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- An SB-MB laminated nonwoven fabric was produced by appropriately selecting the melting temperature of the PET resin, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like by pulling the thermoplastic resin in an extruder. Thereafter, the obtained web was calendered to obtain a packaging material for sterilization.
- Example 9 to 12 Using a polypropylene (hereinafter referred to as PP) resin, a filament long fiber group is extruded onto a moving collection net at a spinning temperature of 230 ° C. by a spunbond method, and spun at a spinning speed of 4500 m / min. About 3 ⁇ C / g was charged to sufficiently open the fiber, and a thermoplastic long fiber web was formed on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method. PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- PP polypropylene
- thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PP resin, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like in the extruder. Further, a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric. Thereafter, the obtained web was calendered to obtain a packaging material for sterilization.
- Example 13 Using PET resin, spunbond method, filament long fiber group is extruded onto a moving collection net, spun at a spinning speed of 4500 m / min, and charged at a corona charge of about 3 ⁇ C / g. The fiber was sufficiently opened to form a thermoplastic resin long fiber web on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method. PET resin was used as the fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PET resin in the extruder, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like. Further, a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric. Thereafter, the web obtained was calendered and subjected to a water repellent treatment by applying a fluorine-based water repellent by an appropriate method.
- Example 14 Using a PET resin and a CO-PET resin, a long-filament group of filaments is extruded onto a moving collection net at a spinning temperature of 300 ° C., spun at a spinning speed of 4500 m / min. About 3 ⁇ C / g was charged to sufficiently open the fiber, and a thermoplastic resin long fiber web was formed on a collection net to prepare a two-component fiber nonwoven fabric. A web was sprayed on the SB nonwoven fabric produced above by the following MB method. PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PET resin in the extruder, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like. Further, a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric. Thereafter, the obtained web was calendered to obtain a packaging material for sterilization.
- Examples 15 to 22 In the same manner as in Examples 1 to 7, a polyethylene terephthalate (hereinafter referred to as PET) resin was used and the filament long fiber group was extruded toward a moving collection net at a spinning temperature of 300 ° C. by a spunbond method. Spinning was performed at 4500 m / min, and a corona charge was charged to about 3 ⁇ C / g to sufficiently open the fiber, and a thermoplastic long fiber web was formed on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method.
- PET polyethylene terephthalate
- PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- the thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PET resin in the extruder, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like.
- a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric.
- Various conditions related to discharge, cooling, and collection during discharge were set from the viewpoint of suppressing fusion.
- calendering was performed under appropriate conditions with a calender roll with optimized roll hardness to obtain a packaging material for sterilization.
- Example 23 In the same manner as in Examples 1 to 7, a polyethylene terephthalate (hereinafter referred to as PP) resin was used, and a long fiber group of filaments was extruded onto a moving collection net at a spinning temperature of 230 ° C. by a spunbond method. Spinning was performed at 4500 m / min, and a corona charge was charged to about 3 ⁇ C / g to sufficiently open the fiber, and a thermoplastic long fiber web was formed on the collection net. A web was sprayed on the SB nonwoven fabric produced above by the following MB method.
- PP polyethylene terephthalate
- PET resin was used as a fiber material, and the PET resin melted by an extruder was extruded from a nozzle having a nozzle diameter of 0.30 mm.
- the thermoplastic resin was pulled and thinned by appropriately selecting the melting temperature of the PP resin, the spinning gas temperature, the single-hole discharge amount of the molten resin, and the like in the extruder.
- a SB-MB-SB laminated nonwoven fabric was produced by spraying a similar SB nonwoven fabric on the MB nonwoven fabric.
- Various conditions related to discharge, cooling, and collection during discharge were set from the viewpoint of suppressing fusion.
- calendering was performed under appropriate conditions with a calender roll with optimized roll hardness to obtain a packaging material for sterilization.
- Tables 1 to 4 below show the nonwoven fabric structures of Examples 1 to 23 and Comparative Examples 1 to 6 and various types of obtained nonwoven fabrics.
