WO2017145788A1 - 画像処理装置、画像処理方法、プログラム、及び、手術システム - Google Patents

画像処理装置、画像処理方法、プログラム、及び、手術システム Download PDF

Info

Publication number
WO2017145788A1
WO2017145788A1 PCT/JP2017/004846 JP2017004846W WO2017145788A1 WO 2017145788 A1 WO2017145788 A1 WO 2017145788A1 JP 2017004846 W JP2017004846 W JP 2017004846W WO 2017145788 A1 WO2017145788 A1 WO 2017145788A1
Authority
WO
WIPO (PCT)
Prior art keywords
shadow
image
unit
image processing
processing apparatus
Prior art date
Application number
PCT/JP2017/004846
Other languages
English (en)
French (fr)
Inventor
鶴 大輔
恒生 林
高橋 康昭
浩司 鹿島
憲治 池田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/078,057 priority Critical patent/US20190051039A1/en
Publication of WO2017145788A1 publication Critical patent/WO2017145788A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/60Shadow generation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/506Illumination models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/80Shading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • G06T5/94
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing
    • G06T2207/20012Locally adaptive
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20104Interactive definition of region of interest [ROI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present technology relates to an image processing device, an image processing method, a program, and a surgical system, and in particular, an image processing device, an image processing method, a program, and the like that can appropriately provide a medical image with a shadow, for example. And a surgical system.
  • an operation part is photographed with an endoscope, and the operation is performed while viewing a medical image showing the operation part.
  • illumination light for illuminating a subject is irradiated to the surgical site or the periphery of the surgical site, and the reflected light is received by a camera, whereby a medical image is taken.
  • the endoscope is configured so that the optical axis of the illumination light (light source) and the optical axis of the camera are substantially coincident with each other, so that almost no shadow is generated on the subject shown in the medical image.
  • the subject shown in the medical image with almost no shadow is an image with no (uneven) feeling of unevenness.
  • Patent Document 1 a technique for emphasizing the shadow of a 3D (Dimensional) image (for example, Patent Document 1) or a technique for applying a shadow to a subject with illumination light that is irradiated in a direction orthogonal to the direction of the observation field of an endoscope (for example, Patent Document 2) has been proposed previously.
  • Patent Document 2 a technique for emphasizing the shadow of a 3D (Dimensional) image
  • Patent Document 2 a technique for applying a shadow to a subject with illumination light that is irradiated in a direction orthogonal to the direction of the observation field of an endoscope
  • Patent Document 1 is a technique for enhancing a shadow that already exists in a 3D image, and it may be difficult to add a shadow to a medical image that has almost no shadow.
  • illumination light irradiated in a direction orthogonal to the direction of the observation field of the endoscope is reflected by the reflection on the wall surface in the body cavity, and the surgical site or the like is indirectly directed from the side.
  • the image taken with the endoscope is shaded.
  • the reflected light may diffuse and it may be difficult to add a shadow. Furthermore, it is difficult to give a desired shadow.
  • the surgical site may be hidden behind the shadow and difficult to see.
  • the present technology has been made in view of such a situation, and makes it possible to appropriately provide a medical image with a shadow.
  • the image processing apparatus or the program according to an embodiment of the present technology includes a control unit that determines whether or not to add or suppress a shadow to a medical image, and controls to generate a shadow correction image based on the determination result.
  • the image processing method is an image processing method including a step of determining whether or not to add or suppress a shadow to a medical image and controlling to generate a shadow correction image based on the determination result. .
  • the surgical system of the present technology is obtained by photographing an endoscope that captures a medical image, a light source that emits illumination light that illuminates a subject, and a subject that is illuminated by the illumination light with the endoscope.
  • An image processing device that performs image processing of a medical image, wherein the image processing device determines whether or not to add a shadow to the medical image, and generates a shadow correction image based on the determination result It is a surgery system which has a control part which controls to do.
  • the image processing apparatus the image processing method, the program, and the surgical system according to the present technology, it is determined whether or not a shadow is added to or suppressed from the medical image, and a shadow correction image is generated based on the determination result. To be controlled.
  • the image processing apparatus may be an independent apparatus or an internal block constituting one apparatus.
  • the program can be provided by being transmitted through a transmission medium or by being recorded on a recording medium.
  • a medical image having a shadow can be appropriately provided.
  • FIG. 2 is a block diagram illustrating a first configuration example of an image processing apparatus 12.
  • FIG. It is a figure explaining the example of the production
  • FIG. It is a figure explaining the artifact which arises in an output image, when the shadow synthetic
  • FIG. 10 is a flowchart for explaining an example of processing of the image processing apparatus 12.
  • 3 is a block diagram illustrating a second configuration example of the image processing apparatus 12.
  • FIG. 10 is a flowchart for explaining an example of processing of the image processing apparatus 12. It is a figure which shows the example of the output image obtained with the image processing apparatus 12.
  • FIG. 10 is a block diagram illustrating a third configuration example of the image processing apparatus 12.
  • FIG. It is a figure explaining the example of control of the light source 21 in the illumination control part 71.
  • FIG. 10 is a diagram for explaining an example of processing of a shadow removal unit 84.
  • FIG. 10 is a diagram for explaining an example of processing of a shadow removal unit 84.
  • FIG. 10 is a diagram for explaining an example of processing of a combining unit 86. It is a figure explaining the virtual light source position set by the virtual light source position setting part 51.
  • FIG. 10 is a flowchart for explaining an example of processing of the image processing apparatus 12.
  • 10 is a block diagram illustrating a fourth configuration example of the image processing apparatus 12.
  • FIG. 10 is a block diagram illustrating a fifth configuration example of the image processing apparatus 12.
  • FIG. It is a figure explaining the example of the detection of the shadow area in the shadow area detection part.
  • 10 is a flowchart for explaining an example of processing of the image processing apparatus 12.
  • FIG. 18 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • FIG. 1 is a diagram for explaining shadows and shadows.
  • illumination light is irradiated toward the subject from the upper left side.
  • a shade means a dark part where no light (illumination light) is applied
  • a shadow means a dark part formed when light is blocked by an object (subject). means.
  • shadow means only shadow, only shadow, or both shadow and shadow.
  • FIG. 2 is a block diagram illustrating a configuration example of an embodiment of an endoscope system to which the present technology is applied.
  • the endoscope system includes an endoscope 11, an image processing device 12, and a display device 13.
  • the endoscope 11 for example, shoots a subject that is a living body such as a surgical part of a human body to perform a treatment, and obtains a medical image obtained by the photographing and showing the surgical part as an input image to the image processing device 12. Is supplied to the image processing apparatus 12.
  • the endoscope 11 includes a light source 21 and a camera 22, and is an imaging unit that photographs a subject such as a surgical part illuminated by the light source 21 with the camera 22.
  • the light source 21 includes, for example, an LED light emitting diode (LED), and emits illumination light that illuminates a subject such as an operation site.
  • LED LED light emitting diode
  • the camera 22 includes, for example, an optical system and an image sensor (none of which is shown) such as a CMOS (Complementary Metal Metal Oxide Semiconductor) sensor.
  • the camera 22 receives subject light (reflected light) incident when the illumination light emitted from the light source 21 is reflected by the subject, thereby capturing a medical image in which the subject such as an operation part is reflected, and as an input image, The image is supplied to the image processing apparatus 12.
  • the camera 22 can also capture a 2D (Dimension) image as a medical image, or can use a left-eye image (L (Left) image) and a right-eye image (R (Right) image). You can also shoot 3D images.
  • 2D Dission
  • L (Left) image left-eye image
  • R (Right) image right-eye image
  • the image processing apparatus 12 performs a shadow process, which will be described later, and other necessary image processes on a medical image from the endoscope 11 (the camera 22 thereof), and displays an image obtained as a result of the image processing on the display apparatus 13.
  • the output image is supplied to the display device 13.
  • the image processing apparatus 12 controls the endoscope 11 as necessary.
  • the image processing apparatus 12 controls the illumination light emitted from the light source 21 by controlling the light source 21, for example. Further, the image processing apparatus 12 adjusts the aperture, focus (position), and zoom by controlling the camera 22, for example. Further, the image processing apparatus 12 controls the frame rate of the medical image and the exposure time (shutter speed) when photographing the medical image by controlling the camera 22, for example.
  • the display device 13 displays an image supplied from the image processing device 12.
  • a display integrated with the image processing device 12, a stationary display separate from the image processing device 12, a head mounted display, or the like can be used.
  • FIG. 3 is a diagram showing a usage example of the endoscope system of FIG.
  • the endoscope system in FIG. 2 takes a surgical part (affected part), which is a part in the body to be operated, as a subject, and displays an endoscope image, which is a medical image showing the subject, on the display device 13. To display.
  • the endoscope system shown in FIG. 2 is used in an endoscopic operation or the like in which a doctor who is an operator looks at the medical image (endoscopic image) and treats the surgical site.
  • the endoscope 11 is inserted into a body cavity of a patient (human body), for example, and takes a medical image with the surgical site in the body cavity as a subject.
  • the endoscope 11 is inserted into the body of a patient and the camera head 31 that is held and operated by an operator (physician) who performs an operation as a user of the endoscope system.
  • an endoscope scope 32 having an elongated cylindrical shape.
  • the endoscope scope 32 of the endoscope 11 and the treatment tool are inserted into the patient's body.
  • the treatment tool there are an energy device, forceps, and the like.
  • the forceps 33 is inserted into the body of the patient.
  • illumination light emitted from the light source 21 is irradiated from the distal end of the endoscope scope 32, and the surgical part as a subject inside the patient's body is illuminated by the illumination light. Furthermore, in the endoscope 11, the reflected light obtained by reflecting the illumination light at the surgical site enters from the distal end of the endoscope scope 32 and is received by the camera 22 built in the camera head 31. The operative part is photographed.
  • FIG. 4 is a schematic diagram for explaining an example of a medical image photographed by the endoscope 11 of FIG.
  • the optical axis of the illumination light emitted from the light source 21 and the optical axis of the camera 22 substantially coincide. Therefore, almost no shadow is generated on the subject shown in the medical image taken by the camera 22.
  • a medical image with almost no shadow is an image having no unevenness (ie, a smooth image) like the image img1.
  • Feeling of distance may be difficult to feel.
  • the image processing apparatus 12 sets a virtual virtual light source, and performs a shadow process on the medical image captured by the camera 22 to add or suppress a shadow, thereby performing a medical process. Adjust the shadow of the image.
  • a virtual light source is set at, for example, a position in an oblique 45 degree direction with respect to the optical axis of the camera 22, and shading processing corresponding to the virtual light source is applied to the medical image. Apply.
  • the image processing apparatus 12 generates a medical image as if the surgical site as a subject is illuminated by the illumination light emitted from the virtual light source.
  • the medical image on which the shading process has been performed by the image processing device 12 is an image having an uneven feeling, a three-dimensional feeling, and a front-back feeling (a sense of distance between two objects) as shown in an image img2.
  • the medical image is a 3D image
  • a stereoscopic effect or the like is generated as compared with the 2D image.
  • a 3D image as a medical image captured by the endoscope 11 has a small parallax, it may not be easy to grasp the position in the depth direction even for a 3D image.
  • the position in the depth direction can be easily grasped.
  • the surgical part reflected in the medical image may be hidden behind the shadow and may be difficult to see.
  • the image processing apparatus 12 determines whether or not the shadow processing is to be performed on the medical image, and determines whether or not the medical image is a medical image according to the determination result of the shadow necessity determination. By performing shading processing, a medical image with shading is appropriately provided.
  • FIG. 5 is a block diagram showing a first configuration example of the image processing apparatus 12 of FIG.
  • the image processing apparatus 12 includes a control unit 40.
  • the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42, and performs various controls. That is, for example, the control unit 40 performs a shadow necessity determination for determining whether or not to add a shadow to a medical image as an input image from the camera 22, and based on the result of the shadow necessity determination. Then, control for generating a shadow correction image, which is an image obtained by correcting the shadow, is performed on the input image.
  • the shadow composition processing unit 42 includes a shadow processing unit 50 and a composition unit 54.
  • the shadow processing unit 50 includes a virtual light source position setting unit 51, a depth estimation unit 52, and a shadow image generation unit 53.
  • the shadow necessity determination unit 41 performs a shadow necessity determination as to whether or not to perform a shadow process for adding or suppressing a shadow to a medical image as an input image from the camera 22, and the shadow necessity determination result (shadow necessity / unnecessity) According to the determination result), the shadow composition processing unit 42 (processing thereof) is controlled.
  • the shadow necessity determination can be performed according to, for example, an operation of a user such as an operator, a medical image, a use state of a treatment tool, or the like.
  • the shadow necessity determination unit 41 determines to perform a shadow process for adding a shadow in accordance with a user operation.
  • the surgeon performs an internal shadow process to add a shadow as necessary.
  • the endoscope system can be operated.
  • the shadow process for adding the shadow is performed according to the operation of the user, and when the shadow process is performed, for example, the surgeon appears in the medical image after the shadow process.
  • the position of the endoscope can be grasped from the shadow of the endoscope operated by another operator or the like.
  • the surgeon can grasp the position and orientation of the endoscope from the shadow of the endoscope operated by the surgeon, for example.
  • the surgeon may have a shadow of the treatment tool that is not in the field of view in the medical image after the shadow processing.
  • the position of the treatment tool that is not contained can be grasped.
  • the necessity of shading can be determined according to whether the surgeon wants to grasp the depth and the context.
  • the surgeon wants to grasp the depth and the front-rear relationship, for example, there is a case where a suture is performed, or a case where a treatment is performed using a stapler or an energy device.
  • the shadow necessity determination unit 41 can recognize, for example, that a suture is being performed or that a treatment is being performed using a stapler, an energy device, or the like by detecting a scene shown in a medical image, for example. . Then, in the shadow necessity determination unit 41, when a suture is performed (for example, when a needle or a thread is reflected in a medical image), or when a treatment is performed with a stapler, an energy device, or the like (for example, When the stapler or the energy device is reflected in the medical image), it can be determined that the shadow process for adding the shadow is performed.
  • the shade necessity determination unit 41 can recognize that the treatment is being performed by the energy device or the like from the usage state of the energy device or the like, that is, the on / off state of the switch.
  • the shadow necessity determination unit 41 can determine that a shadow process for adding a shadow is to be performed when a treatment is performed by an energy device or the like.
  • a shadow is necessary. For example, when a treatment is performed using a stapler or an energy device, when a shadow process is performed to add a shadow to a medical image, Thus, it is possible to easily grasp the distance to the target to be treated.
  • the necessity of shading can be determined according to the brightness of the medical image.
  • the shadow necessity determination unit 41 recognizes the surgical part shown in the medical image, and when the luminance of at least a part of the surgical part is greatly reduced as compared with the surrounding luminance, the luminance is reduced. It can be determined that the shadow process for suppressing the shadow that is the portion being performed is performed. In this case, in the medical image, it is possible to prevent the operation part from being hidden by the shadow and becoming difficult to see by suppressing the shadow overlapping the operation part.
  • a medical image captured by the camera 22 is supplied to the shadow composition processing unit 42 as an input image.
  • the shadow synthesis processing unit 42 performs shadow synthesis processing on the input image from the camera 22 according to the control of the shadow necessity determination unit 41, and supplies the medical image after the shadow synthesis processing to the display device 13 as an output image.
  • the input image from the camera 22 is not subjected to shadow synthesis processing (shadow processing and synthesis processing described later), and is supplied as it is to the display device 13 as an output image.
  • the shadow composition processing performed by the shadow composition processing unit 42 includes a shadow process performed by the shadow processing unit 50 and a composition processing performed by the composition unit 54.
  • the synthesis process is performed using a shadow image or the like obtained by the shadow process, the shadow process is of course performed when it is determined in the shadow necessity determination that the shadow process is not performed. No synthesis process is performed. Therefore, it can be said that the determination of necessity of shadow is determination of necessity of combination processing or shadow combination processing (shadow processing and combination processing) in addition to the shadow processing.
  • the shading (synthesizing) processing includes processing for adding a shading to an input image (medical image) and processing for suppressing a shading generated in the input image.
  • the suppression of the shadow includes not only reducing the density of the shadow, reducing the range of the portion where the shadow is present, but also removing the shadow that completely suppresses the shadow.
  • a shadow image generated by the shadow process is synthesized with an input image, etc., for example, a composite image in which a shadow is added to a subject appearing in the input image, or a shadow of the subject appearing in the input image is removed.
  • the combined image thus generated is generated as an output image.
  • the virtual light source position setting unit 51 sets the position of the virtual light source according to, for example, a user operation and supplies the position to the shadow image generation unit 53.
  • the virtual light source position setting unit 51 sets the virtual light source position at a position opposite to the direction in which the shadow is desired to be added.
  • the virtual light source position setting unit 51 may, for example, recommend a fixed position (for example, a position in a direction in which the angle between the optical axis of the camera 22 and the optical axis of the camera 22 is 45 degrees obliquely at the intersection of the optical axis of the camera 22 and the subject) Etc.) can be set as the default virtual light source position.
  • a fixed position for example, a position in a direction in which the angle between the optical axis of the camera 22 and the optical axis of the camera 22 is 45 degrees obliquely at the intersection of the optical axis of the camera 22 and the subject
  • the virtual light source position setting unit 51 detects a scene of a medical image and sets a position where the longitudinal direction of a long treatment tool such as forceps and the light beam from the virtual light source do not overlap as the virtual light source position. Can do. In this case, it is possible to prevent the treatment tool such as forceps from being shaded by the shading process.
  • the depth estimation unit 52 is supplied with a medical image as an input image from the camera 22.
  • a 3D image is taken by the camera 22, and the 3D image is supplied from the camera 22 to the depth estimation unit 52 as an input image (medical image).
  • the 3D image means two images (an image for the left eye (L image) and an image for the right eye (R image)) having a stereoscopically viewable parallax. The same applies to the following “3D image”.
  • the depth estimation unit 52 is information on the parallax of each pixel of the input image from the input image, which is a 3D image from the camera 22, and the distance in the depth direction (the optical axis direction of the camera 22) of the subject reflected in each pixel.
  • the depth information is estimated and supplied to the shadow image generation unit 53.
  • the shadow image generation unit 53 uses the virtual light source position from the virtual light source position setting unit 51 and the depth information from the depth estimation unit 52 to generate a shadow image (shadow image of the shadow generated by the virtual light source for the subject shown in the input image). Shadow image) is generated and supplied to the combining unit 54.
  • the composition unit 54 is supplied with a medical image as an input image from the camera 22.
  • the synthesizing unit 54 performs synthesis processing for synthesizing an input image from the camera 22 and a shadow image (a shadow area to be described later) from the shadow image generating unit 53, thereby adding an output with a shadow added to the medical image. An image is generated and output (supplied) to the display device 13.
  • a shadow image or a composite image obtained by combining the shadow image and the input image is the above-described shadow correction image (an image obtained by correcting the shadow with respect to the input image).
  • alpha blending can be employed as the composition of the input image and the shadow image in the composition unit 54.
  • the alpha blending coefficient ⁇ can be set to a fixed value or a value corresponding to a user operation, for example.
  • a value in the range of 0.0 to 1.0 is set.
  • no shadow is added to the input image, or only the shadow appears in the pixels of the input image. It can be replaced with a pixel.
  • the shadow synthesis processing unit 42 outputs a synthesized image obtained by synthesizing the input image and the shadow image in the synthesizing unit 54 as an output image. It can be performed when the input image and the shadow image are displayed, instead of being performed by the combining unit 54.
  • each of the input image and the shadow image can be output as an output image.
  • a shadow image is displayed on a so-called transmissive display device such as a transmissive head-mounted display or a glass-type wearable device, and an input image is displayed on the display device 13 so that the input can be performed.
  • a composite image obtained by combining an image and a shadow image can be provided.
  • the first display panel having transparency is arranged on the upper side (the side facing the user) of the second display panel regardless of transparency, and the display device 13 is configured.
  • the camera 22 captures a 3D image as an input image, and the depth estimation unit 52 estimates depth information from the 3D image as the input image. Is not limited to a method using a 3D image.
  • the camera 22 can capture a 2D image as an input image.
  • the endoscope 11 incorporates a distance sensor (depth sensor), and the depth estimation unit 52 estimates depth information from the 2D image as the input image and the sensing result of the distance sensor. can do.
  • 2D image means one image. The same applies to the description of the “2D image” below.
  • the depth estimation unit 52 can use, for example, focus information or the like for the depth estimation.
  • FIG. 6 is a diagram for explaining an example of generation of shadow information in the shadow image generation unit 53 of FIG.
  • the horizontal axis represents the position of each pixel of the input image
  • the vertical axis represents the depth information
  • the shadow image generation unit 53 subtracts a light ray (as a straight line) toward each pixel (position) of the input image from the virtual light source position, the light ray is blocked by the depth information of other pixels and does not reach. An area composed of pixels (of depth information) is obtained (estimated) as a shadow area of a shadow caused by a virtual light source.
  • the shadow image generation unit 53 has an image with a pixel value of the shadow region set in advance, such as black or a dark color close to black, or a color set in accordance with a user operation. Are generated as shadow images.
  • FIG. 7 and 8 are diagrams for explaining artifacts generated in the output image when the shadow synthesis processing unit 42 in FIG. 5 performs the shadow processing.
  • the light source 21 position where the illumination light is emitted
  • the camera 22 can be regarded as being in substantially the same position.
  • the shadow image generation unit 53 assumes that the illumination light is emitted from the virtual light source position set at a position different from the position of the light source 21, and as described in FIG. A region composed of pixels that do not reach the light beam as illumination light directed to the pixels due to the depth information of other pixels is obtained as a shadow region.
  • the shadow image generation unit 53 uses the virtual light source position and depth information to determine the shadow area, a shadow that should not originally occur depends on the virtual light source position or the position of the subject in the input image. Regions may appear (appear) in the output image as artifacts.
  • a subject in which a shadow is generated that is, a subject that blocks light rays from a virtual light source position is also referred to as a target subject.
  • the position where the shadow is generated varies depending on the virtual light source position. Originally, as shown in FIG. 7, an elongated shadow sh1 is generated.
  • the shadow image generation unit 53 considers that the target subject is clogged (exists) toward the back side (back side) of the target subject when viewed from the camera 22 from the description with reference to FIG. Is required.
  • the shadow image generation unit 53 causes the shadow area to appear as if the target subject is blocked up to the projection plane as shown in FIG. sh2 is required.
  • the depth information is a convex model with a solid content, so to speak, the depth information alone is the distance from the virtual light source. It becomes difficult to accurately project the shadow of the target subject caused by the illumination light.
  • a shadow region sh2 that should not originally occur is generated as an artifact in the output image obtained by the combination.
  • the virtual light source position setting unit 51 (FIG. 5) can limit the distance between the optical axis of the camera 22 and the virtual light source position within a predetermined distance.
  • the addition of a shadow can be restricted for a target subject whose distance between the position of the target subject and the projection plane on which the shadow of the target subject is projected is a certain distance or more. That is, for example, in the combining unit 54, the shadow area obtained for the target subject whose distance between the position of the target subject and the projection plane on which the shadow of the target subject is projected is a certain distance or more is synthesized with the input image.
  • the shadow image generation unit 53 does not generate a shadow region for a target subject whose distance between the position of the target subject and the projection plane on which the shadow of the target subject is projected is a certain distance or more, or The image itself can not be generated.
  • composition unit 54 can adjust the coefficient ⁇ when alpha blending the input image and the shadow image so that the artifact as a shadow region that should not occur is not conspicuous.
  • FIG. 9 is a flowchart for explaining an example of processing of the image processing apparatus 12 of FIG.
  • step S ⁇ b> 11 the shadow necessity determination unit 41 performs a shadow necessity determination.
  • step S11 If it is determined in step S11 that the input image from the camera 22 does not require the shadow processing in the shadow necessity determination, the process proceeds to step S12, and the shadow synthesis processing unit 42 converts the input image from the camera into the input image. The output image is output to the display device 13 as it is, and the process ends.
  • step S11 If it is determined in step S11 that the shading process is necessary for the input image from the camera 22, the process proceeds to step S13, where the virtual light source position setting unit 51 Is supplied to the shadow image generation unit 53. Then, the process proceeds from step S13 to step S14, and shading synthesis processing (shadow processing and synthesis processing) is performed below.
  • step S14 the depth estimation unit 52 acquires the depth information from the 3D image as the input image from the camera 22 and supplies the depth information to the shadow image generation unit 53, and the process proceeds to step S15. .
  • step S15 the shadow image generation unit 53 uses the virtual light source position from the virtual light source position setting unit 51 and the depth information from the depth estimation unit 52, as described in FIG. An image is generated and supplied to the combining unit 54, and the process proceeds to step S16.