- the laminated nonwoven fabric according to the present invention can be suitably used as a sterilization packaging material in the medical field for the purpose of preventing infectious diseases such as sondes, scalpels, tweezers and scissors.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Textile Engineering (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Vascular Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nonwoven Fabrics (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
Abstract
Description
[2]2層の前記不織布層(I)の間に前記不織布層(II)からなる中間層が存在する、前記[1]に記載の滅菌用包装材料。
[3]前記不織布層(II)がメルトブロウン不織布で構成されている、前記[1]又は[2]に記載の滅菌用包装材料。
[4]前記積層不織布の平均流量孔径が0.1~30μmであり、かつ、バブルポイントが0.5~50μである、前記[1]~[3]のいずれかに記載の滅菌用包装材料。
[5]前記積層不織布の目付が8.0~100g/m2、であり、かつ、厚みが0.03~0.2mmである、前記[1]~[4]のいずれかに記載の滅菌用包装材料。
[6]ガーレ型通気度試験で100mlの空気が前記積層不織布を通過する時間から得られる通気度が1~100秒/100mlである、前記[1]~[5]のいずれかに記載の滅菌用包装材料。
[7]前記積層不織布の引張強度が10~300N/25mm巾であり、かつ、突き刺し強度が70~700Nである、前記[1]~[6]のいずれかに記載の滅菌用包装材料。
[8]前記積層不織布がポリエステルで構成されている、前記[1]~[7]のいずれかに記載の滅菌用包装材料
[9]前記積層不織布の比表面積が0.01~10m2/gである、前記[1]~[8]のいずれかに記載の滅菌用包装材料。
本実施形態の滅菌用包装材料は、極細繊維層を含む少なくとも2層以上の積層不織布である。極細繊維層を含む不織布は、微小の孔径を有し、繊維表面の比表面積が大きくなり、良好な通気性、バクテリアバリア性が高まる。
不織布層(I)は、繊維径5~30μmを有する繊維から構成されている。繊維径が30μm以下であれば、繊維の径が太過ぎず、均一な繊維間距離を得る事ができるため、緻密で均一な不織布積層体を得る事ができ、不織布層(I)と不織布層(II)とをお互いに接するように積層した場合に、不織布層(II)を構成する構成する極細繊維が、不織布層(I)を構成する繊維の間により均一に配置される。これにより、積層不織布の孔径は均一にすることができ、最大孔径を意味するバブルポイントは小さくなり、良好なバクテリアバリア性を達成できる。場合によっては、不織布層(II)は2層以上にしてもよい。他方、不織布層(I)を構成する繊維の繊維径が5μm以上であれば、単糸強度が強くなり、積層不織布が十分な引張、突刺強度を達成することができ、加工性も安定する。この意味で、不織布層(I)を構成する不織布の繊維径は、好ましくは7~20μm、より好ましくは9~18μmである。
バブルポイントも同様の考えはあるがバブルポイントは平均流量孔径に近い数値であるほど孔径均一性がある。0.5~50μであることが好ましく、より好ましくは2.0~40μm、更に好ましくは3.0~50μmの範囲にある。
(1)極細繊維の平均繊維径(μm)の測定
不織布を10cm×10cmにカットし、上下60℃の鉄板に0.30MPaの圧力で90秒間プレスした後、不織布を白金で蒸着した。SEM装置(JSM-6510 日本電子株式会社製)を用いて、加速度電圧15kV、ワーキングディスタンス21mmの条件で撮影した。撮影倍率は、平均繊維径が0.5μm未満の糸は10000倍、平均繊維径が0.5以上1.5μm未満の糸は6000倍、1.5μm以上の糸は4000倍とした。それぞれの撮影倍率での撮影視野は、10000倍では12.7μm×9.3μm、6000倍では21.1μm×15.9μm、4000倍では31.7μm×23.9μmとした。ランダムに繊維100本以上を撮影し、全ての繊維径を撮影した。但し、糸長方向で融着している繊維同氏は測長対象から除いた。以下の式:
Dw=ΣWi・Di=Σ(NiDi2)/(Ni・Di)
{式中、Wi=繊維径Diの重量分率=Ni・Di/ΣNi・Diである。}
により求めた重量平均繊維径(Dw)を、平均繊維径とした。
JIS L-1906に規定の方法に従い、縦20cm×横25cmの試験片を試料の幅方向1m当たり3箇所の、計1m×1m当たり9箇所採取して質量を測定し、その平均値を単位面積当たりの質量に換算して求めた。
JIS L-1906に規定の方法に従い、巾1m当たり10箇所の厚みを測定し、その平均値を求めた。
上記(2)で測定した目付け(g/m2)、上記(3)で測定した厚み(μm)を用い、以下の式:
見掛けの密度=(目付け)/(厚み)
により算出した。
上記(4)で計算した見掛け密度(g/cm3)を用いて、以下の式:
空隙率={1-(見掛け密度)/(樹脂密度}}/100
より算出した。
測定装置として、PMI社製のパームポロメーター(型式:CFP-1200AEX)を用いた。本測定装置は、不織布を試料として、予め表面張力が既知の浸液に不織布を浸し、不織布の全ての細孔を浸液の膜で覆った状態から不織布に圧力をかけ、浸液の液膜が破壊される圧力と浸液の表面張力とから計算される細孔の孔径を測定するものである。浸液としてPMI社製のシルウィックを用い、不織布を浸液に浸して充分に脱気した後、下記の式:
d=C・r/P
{式中、d(単位:μm)はフィルターの孔径であり、r(単位:N/m)は浸液の表面張力であり、P(単位:Pa)はその孔径の液膜が破壊される圧力であり、Cは浸液の濡れ張力、接触角などにより定まる定数を用いて孔径を求めた。
装置型式:Gemini2360 株式会社島津製作所製を用いた。
不織布を円筒状に丸め比表面積測定用セルに詰めた。この際に投入するサンプル重量は0.20~0.60g程度が好ましい。サンプルを投入したセルを60℃の条件下で30分間乾燥した後に、10分間冷却を行った。その後、上記の比表面積測定装置にセルをセットし、サンプル表面への窒素ガス吸着により、下記BETの下記式:
P/(V(P0-P))=1/(Vm×C)+((C-1)/(Vm×C))(P/P0)
{式中、P0:飽和水蒸気圧(Pa)、Vm:単分子層吸着量(mg/g)、C:吸着熱などに関するパラメーター(-)<0であり本関係式は、特にP/P0=0.05~0.35の範囲で良く成り立つ。}
を適用し、比表面積値を求めた。BET式とは、一定温度で吸着平衡状態である時、吸着平衡圧Pと、その圧力での吸着量Vの関係を表した式である。
JIS 8113に規定の方法に従い、不織布の各端部10cmを除き、幅25mm×長さ200mmの試験片をつかみ具間の距離が100mmになるように固定し、クロスヘッドスピードを20mm/分で測定を行う。不織布の幅方向1mにつきそれぞれ5箇所採取した。試験片が破断するまで荷重を加え、機械方向(MD)及び幅方向(CD)の試験片の最大荷重時の強さの平均値を求めた。
ガーレ式デンソメータ(株式会社安田精機製作所製、“B”type)を用いて100mlの空気の透過時間(単位;s/100ml)の測定を室温で行う。一つの不織布サンプルに対して種々の異なる位置について5点の測定を行い、その平均値を通気度とした。
卓上型精密万能機(島津製作所社製のAGS-1000D型に、直径φ25mm、先端の半径12.5mmの針を装着し、温度23±2℃、針の移動速度50mm/分で突刺試験を行った。一つの不織布サンプルに対して種々の異なる位置について5点の測定を行い、その平均値を通気度とした。
適切な温度でヒートシールした際のヒートシール強力は、JIS L 1086に準じ、以下の方法により測定した。長さ10cm、幅3cmの試料片を2枚重ね合わせ、端部より2cmの部分を試料片の幅方向に平行にヒートシールしたもの5個を試料として用意する。ヒートシールはポリテトラフルオロエチレンでコートされた上下一対の圧接バー(幅1cm、長さ30cm)を有する熱プレス機にて面圧98N/cm2、1秒間でヒートシールする。次いで卓上型精密万能機(島津製作所社製のAGS-1000D型)を用い、つかみ間隔7cmでチャック間に接着部が中央になるようにサンプルをセットし引張速度10cm/分として剥離させ、剥離する時に示す極大値の大きい物より3個、極小地の小さいものより3個とり、合計6個の平均値をヒートシール性とした。
実施例1~14で得られた包装材料にシート(Tダイ法による無延伸ポリプロピレン)を適切な方法で張り合わせ、高圧蒸気滅菌処理後にシートを滅菌紙から剥離したピール性を剥離後にシートに転移した毛羽の量を目視判定により判断した。比較例4、5の高圧蒸気滅菌処理後のピール性を◎とし、劣るものを○、更に劣るものは×として2段階で評価した。
実施例1~14で得られた包装材料の両端部10cmを除き、CD方向に5等分、MD方向に3等分して計15点に関して20cm角の試験片をサンプルリングし、JIS L 1092に準じて測定して、その測定値の平均値から耐水圧を算出した。
サンプルを長さ300mm、幅210mmの試料に80mm×80mmの正方形の印を入れ、寸法を測長する。正方形の印を入れた試料を温度125℃に設定された乾熱機内に15分間滞留させ、正方形の寸法を測長し、乾熱機に入れる前と比較し収縮率を算出する。