  • step S ⁇ b> 16 the synthesis unit 54 synthesizes the input image from the camera 22 and the shadow image from the shadow image generation unit 53 (of which a shadow area), thereby generating an output image with a shadow added to the medical image. It produces
  • the image processing apparatus 12 performs shadow addition as shadow processing.
  • the image processing apparatus 12 can perform shadow suppression in addition to shadow addition. Shadow suppression can be performed, for example, by setting the position of the light source 21 as a virtual light source position, generating a shadow image, and removing the shadow area of the shadow image from the input image.
  • a portion from which the shadow area is removed (hereinafter also referred to as a removal portion) can be interpolated by, for example, the latest input image of past input images in which the removal portion has no shadow.
  • FIG. 10 is a block diagram showing a second configuration example of the image processing apparatus 12 of FIG.
  • the image processing apparatus 12 includes a control unit 40.
  • the control unit 40 includes a shadow necessity determination unit 41, a shadow synthesis processing unit 42, an object setting unit 61, and an object detection unit 62.
  • the shadow composition processing unit 42 includes a shadow processing unit 50 and a composition unit 54.
  • the shadow processing unit 50 includes a virtual light source position setting unit 51, a depth estimation unit 52, and a shadow image generation unit 53.
  • the image processing apparatus 12 in FIG. 10 is the same as that in FIG. 5 in that the control unit 40 has a control unit 40 and the control unit 40 has a shadow necessity determination unit 41 and a shadow synthesis processing unit 42. To do.
  • the image processing apparatus 12 of FIG. 10 is different from the case of FIG. 5 in that an object setting unit 61 and an object detection unit 62 are newly provided in the control unit 40.
  • the object setting unit 61 sets, for example, a target object that is an object to be subjected to shadow processing in accordance with a user operation or the like, and supplies the target object to the object detection unit 62.
  • the object setting unit 61 in addition to setting a target object in accordance with a user operation, for example, a predetermined object such as a treatment instrument used for surgery, a needle, a thread, or the like is set as the target object. Can do.
  • the affected part / organ other than the surgical instrument can be set as the target object.
  • the user when performing LECS, can set, for example, a treatment tool including a treatment tool outside the surgical field as a target object.
  • the user when performing a procedure using stitching or a stapler or an energy device, can set, for example, a needle, a thread, or a treatment tool as a target object.
  • the object setting unit 61 can set, for example, an object at a focus position or a focus position that the user is paying attention to as a target object.
  • the object detection unit 62 is supplied with an input image (medical image) from the camera 22 in addition to the target object (information representing) from the object setting unit 61.
  • the object detection unit 62 detects (specifies) the target object from the input image. Then, when the object detection unit 62 can detect the target object from the input image, object information for identifying the target object in the input image, such as the position (region) and posture of the target object in the input image, is obtained. Generated and supplied to the shadow image generating unit 53.
  • the object detection unit 62 can supply detection information indicating whether or not a target object is detected from the input image to the shadow necessity determination unit 41.
  • the shadow necessity determination unit 41 performs the shadow necessity determination in accordance with the detection information from the object detection unit 62. be able to.
  • the shadow necessity determination when the detection information indicates that the target object has been detected, it is determined that the shadow process is to be performed, and when the detection information indicates that the target object has not been detected. Therefore, it can be determined that the shading process is not performed.
  • the shadow image generation unit 53 targets only the target object specified by the object information from the object detection unit 62 among the subjects shown in the input image, and uses the virtual light source from the virtual light source position and depth information. Thus, a shadow image of the shadow of the target object generated is generated and supplied to the synthesis unit 54.
  • FIG. 11 is a flowchart for explaining an example of processing of the image processing apparatus 12 of FIG.
  • the shadow necessity determination unit 41 performs the shadow necessity determination according to the detection information from the object detection unit 62 instead of the description in FIG. To do.
  • step S23 the object setting unit 61 sets a target object and supplies it to the object detection unit 62, and the process proceeds to step S24.
  • step S24 as in step S13 of FIG. 9, the virtual light source position setting unit 51 sets the virtual light source position and supplies it to the shadow image generation unit 53, and the process proceeds to step S25.
  • step S25 the object detection unit 62 detects the target object from the input image, supplies detection information representing the detection result to the shadow necessity determination unit 41, and the process proceeds to step S26.
  • step S26 the shadow necessity determination unit 41 determines whether or not the input image from the camera 22 needs to be shaded based on the detection information from the object detection unit 62.
  • step S26 If it is determined in step S26 whether or not a shadow process is necessary for the input image from the camera 22, that is, if no target object is detected from the input image, the process proceeds to step S22.
  • step S22 as in step S12 of FIG. 9, the shadow composition processing unit 42 outputs the input image from the camera as it is to the display device 13 as an output image, and the process ends.
  • step S26 when it is determined that a shadow process is necessary for the input image from the camera 22, that is, the target object is reflected in the input image.
  • the object detection unit 62 When an object is detected, the object detection unit 62 generates object information of the target object detected from the input image and supplies the object information to the shadow image generation unit 53. And a process progresses from step S26 to step S27, and a shadow synthetic
  • step S27 as in step S14 of FIG. 9, the depth estimation unit 52 acquires depth information from the 3D image as the input image from the camera 22, supplies the depth information to the shadow image generation unit 53, and the processing is performed. The process proceeds to step S28.
  • step S ⁇ b> 28 the shadow image generation unit 53 targets only the target object specified by the object information from the object detection unit 62 among the subjects shown in the input image, and uses the virtual light source from the virtual light source position and depth information. Thus, a shadow image of the shadow of the target object is generated and supplied to the combining unit 54, and the process proceeds to step S29.
  • step S29 as in step S16 of FIG. 9, the synthesis unit 54 synthesizes the input image from the camera 22 and the shadow image from the shadow image generation unit 53, thereby adding a shadow to the medical image. An image is generated and output to the display device 13, and the process ends.
  • the object detection unit 62 detects the target object set by the object setting unit 61. However, the object detection unit 62 performs a specific scene (for example, stitching is performed). An object peculiar to the scene (for example, a thread used for stitching in a scene where stitching is performed) can be detected as a target object.
  • the shadow composition processing unit 41 can add a shadow to the target object detected from a specific scene.
  • FIG. 12 is a diagram illustrating an example of an output image obtained by the image processing apparatus 12 of FIG.
  • FIG. 12 shows an example of an output image when forceps are set as the target object.
  • the operator naturally determines the positional relationship between the forceps and the abdominal wall where the shadow is reflected by the difference in distance between the forceps reflected in the output image and the shadow of the forceps ( Instinctively). Furthermore, the surgeon can naturally grasp the moving speed when the forceps move in the depth direction, for example, by changing the shadow of the forceps reflected in the output image.
  • the target object is detected from the input image, and an output image in which a shadow is added to the target object is generated.
  • a target object For a target object, it is possible to estimate a predetermined thickness that the target object generally has, that is, to estimate the thickness.
  • the target subject is clogged (exists) toward the back side (back side) of the target subject when viewed from the camera 22.
  • the shadow region sh2 (FIG. 8)
  • a similar shadow region sh1 (FIG. 7) can be obtained.
  • image processing apparatus 12 in FIG. 10 can also suppress shadows in addition to adding shadows as shadow processing, as in FIG.
  • FIG. 13 is a block diagram showing a third configuration example of the image processing apparatus 12 of FIG.
  • the image processing apparatus 12 includes a control unit 40, an illumination control unit 71, and an illumination condition setting unit 72.
  • the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42.
  • the shadow composition processing unit 42 includes a shadow processing unit 80 and a composition unit 86.
  • the shadow processing unit 80 includes a virtual light source position setting unit 51, a storage unit 81, a shadow region detection unit 82, a hidden image generation unit 83, a shadow removal unit 84, and a shadow image generation unit 85.
  • the image processing apparatus 12 of FIG. 13 is common to the case of FIG. 5 in that it includes the control unit 40 and the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42. To do.
  • the image processing apparatus 12 of FIG. 13 is different from the case of FIG. 5 in that an illumination control unit 71 and an illumination condition setting unit 72 are newly provided.
  • the shadow synthesis processing unit 42 includes a shadow processing unit 80 and a synthesis unit 86, and the shadow synthesis processing unit 42 includes a shadow processing unit 50 and a synthesis unit 54. It is different from the case of.
  • a shadow region having a shadow in the input image is detected using a plurality of frames of the input image captured under a plurality of different (setting) illumination conditions, which will be described later, and the virtual light source position is detected. Accordingly, a shadow process is performed on the shadow area.
  • the illumination control unit 71 controls the light source 21 so as to change the illumination condition of illumination by the light source 21, that is, the illumination condition for illuminating a subject such as an operation part, according to the illumination condition supplied from the illumination condition setting unit 72.
  • examples of illumination conditions include the position of the light source 21 and the intensity and direction of illumination light emitted from the light source 21.
  • the lighting condition setting unit 72 sets a plurality of different lighting conditions determined in advance according to the user's operation or the like, and supplies them to the lighting control unit 71.
  • the illumination condition set by the illumination condition setting unit 72 is also referred to as a set illumination condition.
  • the illumination control unit 71 periodically selects each of the plurality of set illumination conditions from the illumination condition setting unit 72 as the target illumination condition, and sets the light source 21 so that the illumination condition for illuminating the subject becomes the target illumination condition. Control.
  • the storage unit 81 is supplied with an input image (medical image) from the camera 22.
  • a 2D image is captured by the camera 22, and the 2D image is supplied from the camera 22 to the storage unit 81 as an input image.
  • the input image photographed by the camera 22 may be a 3D image, as in the case of the image processing apparatus 12 of FIGS.
  • the storage unit 81 sequentially stores frames of input images supplied from the camera 22.
  • the illumination control unit 71 periodically selects each of the plurality of set illumination conditions as the target illumination condition, and the illumination condition for illuminating the subject becomes the target illumination condition. Next, the light source 21 is controlled.
  • the camera 22 repeats that the input image (the frame) is continuously shot under each of the plurality of set illumination conditions.
  • the plurality of set illumination conditions are two different set illumination conditions, it is repeated that frames of the input image are continuously photographed under the two different set illumination conditions.
  • the plurality of set illumination conditions are three different set illumination conditions, it is repeated that frames of the input image are continuously captured under the three different set illumination conditions.
  • a plurality of frames of an input image that are continuously photographed under a plurality of (different) set illumination conditions set by the illumination condition setting unit 72 are referred to as a frame set.
  • the storage unit 81 has a storage capacity for storing at least input images corresponding to the number of frames constituting the frame set.
  • the storage unit 81 supplies the frame set stored in the storage unit 81 to the shadow area detection unit 82.
  • the storage unit 81 selects a base image and a shadow region extraction target image, which will be described later, from the frame set. Then, the storage unit 81 supplies the base image to the shadow removal unit 84 and supplies the shadow region extraction target image to the hidden image generation unit 83.
  • the shadow region detection unit 82 uses the frame set from the storage unit 81, that is, a plurality of frames of the input image that are continuously captured under each of a plurality of different set illumination conditions, to detect a shadow region having a shadow in the input image.
  • the input image that has been detected and whose shadow area is specified is supplied to the hidden image generation unit 83 and the shadow image generation unit 85.
  • the hidden image generation unit 83 uses the shadow region extraction target image from the storage unit 81 and the shadow region (identified input image) from the shadow region detection unit 82, and is hidden behind the shadow in the base image. An image that is a shadow region but is identified in the shadow region extraction target image is generated as a hidden image and supplied to the shadow removal unit 84.
  • the shadow removing unit 84 synthesizes the hidden image from the hidden image generating unit 83 with the base image from the storage unit 81, so that an image that can be seen as a shadow region in the base image can be seen, A shadow removal image is generated by removing the shadow region from the base image, and is supplied to the synthesis unit 86.
  • the shadow image generation unit 85 is supplied with an input image in which a shadow region is specified from the shadow region detection unit 82, and is also supplied with a virtual light source position from the virtual light source position setting unit 51.
  • the shadow image generation unit 85 acquires a shadow image in which the shadow region to be added to the base image is specified using the input image in which the shadow region is specified from the shadow region detection unit 82.
  • the shadow image generation unit 85 generates a new shadow image in which a new shadow (region) is added to the shadow region of the shadow image in accordance with the virtual light source position from the virtual light source position setting unit 51, and the combining unit 86.
  • the synthesizing unit 86 synthesizes the shadow removed image from the shadow removing unit 84 and the (new) shadow image (its shadow area) from the shadow image generating unit 85, for example, in the same manner as the synthesizing unit 54 in FIG. By doing so, an output image with a new shadow is generated and output to the display device 13.
  • the shadow-removed image or the combined image obtained by combining the shadow-removed image and the shadow image is the shadow correction image (an image obtained by correcting the shadow with respect to the input image) described with reference to FIG. it can.
  • FIG. 14 is a diagram illustrating an example of control of the light source 21 by the illumination control unit 71.
  • FIG. 14A is a front view showing a configuration example of the distal end when the distal end of the endoscope scope 32 constituting the endoscope 11 is the front.
  • FIG. 14B is a side view showing a configuration example of the distal end of the endoscope scope 32.
  • FIG. 14B is a side view showing a configuration example of the distal end of the endoscope scope 32.
  • a photographing window and an illumination window are provided at the distal end of the endoscope scope 32.
  • the reflected light from the subject enters from the photographing window and is guided to the camera 22.
  • the front face of the endoscope scope 32 has a (substantially) circular shape, and a photographing window is provided at the center of the circle.
  • the illumination window is a part of the light source 21, and illumination light is irradiated (emitted) from the illumination window.
  • FIG. 14 four illumination windows are provided around the photographing window.
  • the number of illumination windows is not limited to four. That is, the endoscope scope 32 can be provided with a plurality of illumination windows other than four.
  • the illumination light is emitted from the illumination window according to the control of the illumination control unit 71.
  • the illumination control unit 71 can control (select) an illumination window that emits illumination light for four illumination windows.
  • illumination condition setting unit 72 for example, when capturing an input image of one of an odd frame and an even frame, illumination light is emitted from the right illumination window of the four illumination windows, and the other At the time of capturing an input image of a frame, two set illumination conditions can be set so that illumination light is emitted from the left illumination window among the four illumination windows.
  • the illumination light emitted from the right illumination window causes a shadow on the left side of the subject, and in the other frame, illumination is emitted from the left illumination window. The light causes a shadow on the right side of the subject.
  • illumination conditions in addition to the position of illumination light (illumination window irradiated with illumination light), the illumination direction of illumination light, the intensity of illumination light, and the like can be set.
  • FIG. 15 is a diagram for explaining a first example of generating an output image from a frame of an input image photographed under each of a plurality of (setting) illumination conditions.
  • the illumination control unit 71 sequentially selects each of the plurality of set illumination conditions from the illumination condition setting unit 72 as, for example, a target illumination condition for each frame. That is, the illumination condition for illuminating the subject is switched for each frame.
  • the illumination conditions for illuminating the subject are periodically switched to two set illumination conditions c1 and c2 in units of frames, and the input image i is captured.
  • the set illumination condition c1 1, 2,
  • the even-numbered frame i # 2n is set with the set illumination condition c2.
  • the latest frame of the input image i is the frame i # k + 1, two consecutive frames of the input image, the frame i # k + 1 and the frame i # k one frame before the frame i # k + 1 Is used to generate the latest frame o # k of the output image o.
  • the illumination condition for illuminating the subject is switched to each of the two set illumination conditions c1 and c2 for each frame, the generation of the frame o # k of the output image o
  • the frame set of the frame i # k + 1 and the frame i # k one frame before is required.
  • the frame i # 1 can be output as it is as the output image o (frame).
  • the output image o is not an image that has undergone shading (compositing) processing, but it is possible to prevent a delay from occurring until the output of the output image o is started after the start of capturing the input image i. Can do.
  • FIG. 16 is a diagram for explaining a second example of generating an output image from a frame of an input image photographed under each of a plurality of (set) illumination conditions.
  • the illumination conditions for illuminating the subject are periodically switched to three set illumination conditions c1, c2, and c3 for each frame, and the input image i is photographed.
  • the 3n-2nd frame i # 3n-2 of the input image i is shot under the set lighting condition c1
  • the 3n-1st frame i # 3n-1 is shot under the set lighting condition c2
  • Frame i # 3n is captured under the set illumination condition c3.
  • the frame o # k of the output image o is generated by using the three frames i # k to i # k + 2 taken continuously of the input image i as the frame set described in FIG.
  • the latest frame of the input image i is the frame i # k + 2
  • the latest three frames i # k to i # k + 2 of the input image i including the frame i # k + 2 are used.
  • the latest frame o # k of the output image o is generated.
  • the output image can be generated as follows.
  • FIG. 17 is a diagram for explaining a third example of generation of an output image from a frame of an input image captured under each of a plurality of (set) illumination conditions.
  • the illumination conditions for illuminating the subject are periodically switched to three set illumination conditions c1, c2, and c3 in units of frames, and the input image i is changed. Have been filmed.
  • the second and subsequent frames o # k of the output image o are obtained by using the three frames i # k to i # k + 2 continuously captured of the input image i as a frame set.
  • the frame o # k of the output image o is generated.
  • the first frame o # 1 of the output image o is obtained by using two frames i # k and i # k + 1 continuously captured of the input image i as a frame set as in the case of FIG.
  • the frame o # k of the output image o is generated.
  • the delay until the output of the output image o is started after the start of capturing the input image i can be suppressed to a delay of one frame.
  • the frame i # 1 can be output as it is as the output image o (frame).
  • the output image o is not an image subjected to the shading process, but it is possible to prevent a delay from occurring after the start of capturing the input image i until the output of the output image o is started.
  • the number of illumination conditions for illuminating the subject is not limited to two or three as described above, and may be four or more.
  • FIG. 18 is a diagram for explaining an example of processing of the shadow area detection unit 82 of FIG.
  • the illumination condition for illuminating the subject is periodically switched alternately to each of the two set illumination conditions in units of frames, and the input image i is captured. To do.
  • the subject is illuminated from the position on the right side of the camera 22 (the position on the right side of the camera 22 when the subject is viewed from the camera 22).
  • the other illumination condition it is assumed that the subject is illuminated from the position on the left side of the camera 22.
  • the latest frame #n (hereinafter also referred to as input image #n) of the input image is shot by illuminating the subject sub from the left position of the camera 22, and the latest input image # n and the input image (its frame) # n ⁇ 1 photographed immediately before the input image #n are supplied as a frame set from the storage unit 81 to the shadow area detection unit 82.
  • the subject sub is illuminated from the position on the left side of the camera 22, and in the input image # n ⁇ 1 taken immediately before the input image #n, the right side of the camera 22 is illuminated.
  • the subject sub is illuminated from the position.
  • a shadow area shR of a shadow caused by the subject sub exists on the right side of the subject sub.
  • a shadow area shL of a shadow caused by the subject sub exists on the left side of the subject sub.
  • the shaded area detection unit 82 obtains information on a difference such as a difference absolute value in pixel units between the input images #n and # n ⁇ 1 and generates a difference image having the difference absolute value as a pixel value.
  • the shadow area detection unit 82 detects all areas formed by collecting pixels having large pixel values in the difference image, and selects an area having a predetermined area or more from among the areas as a shadow area (a shadow is reflected). Detected as a candidate for (region). Note that the shadow area detection unit 82 can detect all areas formed by collecting pixels having large pixel values in the difference image as candidates for the shadow area.
  • the area corresponding to the shadow area shL of the input image # n-1 has no shadow, and even in the input image # n-1, the area corresponding to the shadow area shR of the input image #n is There is no shadow.
  • the pixel values (difference absolute values) of the pixels in the shadow areas shL and shR are large, so the shadow areas shL and shR are used as shadow area candidates. Detected.
  • the shadow area detection unit 82 After detecting the shadow area candidates, the shadow area detection unit 82 obtains an average luminance that is an average value of the luminances of the pixels in the shadow area candidates for each of the input images #n and # n-1.
  • the shadow area detection unit 82 selects a shadow area candidate whose average brightness is equal to or less than the threshold value as a threshold, and is a shadow area (shadow area) that is one type of shadow area. And the input images #n and # n ⁇ 1 in which the shadow areas are specified are supplied to the hidden image generation unit 83 and the shadow image generation unit 85.
  • the shadow area shR of the input image #n and the shadow area shL of the input image # n-1 are detected, and the input image #n and the shadow image shL in which the shadow area shR is specified are specified.
  • the input image # n ⁇ 1 is supplied from the shadow area detection unit 82 to the hidden image generation unit 83 and the shadow image generation unit 85.
  • a predetermined fixed value can be adopted as the luminance used as the threshold value used by the shadow area detection unit 82.
  • the luminance as the threshold value can be determined according to, for example, the entire input images #n and # n ⁇ 1 or a luminance histogram of the shadow region candidates.
  • a candidate for a shadow area whose average brightness is equal to or lower than the threshold value is detected as a shadow area that is one type of shadow area.
  • a shadow region candidate whose average luminance is not less than or equal to the threshold value can be detected as a shadow region (shadow region) which is another type of shadow region.
  • the shadow area can be processed in the same manner as the shadow area, but the description of the process for the shadow area is omitted here for the sake of simplicity.
  • FIG. 19 is a diagram illustrating an example of processing of the hidden image generation unit 83 and the shadow image generation unit 85 in FIG.
  • the storage unit 81 selects a base image and a shadow region extraction target image from the frame set, that is, in this case, from the input images #n and # n-1.
  • the base image is an image serving as a base of the output image, and the latest input image among the input images of the frame set is selected as the base image. Therefore, the latest input image #n is selected as the base image for the frame sets of the input images #n and # n ⁇ 1.
  • the shadow region extraction target image is an image from which a shadow region that is a source of a shadow (region) attached to the output image is extracted (detected), and illumination (light source) at the time of shooting among the input images of the frame set.
  • An input image whose position is closest to the virtual light source position is selected as the shadow region extraction target image.
  • the position on the left side of the camera 22 as the illumination position (the position of the light source (illumination window) that emits illumination light that illuminates the subject) when the input image #n is captured
  • the input image # n-1 Is a position on the straight line connecting the right side position of the camera 22 as the position of the illumination when the camera is photographed.
  • the position is opposite to the direction from the right side position of the camera 22 to the left side position of the camera 22 (camera 22 It is assumed that the virtual light source position is set at a position on the right side of the right side).
  • the input image # n-1 having the illumination position at the time of shooting at the right side of the camera 22 is selected as the shadow region extraction target image.
  • the shadow image generation unit 85 is a shadow region extraction target image of the input images # n ⁇ 1 and #n in which the shadow regions shL and shR as the shadow regions supplied from the shadow region detection unit 82 are respectively specified.
  • the input image # n-1 is acquired as a shadow image in which a shadow region to be added to the base image is specified.
  • the hidden image generation unit 83 converts the input images #n and # n ⁇ 1 supplied from the shadow region detection unit 82 from the input image # n ⁇ 1 that is the shadow region extraction target image supplied from the storage unit 81. An area corresponding to the shadow area shR of the input image #n as the base image is extracted.
  • the hidden image generation unit 83 looks from the input image # n-1 that is the shadow region extraction target image, the region corresponding to the shadow region shR of the input image #n that is the base image, hidden behind the shadow in the base image. Although there is no shadow area shR, it is extracted as a hidden area hide that is reflected in the shadow area extraction target image.
  • the hidden image generation unit 83 supplies the input image # n ⁇ 1, which is a shadow region extraction target image in which the hidden region hide is specified, to the shadow removal unit 84 as a hidden image.
  • FIG. 20 is a diagram illustrating an example of processing of the shadow removal unit 84 of FIG.
  • the shadow removing unit 84 combines the hidden area hide of the hidden image from the hidden image generating unit 83 with the input image #n, which is the base image from the storage unit 81, so that the shadow image shR appears in the base image.
  • An image in which the missing part can be seen is generated as a shadow-removed image obtained by removing the shadow region from the base image, and is supplied to the combining unit 86.
  • FIG. 21 is a diagram for explaining an example of processing of the shadow image generation unit 85 of FIG.
  • the shadow image generation unit 85 acquires the input image # n ⁇ 1, which is a shadow region extraction target image in which the shadow region shL is specified, as a shadow image.
  • the shadow region shL of this shadow image is the shadow region shL of the input image # n ⁇ 1 that is the shadow region extraction target image.
  • the shadow image generation unit 85 responds to the virtual light source position from the virtual light source position setting unit 51. Thus, a new shadow image in which a new shadow is added to the shadow area shL of the shadow image is generated.
  • the shadow image generation unit 85 expands the contour in the predetermined direction of the shadow region shL of the shadow image by a predetermined size (number of pixels) in the predetermined direction while maintaining the shape of the contour.
  • the shadow area shL is expanded to a new shadow area shL ′ as if a new shadow was added to the shadow area shL.