ディスポーサブル医療用具包装材料自主規格 遮菌性試験法に準じて行う。乾燥微粉土は、川べりなどの砂状でない土を取り、熱、日光を避けて自然乾燥したのち、乳鉢で微粉末とする。超す測定を行い、環境菌群を104個/g以上含むものを用いる。直径9cm朝方シャーレが収納できる大きさをもった3方シールした滅菌包材を6個作製し、あらかじめ殺菌する。殺菌方法は、滅菌処理により袋の変質が生じない方法を採用する。常法により作成した寒天平板培地の蓋をとり、入れてシールする。3方シール材の3個を試料とし、残り3個を対照試料とする。対照試験には24ゲージ針(外径0.54~0.58mm)でそれぞれ3箇所穴をあける。金を含んだ乾燥微粉土約10gを減圧デシケータ―の底に入れ、シャーレの入った試料及び対照資料のそれぞれ3個のデシケータ中に入れ560mmHgの真空度(大気圧より-200mmHg)とし、約3分間保ったのち、コックを襲撃に全開にして空気を導入し、微粉度を十分に舞い上がらせ、大気圧に戻す。その後、試料及び対照試料をデシケータから取り出し、37度48時間培養したとき対照物試料中には可視コロニーを認められ、試料中には可視コロニーが認められるか確認する。確認されなかった場合を○、された場合を×とし、2段階で判断した。
測定面積78.5cm2 (直径10cm)、風速23.0L/minとして、測定機を通過する前後の大気を捕集し、捕集大気中の1μmの粒子(塵埃)をパーテクルカウンター(リオン製)で測定し、下記式により求めた。
大気塵捕集効率(%)=[1-(下流粒子数/上流粒子数)]×100
ポリエチレンテレフタレート(以下、PET)樹脂を用い、スパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPET樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付けることでSB-MB-SB積層不織布を作製した。その後得られたウェブをカレンダー加工して滅菌用包装材料を得た。
PET樹脂を用い、スパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPET樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させることでSB-MB積層不織布を作製した。その後得られたウェブをカレンダー加工して滅菌用包装材料を得た。
ポリプロピレン(以下、PP)樹脂を用い、スパンボンド法により、紡糸温度230℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPP樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付けることでSB-MB-SB積層不織布を作製した。その後得られたウェブをカレンダー加工して滅菌用包装材料を得た。
PET樹脂を用い、スパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂を用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPET樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付ける事でSB-MB-SB積層不織布を作製した。その後得られたウェブをカレンダー加工し、適切方法で、フッ素系の撥水剤を塗布する撥水加工処理を行った。
PET樹脂とCO-PET樹脂を用い、スパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で、2成分繊維の不織布を作製した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPET樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付けることでSB-MB-SB積層不織布を作製した。その後得られたウェブをカレンダー加工して滅菌用包装材料を得た。
実施例1~7と同様に、ポリエチレンテレフタレート(以下、PET)樹脂を用い、スパンボンド法により、紡糸温度300℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPET樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付けることでSB-MB-SB積層不織布を作製した。吐出させる際の吐出、冷却、捕集に関する各種条件は融着を抑制させる観点でそれぞれ設定した。また、その後得られたウェブを繊維形状を保つ観点で、ロール硬度を最適化させたカレンダーロールにて、適宜条件にてカレンダー加工を行い、滅菌用包装材料を得た。
実施例1~7と同様に、ポリエチレンテレフタレート(以下、PP)樹脂を用い、スパンボンド法により、紡糸温度230℃でフィラメントの長繊維群を、移動する捕集ネット上に向けて押し出し、紡糸速度4500m/分で紡糸し、コロナ帯電で3μC/g程度帯電させて十分に開繊をさせ、熱可塑性樹脂長繊維ウェブを捕集ネット上で形成した。前記で作製したSB不織布の上に以下のMB法によりウェブを吹き付けた。繊維素材としてPET樹脂用い、紡口ノズル径0.30mmの紡口ノズルから、押出機で溶融されたPET樹脂を押し出した。押出機におけるPP樹脂の溶融温度、紡糸ガス温度、溶融樹脂の単孔吐出量などを適宜選択し、熱可塑性樹脂を牽引細化させた。さらにそのMB不織布の上に同様のSB不織布を吹き付けることでSB-MB-SB積層不織布を作製した。吐出させる際の吐出、冷却、捕集に関する各種条件は融着を抑制させる観点でそれぞれ設定した。また、その後得られたウェブを繊維形状を保つ観点で、ロール硬度を最適化させたカレンダーロールにて、適宜条件にてカレンダー加工を行い、滅菌用包装材料を得た。
PET樹脂で構成されたSB法により不織布(糸径16μm、目付25g/m2)をネット上に吹き付け、フラットロールにて線圧260N/cm、温度190℃熱接着した後、カレンダーロールにて、線圧294N/cm、温度245℃にて加工し積層不織布を得た。
PET樹脂で構成されたMB不織布(糸径2μm、目付25g/m2)をネット上に吹き付け、フラットロールにて線圧260N/cm、温度120℃熱接着した後、カレンダーロールにて、線圧340N/cm、温度40℃にて加工し積層不織布を得た。
PET樹脂で構成されたMB不織布(糸径1.0μm、目付25g/m2)をネット上に吹き付け、カレンダーロールにて、線圧340N/cm、温度40℃にて加工し積層不織布を得た。
一般的に使用されているポリエチレンフラッシュスパン法で作製した不織布の滅菌包材(糸径5μm、目付75g/m2)
一般的に使用されているポリエチレンフラッシュスパン法で作製した不織布の滅菌包材(糸径4μm、目付63g/m2)
一般的に使用されているパルプ短繊維の滅菌紙(糸径4μm、目付63g/m2)
Claims (9)
- 平均繊維径5~30μmを有する連続長繊維で構成される不織布層(I)と、平均繊維径0.1~4μmを有する極細繊維で構成される不織布層(II)よりなる少なくとも2層以上の積層不織布で構成される滅菌用包装材料。
- 2層の前記不織布層(I)の間に前記不織布層(II)からなる中間層が存在する、請求項1に記載の滅菌用包装材料。
- 前記不織布層(II)がメルトブロウン不織布で構成されている、請求項1又は2に記載の滅菌用包装材料。
- 前記積層不織布の平均流量孔径が0.1~30μmであり、かつ、バブルポイントが0.5~50μである、請求項1~3のいずれか1項に記載の滅菌用包装材料。
- 前記積層不織布の目付が8.0~100g/m2、であり、かつ、厚みが0.03~0.2mmである、請求項1~4のいずれか1項に記載の滅菌用包装材料。
- ガーレ型通気度試験で100mlの空気が前記積層不織布を通過する時間から得られる通気度が1~100秒/100mlである、請求項1~5のいずれか1項に記載の滅菌用包装材料。
- 前記積層不織布の引張強度が10~300N/25mm巾であり、かつ、突き刺し強度が70~700Nである、請求項1~6のいずれか1項に記載の滅菌用包装材料。
- 前記積層不織布がポリエステルで構成されている、請求項1~7のいずれか1項に記載の滅菌用包装材料。
- 前記積層不織布の比表面積が0.01~10m2/gである、請求項1~8のいずれか1項に記載の滅菌用包装材料。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018501703A JP6790061B2 (ja) | 2016-02-25 | 2017-02-21 | 滅菌用包装材料 |
ES17756488T ES2913439T3 (es) | 2016-02-25 | 2017-02-21 | Material de envasado para esterilización |
EP17756488.7A EP3421388B1 (en) | 2016-02-25 | 2017-02-21 | Packaging material for sterilization |
CN202011108051.8A CN112297550B (zh) | 2016-02-25 | 2017-02-21 | 灭菌用包装材料 |
KR1020187024191A KR20180104704A (ko) | 2016-02-25 | 2017-02-21 | 멸균용 포장 재료 |
US16/079,585 US11117725B2 (en) | 2016-02-25 | 2017-02-21 | Packaging material for sterilization |
CN201780011533.1A CN108698741B (zh) | 2016-02-25 | 2017-02-21 | 灭菌用包装材料 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-034034 | 2016-02-25 | ||