  • the predetermined direction and size for extending the outline of the shadow region shL are the positions of the illumination (light source) and the virtual light source position at the time of shooting the input image # n-1 that is the shadow region extraction target image It is determined according to the relationship.
  • the predetermined direction for extending the contour of the shadow region shL is determined from the virtual light source position to the direction of the illumination at the time of shooting the input image # n-1 that is the shadow region extraction target image.
  • the illumination position at the time of photographing the input image # n ⁇ 1 that is the shadow region extraction target image is the position on the right side of the camera 22, and the virtual light source position is that of the camera 22. It is set to the right position further than the right position.
  • the predetermined direction for extending the outline of the shadow region shL is determined in the left direction (left direction when the subject is viewed from the camera 22).
  • the predetermined size direction for extending the contour of the shadow region shL corresponds to the distance between the virtual light source position and the illumination position at the time of shooting the input image # n-1 that is the shadow region extraction target image
  • the value for example, a value proportional to the distance is determined.
  • the outline of the shadow region shL is greatly expanded as the virtual light source position is further away (to the right) from the illumination position at the time of shooting the input image # n-1 that is the shadow region extraction target image.
  • the shadow area shL of the shadow image is expanded by changing the pixel value of the shadow image pixel to a pixel value representing a shadow.
  • the pixel value representing the shadow for example, black, dark color, a color selected (set) so as to be easily identified by the user, or the like can be adopted.
  • the pixel value representing the shadow for example, alpha blending of the original pixel value of the pixel and a black or dark color, a color selected so that the user can easily identify (greater than 0.0 and less than 1.0). Pixel values obtained by (alpha blending using the number of values ⁇ ) can be employed.
  • the subject in the shadow part can be visually recognized with clarity according to the darkness (thinness) of the shadow.
  • An invisible (not shown) image may become an unnatural image.
  • the output image is an unnatural image as described above. Can be prevented.
  • FIG. 22 is a diagram illustrating an example of processing of the synthesis unit 86 in FIG.
  • the composition unit 86 performs composition of the shadow removed image from the shadow remover 84 and the (new) shadow image (shadow region shL ′) from the shadow image generation unit 85 by, for example, alpha blending, An output image to which a new shadow region shL ′ of the shadow image is added as a shadow of the subject sub is generated and output to the display device 13.
  • FIG. 23 is a diagram illustrating an example of the virtual light source position set by the virtual light source position setting unit 51 in FIG.
  • the (real) light source 21 exists at the position PR on the right side of the camera 22 and the position PL on the left side of the camera 22, and as described with reference to FIG. To illuminate alternately in frame units.
  • the virtual light source position P When adding a shadow, the virtual light source position P is set to a position outside the positions PR and PL when viewed from the subject sub. This is because when the virtual light source position P is set not at a position outside the positions PR and PL but at an inside position P ′, the shadow of the subject sub is not expanded but is reduced.
  • the virtual light source position P is set to a position inside the positions PR and PL when viewed from the subject sub.
  • the virtual light source position setting unit 51 places a virtual light source at an arbitrary position. Position P can be set.
  • the virtual light source position setting unit 51 needs to recognize the positions PR and PL of the light source 21.
  • the virtual light source position setting unit 51 can recognize the positions PR and PL of the light source 21 from the illumination conditions set by the illumination condition setting unit 72 (FIG. 13), for example.
  • FIG. 24 is a flowchart for explaining an example of processing of the image processing apparatus 12 of FIG.
  • step S41 the shading necessity determination unit 41 performs shading necessity determination.
  • step S41 If it is determined in the shadow necessity determination in step S41 that the input image from the camera 22 does not require a shadow process, the process proceeds to step S42, and the shadow synthesis processing unit 42 converts the input image from the camera into the input image. The output image is output to the display device 13 as it is, and the process ends.
  • step S41 If it is determined in step S41 that the shadow image is necessary for the input image from the camera 22, the process proceeds to step S43, and the illumination condition setting unit 72 includes a plurality of set illuminations. Conditions are set and supplied to the illumination control unit 71.
  • the illumination control unit 71 periodically selects each of the plurality of set illumination conditions from the illumination condition setting unit 72 as a target illumination condition, and the light source 21 ( The process of controlling the illumination) is started.
  • the frame set is composed of two frames, the latest frame of the input image and the immediately preceding frame.
  • step S44 the virtual light source position setting unit 51 sets the virtual light source position and supplies it to the shadow image generation unit 85, and the process proceeds to step S45.
  • step S45 as described with reference to FIG. 18, the shadow area detection unit 82 generates a two-frame difference image of the input image as a frame set stored in the storage unit 81, and the process proceeds to step S46.
  • step S46 the shadow area detection unit 82 uses the difference image to detect a shadow area as a shadow area having a shadow in the input image as the frame set. Then, the shadow area detection unit 82 supplies the input image in which the shadow area detected using the difference image is specified to the hidden image generation unit 83 and the shadow image generation unit 85, and the process proceeds to step S47. move on.
  • step S47 as described in FIG. 19, the shadow image generation unit 85 selects a shadow image in which the shadow region to be added to the base image is specified from the input image in which the shadow region is specified from the shadow region detection unit 82. Acquisition (generation) is performed, and the process proceeds to step S48.
  • step S48 the storage unit 81 selects a shadow region extraction target image from the frame set, supplies the shadow region extraction target image to the hidden image generation unit 83, and the process proceeds to step S49.
  • step S49 the hidden image generation unit 83 uses the shadow region extraction target image from the storage unit 81 and the input image in which the shadow region is specified from the shadow region detection unit 82, as described with reference to FIG.
  • the base image is a shadow region that is hidden behind a shadow and cannot be seen, but an image in which a portion that is reflected in the shadow region extraction target image is specified is generated as a hidden image.
  • the hidden image generation unit 83 supplies the hidden image to the shadow removal unit 84, and the process proceeds from step S49 to step S50.
  • step S50 the storage unit 81 selects a base image from the frame set, supplies it to the shadow removal unit 84, and the process proceeds to step S51.
  • step S51 the shadow removing unit 84 synthesizes the hidden image from the hidden image generating unit 83 with the base image from the storage unit 81 as described in FIG. An image in which an invisible part can be seen is generated as a shadow-removed image obtained by removing the shadow region from the base image.
  • the shadow removal unit 84 supplies the shadow removal image to the synthesis unit 86, and the process proceeds from step S51 to step S52.
  • step S52 the shadow image generation unit 85 adds a new shadow (region) to the shadow region of the shadow image according to the virtual light source position from the virtual light source position setting unit 51, as described in FIG.
  • a new shadow image that is, a shadow image obtained by extending the shadow region is generated.
  • the shadow image generation unit 85 supplies the shadow image to the synthesis unit 86, and the process proceeds from step S52 to step S53.
  • step S53 the synthesis unit 86 synthesizes the shadow removal image from the shadow removal unit 84 and the shadow image (shadow region) from the shadow image generation unit 85, thereby expanding the shadow of the input image. Then, an output image added as a new shadow is generated and output to the display device 13, and the process ends.
  • the synthesis unit 86 outputs the output image as it is without synthesizing the shadow-removed image and the shadow image, and the synthesis of the shadow-removed image and the shadow image is similar to the case described with reference to FIG. This can be performed when the removed image and the shadow image are displayed.
  • FIG. 25 is a block diagram illustrating a fourth configuration example of the image processing apparatus 12 of FIG.
  • the image processing apparatus 12 includes a control unit 40, an illumination control unit 71, and an illumination condition setting unit 72.
  • the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42.
  • the shadow composition processing unit 42 includes a shadow processing unit 80 and a composition unit 86.
  • the shadow processing unit 80 includes a virtual light source position setting unit 51, a storage unit 81, a shadow region detection unit 82, a hidden image generation unit 83, a shadow removal unit 84, and a shadow image generation unit 85.
  • the image processing apparatus 12 in FIG. 25 is configured in the same manner as in FIG.
  • light sources 91 and 92 are provided in addition to the light source 21, and only the light source 21 is the light source in that the illumination control unit 71 controls the light sources 91 and 92 in addition to the light source 21. Is different from the case of FIG. 13 where only the light source 21 is controlled.
  • the light sources 91 and 92 are, for example, apertures that are attached to a body cavity by inserting a small hole in the abdominal wall or the like to insert the endoscope 11 (the endoscope scope 32 (FIG. 3)), a treatment instrument, or the like. It can be provided in a trocar (not shown) which is an instrument.
  • the light sources 91 and 92 can be attached to the tip of a treatment instrument such as forceps inserted from a trocar, for example.
  • a treatment instrument such as forceps inserted from a trocar
  • the treatment instrument to which the light sources 91 and 92 are attached is held by an operator, a robot, or the like while being inserted from the trocar.
  • the illumination control unit 71 controls not only one light source 21 but also a plurality of, for example, three light sources 21, 91, and 92.
  • the subject can be illuminated under illumination conditions. As a result, for example, it is possible to generate an output image to which a shadow (region) that effectively feels a stereoscopic effect or the like is added.
  • 25 can further include a scene detection unit 101 that detects a scene shown in the input image and a shadow region detection unit 102 that detects a shadow (region) shown in the input image. .
  • the illumination control unit 71 in addition to controlling the light sources 21, 91, and 92 according to the (setting) illumination conditions supplied from the illumination condition setting unit 72, an input image detected by the scene detection unit 101 is displayed.
  • the light sources 21, 91, and 92 can be controlled in accordance with the scene to be reflected and the shadow that appears in the input image detected by the shadow area detection unit 102.
  • the illumination control unit 71 for example, on / off of the light sources 21, 91, and 92, that is, a position that illuminates the subject (a position at which illumination light that illuminates the subject is emitted), depending on the scene or shadow reflected in the input image ) Can be controlled.
  • the illumination control unit 71 can control, for example, the intensity of the light sources 21, 91, and 92, that is, the intensity of illumination light that illuminates the subject, according to the scene and shadow reflected in the input image.
  • the shadow of the other subject is applied to the surgical part among the light sources 21, 91, and 92. Only a light source that can irradiate illumination light from a direction that does not take place can be turned on, and the other light sources can be turned off.
  • the illumination control unit 71 controls the light sources 21, 91, and 92 according to the illumination conditions supplied from the illumination condition setting unit 72, or the scene reflected in the input image detected by the scene detection unit 101, Whether to perform the operation according to the shadow reflected in the input image detected by the shadow region detection unit 102 can be switched according to the user's operation, for example.
  • the illumination control unit 71 can control the light sources 21, 91, and 92 in accordance with user operations.
  • the illumination control unit 71 emits the illumination light from a position of the light sources 21, 91, and 92 that causes a shadow in the direction indicated by the user. Only light sources that can be illuminated can be turned on and other light sources can be turned off.
  • the illumination control unit 71 corresponds the required light source intensity of the light sources 21, 91, and 92 to the shadow intensity designated by the user.
  • the strength can be controlled.
  • the shadow area detection unit 102 can be replaced by the shadow area detection unit 82.
  • FIG. 26 is a block diagram illustrating a fifth configuration example of the image processing apparatus 12 of FIG.
  • the image processing apparatus 12 includes a control unit 40.
  • the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42.
  • the shadow composition processing unit 42 includes a shadow processing unit 50 and a shadow adding unit 112.
  • the shadow processing unit 50 includes a virtual light source position setting unit 51, a depth estimation unit 52, and a shadow region detection unit 111.
  • the image processing apparatus 12 of FIG. 26 is common to the case of FIG. 5 in that it includes the control unit 40, and the control unit 40 includes a shadow necessity determination unit 41 and a shadow synthesis processing unit 42.
  • the shadow composition processing unit 42 has the shadow processing unit 50 and the shadow processing unit 50 has the virtual light source position setting unit 51 and the depth estimation unit 52.
  • the shadow synthesis processing unit 42 has a shadow addition unit 112 instead of the synthesis unit 54, and the shadow processing unit 50 replaces the shadow image generation unit 53. It differs from the case of FIG. 5 by having the area
  • the shadow area detection unit 111 is supplied with the virtual light source position from the virtual light source position setting unit 51 and the depth information from the depth estimation unit 52.
  • the shadow area detection unit 111 detects a shadow shadow area generated by the virtual light source from the virtual light source position from the virtual light source position setting unit 51 and the depth information from the depth estimation unit 52, and supplies it to the shadow addition unit 112. .
  • the shadow addition unit 112 is supplied with a medical image as an input image from the camera 22 in addition to the shadow region supplied from the shadow region detection unit 111.
  • the shadow adding unit 112 generates an output image in which the shadow region is added to the input image by combining the shadow region from the shadow region detecting unit 111 with the input image from the camera 22 and outputs the output image to the display device 13. .
  • FIG. 27 is a diagram for explaining an example of detection of a shadow area in the shadow area detection unit 111 of FIG.
  • Depth information from a virtual light source position in a three-dimensional space (hereinafter also referred to as depth space) defined by an xy plane that represents the position of each pixel of the input image and a z-axis that represents depth information of a subject reflected in each pixel
  • a vector representing a light ray directed to the point is referred to as a light ray vector.
  • the shadow area detection unit 111 obtains the inner product of the normal vector representing the normal direction at the point as the depth information and the ray vector toward the point as the depth information for the depth information of each pixel.
  • the shadow area detection unit 111 detects, as a shadow area, an area composed of pixels of depth information in which the size of the inner product is equal to or smaller than (or less than) a predetermined threshold.
  • FIG. 28 is a flowchart for explaining an example of processing of the image processing apparatus 12 of FIG.
  • steps S71 to S74 processing similar to that in steps S11 to S14 in FIG. 9 is performed.
  • step S75 the shadow area detection unit 111 uses the virtual light source position from the virtual light source position setting unit 51 and the depth information from the depth estimation unit 52, as described in FIG. Detect the shadow area that occurs.
  • the shadow region detection unit 111 supplies the shadow region to the shadow addition unit 112, and the process proceeds from step S75 to step S76.
  • step S ⁇ b> 76 the shadow adding unit 112 combines the input image from the camera 22 with the shadow region from the shadow region detection unit 111 to add an output image in which the shadow region is added to the input image, that is, the shadow of the input image. Is generated and output to the display device 13, and the process ends.
  • the series of processes of the image processing apparatus 12 described above can be performed by hardware or software.
  • a program constituting the software is installed in a general-purpose computer or the like.
  • FIG. 29 is a block diagram illustrating a configuration example of an embodiment of a computer in which a program for executing the series of processes described above is installed.
  • the program can be recorded in advance in a hard disk 205 or ROM 203 as a recording medium built in the computer.
  • the program can be stored (recorded) in the removable recording medium 211.
  • a removable recording medium 211 can be provided as so-called package software.
  • examples of the removable recording medium 211 include a flexible disk, a CD-ROM (Compact Disc Read Only Memory), a MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a magnetic disc, and a semiconductor memory.
  • the program can be installed on the computer from the removable recording medium 211 as described above, or downloaded to the computer via a communication network or a broadcast network, and installed on the built-in hard disk 205. That is, the program is transferred from a download site to a computer wirelessly via a digital satellite broadcasting artificial satellite, or wired to a computer via a network such as a LAN (Local Area Network) or the Internet. be able to.
  • a network such as a LAN (Local Area Network) or the Internet.
  • the computer incorporates a CPU (Central Processing Unit) 202, and an input / output interface 210 is connected to the CPU 202 via the bus 201.
  • a CPU Central Processing Unit
  • the CPU 202 executes a program stored in a ROM (Read Only Memory) 203 according to the command. .
  • the CPU 202 loads a program stored in the hard disk 205 into a RAM (Random Access Memory) 204 and executes it.
  • the CPU 202 performs processing according to the flowchart described above or processing performed by the configuration of the block diagram described above. Then, the CPU 202 outputs the processing result as necessary, for example, via the input / output interface 210, from the output unit 206, or from the communication unit 208, and further recorded in the hard disk 205.
  • the input unit 207 includes a keyboard, a mouse, a microphone, and the like.
  • the output unit 206 includes an LCD (Liquid Crystal Display), a speaker, and the like.
  • the processing performed by the computer according to the program does not necessarily have to be performed in chronological order in the order described as the flowchart. That is, the processing performed by the computer according to the program includes processing executed in parallel or individually (for example, parallel processing or object processing).
  • the program may be processed by one computer (processor), or may be distributedly processed by a plurality of computers. Furthermore, the program may be transferred to a remote computer and executed.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the present technology can be applied to a medical device having a function of taking a medical image showing a surgical part of a living body such as a medical electron microscope (surgical microscope). it can. Furthermore, the present technology can be applied to a device having a function of capturing an arbitrary image in addition to a medical image.
  • this technique can take the structure of the cloud computing which shares one function with a several apparatus via a network, and processes jointly.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • this technique can take the following structures.
  • An image processing apparatus comprising: a control unit that controls to generate a shadow correction image based on the determination result.
  • a control unit that controls to generate a shadow correction image based on the determination result.
  • the control unit performs the determination according to an input from a user.
  • the control unit performs the determination according to the medical image.
  • the control unit performs the determination according to any one of ⁇ 1> to ⁇ 3>, wherein the control unit performs the determination according to a use state of a treatment instrument.
  • ⁇ 5> The image processing apparatus according to any one of ⁇ 1> to ⁇ 4>, wherein the control unit performs control to generate the shadow correction image of a shadow generated with respect to a specific subject of the medical image by a virtual light source.
  • the control unit estimates the depth of the subject and performs control to generate the shadow correction image based on the depth.
  • the control unit controls the light source position of the imaging unit that captures the medical image and the position of the virtual light source to be equal to or less than a predetermined distance.
  • the control unit performs control so that the shadow correction image is not generated for the subject in which the distance in the depth direction between the subject and the shadow region generated by the virtual light source with respect to the subject is equal to or greater than a predetermined distance.
  • the medical image is two images having parallax, The image processing device according to any one of ⁇ 6> to ⁇ 8>, wherein the depth is estimated from parallax information of the subject of the two images.
  • the control unit further includes: Identify the target object from the medical image, The image processing device according to any one of ⁇ 1> to ⁇ 9>, wherein control is performed to generate the shadow correction image with respect to the target object.
  • the image processing device further including an object setting unit that sets the target object.
  • the control unit performs control so that the shadow correction image is generated with the thickness of the target object as a predetermined thickness.
  • the controller is Using a plurality of the medical images obtained by photographing the subject under different lighting conditions, The image processing device according to any one of ⁇ 1> to ⁇ 4>, wherein control is performed to generate the shadow correction image.
  • the image processing device further including an illumination condition setting unit that sets the illumination condition.
  • ⁇ 15> The image processing apparatus according to any one of ⁇ 1> to ⁇ 14>, wherein the control unit generates a shadow image showing a shadow as the shadow correction image.
  • the control unit generates an output image in which a shadow is added to the medical image by synthesizing the shadow image with the shadow and the medical image as the shadow correction image.
  • ⁇ 1> to ⁇ 14> The image processing apparatus according to any one of the above.
  • ⁇ 17> The image processing apparatus according to ⁇ 5>, wherein a position where a longitudinal direction of a predetermined subject reflected in the medical image does not overlap with an optical axis of the virtual light source is set as the position of the virtual light source.
  • ⁇ 18> Determine whether to add or suppress shadows on medical images
  • An image processing method including a step of controlling to generate a shadow correction image based on a result of the determination.
  • ⁇ 19> Determine whether to add or suppress shadows on medical images,
  • An endoscope for taking medical images A light source that emits illumination light to illuminate the subject; An image processing device that performs image processing of the medical image obtained by photographing the subject illuminated by the illumination light with the endoscope, and
  • the image processing apparatus includes: Determine whether to add or suppress shadows on medical images, A surgical operation system having a control unit that controls to generate a shadow correction image based on a result of the determination.
  • a determination unit that determines whether or not to perform a shadow process for adding or suppressing a shadow to a medical image in which an operation part is reflected;
  • An image processing apparatus comprising: a shadow processing unit that performs the shadow processing on the medical image according to a determination result of the necessity determination of the shadow.
  • the said determination part performs the said shading necessity determination according to the input from a user.
  • the image processing apparatus as described in ⁇ O1>.
  • ⁇ O3> The image processing apparatus according to ⁇ O1> or ⁇ O2>, wherein the determination unit determines whether the shadow is necessary according to the medical image.
  • ⁇ O4> The image processing apparatus according to any one of ⁇ O1> to ⁇ O3>, wherein the determination unit determines whether or not the shadow is necessary according to a usage state of a treatment tool.
  • a depth estimator for estimating the depth of a subject reflected in each pixel of the medical image;
  • a virtual light source position setting unit for setting a virtual light source position of a virtual virtual light source;
  • a shadow image generation unit that generates a shadow image of a shadow caused by the virtual light source from the depth of the subject and the virtual light source position;
  • the image processing apparatus according to any one of ⁇ O1> to ⁇ O4>, wherein the shadow processing unit generates an output image in which a shadow is added to the medical image by combining the medical image and the shadow image.
  • ⁇ O6> The image processing apparatus according to ⁇ O5>, wherein the virtual light source position setting unit limits a distance between an optical axis of a camera that captures the medical image and the virtual light source position within a predetermined distance.
  • the shadow processing unit restricts addition of a shadow for a subject whose depth direction distance between a subject shown in the medical image and a shadow generated by the virtual light source with respect to the subject is a certain distance or more ⁇ O5> or The image processing device according to ⁇ O6>.
  • the virtual light source position setting unit sets, as the virtual light source position, a position where a predetermined subject reflected in the medical image and the optical axis of the virtual light source do not overlap each other ⁇ O5> to ⁇ O7> Image processing apparatus.
  • the medical image is a 3D (Dimensional) image
  • the image processing apparatus according to any one of ⁇ O5> to ⁇ O8>, wherein the depth estimation unit estimates a depth of a subject shown in each pixel of the medical image from the 3D image.
  • ⁇ O10> An object detection unit for detecting a target object to be subjected to the shading process from the medical image; The image processing apparatus according to any one of ⁇ O1> to ⁇ O9>, wherein the shadow processing unit performs the shadow processing on the target object.
  • ⁇ O11> The image processing apparatus according to ⁇ O10>, further including an object setting unit that sets the target object.
  • ⁇ O12> The image processing apparatus according to ⁇ O10> or ⁇ O11>, wherein the shading processing unit performs the shading processing in consideration of a predetermined thickness as the thickness of the target object.
  • ⁇ O13> Using the plurality of frames photographed under different illumination conditions among the frames of the medical image photographed while changing the illumination condition for illuminating the subject shown in the medical image, a shadow region having a shadow in the medical image is obtained.
  • a shadow area detection unit to detect;
  • a virtual light source position setting unit for setting a virtual light source position of a virtual virtual light source, and
  • the image processing apparatus according to any one of ⁇ O1> to ⁇ O4>, wherein the shadow processing unit performs the shadow processing on the shadow region in accordance with the virtual light source position.
  • the shadow processing unit The latest frame of the plurality of frames is used as a base image, and a shadow removal image is generated by removing a shadow area having a shadow in the base image, Using one of the plurality of frames as a shadow region extraction target image, a new shadow region with a shadow in the shadow region extraction target image is created using the shadow region extraction target image and the virtual light source position. Generate a shadow image with a shadow, The image processing apparatus according to ⁇ O13>, wherein an output image in which the new shadow is added to the medical image is generated by combining the shadow removed image and the shadow image.
  • a depth estimator for estimating the depth of a subject reflected in each pixel of the medical image;
  • a virtual light source position setting unit for setting a virtual light source position of a virtual virtual light source;
  • a shadow area detection unit that detects a shadow shadow area generated by the virtual light source from the depth of the subject and the virtual light source position;
  • the image processing apparatus according to any one of ⁇ O1> to ⁇ O4>, wherein the shadow processing unit generates an output image in which the shadow region is added to the medical image.
  • ⁇ O16> Determining whether or not to perform a shading process for adding or suppressing shadows on a medical image showing an operation part, An image processing method including: performing the shading process on the medical image according to a determination result of the shading necessity determination.
  • a determination unit that determines whether or not to perform a shadow process for adding or suppressing a shadow to a medical image in which an operation part is reflected;
  • a program for causing a computer to function as a shadow processing unit that performs the shadow process on the medical image according to a determination result of the necessity determination of the shadow.
  • An endoscope for taking images A light source that emits illumination light to illuminate the subject; An image processing unit that performs image processing of a medical image that is obtained by photographing the surgical part illuminated by the illumination light with the endoscope, and The image processing unit A determination unit that determines whether or not to perform a shadow process for adding or suppressing a shadow to a medical image in which an operation part is reflected;
  • a surgical system comprising: a shadow processing unit that performs the shadow process on the medical image according to a determination result of the necessity determination of the shadow.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Graphics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Endoscopes (AREA)
  • Image Processing (AREA)