JP2016034034 | 2016-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017146050A1 true WO2017146050A1 (ja) | 2017-08-31 |
Family
ID=59685599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/006381 WO2017146050A1 (ja) | 2016-02-25 | 2017-02-21 | 滅菌用包装材料 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11117725B2 (ja) |
EP (1) | EP3421388B1 (ja) |
JP (1) | JP6790061B2 (ja) |
KR (1) | KR20180104704A (ja) |
CN (2) | CN112297550B (ja) |
ES (1) | ES2913439T3 (ja) |
TW (1) | TWI653142B (ja) |
WO (1) | WO2017146050A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107550642A (zh) * | 2017-09-06 | 2018-01-09 | 奥美医疗用品股份有限公司 | 灭菌的护理产品及其制备方法 |
JP2019091669A (ja) * | 2017-11-17 | 2019-06-13 | 旭化成株式会社 | 二次電池用不織布集電体 |
JP2019172348A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成株式会社 | ピール適性を有する滅菌包装材料用不織布 |
JP2019206351A (ja) * | 2018-05-28 | 2019-12-05 | 旭化成株式会社 | 耐表面摩耗性を有する滅菌用包装材料 |
WO2020196340A1 (ja) | 2019-03-22 | 2020-10-01 | 旭化成株式会社 | 滅菌用包装材用不織布 |
TWI822865B (zh) * | 2018-09-28 | 2023-11-21 | 日商東麗股份有限公司 | 紡黏不織布 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2765068C1 (ru) * | 2020-09-22 | 2022-01-25 | Общество с ограниченной ответственностью "КУСТОДИЯ" | Комбинированный упаковочный материал |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126109A1 (ja) * | 2009-04-30 | 2010-11-04 | 旭化成せんい株式会社 | 積層不織布 |
JP2011036763A (ja) * | 2009-08-07 | 2011-02-24 | Tomoegawa Paper Co Ltd | エアフィルタ濾材およびその製造方法 |
JP3195730U (ja) * | 2014-11-18 | 2015-01-29 | 旭化成パックス株式会社 | 滅菌袋 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196245A (en) | 1978-06-16 | 1980-04-01 | Buckeye Cellulos Corporation | Composite nonwoven fabric comprising adjacent microfine fibers in layers |
JP3249286B2 (ja) | 1994-02-22 | 2002-01-21 | ユニチカ株式会社 | 医療器具滅菌用不織布 |
TWI302171B (en) * | 2003-04-22 | 2008-10-21 | Asahi Kasei Fibers Corp | A spun bonded-type laminate nonwoven fabric and method therefor |
WO2005073286A1 (ja) * | 2004-01-30 | 2005-08-11 | Asahi Kasei Chemicals Corporation | 多孔質セルロース凝集体及びその成型体組成物 |
JP4565944B2 (ja) * | 2004-09-16 | 2010-10-20 | ダイセル化学工業株式会社 | フィルタ素材及びその製造方法 |
TWI349614B (en) | 2006-01-25 | 2011-10-01 | Asahi Kasei Fibers Corp | Non-woven fabric laminated by heat bonding |
MY144778A (en) * | 2006-05-31 | 2011-11-15 | Mitsui Chemicals Inc | Nonwoven fabric laminate and production thereof |
JP5929148B2 (ja) * | 2011-02-21 | 2016-06-01 | ソニー株式会社 | ウイルス及び/又は細菌を吸着する吸着剤、炭素/ポリマー複合体及び吸着シート |
US9353480B2 (en) | 2012-04-11 | 2016-05-31 | Ahlstrom Corporation | Sterilizable and printable nonwoven packaging materials |
EP2896731B1 (en) * | 2012-09-14 | 2018-03-14 | Idemitsu Kosan Co., Ltd | Multilayer nonwoven fabric and method for producing same |
JP2014237478A (ja) | 2013-06-10 | 2014-12-18 | 大日本印刷株式会社 | 滅菌用袋、および滅菌用包装体 |
-
2017
- 2017-02-21 CN CN202011108051.8A patent/CN112297550B/zh active Active
- 2017-02-21 CN CN201780011533.1A patent/CN108698741B/zh active Active
- 2017-02-21 KR KR1020187024191A patent/KR20180104704A/ko not_active IP Right Cessation
- 2017-02-21 EP EP17756488.7A patent/EP3421388B1/en active Active
- 2017-02-21 ES ES17756488T patent/ES2913439T3/es active Active
- 2017-02-21 JP JP2018501703A patent/JP6790061B2/ja active Active
- 2017-02-21 US US16/079,585 patent/US11117725B2/en active Active
- 2017-02-21 WO PCT/JP2017/006381 patent/WO2017146050A1/ja active Application Filing
- 2017-02-22 TW TW106105889A patent/TWI653142B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126109A1 (ja) * | 2009-04-30 | 2010-11-04 | 旭化成せんい株式会社 | 積層不織布 |
JP2011036763A (ja) * | 2009-08-07 | 2011-02-24 | Tomoegawa Paper Co Ltd | エアフィルタ濾材およびその製造方法 |
JP3195730U (ja) * | 2014-11-18 | 2015-01-29 | 旭化成パックス株式会社 | 滅菌袋 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107550642A (zh) * | 2017-09-06 | 2018-01-09 | 奥美医疗用品股份有限公司 | 灭菌的护理产品及其制备方法 |
JP6995579B2 (ja) | 2017-11-17 | 2022-01-14 | 旭化成株式会社 | 二次電池用不織布集電体 |
JP2019091669A (ja) * | 2017-11-17 | 2019-06-13 | 旭化成株式会社 | 二次電池用不織布集電体 |
JP2019172348A (ja) * | 2018-03-29 | 2019-10-10 | 旭化成株式会社 | ピール適性を有する滅菌包装材料用不織布 |
JP7161300B2 (ja) | 2018-03-29 | 2022-10-26 | 旭化成株式会社 | ピール適性を有する滅菌包装材料用不織布 |
JP2019206351A (ja) * | 2018-05-28 | 2019-12-05 | 旭化成株式会社 | 耐表面摩耗性を有する滅菌用包装材料 |
TWI822865B (zh) * | 2018-09-28 | 2023-11-21 | 日商東麗股份有限公司 | 紡黏不織布 |
KR20210127974A (ko) | 2019-03-22 | 2021-10-25 | 아사히 가세이 가부시키가이샤 | 멸균용 포장재용 부직포 |
JPWO2020196340A1 (ja) * | 2019-03-22 | 2021-10-21 | 旭化成株式会社 | 滅菌用包装材用不織布 |