Abstract

本技術は、陰影がある医用画像を適切に提供することができるようにする画像処理装置、画像処理方法、プログラム、及び、手術システムに関する。 画像処理装置は、医用画像に対し、陰影を付加又は抑制するか否かを判定し、その判定の結果に基づき、陰影補正画像を生成するよう制御する。本技術は、例えば、内視鏡で撮影された医用画像を見ながら手術を行う手術システム等に適用することができる。

Description

画像処理装置、画像処理方法、プログラム、及び、手術システム
 本技術は、画像処理装置、画像処理方法、プログラム、及び、手術システムに関し、特に、例えば、陰影がある医用画像を適切に提供することができるようにする画像処理装置、画像処理方法、プログラム、及び、手術システムに関する。
 例えば、内視鏡下手術では、内視鏡で術部が撮影され、その術部が映った医用画像を見ながら、手術が行われる。
 内視鏡では、被写体を照明する照明光が、術部や術部の周辺に照射され、その反射光をカメラで受光することにより、医用画像が撮影される。内視鏡は、照明光(光源)の光軸とカメラの光軸とがほぼ一致するように構成されており、そのため、医用画像に映る被写体には、ほとんど影が生じない。
 かかる医用画像によれば、術部等の被写体が影に隠れて見にくくなることを防止することができる。
 しかしながら、影がほとんど生じない医用画像に映る被写体は、凹凸感のない(のっぺりした)画像になる。かかる画像では、被写体の立体的な構造が把握しにくくなることや、影のでき方等で感じられる、被写体(例えば、内蔵や、鉗子等の処置具等)どうしの間の前後感(前後の距離感)を感じにくくなることがある。
 なお、3D(Dimensional)画像の陰影を強調する技術(例えば、特許文献1)や、内視鏡の観察視野の方向と直交する方向に照射される照明光により、被写体に影を付す技術(例えば、特許文献2)が、先に提案されている。
特開2014-022867号公報 特開平10-165357号公報
 医用画像について、凹凸感や、立体感、前後感をだす方法としては、医用画像に、陰影を付す方法がある。
 しかしながら、特許文献1の技術は、3D画像の中に既に存在する陰影を強調する技術であり、陰影がほとんどない医用画像に陰影を付すことが難しいことがある。
 また、特許文献2の技術では、内視鏡の観察視野の方向と直交する方向に照射される照明光が体腔内の壁面で反射することにより生じる反射光で、術部等を側方から間接的に照明することにより、内視鏡で撮影される画像に陰影が付される。
 したがって、術部が広い空間に存在する場合には、反射光が拡散して、陰影を付しにくいことがある。さらに、所望の陰影を付すことが難しい。
 ところで、医用画像に、陰影を付すことができれば、その医用画像を見る術者等は、凹凸感や、立体感、前後感を感じることができる。
 しかしながら、仮に、医用画像に、陰影を付すことができたとしても、例えば、術部が影に隠れて見えにくくなることがある。
 したがって、医用画像に、常時、陰影を付すことが適切であるとは限らない。
 本技術は、このような状況に鑑みてなされたものであり、陰影がある医用画像を適切に提供することができるようにするものである。
 本技術の画像処理装置、又は、プログラムは、医用画像に対し、陰影を付加又は抑制するか否かを判定し、前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部を備える画像処理装置、又は、そのような画像処理装置として、コンピュータを機能させるためのプログラムである。
 本技術の画像処理方法は、医用画像に対し、陰影を付加又は抑制するか否かを判定し、前記判定の結果に基づき、陰影補正画像を生成するよう制御するステップを含む画像処理方法である。
 本技術の手術システムは、医用画像を撮影する内視鏡と、被写体を照明する照明光を発する光源と、前記照明光によって照明された被写体を、前記内視鏡で撮影することにより得られ前記医用画像の画像処理を行う画像処理装置とを備え、前記画像処理装置は、医用画像に対し、陰影を付加又は抑制するか否かを判定し、前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部を有する手術システムである。
 本技術の画像処理装置、画像処理方法、プログラム、及び、手術システムにおいては、医用画像に対し、陰影を付加又は抑制するか否かが判定され、前記判定の結果に基づき、陰影補正画像を生成するよう制御される。
 なお、画像処理装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
 また、プログラムは、伝送媒体を介して伝送することにより、又は、記録媒体に記録して、提供することができる。
 本技術によれば、例えば、陰影がある医用画像を適切に提供することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
陰と影を説明する図である。 本技術を適用した内視鏡システムの一実施の形態の構成例を示すブロック図である。 内視鏡システムの使用例を示す図である。 内視鏡11で撮影される医用画像の例を説明する図である。 画像処理装置12の第1の構成例を示すブロック図である。 影画像生成部53での影情報の生成の例を説明する図である。 陰影合成処理部42において陰影合成処理が行われることにより、出力画像に生じるアーチファクトを説明する図である。 陰影合成処理部42において陰影合成処理が行われることにより、出力画像に生じるアーチファクトを説明する図である。 画像処理装置12の処理の例を説明するフローチャートである。 画像処理装置12の第2の構成例を示すブロック図である。 画像処理装置12の処理の例を説明するフローチャートである。 画像処理装置12で得られる出力画像の例を示す図である。 画像処理装置12の第3の構成例を示すブロック図である。 照明制御部71での光源21の制御の例を説明する図である。 複数の(設定)照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第1の例を説明する図である。 複数の照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第2の例を説明する図である。 複数の照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第3の例を説明する図である。 陰影領域検出部82の処理の例を説明する図である。 隠れ画像生成部83、及び、影画像生成部85の処理の例を説明する図である。 影除去部84の処理の例を説明する図である。 影画像生成部85の処理の例を説明する図である。 合成部86の処理の例を説明する図である。 仮想光源位置設定部51で設定される仮想光源位置を説明する図である。 画像処理装置12の処理の例を説明するフローチャートである。 画像処理装置12の第4の構成例を示すブロック図である。 画像処理装置12の第5の構成例を示すブロック図である。 陰領域検出部111での陰領域の検出の例を説明する図である。 画像処理装置12の処理の例を説明するフローチャートである。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 <陰と影>
 図1は、陰と影を説明する図である。
 図1では、被写体に向かって、左斜め上の手前側から、照明光が照射されている。図1に示すように、陰(shade)とは、光(照明光)があたっていない暗い部分を意味し、影(shadow)とは、光が物体(被写体)に遮られてできる暗い部分を意味する。
 本明細書において、陰影というときは、陰のみ、影のみ、又は、陰と影の両方を意味することとする。
 <本技術を適用した内視鏡システムの一実施の形態>
 図2は、本技術を適用した内視鏡システムの一実施の形態の構成例を示すブロック図である。
 図2において、内視鏡システムは、内視鏡11、画像処理装置12、及び、表示装置13を有する。
 内視鏡11は、例えば、施術を施す人体の術部等の生体である被写体を照明しながら撮影し、その撮影により得られる、術部が映った医用画像を、画像処理装置12に対する入力画像として、画像処理装置12に供給する。
 内視鏡11は、光源21、及び、カメラ22を有し、光源21によって照明された術部等の被写体を、カメラ22によって撮影する撮像部である。
 光源21は、例えば、LED (Light Emitting Diode)等を有し、術部等の被写体を照明する照明光を発する。
 カメラ22は、例えば、光学系、及び、CMOS(Complementary Metal Oxide Semiconductor)センサ等のイメージセンサ(いずれも図示せず)等を有する。カメラ22は、光源21が発する照明光が被写体で反射されることにより入射する被写体光(反射光)を受光することにより、術部等の被写体が映った医用画像を撮影し、入力画像として、画像処理装置12に供給する。
 なお、カメラ22では、医用画像として、2D(Dimension)画像を撮影することもできるし、左眼用の画像(L(Left)画像)と右眼用の画像(R(Right)画像)とからなる3D画像を撮影することもできる。
 画像処理装置12は、内視鏡11(のカメラ22)からの医用画像に、後述する陰影処理や、その他の必要な画像処理を施し、その画像処理の結果得られる画像を、表示装置13に対する出力画像として、表示装置13に供給する。
 その他、画像処理装置12は、必要に応じて、内視鏡11を制御する。
 すなわち、画像処理装置12は、例えば、光源21を制御することにより、光源21が発する照明光を制御する。また、画像処理装置12は、例えば、カメラ22を制御することにより、絞りや、フォーカス(位置)、ズームを調整する。さらに、画像処理装置12は、例えば、カメラ22を制御することにより、医用画像のフレームレートや、医用画像を撮影するときの露光時間(シャッタスピード)を制御する。
 表示装置13は、画像処理装置12から供給される画像を表示する。表示装置13としては、例えば、画像処理装置12と一体となったディスプレイや、画像処理装置12とは別個の据え置き型のディスプレイ、ヘッドマウントディスプレイ等を採用することができる。
 図3は、図2の内視鏡システムの使用例を示す図である。
 図2の内視鏡システムは、例えば、手術対象となる体内の部位である術部(患部)を被写体として撮影して、その被写体が映った医用画像である内視鏡画像を、表示装置13に表示する。図2の内視鏡システムは、術者である医師が、その医用画像(内視鏡画像)を見ながら、術部に処置を施す内視鏡下手術等で用いられる。
 内視鏡11は、例えば、患者(人体)の体腔に挿入され、その体腔内の術部を被写体とする医用画像を撮影する。
 すなわち、内視鏡11は、例えば、外観上、内視鏡システムのユーザとしての手術を行う術者(医師)等が手で持って操作するカメラヘッド31、及び、患者の体内に挿入される、細長い筒状の内視鏡スコープ32等を有する。
 内視鏡下手術では、例えば、図3に示すように、内視鏡11の内視鏡スコープ32と、処置具とが、患者の体内に挿入される。ここで、処置具としては、エナジーデバイスや鉗子等があるが、図3では、鉗子33が、患者の体内に挿入されている。
 内視鏡11では、例えば、内視鏡スコープ32の先端から、光源21が発する照明光が照射され、その照明光によって、患者の体内の被写体としての術部が照明される。さらに、内視鏡11では、照明光が術部で反射された反射光が、内視鏡スコープ32の先端から入射し、カメラヘッド31に内蔵されるカメラ22で受光されることにより、被写体としての術部が撮影される。
 図4は、図2の内視鏡11で撮影される医用画像の例を説明する模式図である。
 内視鏡11では、光源21が発する照明光の光軸と、カメラ22の光軸とがほぼ一致する。そのため、カメラ22で撮影される医用画像に映る被写体には、ほとんど影が生じない。
 かかる医用画像によれば、術部等の被写体が影に隠れて見にくくなることを防止することができる。
 しかしながら、影がほとんど生じない医用画像は、画像img1のように、凹凸感のない(のっぺりした)画像になる。かかる医用画像では、被写体の立体的な構造が把握しにくくなることや、影のでき方等で感じられる、被写体(例えば、内蔵や、鉗子等の処置具等)どうしの間の前後感(前後の距離感)を感じにくくなることがある。
 そこで、図2の内視鏡システムでは、画像処理装置12において、仮想的な仮想光源を設定し、カメラ22で撮影された医用画像に、陰影を付加又は抑制する陰影処理を行うことで、医用画像の陰影を調整する。
 すなわち、画像処理装置12では、例えば、カメラ22の光軸に対して、例えば、斜め45度の方向の位置等に、仮想光源を設定し、その仮想光源に対応する陰影処理を、医用画像に施す。これにより、画像処理装置12では、仮想光源が発する照明光によって被写体である術部が照明されているかのような医用画像が生成される。
 画像処理装置12で陰影処理が施された医用画像は、画像img2に示すように、凹凸感や、立体感、前後感(2つの物体の距離感)がある画像になる。
 かかる陰影処理が施された医用画像によれば、術者は、医用画像に映る被写体の表面構造(形状)や空間位置、被写体(物体)どうしの位置関係等を把握しやすくなり、手術をスムースに進めることができる。
 ここで、医用画像が、3D画像である場合には、2D画像に比較して、立体感等が生じる。しかしながら、内視鏡11で撮影される医用画像としての3D画像については、視差が小さいため、3D画像であっても、奥行き方向の位置を把握することが容易ではないことがある。
 これに対して、陰影処理が施された画像img2のような医用画像によれば、奥行き方向の位置を容易に把握することができる。
 但し、陰影処理が施された医用画像については、その医用画像に映る術部が影に隠れて見えにくくなることがある。
 したがって、医用画像に、常時、陰影処理を行うことが適切であるとは限らない。
 そこで、図2の内視鏡システムでは、画像処理装置12において、陰影処理を、医用画像に行うかどうかの陰影要否判定を行い、その陰影要否判定の判定結果に応じて、医用画像に、陰影処理を行うことで、陰影がある医用画像を適切に提供する。
 <画像処理装置12の第1の構成例>
 図5は、図2の画像処理装置12の第1の構成例を示すブロック図である。
 図5において、画像処理装置12は、制御部40を有する。
 制御部40は、陰影要否判定部41、及び、陰影合成処理部42を有し、各種の制御を行う。すなわち、制御部40は、例えば、カメラ22からの入力画像としての医用画像に対し、陰影を付加又は抑制するか否かを判定する陰影要否判定を行い、その陰影要否判定の結果に基づき、入力画像に対して、陰影に関する補正を行った画像である陰影補正画像を生成する制御等を行う。
 陰影合成処理部42は、陰影処理部50及び合成部54を有する。
 陰影処理部50は、仮想光源位置設定部51、奥行き推定部52、及び、影画像生成部53を有する。
 陰影要否判定部41は、カメラ22からの入力画像としての医用画像に、陰影を付加又は抑制する陰影処理を行うかどうかの陰影要否判定を行い、その陰影要否判定結果(陰影要否判定の結果)に応じて、陰影合成処理部42(の処理)を制御する。
 ここで、陰影要否判定部41では、陰影要否判定は、例えば、術者等のユーザの操作や、医用画像、処置具の使用状況等に応じて行うことができる。
 すなわち、例えば、術者は、術部等の特定の被写体の凹凸や、形状、輪郭等を観察したい場合に、陰影を付加する陰影処理を行うように、内視鏡システムを操作することができる。この場合、陰影要否判定部41では、ユーザの操作に応じて、陰影を付加する陰影処理を行うと判定される。
 さらに、例えば、複数の内視鏡(腹腔鏡)を用いるLECS(Laparoscopy and Endoscopy Cooperative Surgery)が行われる場合に、術者は、必要に応じて、陰影を付加する陰影処理を行うように、内視鏡システムを操作することができる。
 この場合、陰影要否判定において、ユーザの操作に応じて、陰影を付加する陰影処理を行うと判定され、陰影処理が行われるときには、例えば、術者は、陰影処理後の医用画像に映る、他の術者等が操作する内視鏡の影から、その内視鏡の位置を把握することができる。また、術者は、例えば、その術者が操作する内視鏡の影から、その内視鏡の位置や向きを把握することができる。さらに、術者は、例えば、処置具が視野に入っていなくても、陰影処理後の医用画像に、視野に入っていない処置具の影が映っている場合には、その影によって、視野に入っていない処置具の位置を把握することができる。
 また、陰影要否判定は、術者が、奥行きや前後関係を把握したいかどうかに応じて行うことができる。
 術者が、奥行きや前後関係を把握したい場合としては、例えば、縫合が行われている場合や、ステープラやエナジーデバイス等で処置が行われている場合がある。
 陰影要否判定部41では、縫合が行われていることや、ステープラやエナジーデバイス等で処置が行われていること等を、例えば、医用画像に映るシーンを検出することで認識することができる。そして、陰影要否判定部41では、縫合が行われている場合(例えば、医用画像に、針や糸が映っている場合)や、ステープラやエナジーデバイス等で処置が行われている場合(例えば、医用画像に、ステープラやエナジーデバイスが映っている場合)には、陰影を付加する陰影処理を行うと判定することができる。
 さらに、陰影要否判定部41では、エナジーデバイス等で処置が行われていることを、そのエナジーデバイス等の使用状況、すなわち、スイッチのオン/オフの状態等から認識することができる。そして、陰影要否判定部41では、エナジーデバイス等で処置が行われている場合には、陰影を付加する陰影処理を行うと判定することができる。
 以上のように、陰影要否判定を行い、例えば、ステープラやエナジーデバイス等で処置が行われる場合に、医用画像に、陰影を付加する陰影処理が行われるときには、術者は、ステープラやエナジーデバイス等で処置を行おうとする対象までの距離を容易に把握することができる。
 また、ステープラで組織を挟む場合には、その組織を、浅すぎることも深すぎることもなく、適切な深さで挟むことが要求される。ステープラで組織を適切な深さで挟むには、その組織の厚みを正確に把握することが必要であるが、陰影を付加する陰影処理が行われた医用画像によれば、術者は、組織の厚みを正確に把握することができる。
 さらに、陰影要否判定は、医用画像の輝度に応じて行うことができる。
 すなわち、陰影要否判定部41では、医用画像に映る術部を認識し、術部の少なくとも一部の輝度が、周囲の輝度と比較して大きく低下している場合には、その輝度が低下している部分である影を抑制する陰影処理を行うと判定することができる。この場合、医用画像において、術部に重なる影が抑制されることにより、術部が影に隠れて見えにくくなることを防止することができる。
 陰影合成処理部42には、カメラ22で撮影された医用画像が入力画像として供給される。
 陰影合成処理部42は、陰影要否判定部41の制御に従い、カメラ22からの入力画像に、陰影合成処理を行い、その陰影合成処理後の医用画像を、出力画像として、表示装置13に供給するか、又は、カメラ22からの入力画像に、陰影合成処理(後述する陰影処理及び合成処理)を行わず、そのまま、出力画像として、表示装置13に供給する。
 ここで、陰影合成処理部42で行われる陰影合成処理には、陰影処理部50で行われる陰影処理と、合成部54で行われる合成処理とがある。
 ここで、合成処理は、陰影処理により得られる、影が映った影画像等を用いて行われるため、陰影要否判定において、陰影処理を行わないと判定された場合には、陰影処理は勿論、合成処理も行われない。したがって、陰影要否判定は、陰影処理の他、合成処理、又は、陰影合成処理(陰影処理及び合成処理)の要否の判定であるともいうことができる。
 陰影(合成)処理には、入力画像(医用画像)に陰影を付加する処理と、入力画像に生じている陰影を抑制する処理とがある。
 陰影の付加には、陰影がない部分に、陰影を付加することの他、陰影がある部分に、より濃い陰影を付加することや、陰影がある部分の範囲を拡大(拡張)すること等の、いわば陰影を強調することが含まれる。
 また、陰影の抑制には、陰影の濃さを薄くすることや、陰影がある部分の範囲を縮小することは勿論、陰影を完全に抑制する陰影の除去も含まれる。
 合成処理では、陰影処理により生成される影画像等を、入力画像等に合成することで、例えば、入力画像に映る被写体に影が付加された合成画像や、入力画像に映る被写体の影が除去された合成画像が、出力画像として生成される。
 仮想光源位置設定部51は、例えば、ユーザの操作に応じて、仮想光源の位置を設定し、影画像生成部53に供給する。
 例えば、ユーザが、影を付したい方向を指定するように操作を行うと、仮想光源位置設定部51は、影を付したい方向とは反対方向の位置に、仮想光源位置を設定する。
 なお、仮想光源位置設定部51は、その他、例えば、推奨する固定の位置(例えば、カメラ22の光軸と被写体との交点において、カメラ22の光軸との角度が斜め45度の方向の位置等)を、デフォルトの仮想光源位置として設定することができる。
 また、例えば、仮想光源位置設定部51では、医用画像のシーン検出を行い、鉗子等の細長い処置具の長手方向と、仮想光源からの光線とが重ならない位置を、仮想光源位置として設定することができる。この場合、陰影処理によって、鉗子等の処置具の影ができないことを防止することができる。
 奥行き推定部52には、カメラ22から入力画像としての医用画像が供給される。
 ここで、カメラ22では、例えば、3D画像が撮影され、カメラ22から奥行き推定部52には、入力画像(医用画像)として、3D画像が供給される。
 ここで、3D画像とは、立体視可能な視差を有する2枚の画像(左眼用の画像(L画像)と右眼用の画像(R画像))を意味する。以下の「3D画像」の記載も、同様である。
 奥行き推定部52は、カメラ22からの3D画像である入力画像から、その入力画像の各画素の視差、ひいては、その各画素に映る被写体の奥行き方向(カメラ22の光軸方向)の距離の情報である奥行き情報を推定し、影画像生成部53に供給する。
 影画像生成部53は、仮想光源位置設定部51からの仮想光源位置と、奥行き推定部52からの奥行き情報とから、入力画像に映る被写体について、仮想光源よって生じる影の影画像(影が映った影画像)を生成し、合成部54に供給する。
 合成部54には、影画像生成部53から影画像が供給される他、カメラ22から入力画像としての医用画像が供給される。
 合成部54は、カメラ22からの入力画像と、影画像生成部53からの影画像(のうちの後述する影領域)とを合成する合成処理を行うことで、医用画像に影を付加した出力画像を生成し、表示装置13に出力(供給)する。
 ここで、影画像や、影画像と入力画像とを合成した合成画像は、上述の陰影補正画像(入力画像に対して、陰影に関する補正を行った画像)であるということができる。
 なお、合成部54での入力画像と影画像との合成としては、例えば、アルファブレンディングを採用することができる。
 アルファブレンディングの係数αは、例えば、固定の値に設定することや、ユーザの操作に応じた値に設定することができる。係数αとしては、0.0ないし1.0の範囲の値が設定されるが、係数αを、0.0又は1.0とすることにより、入力画像に影を付さないことや、入力画像の画素を影のみが映る画素に置換することができる。
 さらに、図5では、陰影合成処理部42では、合成部54において入力画像と影画像とを合成した合成画像を、出力画像として出力することとしたが、入力画像と影画像との合成は、合成部54で行うのではなく、入力画像と影画像との表示時に行うことができる。
 すなわち、陰影合成処理部42では、例えば、入力画像と影画像とのそれぞれを、出力画像として出力することができる。この場合、例えば、透過型のヘッドマウントディスプレイや、グラス型のウエアラブルデバイス等の、いわば透過型の表示デバイスに、影画像を表示するとともに、表示装置13に、入力画像を表示することで、入力画像と影画像とを合成した合成画像を提供することができる。又は、透過性のある第1の表示パネルを、透過性を問わない第2の表示パネルの上側(ユーザと対向する側)に配置して、表示装置13を構成し、第1の表示パネルに、影画像を表示するとともに、第2の表示パネルに、入力画像を表示することにより、入力画像と影画像とを合成した合成画像を表示することができる。
 また、図5では、カメラ22において、3D画像を、入力画像として撮影し、奥行き推定部52において、入力画像としての3D画像から、奥行き情報を推定することとしたが、奥行き情報を推定する方法は、3D画像を用いる方法に限定されるものではない。
 すなわち、例えば、カメラ22では、2D画像を、入力画像として撮影することができる。この場合、内視鏡11(図1)には、距離センサ(奥行きセンサ)を内蔵させ、奥行き推定部52では、入力画像としての2D画像と、距離センサのセンシング結果とから、奥行き情報を推定することができる。
 ここで、2D画像とは、1枚の画像を意味する。以下の「2D画像」の記載も、同様である。
 なお、奥行き推定部52では、奥行きの推定に、その他、例えば、フォーカス情報等を用いることができる。
 図6は、図5の影画像生成部53での影情報の生成の例を説明する図である。
 図6において、横軸は、入力画像の各画素の位置を表し、縦軸は、奥行き情報を表す。
 影画像生成部53は、仮想光源位置から、入力画像の各画素(の位置)に向かう光線(としての直線)を引いたときに、光線が、他の画素の奥行き情報に遮られて届かない(奥行き情報の)画素で構成される領域を、仮想光源によって生じる影の影領域として求める(推定する)。
 さらに、影画像生成部53は、影領域の画素の画素値が、例えば、黒色や黒色に近い暗い色等の、あらかじめ設定された色、又は、ユーザの操作に応じて設定された色の画像を、影画像として生成する。
 図7及び図8は、図5の陰影合成処理部42において陰影処理が行われることにより、出力画像に生じるアーチファクトを説明する図である。
 内視鏡11においては、光源21(による照明光が発せられる位置)とカメラ22とは、ほぼ同一の位置にあるとみなすことができる。
 影画像生成部53では、光源21の位置とは異なる位置に設定された仮想光源位置から照明光が発せられると仮定して、図6で説明したように、仮想光源位置から、入力画像の各画素に向かう照明光としての光線が、他の画素の奥行き情報に遮られて届かない画素で構成される領域が、影領域として求められる。
 以上のように、影画像生成部53では、仮想光源位置及び奥行き情報を用いて、影領域が求められるため、仮想光源位置や、入力画像に映る被写体の位置によっては、本来生じないはずの影領域が、アーチファクトとして、出力画像に生じる(現れる)ことがある。
 すなわち、いま、影が生じる被写体、つまり、仮想光源位置からの光線を遮る被写体を、対象被写体ともいうこととする。
 対象被写体が、例えば、鉗子やエナジーデバイス等のような、それほど厚みがない、細長い形状の処置具である場合には、そのような処置具については、仮想光源位置によって影が生じる位置は異なるが、本来、図7に示すように、細長い形状の影sh1が生じる。
 一方、影画像生成部53では、図6で説明したことから、カメラ22から見て対象被写体の裏側(奥側)に向かって、対象被写体が詰まっている(存在する)とみなして、影領域が求められる。
 そのため、例えば、カメラ22の光軸との距離が大となるような仮想光源位置が設定された場合や、仮想光源位置からの光線を遮る対象被写体の位置と、その対象被写体の影(対象被写体によって生じる影)が投影される投影面との距離が大である場合には、影画像生成部53において、図8に示すように、対象被写体が、投影面まで詰まっているかのような影領域sh2が求められる。
 すなわち、カメラ22の光軸との距離が大となるような仮想光源位置が設定された場合や、仮想光源位置からの光線を遮る対象被写体の位置と、その対象被写体の影(対象被写体によって生じる影)が投影される投影面との距離が大である場合には、奥行き情報は、投影面に対して、いわば、中身が詰まった凸モデルとなるため、奥行き情報だけでは、仮想光源からの照明光により生じる、対象被写体の影を正確に投影することが困難になる。
 かかる影領域sh2の影画像と、入力画像とが合成された場合、その合成により得られる出力画像には、本来生じないはずの影領域sh2が、アーチファクトとして生じる。
 そこで、仮想光源位置設定部51(図5)では、仮想光源位置を設定するときに、カメラ22の光軸と仮想光源位置との距離を、所定の距離以内に制限することができる。
 又は、対象被写体の位置と、その対象被写体の影が投影される投影面との距離が一定距離以上の対象被写体については、影の付加を制限することができる。すなわち、例えば、合成部54において、対象被写体の位置と、その対象被写体の影が投影される投影面との距離が一定距離以上の対象被写体に対して求められた影領域は、入力画像に合成しないことや、影画像生成部53において、対象被写体の位置と、その対象被写体の影が投影される投影面との距離が一定距離以上の対象被写体について、影領域を生成しないこと、あるいは、影画像自体を生成しないことができる。
 又は、合成部54において、本来生じないはずの影領域としてのアーチファクトが目立たないように、入力画像と影画像とをアルファブレンディングするときの係数αを調整することができる。
 図9は、図5の画像処理装置12の処理の例を説明するフローチャートである。
 ステップS11において、陰影要否判定部41は、陰影要否判定を行う。
 ステップS11の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要でないと判定された場合、処理は、ステップS12に進み、陰影合成処理部42は、カメラからの入力画像を、そのまま、出力画像として、表示装置13に出力し、処理は終了する。
 また、ステップS11の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要であると判定された場合、処理は、ステップS13に進み、仮想光源位置設定部51は、仮想光源位置を設定し、影画像生成部53に供給する。そして、処理は、ステップS13からステップS14に進み、以下、陰影合成処理(陰影処理及び合成処理)が行われる。
 すなわち、ステップS14では、奥行き推定部52は、カメラ22からの入力画像としての3D画像から奥行き情報を推定することにより取得し、影画像生成部53に供給して、処理は、ステップS15に進む。
 ステップS15では、影画像生成部53は、仮想光源位置設定部51からの仮想光源位置と、奥行き推定部52からの奥行き情報とから、図6で説明したように、仮想光源よって生じる影の影画像を生成し、合成部54に供給して、処理は、ステップS16に進む。
 ステップS16では、合成部54は、カメラ22からの入力画像と、影画像生成部53からの影画像(のうちの影領域)とを合成することで、医用画像に影を付加した出力画像を生成し、表示装置13に出力して、処理は終了する。
 なお、図5では、画像処理装置12において、陰影処理として、影の付加を行うこととしたが、画像処理装置12では、影の付加の他、影の抑制を行うことができる。影の抑制は、例えば、仮想光源位置として、光源21の位置を設定して、影画像を生成し、入力画像から、影画像の影領域を除去することで行うことができる。入力画像において、影領域が除去された部分(以下、除去部分ともいう)は、例えば、その除去部分に影がない過去の入力画像のうちの、最新の入力画像によって補間することができる。
 <画像処理装置12の第2の構成例>
 図10は、図2の画像処理装置12の第2の構成例を示すブロック図である。
 なお、図中、図5の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図10において、画像処理装置12は、制御部40を有する。
 制御部40は、陰影要否判定部41、陰影合成処理部42、物体設定部61、及び、物体検出部62を有する。
 陰影合成処理部42は、陰影処理部50、及び、合成部54を有する。
 陰影処理部50は、仮想光源位置設定部51、奥行き推定部52、及び、影画像生成部53を有する。
 したがって、図10の画像処理装置12は、制御部40を有する点、並びに、制御部40が、陰影要否判定部41、及び、陰影合成処理部42を有する点で、図5の場合と共通する。
 但し、図10の画像処理装置12は、制御部40に、物体設定部61、及び、物体検出部62が新たに設けられている点で、図5の場合と相違する。
 物体設定部61は、例えば、ユーザの操作等に応じて、陰影処理の対象とする物体である対象物体を設定し、物体検出部62に供給する。
 なお、物体設定部61では、ユーザの操作に応じて、対象物体を設定する他、例えば、手術に用いる処置具や、針、糸等の、あらかじめ決められた物体を、対象物体に設定することができる。
 例えば、ユーザは、被写体の凹凸や形状、輪郭を観察したい場合には、例えば、手術器具等を除く患部・臓器を対象物体に設定することができる。また、ユーザは、LECSを行う場合には、例えば、術野外の処置具を含めた処置具を対象物体に設定することができる。さらに、ユーザは、例えば、縫合や、ステープラやエナジーデバイスを使用する処置を施す場合、例えば、針や糸、処置具を対象物体に設定することができる。その他、物体設定部61では、例えば、ユーザが注目している注目位置やフォーカス位置にある物体を対象物体に設定することができる。
 物体検出部62には、物体設定部61から対象物体(を表す情報)が供給される他、カメラ22からの入力画像(医用画像)が供給される。
 物体検出部62は、入力画像から対象物体を検出(特定)する。そして、物体検出部62は、入力画像から対象物体を検出することができた場合には、入力画像における対象物体の位置(領域)や姿勢等の、入力画像における対象物体を特定する物体情報を生成して、影画像生成部53に供給する。
 なお、物体検出部62では、入力画像から対象物体が検出されたかどうかを表す検出情報を、陰影要否判定部41に供給することができる。
 この場合、陰影要否判定部41では、図5で説明したことに加え、又は、図5で説明したことに代えて、物体検出部62からの検出情報に応じて、陰影要否判定を行うことができる。
 すなわち、陰影要否判定では、検出情報が、対象物体が検出されたことを表す場合には、陰影処理を行うと判定し、検出情報が、対象物体が検出されていないことを表す場合には、陰影処理を行わないと判定することができる。
 図10では、影画像生成部53は、入力画像に映る被写体のうちの、物体検出部62からの物体情報によって特定される対象物体のみを対象として、仮想光源位置及び奥行き情報とから、仮想光源よって生じる、対象物体の影の影画像を生成し、合成部54に供給する。
 図11は、図10の画像処理装置12の処理の例を説明するフローチャートである。
 なお、ここでは、説明を簡単にするため、陰影要否判定部41が、図5で説明したことに代えて、物体検出部62からの検出情報に応じて、陰影要否判定を行うこととする。
 ステップS23において、物体設定部61が、対象物体を設定し、物体検出部62に供給して、処理は、ステップS24に進む。
 ステップS24では、図9のステップS13と同様に、仮想光源位置設定部51が、仮想光源位置を設定し、影画像生成部53に供給して、処理は、ステップS25に進む。
 ステップS25では、物体検出部62が、入力画像から対象物体を検出し、その検出結果を表す検出情報を、陰影要否判定部41に供給して、処理は、ステップS26に進む。
 ステップS26では、陰影要否判定部41は、物体検出部62からの検出情報に基づき、カメラ22からの入力画像に、陰影処理が必要であるかどうかの陰影要否判定を行う。
 ステップS26の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要でないと判定された場合、すなわち、入力画像から対象物体が検出されていない場合、処理は、ステップS22に進む。ステップS22では、図9のステップS12と同様に、陰影合成処理部42は、カメラからの入力画像を、そのまま、出力画像として、表示装置13に出力し、処理は終了する。
 また、ステップS26の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要であると判定された場合、すなわち、入力画像に、対象物体が映っており、そのため、入力画像から対象物体が検出された場合、物体検出部62は、入力画像から検出された対象物体の物体情報を生成して、影画像生成部53に供給する。そして、処理は、ステップS26からステップS27に進み、以下、陰影合成処理が行われる。
 すなわち、ステップS27において、図9のステップS14と同様に、奥行き推定部52が、カメラ22からの入力画像としての3D画像から奥行き情報を取得し、影画像生成部53に供給して、処理は、ステップS28に進む。
 ステップS28では、影画像生成部53は、入力画像に映る被写体のうちの、物体検出部62からの物体情報によって特定される対象物体のみを対象として、仮想光源位置及び奥行き情報とから、仮想光源よって生じる、対象物体の影の影画像を生成し、合成部54に供給して、処理は、ステップS29に進む。
 ステップS29では、図9のステップS16と同様に、合成部54は、カメラ22からの入力画像と、影画像生成部53からの影画像とを合成することで、医用画像に影を付加した出力画像を生成し、表示装置13に出力して、処理は終了する。
 なお、図10及び図11では、物体検出部62において、物体設定部61で設定された対象物体を検出することとしたが、物体検出部62では、特定のシーン(例えば、縫合が行われているシーン等)を検出し、そのシーンに特有の物体(例えば、縫合が行われているシーンにおいて、縫合に用いられている糸等)を、対象物体として検出することができる。そして、陰影合成処理部41では、特定のシーンから検出された対象物体に、影を付すこと等ができる。
 図12は、図10の画像処理装置12で得られる出力画像の例を示す図である。
 すなわち、図12は、対象物体として、鉗子が設定された場合の出力画像の例を示している。
 対象物体として、鉗子が設定された場合には、図12に示すように、鉗子にのみ、仮想光源によって生じる影が付加された出力画像が生成される。
 図12の出力画像によれば、例えば、術者は、出力画像に映る鉗子と、その鉗子の影との距離の差によって、鉗子と、影が映る腹壁等との位置関係を、自然に(本能的に)把握することができる。さらに、術者は、例えば、出力画像に映る鉗子の影の変化の仕方で、鉗子が奥行き方向に移動するときの移動速度を、自然に把握することができる。
 なお、鉗子等に陰影を付加する場合、その鉗子等の全体ではなく、先端部から所定の範囲にのみ陰影を付加することができる。この場合、陰影を付加する処理を軽減することができる。
 ここで、上述したように、図10の画像処理装置12では、入力画像から対象物体が検出され、その対象物体に影を付加した出力画像が生成される。
 対象物体については、その対象物体が一般に有する所定の厚みを見込むこと、すなわち、厚みを推定することができる。
 そこで、図10の影画像生成部53では、図7及び図8で説明したように、カメラ22から見て対象被写体の裏側(奥側)に向かって、対象被写体が詰まっている(存在する)とみなして、影領域sh2(図8)を求めるのではなく、対象物体の厚みの推定値に基づき、その推定値だけの厚みのある対象物体が存在するとみなして、対象物体に本来生じる影と同様の影領域sh1(図7)を求めることができる。
 これにより、本来生じないはずの影領域sh2が、アーチファクトとして、出力画像に生じることを防止することができる。
 なお、図10の画像処理装置12でも、図5の場合と同様に、陰影処理として、影の付加を行う他、影の抑制を行うことができる。
 <画像処理装置12の第3の構成例>
 図13は、図2の画像処理装置12の第3の構成例を示すブロック図である。
 なお、図中、図5の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図13において、画像処理装置12は、制御部40、照明制御部71、及び、照明条件設定部72を有する。
 制御部40は、陰影要否判定部41、及び、陰影合成処理部42を有する。
 陰影合成処理部42は、陰影処理部80、及び、合成部86を有する。
 陰影処理部80は、仮想光源位置設定部51、記憶部81、陰影領域検出部82、隠れ画像生成部83、影除去部84、及び、影画像生成部85を有する。
 したがって、図13の画像処理装置12は、制御部40を有する点、並びに、制御部40が、陰影要否判定部41、及び、陰影合成処理部42を有する点で、図5の場合と共通する。
 但し、図13の画像処理装置12は、照明制御部71、及び、照明条件設定部72が新たに設けられている点で、図5の場合と相違する。
 また、図13の画像処理装置12は、陰影合成処理部42が、陰影処理部80及び合成部86を有する点で、陰影合成処理部42が、陰影処理部50及び合成部54を有する図5の場合と相違する。
 図13の画像処理装置12では、後述する、複数の異なる(設定)照明条件で撮影された入力画像の複数のフレームを用いて、入力画像において陰影がある陰影領域が検出され、仮想光源位置に応じて、陰影領域に、陰影処理が行われる。
 照明制御部71は、照明条件設定部72から供給される照明条件に従い、光源21による照明の照明条件、すなわち、術部等の被写体を照明する照明条件を変えるように、光源21を制御する。
 ここで、照明条件としては、例えば、光源21の位置や、光源21が発する照明光の強さ、向き等がある。
 照明条件設定部72は、ユーザの操作等に応じて、又は、あらかじめ決められた複数の異なる照明条件を設定し、照明制御部71に供給する。
 ここで、照明条件設定部72で設定された照明条件を、設定照明条件ともいう。
 照明制御部71は、照明条件設定部72からの複数の設定照明条件それぞれを周期的に、注目照明条件として選択し、被写体を照明する照明条件が、注目照明条件になるように、光源21を制御する。
 記憶部81には、カメラ22からの入力画像(医用画像)が供給される。
 ここで、図13では、カメラ22において、2D画像が撮影され、カメラ22から記憶部81には、入力画像として、2D画像が供給される。但し、カメラ22で撮影される入力画像は、図5や図10の画像処理装置12の場合と同様に、3D画像であっても良い。
 記憶部81は、カメラ22から供給される入力画像のフレームを順次記憶する。
 ここで、図13では、上述したように、照明制御部71が、複数の設定照明条件それぞれを周期的に、注目照明条件として選択し、被写体を照明する照明条件が、注目照明条件になるように、光源21を制御する。
 したがって、カメラ22では、複数の設定照明条件それぞれで、入力画像(のフレーム)が連続して撮影されることが繰り返される。
 例えば、複数の設定照明条件が、2個の異なる設定照明条件であれば、その2個の異なる設定照明条件で、入力画像のフレームが連続して撮影されることが繰り返される。また、例えば、複数の設定照明条件が、3個の異なる設定照明条件であれば、その3個の異なる設定照明条件で、入力画像のフレームが連続して撮影されることが繰り返される。
 いま、照明条件設定部72で設定された複数の(異なる)設定照明条件それぞれで連続して撮影された入力画像の複数のフレームを、フレームセットということとする。
 記憶部81は、少なくとも、フレームセットを構成するフレーム数だけの入力画像を記憶する記憶容量を有する。
 記憶部81は、その記憶部81に記憶されたフレームセットを、陰影領域検出部82に供給する。
 また、記憶部81は、フレームセットから、後述するベース画像と影領域抽出対象画像とを選択する。そして、記憶部81は、ベース画像を、影除去部84に供給するとともに、影領域抽出対象画像を、隠れ画像生成部83に供給する。
 陰影領域検出部82は、記憶部81からのフレームセット、すなわち、複数の異なる設定照明条件それぞれで連続して撮影された入力画像の複数のフレームを用いて、入力画像において陰影がある陰影領域を検出し、その陰影領域が特定された入力画像を、隠れ画像生成部83、及び、影画像生成部85に供給する。
 隠れ画像生成部83は、記憶部81からの影領域抽出対象画像と、陰影領域検出部82からの陰影領域(が特定された入力画像)とを用いて、ベース画像では影に隠れて見えない影領域になっているが、影領域抽出対象画像には映っている部分が特定された画像を、隠れ画像として生成し、影除去部84に供給する。
 影除去部84は、記憶部81からのベース画像に、隠れ画像生成部83からの隠れ画像を合成することで、ベース画像では影領域になって見えない部分が見えるようになった画像を、ベース画像から影領域を除去した影除去画像として生成し、合成部86に供給する。
 影画像生成部85には、陰影領域検出部82から陰影領域が特定された入力画像が供給される他、仮想光源位置設定部51から仮想光源位置が供給される。
 影画像生成部85は、陰影領域検出部82からの陰影領域が特定された入力画像を用いて、ベース画像に付加する影領域が特定された影画像を取得する。
 さらに、影画像生成部85は、仮想光源位置設定部51からの仮想光源位置に応じて、影画像の影領域に、新たな影(領域)を付加した新たな影画像を生成し、合成部86に供給する。
 合成部86は、影除去部84からの影除去画像と、影画像生成部85からの(新たな)影画像(の影領域)との合成を、例えば、図5の合成部54と同様に行うことで、新たな影を付加した出力画像を生成し、表示装置13に出力する。