US20220097342A1 (en) * | 2019-03-22 | 2022-03-31 | Asahi Kasei Kabushiki Kaisha | Nonwoven Fabric for Sterilization Packaging Material |
WO2020196340A1 (ja) | 2019-03-22 | 2020-10-01 | 旭化成株式会社 | 滅菌用包装材用不織布 |
JP7165812B2 (ja) | 2019-03-22 | 2022-11-04 | 旭化成株式会社 | 滅菌用包装材用不織布 |
KR20240064036A (ko) | 2019-03-22 | 2024-05-10 | 미츠이 케미칼즈 아사히 라이프 마테리알즈 가부시키가이샤 | 멸균용 포장재용 부직포 |
US12017442B2 (en) | 2019-03-22 | 2024-06-25 | Mitsui Chemicals Asahi Life Materials Co., Ltd. | Nonwoven fabric for sterilization packaging material |
Also Published As
Publication number | Publication date |
---|---|
US11117725B2 (en) | 2021-09-14 |
TW201736128A (zh) | 2017-10-16 |
EP3421388A4 (en) | 2019-01-16 |
CN112297550A (zh) | 2021-02-02 |
CN108698741B (zh) | 2021-01-26 |
JPWO2017146050A1 (ja) | 2018-09-06 |
TWI653142B (zh) | 2019-03-11 |
EP3421388A1 (en) | 2019-01-02 |
KR20180104704A (ko) | 2018-09-21 |
US20190071228A1 (en) | 2019-03-07 |
CN108698741A (zh) | 2018-10-23 |
CN112297550B (zh) | 2023-06-13 |
EP3421388B1 (en) | 2022-04-06 |
ES2913439T3 (es) | 2022-06-02 |
JP6790061B2 (ja) | 2020-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017146050A1 (ja) | 滅菌用包装材料 | |
KR101049667B1 (ko) | 고도의 액체 장벽 직물 | |
JP3615549B2 (ja) | 調節された多孔度のカレンダー加工された紡糸結合/溶融吹き込み成形ラミネート | |
JP4933546B2 (ja) | 液体バリア性能を有する二成分シート材料 | |
JP4164091B2 (ja) | 高耐水圧ポリエステル不織布 | |
WO2019116000A1 (en) | Nonwoven fabric | |
JP2019206351A (ja) | 耐表面摩耗性を有する滅菌用包装材料 | |
JP7165812B2 (ja) | 滅菌用包装材用不織布 | |
JP7161300B2 (ja) | ピール適性を有する滅菌包装材料用不織布 | |
WO2014208605A1 (ja) | 防塵材料およびそれを用いた防護服 | |
KR102565495B1 (ko) | 스펀본드 부직포의 제조 방법 및 스펀본드 부직포 | |
JP4494094B2 (ja) | 耐毛羽性に優れた高耐水圧ポリエステル不織布 | |
JP2020203421A (ja) | 積層体、および、当該積層体を備えた貼付剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018501703 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187024191 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187024191 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017756488 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017756488 Country of ref document: EP Effective date: 20180925 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756488 Country of ref document: EP Kind code of ref document: A1 |