 ここで、影除去画像や、影除去画像と影画像とを合成した合成画像は、図5で説明した陰影補正画像(入力画像に対して、陰影に関する補正を行った画像)であるということができる。
 図14は、照明制御部71での光源21の制御の例を説明する図である。
 図14のAは、内視鏡11を構成する内視鏡スコープ32の先端を正面とする場合の、その先端の構成例を示す正面図である。
 図14のBは、内視鏡スコープ32の先端の構成例を示す側面図である。
 図14のAにおいて、内視鏡スコープ32の先端には、撮影窓と照明窓とが設けられている。
 撮影窓からは、被写体からの反射光が入射し、カメラ22まで導かれる。
 なお、図14では、内視鏡スコープ32の先端の正面は、(ほぼ)円の形状に構成されており、その円の中心部分に、撮影窓が設けられている。
 照明窓は、光源21の一部であり、照明窓からは、照明光が照射(出射)される。
 なお、図14では、撮影窓の周囲に、4個の照明窓が設けられている。但し、照明窓の数は、4個に限定されるものではない。すなわち、内視鏡スコープ32には、4個以外の複数個の照明窓を設けることができる。
 照明窓からは、照明制御部71の制御に従って、照明光が照射される。照明制御部71は、例えば、4個の照明窓について、照明光を照射する照明窓を制御(選択)することができる。
 照明条件設定部72では、例えば、奇数フレーム及び偶数フレームのうちの一方のフレームの入力画像の撮影時には、照明光が、4個の照明窓のうちの右の照明窓から、照射され、他方のフレームの入力画像の撮影時には、照明光が、4個の照明窓のうちの左の照明窓から照射されるように、2個の設定照明条件を設定することができる。
 入力画像の奇数フレーム及び偶数フレームのうちの一方のフレームでは、右の照明窓から照射される照明光により、被写体の左側に影が生じ、他方のフレームでは、左の照明窓から照射される照明光により、被写体の右側に影が生じる。
 なお、設定照明条件としては、照明光の位置(照明光が照射される照明窓)の他、照明光の照明方向や、照明光の強さ等を設定することができる。
 図15は、複数の(設定)照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第1の例を説明する図である。
 なお、以下では、説明を簡単にするため、照明制御部71は、照明条件設定部72からの複数の設定照明条件それぞれを、例えば、フレームごとに、注目照明条件として順次選択することとする。すなわち、被写体を照明する照明条件は、フレームごとに切り替えられることとする。
 図15では、被写体を照明する照明条件が、フレーム単位で、周期的に、2個の設定照明条件c1及びc2それぞれに切り替えられ、入力画像iが撮影されている。
 すなわち、入力画像iの奇数番目のフレームi#2n-1(n=1,2,...)が、設定照明条件c1で撮影され、偶数番目のフレームi#2nが、設定照明条件c2で撮影されている。
 この場合、入力画像iの連続して撮影された2フレームi#k及びi#k+1(k=1,2,...)を、図13で説明したフレームセットとして、出力画像oのフレームo#kが生成される。
 すなわち、入力画像iの最新のフレームが、フレームi#k+1であるとすると、そのフレームi#k+1と、その1フレーム前のフレームi#kとの、入力画像の連続する2フレームを用いて、出力画像oの最新のフレームo#kが生成される。
 以上のように、被写体を照明する照明条件が、フレームごとに、2個の設定照明条件c1及びc2それぞれに切り替えられる場合、出力画像oのフレームo#kの生成には、入力画像iの最新のフレームi#k+1と、その1フレーム前のフレームi#kとのフレームセットが必要になる。
 そのため、入力画像iの撮影開始後、出力画像oの出力が開始されるまでには、1フレームの遅延が生じる。
 内視鏡手術では、リアルタイムの画像を視聴することが要求されることから、入力画像iの撮影開始後、出力画像oの出力が開始されるまでに、遅延がなるべく生じないことが重要である。
 そこで、図15において、入力画像iの撮影開始後に最初に得られるフレームi#1に対しては、そのフレームi#1を、そのまま出力画像o(のフレーム)として出力することができる。この場合、その出力画像oは、陰影(合成)処理を施した画像にはならないが、入力画像iの撮影開始後、出力画像oの出力が開始されるまでに遅延が生じることを防止することができる。
 図16は、複数の(設定)照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第2の例を説明する図である。
 図16では、被写体を照明する照明条件が、フレーム単位で、周期的に、3個の設定照明条件c1,c2、及び、c3それぞれに切り替えられ、入力画像iが撮影されている。
 すなわち、入力画像iの3n-2番目のフレームi#3n-2が、設定照明条件c1で撮影され、3n-1番目のフレームi#3n-1が、設定照明条件c2で撮影され、3n番目のフレームi#3nが、設定照明条件c3で撮影されている。
 この場合、入力画像iの連続して撮影された3フレームi#kないしi#k+2を、図13で説明したフレームセットとして、出力画像oのフレームo#kが生成される。
 すなわち、入力画像iの最新のフレームが、フレームi#k+2であるとすると、そのフレームi#k+2を含む入力画像iの最新の3フレームi#kないしi#k+2を用いて、出力画像oの最新のフレームo#kが生成される。
 以上のように、被写体を照明する照明条件が、フレームごとに、3個の設定照明条件c1ないしc3それぞれに切り替えられる場合、出力画像oのフレームo#kの生成には、入力画像iの3フレームi#kないしi#k+2のフレームセットが必要になる。
 そのため、入力画像iの撮影開始後、出力画像oの出力が開始されるまでには、2フレームの遅延が生じる。
 図15で説明したように、内視鏡手術では、入力画像iの撮影開始後、出力画像oの出力が開始されるまでに、遅延がなるべく生じないことが重要である。
 そこで、被写体を照明する照明条件が3個の設定照明条件c1ないしc3それぞれに切り替えられ、入力画像iが撮影される場合には、出力画像の生成は、以下のように行うことができる。
 すなわち、図17は、複数の(設定)照明条件それぞれで撮影された入力画像のフレームからの出力画像の生成の第3の例を説明する図である。
 図17では、図16の場合と同様に、被写体を照明する照明条件が、フレーム単位で、周期的に、3個の設定照明条件c1,c2、及び、c3それぞれに切り替えられ、入力画像iが撮影されている。
 そして、出力画像oの2番目以降のフレームo#kは、図16の場合と同様に、入力画像iの連続して撮影された3フレームi#kないしi#k+2を、フレームセットとして、出力画像oのフレームo#kが生成されている。
 但し、出力画像oの1番目のフレームo#1だけは、図15の場合と同様に、入力画像iの連続して撮影された2フレームi#k及びi#k+1を、フレームセットとして、出力画像oのフレームo#kが生成されている。
 この場合、入力画像iの撮影開始後、出力画像oの出力が開始されるまでの遅延を、1フレームの遅延に抑制することができる。
 なお、図17において、入力画像iの撮影開始後に最初に得られるフレームi#1に対しては、そのフレームi#1を、そのまま出力画像o(のフレーム)として出力することができる。この場合、その出力画像oは、陰影処理を施した画像にはならないが、入力画像iの撮影開始後、出力画像oの出力が開始されるまでに遅延が生じることを防止することができる。
 また、被写体を照明する照明条件の個数は、上述した2個や3個に限定されるものではなく、4個以上であっても良い。
 図18は、図13の陰影領域検出部82の処理の例を説明する図である。
 なお、以下では、説明を簡単にするため、被写体を照明する照明条件が、フレーム単位で、周期的に、2個の設定照明条件それぞれに交互に切り替えられ、入力画像iが撮影されることとする。
 さらに、2個の設定照明条件のうちの一方の設定照明条件としては、カメラ22の右側の位置(カメラ22から被写体を見たときのカメラ22の右側の位置)から被写体を照明することを採用し、他方の照明条件としては、カメラ22の左側の位置から被写体を照明することを採用することとする。
 例えば、いま、カメラ22の左側の位置から被写体subを照明して、入力画像の最新のフレーム#n(以下、入力画像#nとも記載する)が撮影されたこととすると、最新の入力画像#nと、その入力画像#nの直前に撮影された入力画像(のフレーム)#n-1とがフレームセットとして、記憶部81から陰影領域検出部82に供給される。
 ここで、最新の入力画像#nでは、カメラ22の左側の位置から被写体subが照明されており、その入力画像#nの直前に撮影された入力画像#n-1では、カメラ22の右側の位置から被写体subが照明されている。
 したがって、カメラ22の左側の位置から被写体subが照明されている入力画像#nでは、被写体subの右側に、被写体subによって生じる影の影領域shRが存在する。また、カメラ22の右側の位置から被写体subが照明されている入力画像#n-1では、被写体subの左側に、被写体subによって生じる影の影領域shLが存在する。
 陰影領域検出部82は、入力画像#nと#n-1との画素単位の差分絶対値等の差分に関する情報を求め、その差分絶対値を画素値とする差分画像を生成する。
 さらに、陰影領域検出部82は、差分画像において、画素値が大きい画素が集まって構成される領域すべてを検出し、その領域の中から、所定の面積以上の領域を、陰影領域(陰影が映る領域)の候補として検出する。なお、陰影領域検出部82では、差分画像において、画素値が大きい画素が集まって構成される領域すべてを、陰影領域の候補として検出することができる。
 入力画像#nでは、入力画像#n-1の影領域shLに対応する領域には、影がなく、入力画像#n-1でも、入力画像#nの影領域shRに対応する領域には、影がない。
 したがって、入力画像#nと#n-1との差分画像において、影領域shL及びshRの画素の画素値(差分絶対値)は大になるので、影領域shL及びshRは、陰影領域の候補として検出される。
 陰影領域検出部82は、陰影領域の候補の検出後、入力画像#n及び#n-1それぞれについて、陰影領域の候補内の画素の輝度の平均値である平均輝度を求める。
 そして、陰影領域検出部82は、入力画像#n及び#n-1それぞれについて、平均輝度が閾値としての輝度以下の陰影領域の候補を、陰影領域の1種である影領域(影の領域)として検出し、その影領域が特定された入力画像#n及び#n-1を、隠れ画像生成部83、及び、影画像生成部85に供給する。
 図18では、入力画像#nの影領域shR、及び、入力画像#n-1の影領域shLが検出され、影領域shRが特定された入力画像#n、及び、影画像shLが特定された入力画像#n-1が、影領域検出部82から、隠れ画像生成部83、及び、影画像生成部85に供給される。
 なお、陰影領域検出部82で用いられる閾値としての輝度としては、例えば、あらかじめ決められた固定の値を採用することができる。さらに、閾値としての輝度としては、例えば、入力画像#n及び#n-1の全体や陰影領域の候補の輝度のヒストグラムに応じて決定することができる。
 また、図18では、入力画像#n及び#n-1それぞれについて、平均輝度が閾値としての輝度以下の陰影領域の候補を、陰影領域の1種である影領域として検出することとしたが、その他、例えば、平均輝度が閾値としての輝度以下でない陰影領域の候補を、陰影領域の他の1種である陰領域(陰の領域)として検出することができる。
 そして、陰領域についても、影領域と同様に処理することができるが、ここでは、説明を簡単にするため、陰領域についての処理の説明は、省略する。
 図19は、図13の隠れ画像生成部83、及び、影画像生成部85の処理の例を説明する図である。
 図13で説明したように、記憶部81は、フレームセット、すなわち、いまの場合、入力画像#n及び#n-1から、ベース画像と影領域抽出対象画像とを選択する。
 ベース画像は、出力画像のベースとなる画像であり、フレームセットの入力画像のうちの、最新の入力画像が、ベース画像に選択される。したがって、入力画像#n及び#n-1のフレームセットについては、最新の入力画像#nが、ベース画像に選択される。
 影領域抽出対象画像は、出力画像に付される影(領域)の元となる影領域が抽出(検出)される画像であり、フレームセットの入力画像のうちの、撮影時の照明(光源)の位置が、仮想光源位置に最も近い入力画像が、影領域抽出対象画像に選択される。
 例えば、いま、入力画像#nが撮影されたときの照明の位置(被写体を照明する照明光を発する光源(照明窓)の位置)としてのカメラ22の左側の位置と、入力画像#n-1が撮影されたときの照明の位置としてのカメラ22の右側の位置とを結ぶ直線上の、カメラ22の右側の位置から、カメラ22の左側の位置への方向とは逆方向の位置(カメラ22の右側の位置より右の位置)に、仮想光源位置が設定されていることとする。
 この場合、入力画像#nが撮影されたときの照明の位置としてのカメラ22の左側の位置と、入力画像#n-1が撮影されたときの照明の位置としてのカメラ22の右側の位置とのうちの、カメラ22の右側の位置の方が、仮想光源位置に近い。
 したがって、撮影時の照明の位置が、カメラ22の右側の位置の入力画像#n-1が、影領域抽出対象画像に選択される。
 影画像生成部85は、陰影領域検出部82から供給される陰影領域としての影領域shL及びshRがそれぞれ特定された入力画像#n-1及び#nのうちの、影領域抽出対象画像である入力画像#n-1を、ベース画像に付加する影領域が特定された影画像として取得する。
 一方、隠れ画像生成部83は、記憶部81から供給される影領域抽出対象画像である入力画像#n-1から、陰影領域検出部82から供給される入力画像#n及び#n-1のうちのベース画像である入力画像#nの影領域shRに対応する領域を抽出する。
 すなわち、隠れ画像生成部83は、影領域抽出対象画像である入力画像#n-1から、ベース画像である入力画像#nの影領域shRに対応する領域を、ベース画像では影に隠れて見えない影領域shRになっているが、影領域抽出対象画像には映っている隠れ領域hideとして抽出する。
 そして、隠れ画像生成部83は、隠れ領域hideが特定された影領域抽出対象画像である入力画像#n-1を、隠れ画像として、影除去部84に供給する。
 図20は、図13の影除去部84の処理の例を説明する図である。
 影除去部84は、記憶部81からのベース画像である入力画像#nに、隠れ画像生成部83からの隠れ画像の隠れ領域hideを合成することで、ベース画像では影領域shRになって見えない部分が見えるようになった画像を、ベース画像から影領域を除去した影除去画像として生成し、合成部86に供給する。
 図21は、図13の影画像生成部85の処理の例を説明する図である。
 図19で説明したように、影画像生成部85は、影領域shLが特定された影領域抽出対象画像である入力画像#n-1を、影画像として取得する。
 この影画像の影領域shLは、影領域抽出対象画像である入力画像#n-1の影領域shLであるが、影画像生成部85は、仮想光源位置設定部51からの仮想光源位置に応じて、影画像の影領域shLに、新たな影を付加した新たな影画像を生成する。
 すなわち、影画像生成部85は、影画像の影領域shLの所定の方向の輪郭を、その輪郭の形状を維持しつつ、所定の方向に、所定の大きさ(画素数)だけ拡張することで、影領域shLを、その影領域shLに新たな影を付加したかのような新たな影領域shL'に拡張する。
 ここで、影領域shLの輪郭を拡張する所定の方向及び大きさは、影領域抽出対象画像である入力画像#n-1の撮影時の照明(光源)の位置と、仮想光源位置との位置関係に応じて決定される。
 すなわち、影領域shLの輪郭を拡張する所定の方向は、仮想光源位置から、影領域抽出対象画像である入力画像#n-1の撮影時の照明の位置に向かう方向に決定される。
 ここでは、図18で説明したように、影領域抽出対象画像である入力画像#n-1の撮影時の照明の位置は、カメラ22の右側の位置であり、仮想光源位置は、カメラ22の右側の位置よりさらに右の位置に設定されている。
 したがって、影領域shLの輪郭を拡張する所定の方向は、左方向(カメラ22から被写体を見たときの左方向)に決定される。
 また、影領域shLの輪郭を拡張する所定の大きさ方向は、仮想光源位置と、影領域抽出対象画像である入力画像#n-1の撮影時の照明の位置との間の距離に対応する値、すなわち、例えば、その距離に比例するような値に決定される。
 したがって、仮想光源位置が、影領域抽出対象画像である入力画像#n-1の撮影時の照明の位置から(右に)離れているほど、影領域shLの輪郭は、大きく拡張される。
 なお、影画像の影領域shLの拡張は、影画像の画素の画素値を、影を表す画素値に変更することがで行われる。
 影を表す画素値としては、例えば、黒色や、暗い色、ユーザが識別しやすいように選択(設定)した色等を採用することができる。
 また、影を表す画素値としては、例えば、画素の元の画素値と、黒色や、暗い色、ユーザが識別しやすいように選択した色等とのアルファブレンディング(0.0より大で、1.0より小さい値の数αを用いたアルファブレンディング)により得られる画素値を採用することができる。
 画像において、影が映っていても、その影の部分にある被写体は、影の濃さ(薄さ)に応じた明瞭さで視認することができ、したがって、影の部分にある被写体が、まったく見えない(映っていない)画像は、不自然な画像になることがある。
 上述したように、影を表す画素値として、画素の元の画素値と、黒色等とのアルファブレンディングにより得られる画素値を採用する場合には、出力画像が、上述のような不自然な画像になることを防止することができる。
 図22は、図13の合成部86の処理の例を説明する図である。
 合成部86は、影除去部84からの影除去画像と、影画像生成部85からの(新たな)影画像(の影領域shL')との合成を、例えば、アルファブレンディングによって行うことで、被写体subの影として、影画像の新たな影領域shL'が付加された出力画像を生成し、表示装置13に出力する。
 図23は、図13の仮想光源位置設定部51で設定される仮想光源位置の例を説明する図である。
 図23では、カメラ22の右側の位置PRと、カメラ22の左側の位置PLとに、(実)光源21が存在し、図18で説明したように、被写体subは、その位置PR及びPLそれぞれから、フレーム単位で交互に照明される。
 影の付加を行う場合、仮想光源位置Pは、被写体subから見たときに、位置PR及びPLよりも外側の位置に設定される。仮想光源位置Pを、位置PR及びPLよりも外側の位置ではなく、内側の位置P'に設定した場合には、被写体subの影は拡張されず、縮小されることになるからである。
 なお、影の抑制を行う場合、仮想光源位置Pは、被写体subから見たときに、位置PR及びPLよりも内側の位置に設定される。
 ここで、陰影(合成)処理として、影の付加を行うか、又は、影の抑制を行うかが問われない場合には、仮想光源位置設定部51では、例えば、任意の位置に、仮想光源位置Pを設定することができる。
 一方、上述したように、影の付加を行う場合には、仮想光源位置Pを、光源21の位置PR及びPLの間の外側の位置に設定し、影の抑制を行う場合には、仮想光源位置Pを、位置PR及びPLの間の内側の位置に設定する必要がある。したがって、この場合、仮想光源位置設定部51は、光源21の位置PR及びPLを認識する必要がある。仮想光源位置設定部51は、例えば、照明条件設定部72(図13)で設定される照明条件から、光源21の位置PR及びPLを認識することができる。
 図24は、図13の画像処理装置12の処理の例を説明するフローチャートである。
 ステップS41において、陰影要否判定部41は、陰影要否判定を行う。
 ステップS41の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要でないと判定された場合、処理は、ステップS42に進み、陰影合成処理部42は、カメラからの入力画像を、そのまま、出力画像として、表示装置13に出力し、処理は終了する。
 また、ステップS41の陰影要否判定において、カメラ22からの入力画像に、陰影処理が必要であると判定された場合、処理は、ステップS43に進み、照明条件設定部72は、複数の設定照明条件を設定し、照明制御部71に供給する。
 照明制御部71は、照明条件設定部72からの複数の設定照明条件それぞれを周期的に、注目照明条件として選択し、被写体を照明する照明条件が、注目照明条件になるように、光源21(による照明)を制御する処理を開始する。
 これにより、被写体を複数の照明条件で照明しながら撮影された医用画像が、入力画像として、カメラ22から記憶部81に順次供給されて記憶される。
 なお、ここでは、説明を簡単にするため、例えば、図18で説明したように、2個の設定照明条件が、被写体の照明条件として、交互に切り替えられることとする。この場合、フレームセットは、入力画像の最新のフレームと、その直前のフレームとの2フレームで構成される。
 その後、処理は、ステップS43からステップS44に進み、仮想光源位置設定部51は、仮想光源位置を設定し、影画像生成部85に供給して、処理は、ステップS45に進む。
 ステップS45では、陰影領域検出部82は、図18で説明したように、記憶部81に記憶されたフレームセットとしての入力画像の2フレームの差分画像を生成し、処理は、ステップS46に進む。
 ステップS46では、陰影領域検出部82は、図18で説明したように、差分画像を用いて、フレームセットとしての入力画像において陰影がある陰影領域としての影領域を検出する。そして、陰影領域検出部82は、差分画像を用いて検出された影領域が特定された入力画像を、隠れ画像生成部83、及び、影画像生成部85に供給し、処理は、ステップS47に進む。
 ステップS47では、影画像生成部85は、図19で説明したように、陰影領域検出部82からの影領域が特定された入力画像から、ベース画像に付加する影領域が特定された影画像を取得(生成)し、処理は、ステップS48に進む。
 ステップS48では、記憶部81が、フレームセットから、影領域抽出対象画像を選択し、隠れ画像生成部83に供給して、処理は、ステップS49に進む。
 ステップS49では、隠れ画像生成部83が、図19で説明したように、記憶部81からの影領域抽出対象画像と、陰影領域検出部82からの影領域が特定された入力画像とを用いて、ベース画像では影に隠れて見えない影領域になっているが、影領域抽出対象画像には映っている部分が特定された画像を、隠れ画像として生成する。
 隠れ画像生成部83は、隠れ画像を、影除去部84に供給し、処理は、ステップS49から、ステップS50に進む。
 ステップS50では、記憶部81は、フレームセットからベース画像を選択し、影除去部84に供給して、処理は、ステップS51に進む。
 ステップS51では、影除去部84が、図20で説明したように、記憶部81からのベース画像に、隠れ画像生成部83からの隠れ画像を合成することで、ベース画像では影領域になって見えない部分が見えるようになった画像を、ベース画像から影領域を除去した影除去画像として生成する。
 そして、影除去部84は、影除去画像を、合成部86に供給して、処理は、ステップS51からステップS52に進む。
 ステップS52では、影画像生成部85が、図21で説明したように、仮想光源位置設定部51からの仮想光源位置に応じて、影画像の影領域に、新たな影(領域)を付加した新たな影画像、すなわち、影領域を拡張した影画像を生成する。
 そして、影画像生成部85は、影画像を、合成部86に供給して、処理は、ステップS52からステップS53に進む。
 ステップS53では、合成部86が、影除去部84からの影除去画像と、影画像生成部85からの影画像(の影領域)とを合成することで、入力画像の影を拡張した影を、新たな影として付加した出力画像を生成し、表示装置13に出力して、処理は終了する。
 なお、合成部86では、影除去画像と影画像とを合成せずに、そのまま、出力画像として出力し、影除去画像と影画像との合成は、図5で説明した場合と同様に、影除去画像と影画像との表示時に行うことができる。
 <画像処理装置12の第4の構成例>
 図25は、図2の画像処理装置12の第4の構成例を示すブロック図である。
 なお、図中、図13の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図25において、画像処理装置12は、制御部40、照明制御部71、及び、照明条件設定部72を有する。
 制御部40は、陰影要否判定部41、及び、陰影合成処理部42を有する。
 陰影合成処理部42は、陰影処理部80及び合成部86を有する。
 陰影処理部80は、仮想光源位置設定部51、記憶部81、陰影領域検出部82、隠れ画像生成部83、影除去部84、及び、影画像生成部85を有する。
 したがって、図25の画像処理装置12は、図13の場合と同様に構成されている。
 但し、図25では、光源21の他に、光源91及び92が設けられており、照明制御部71が、光源21の他、光源91及び92を制御する点で、光源としては、光源21のみが設けられ、その光源21のみの制御が行われる図13の場合と相違する。
 光源91や92は、例えば、体腔内に、内視鏡11(の内視鏡スコープ32(図3))や処置具等を挿入するのに、腹壁等に小さな孔を空けて取り付けられる開孔器具であるトロッカ(図示せず)に設けることができる。
 また、光源91や92は、例えば、トロッカから挿入される鉗子等の処置具の先端に取り付けることができる。この場合、光源91や92が取り付けられた処置具は、トロッカから挿入された状態で、術者やロボット等によって保持される。
 図25の画像処理装置12では、照明制御部71が、1の光源21だけではなく、複数としての、例えば、3個の光源21,91、及び、92を制御するので、よりバリエーションに富んだ照明条件で、被写体を照明することができる。その結果、例えば、立体感等を、効果的に感じさせる影(領域)を付加した出力画像を生成することが可能になる。
 なお、図25の画像処理装置12には、入力画像に映るシーンを検出するシーン検出部101や、入力画像に映る陰影(の領域)を検出する陰影領域検出部102を、さらに設けることができる。
 この場合、照明制御部71では、照明条件設定部72から供給される(設定)照明条件に従って、光源21や91,92を制御するのとは別に、シーン検出部101で検出される入力画像に映るシーンや、陰影領域検出部102で検出される入力画像に映る陰影に応じて、光源21や91,92を制御することができる。
 すなわち、照明制御部71では、入力画像に映るシーンや陰影に応じて、例えば、光源21や91,92のオン/オフ、つまり、被写体を照明する位置(被写体を照明する照明光が発せられる位置)を制御することができる。
 また、照明制御部71では、入力画像に映るシーンや陰影に応じて、例えば、光源21や91,92の強度、つまり、被写体を照明する照明光の強度を制御することができる。
 例えば、入力画像としての医用画像に映っている術部に、他の被写体の影がかかっている場合には、光源21,91、及び、92のうちの、術部に、他の被写体の影がかからない方向から照明光を照射することができる光源のみをオンにし、他の光源をオフにすることができる。
 なお、照明制御部71において、光源21や91,92の制御を、照明条件設定部72から供給される照明条件に従って行うのか、又は、シーン検出部101で検出される入力画像に映るシーンや、陰影領域検出部102で検出される入力画像に映る陰影に応じて行うのかは、例えば、ユーザの操作に応じて切り替えることができる。
 また、照明制御部71では、ユーザの操作に応じて、光源21や91,92を制御することができる。
 例えば、ユーザが、影を付けたい方向を指示した場合には、照明制御部71では、光源21,91、及び、92のうちの、ユーザが指示した方向に影を生じさせる位置から照明光を照射することができる光源のみをオンにし、他の光源をオフにすることができる。
 また、例えば、ユーザが、影の濃さを指示した場合には、照明制御部71では、光源21や91,92のうちの必要な光源の強度を、ユーザが指示した影の濃さに対応する強度に制御することができる。
 なお、図25において、陰影領域検出部102は、陰影領域検出部82によって代用することができる。
 <画像処理装置12の第5の構成例>
 図26は、図2の画像処理装置12の第5の構成例を示すブロック図である。
 なお、図中、図5の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図26において、画像処理装置12は、制御部40を有する。
 制御部40は、陰影要否判定部41、及び、陰影合成処理部42を有する。
 陰影合成処理部42は、陰影処理部50、及び、陰付加部112を有する。
 陰影処理部50は、仮想光源位置設定部51、奥行き推定部52、及び、陰領域検出部111を有する。
 したがって、図26の画像処理装置12は、制御部40を有する点で図5の場合と共通するとともに、制御部40が、陰影要否判定部41、及び、陰影合成処理部42を有する点、陰影合成処理部42が、陰影処理部50を有する点、並びに、陰影処理部50が、仮想光源位置設定部51及び奥行き推定部52を有する点で、図5の場合と共通する。
 但し、図26の画像処理装置12は、陰影合成処理部42が、合成部54に代えて陰付加部112を有する点、並びに、陰影処理部50が、影画像生成部53に代えて、陰領域検出部111を有する点で、図5の場合と相違する。
 陰領域検出部111には、仮想光源位置設定部51から仮想光源位置が供給されるとともに、奥行き推定部52から奥行き情報が供給される。
 陰領域検出部111は、仮想光源位置設定部51からの仮想光源位置と、奥行き推定部52からの奥行き情報とから、仮想光源よって生じる陰の陰領域を検出し、陰付加部112に供給する。
 陰付加部112には、陰領域検出部111から陰領域が供給される他、カメラ22から入力画像としての医用画像が供給される。
 陰付加部112は、カメラ22からの入力画像に、陰領域検出部111からの陰領域を合成すること等によって、入力画像に陰領域を付加した出力画像を生成し、表示装置13に出力する。
 なお、陰付加部112での入力画像と影領域との合成としては、例えば、図5の合成部54の場合と同様のアルファブレンディングを採用することができる。
 図27は、図26の陰領域検出部111での陰領域の検出の例を説明する図である。
 入力画像の各画素の位置を表すxy平面と、各画素に映る被写体の奥行き情報を表すz軸とで規定される3次元空間(以下、奥行き空間ともいう)において、仮想光源位置から、奥行き情報としての点に向かう光線を表すベクトルを、光線ベクトルということとする。
 陰領域検出部111は、各画素の奥行き情報について、その奥行き情報としての点における法線方向を表す法線ベクトルと、その奥行き情報としての点に向かう光線ベクトルとの内積を求める。
 そして、陰領域検出部111は、内積の大きさが所定の閾値以下(又は未満)になる奥行き情報の画素で構成される領域を、陰領域として検出する。
 図28は、図26の画像処理装置12の処理の例を説明するフローチャートである。
 ステップS71ないしS74では、図9のステップS11ないしS14とそれぞれ同様の処理が行われる。
 そして、ステップS75では、陰領域検出部111が、仮想光源位置設定部51からの仮想光源位置と、奥行き推定部52からの奥行き情報とを用いて、図27で説明したように、仮想光源よって生じる陰の影領域を検出する。
 陰領域検出部111は、陰領域を、陰付加部112に供給し、処理は、ステップS75からステップS76に進む。
 ステップS76では、陰付加部112は、カメラ22からの入力画像に、陰領域検出部111からの陰領域を合成することによって、入力画像に陰領域を付加した出力画像、すなわち、入力画像の陰を強調した出力画像を生成し、表示装置13に出力して、処理は終了する。
 図26の画像処理装置12では、入力画像に陰領域が付加されることにより、陰が強調されるので、ユーザは、凹凸感や立体感を感じやすくなる。
 <本技術を適用したコンピュータの説明>
 次に、上述した画像処理装置12の一連の処理は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
 図29は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
 プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク205やROM203に予め記録しておくことができる。
 あるいはまた、プログラムは、リムーバブル記録媒体211に格納(記録)しておくことができる。このようなリムーバブル記録媒体211は、いわゆるパッケージソフトウエアとして提供することができる。ここで、リムーバブル記録媒体211としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
 なお、プログラムは、上述したようなリムーバブル記録媒体211からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク205にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
 コンピュータは、CPU(Central Processing Unit)202を内蔵しており、CPU202には、バス201を介して、入出力インタフェース210が接続されている。
 CPU202は、入出力インタフェース210を介して、ユーザによって、入力部207が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)203に格納されているプログラムを実行する。あるいは、CPU202は、ハードディスク205に格納されたプログラムを、RAM(Random Access Memory)204にロードして実行する。
 これにより、CPU202は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU202は、その処理結果を、必要に応じて、例えば、入出力インタフェース210を介して、出力部206から出力、あるいは、通信部208から送信、さらには、ハードディスク205に記録等させる。
 なお、入力部207は、キーボードや、マウス、マイク等で構成される。また、出力部206は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
 また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
 さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本技術は、医療用の内視鏡システムの他、医療用電子顕微鏡(手術用顕微鏡)等の、生体の術部等が映る医用画像を撮影する機能を有する医療機器に適用することができる。さらに、本技術は、医用画像の他、任意の画像を撮影する機能を有する機器に適用することができる。
 なお、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下の構成をとることができる。
 <1>
 医用画像に対し、陰影を付加又は抑制するか否かを判定し、
 前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
 を備える画像処理装置。
 <2>
 前記制御部は、ユーザからの入力に応じて、前記判定を行う
 <1>に記載の画像処理装置。
 <3>
 前記制御部は、前記医用画像に応じて、前記判定を行う
 <1>又は<2>に記載の画像処理装置。
 <4>
 前記制御部は、処置具の使用状況に応じて、前記判定を行う
 <1>ないし<3>のいずれかに記載の画像処理装置。
 <5>
 前記制御部は、仮想光源よって前記医用画像の特定の被写体に対して生じる影の前記陰影補正画像を生成するよう制御する
 <1>ないし<4>のいずれかに記載の画像処理装置。
 <6>
 前記制御部は、前記被写体の奥行きを推定し、前記奥行きに基づき前記陰影補正画像を生成するよう制御する
 <5>に記載の画像処理装置。
 <7>
 前記制御部は、前記医用画像を撮影する撮像部の光源位置と前記仮想光源の位置とが所定の距離以下になるよう制御する
 <6>に記載の画像処理装置。
 <8>
 前記制御部は、前記被写体と、前記被写体に対して前記仮想光源よって生じる影領域との奥行き方向の距離が所定の距離以上の前記被写体については、前記陰影補正画像を生成しないよう制御する
 <6>に記載の画像処理装置。
 <9>
 前記医用画像は、視差を有する2つの画像であり、
 前記2つの画像の前記被写体の視差情報から、前記奥行きを推定する
 <6>ないし<8>のいずれかに記載の画像処理装置。
 <10>
 前記制御部は、更に、
 前記医用画像から対象物体を特定し、
 前記対象物体を対象として、前記陰影補正画像を生成するよう制御する
 <1>ないし<9>のいずれかに記載の画像処理装置。
 <11>
 前記対象物体を設定する物体設定部をさらに備える
 <10>に記載の画像処理装置。
 <12>
 前記制御部は、前記対象物体の厚みを所定の厚みとして、前記陰影補正画像を生成するよう制御する
 <10>又は<11>に記載の画像処理装置。
 <13>
 前記制御部は、
 前記被写体を異なる照明条件で撮影した複数の前記医用画像を用いて、
 前記陰影補正画像を生成するよう制御する
 <1>ないし<4>のいずれかに記載の画像処理装置。
 <14>
 前記照明条件を設定する照明条件設定部をさらに備える
 <13>に記載の画像処理装置。
 <15>
 前記制御部は、影が映った影画像を、前記陰影補正画像として生成する
 <1>ないし<14>のいずれかに記載の画像処理装置。
 <16>
 前記制御部は、影が映った影画像と、前記医用画像とを合成することで、前記医用画像に影を付加した出力画像を、前記陰影補正画像として生成する
 <1>ないし<14>のいずれかに記載の画像処理装置。
 <17>
 前記医用画像に映る所定の被写体の長手方向と、前記仮想光源の光軸とが重ならない位置を、前記仮想光源の位置に設定する
 <5>に記載の画像処理装置。
 <18>
 医用画像に対し、陰影を付加又は抑制するか否かを判定し、
 前記判定の結果に基づき、陰影補正画像を生成するよう制御する
 ステップを含む画像処理方法。
 <19>
 医用画像に対し、陰影を付加又は抑制するか否かを判定し、
 前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
 として、コンピュータを機能させるためのプログラム。
 <20>
 医用画像を撮影する内視鏡と、
 被写体を照明する照明光を発する光源と、
 前記照明光によって照明された被写体を、前記内視鏡で撮影することにより得られ前記医用画像の画像処理を行う画像処理装置と
 を備え、
 前記画像処理装置は、
 医用画像に対し、陰影を付加又は抑制するか否かを判定し、
 前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
 を有する
 手術システム。
 <O1>
 陰影を付加又は抑制する陰影処理を、術部が映った医用画像に行うかどうかの陰影要否判定を行う判定部と、
 前記陰影要否判定の判定結果に応じて、前記医用画像に、前記陰影処理を行う陰影処理部と
 を備える画像処理装置。
 <O2>
 前記判定部は、ユーザからの入力に応じて、前記陰影要否判定を行う
 <O1>に記載の画像処理装置。
 <O3>
 前記判定部は、前記医用画像に応じて、前記陰影要否判定を行う
 <O1>又は<O2>に記載の画像処理装置。
 <O4>
 前記判定部は、処置具の使用状況に応じて、前記陰影要否判定を行う
 <O1>ないし<O3>のいずれかに記載の画像処理装置。
 <O5>
 前記医用画像の各画素に映る被写体の奥行きを推定する奥行き推定部と、
 仮想的な仮想光源の仮想光源位置を設定する仮想光源位置設定部と、
 前記被写体の奥行きと前記仮想光源位置とから、前記仮想光源よって生じる影の影画像を生成する影画像生成部と
 をさらに備え、
 前記陰影処理部は、前記医用画像と前記影画像とを合成することで、前記医用画像に影を付加した出力画像を生成する
 <O1>ないし<O4>のいずれかに記載の画像処理装置。
 <O6>
 前記仮想光源位置設定部は、前記医用画像を撮影するカメラの光軸と前記仮想光源位置との距離を、所定の距離以内に制限する
 <O5>に記載の画像処理装置。
 <O7>
 前記陰影処理部は、前記医用画像に映る被写体と、その被写体に対して前記仮想光源よって生じる影との奥行き方向の距離が一定距離以上の被写体については、影の付加を制限する
 <O5>又は<O6>に記載の画像処理装置。
 <O8>
 前記仮想光源位置設定部は、前記医用画像に映る所定の被写体と、前記仮想光源の光軸とが重ならない位置を、前記仮想光源位置に設定する
 <O5>ないし<O7>のいずれかに記載の画像処理装置。
 <O9>
 前記医用画像は、3D(Dimensional)画像であり、
 前記奥行き推定部は、前記3D画像から、前記医用画像の各画素に映る被写体の奥行きを推定する
 <O5>ないし<O8>のいずれかに記載の画像処理装置。
 <O10>
 前記医用画像から、前記陰影処理の対象とする対象物体を検出する物体検出部をさらに備え、
 前記陰影処理部は、前記対象物体を対象として、前記陰影処理を行う
 <O1>ないし<O9>のいずれかに記載の画像処理装置。
 <O11>
 前記対象物体を設定する物体設定部をさらに備える
 <O10>に記載の画像処理装置。
 <O12>
 前記陰影処理部は、前記対象物体の厚みとして、所定の厚みを見込んで、前記陰影処理を行う
 <O10>又は<O11>に記載の画像処理装置。
 <O13>
 前記医用画像に映る被写体を照明する照明条件を変えながら撮影された前記医用画像のフレームのうちの、異なる照明条件で撮影された複数のフレームを用いて、前記医用画像において陰影がある陰影領域を検出する陰影領域検出部と、
 仮想的な仮想光源の仮想光源位置を設定する仮想光源位置設定部と
 をさらに備え、
 前記陰影処理部は、前記仮想光源位置に応じて、前記陰影領域に、前記陰影処理を行う
 <O1>ないし<O4>のいずれかに記載の画像処理装置。
 <O14>
 前記陰影処理部は、
  前記複数のフレームのうちの最新のフレームを、ベース画像として、前記ベース画像において影がある影領域を除去した影除去画像を生成し、
  前記複数のフレームのうちの1フレームを、影領域抽出対象画像として、前記影領域抽出対象画像、及び、前記仮想光源位置を用いて、前記影領域抽出対象画像において影がある影領域に新たな影を付加した影画像を生成し、
  前記影除去画像と、前記影画像とを合成することで、前記医用画像に前記新たな影を付加した出力画像を生成する
 <O13>に記載の画像処理装置。
 <O15>
 前記医用画像の各画素に映る被写体の奥行きを推定する奥行き推定部と、
 仮想的な仮想光源の仮想光源位置を設定する仮想光源位置設定部と、
 前記被写体の奥行きと前記仮想光源位置とから、前記仮想光源よって生じる陰の陰領域を検出する陰領域検出部と
 をさらに備え、
 前記陰影処理部は、前記医用画像に前記陰領域を付加した出力画像を生成する
 <O1>ないし<O4>のいずれかに記載の画像処理装置。
 <O16>
 陰影を付加又は抑制する陰影処理を、術部が映った医用画像に行うかどうかの陰影要否判定を行うことと、
 前記陰影要否判定の判定結果に応じて、前記医用画像に、前記陰影処理を行うことと
 を含む画像処理方法。
 <O17>
 陰影を付加又は抑制する陰影処理を、術部が映った医用画像に行うかどうかの陰影要否判定を行う判定部と、
 前記陰影要否判定の判定結果に応じて、前記医用画像に、前記陰影処理を行う陰影処理部と
 して、コンピュータを機能させるためのプログラム。
 <O18>
 画像を撮影する内視鏡と、
 被写体を照明する照明光を発する光源と、
 前記照明光によって照明された術部を、前記内視鏡で撮影することにより得られる、前記術部が映った医用画像の画像処理を行う画像処理部と
 を備え、
 前記画像処理部は、
 陰影を付加又は抑制する陰影処理を、術部が映った医用画像に行うかどうかの陰影要否判定を行う判定部と、
 前記陰影要否判定の判定結果に応じて、前記医用画像に、前記陰影処理を行う陰影処理部と
 を有する
 手術システム。
 11 内視鏡, 12 画像処理装置, 13 表示装置, 21 光源, 22 カメラ, 31 カメラヘッド, 32 内視鏡スコープ, 33 鉗子, 40 制御部, 41 陰影要否判定部, 42 陰影合成処理部, 50 陰影処理部, 51 仮想光源位置設定部, 52 奥行き推定部, 53 影画像生成部, 54 合成部, 61 物体設定部, 62 物体検出部, 71 照明制御部, 72 照明条件設定部, 80 陰影処理部, 81 記憶部, 82 陰影領域検出部, 83 隠れ画像生成部, 84 陰除去部, 85 影画像生成部, 86 合成部, 91,92 光源, 101 シーン検出部, 102 陰影領域検出部, 111 陰領域検出部, 112 陰付加部, 201 バス, 202 CPU, 203 ROM, 204 RAM, 205 ハードディスク, 206 出力部, 207 入力部, 208 通信部, 209 ドライブ, 210 入出力インタフェース, 211 リムーバブル記録媒体

Claims (20)

  1.  医用画像に対し、陰影を付加又は抑制するか否かを判定し、
     前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
     を備える画像処理装置。
  2.  前記制御部は、ユーザからの入力に応じて、前記判定を行う
     請求項1に記載の画像処理装置。
  3.  前記制御部は、前記医用画像に応じて、前記判定を行う
     請求項1に記載の画像処理装置。
  4.  前記制御部は、処置具の使用状況に応じて、前記判定を行う
     請求項1に記載の画像処理装置。
  5.  前記制御部は、仮想光源よって前記医用画像の特定の被写体に対して生じる影の前記陰影補正画像を生成するよう制御する
     請求項1に記載の画像処理装置。
  6.  前記制御部は、前記被写体の奥行きを推定し、前記奥行きに基づき前記陰影補正画像を生成するよう制御する
     請求項5に記載の画像処理装置。
  7.  前記制御部は、前記医用画像を撮影する撮像部の光源位置と前記仮想光源の位置とが所定の距離以下になるよう制御する
     請求項6に記載の画像処理装置。
  8.  前記制御部は、前記被写体と、前記被写体に対して前記仮想光源よって生じる影領域との奥行き方向の距離が所定の距離以上の前記被写体については、前記陰影補正画像を生成しないよう制御する
     請求項6に記載の画像処理装置。
  9.  前記医用画像は、視差を有する2つの画像であり、
     前記2つの画像の前記被写体の視差情報から、前記奥行きを推定する
     請求項6に記載の画像処理装置。
  10.  前記制御部は、更に、
     前記医用画像から対象物体を特定し、
     前記対象物体を対象として、前記陰影補正画像を生成するよう制御する
     請求項1に記載の画像処理装置。
  11.  前記対象物体を設定する物体設定部をさらに備える
     請求項10に記載の画像処理装置。
  12.  前記制御部は、前記対象物体の厚みを所定の厚みとして、前記陰影補正画像を生成するよう制御する
     請求項10に記載の画像処理装置。
  13.  前記制御部は、前記被写体を異なる照明条件で撮影した複数の前記医用画像を用いて、前記陰影補正画像を生成するよう制御する
     請求項1に記載の画像処理装置。
  14.  前記照明条件を設定する照明条件設定部をさらに備える
     請求項13に記載の画像処理装置。
  15.  前記制御部は、影が映った影画像を、前記陰影補正画像として生成する
     請求項1に記載の画像処理装置。
  16.  前記制御部は、影が映った影画像と、前記医用画像とを合成することで、前記医用画像に影を付加した出力画像を、前記陰影補正画像として生成する
     請求項1に記載の画像処理装置。
  17.  前記医用画像に映る所定の被写体の長手方向と、前記仮想光源の光軸とが重ならない位置を、前記仮想光源の位置に設定する
     請求項5に記載の画像処理装置。
  18.  医用画像に対し、陰影を付加又は抑制するか否かを判定し、
     前記判定の結果に基づき、陰影補正画像を生成するよう制御する
     ステップを含む画像処理方法。
  19.  医用画像に対し、陰影を付加又は抑制するか否かを判定し、
     前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
     として、コンピュータを機能させるためのプログラム。
  20.  医用画像を撮影する内視鏡と、
     被写体を照明する照明光を発する光源と、
     前記照明光によって照明された被写体を、前記内視鏡で撮影することにより得られ前記医用画像の画像処理を行う画像処理装置と
     を備え、
     前記画像処理装置は、
     医用画像に対し、陰影を付加又は抑制するか否かを判定し、
     前記判定の結果に基づき、陰影補正画像を生成するよう制御する制御部
     を有する
     手術システム。
PCT/JP2017/004846 2016-02-26 2017-02-10 画像処理装置、画像処理方法、プログラム、及び、手術システム WO2017145788A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/078,057 US20190051039A1 (en) 2016-02-26 2017-02-10 Image processing apparatus, image processing method, program, and surgical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-035125 2016-02-26
JP2016035125 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017145788A1 true WO2017145788A1 (ja) 2017-08-31

Family

ID=59685467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004846 WO2017145788A1 (ja) 2016-02-26 2017-02-10 画像処理装置、画像処理方法、プログラム、及び、手術システム

Country Status (2)

Country Link
US (1) US20190051039A1 (ja)
WO (1) WO2017145788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512089A (ja) * 2017-03-24 2020-04-23 シーメンス ヘルスケア ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 奥行き知覚を高める仮想陰影
JP2020151268A (ja) * 2019-03-20 2020-09-24 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置及び医療用観察システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11463676B2 (en) * 2015-08-07 2022-10-04 Medicaltek Co. Ltd. Stereoscopic visualization system and method for endoscope using shape-from-shading algorithm
CN109310302B (zh) * 2016-06-06 2021-07-06 奥林巴斯株式会社 用于内窥镜装置的控制装置和内窥镜装置
CN110325098A (zh) 2016-11-28 2019-10-11 适内有限责任公司 具有可分离一次性轴的内窥镜
US20210134049A1 (en) * 2017-08-08 2021-05-06 Sony Corporation Image processing apparatus and method
US10922878B2 (en) * 2017-10-04 2021-02-16 Google Llc Lighting for inserted content
JP7213616B2 (ja) * 2017-12-26 2023-01-27 株式会社Preferred Networks 情報処理装置、情報処理プログラム及び情報処理方法。
US10699477B2 (en) 2018-03-21 2020-06-30 Zoox, Inc. Generating maps without shadows
US10504282B2 (en) * 2018-03-21 2019-12-10 Zoox, Inc. Generating maps without shadows using geometry
JP6985609B2 (ja) * 2018-05-21 2021-12-22 日本電信電話株式会社 符号化装置、画像補間システム及び符号化プログラム
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244011A (ja) * 1987-03-31 1988-10-11 Olympus Optical Co Ltd 電子内視鏡
JP2002027316A (ja) * 2000-07-12 2002-01-25 Nikon Corp 電子カメラシステム、および照明シミュレーションプログラムを記録した記録媒体
JP2002352266A (ja) * 2001-05-30 2002-12-06 Konami Co Ltd 画像処理方法及び画像処理用プログラム
JP2006081654A (ja) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc 画像生成方法およびその装置
JP2006252426A (ja) * 2005-03-14 2006-09-21 Namco Bandai Games Inc プログラム、情報記憶媒体及び画像生成システム
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2013064645A (ja) * 2011-09-16 2013-04-11 Fujifilm Corp 光干渉断層画像処理方法及びその装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201850B1 (en) * 1999-01-26 2001-03-13 Agilent Technologies, Inc. Enhanced thickness calibration and shading correction for automatic X-ray inspection
US7187810B2 (en) * 1999-12-15 2007-03-06 Medispectra, Inc. Methods and systems for correcting image misalignment
US7309867B2 (en) * 2003-04-18 2007-12-18 Medispectra, Inc. Methods and apparatus for characterization of tissue samples
US6818903B2 (en) * 2002-07-09 2004-11-16 Medispectra, Inc. Method and apparatus for identifying spectral artifacts
KR100891766B1 (ko) * 2004-12-10 2009-04-07 올림푸스 가부시키가이샤 의용 화상 처리 장치
GB0519769D0 (en) * 2005-09-28 2005-11-09 Imp College Innovations Ltd Imaging system
FR2949003B1 (fr) * 2009-08-10 2017-09-08 Dxo Labs Systeme et procede de capture d'images avec deux modes de fonctionnement
US8587498B2 (en) * 2010-03-01 2013-11-19 Holovisions LLC 3D image display with binocular disparity and motion parallax
JP2012050558A (ja) * 2010-08-31 2012-03-15 Fujifilm Corp 放射線画像処理装置、放射線画像処理方法およびプログラム
JP5570373B2 (ja) * 2010-09-29 2014-08-13 富士フイルム株式会社 内視鏡システム
JP5830270B2 (ja) * 2011-05-24 2015-12-09 オリンパス株式会社 内視鏡装置および計測方法
EP3070507B1 (en) * 2013-11-14 2019-05-15 Olympus Corporation Endoscope imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244011A (ja) * 1987-03-31 1988-10-11 Olympus Optical Co Ltd 電子内視鏡
JP2002027316A (ja) * 2000-07-12 2002-01-25 Nikon Corp 電子カメラシステム、および照明シミュレーションプログラムを記録した記録媒体
JP2002352266A (ja) * 2001-05-30 2002-12-06 Konami Co Ltd 画像処理方法及び画像処理用プログラム
JP2006081654A (ja) * 2004-09-15 2006-03-30 Konica Minolta Holdings Inc 画像生成方法およびその装置
JP2006252426A (ja) * 2005-03-14 2006-09-21 Namco Bandai Games Inc プログラム、情報記憶媒体及び画像生成システム
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2013064645A (ja) * 2011-09-16 2013-04-11 Fujifilm Corp 光干渉断層画像処理方法及びその装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512089A (ja) * 2017-03-24 2020-04-23 シーメンス ヘルスケア ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 奥行き知覚を高める仮想陰影
JP2020151268A (ja) * 2019-03-20 2020-09-24 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置及び医療用観察システム
JP7239362B2 (ja) 2019-03-20 2023-03-14 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置及び医療用観察システム

Also Published As

Publication number Publication date
US20190051039A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2017145788A1 (ja) 画像処理装置、画像処理方法、プログラム、及び、手術システム
CN110099599B (zh) 医学图像处理设备、医学图像处理方法和程序
JP7074065B2 (ja) 医療用画像処理装置、医療用画像処理方法、プログラム
JP6764574B2 (ja) 画像処理装置、画像処理方法、プログラム、及び、手術システム
US9635343B2 (en) Stereoscopic endoscopic image processing apparatus
JP7480477B2 (ja) 医療用観察システム、制御装置及び制御方法
JPWO2016043063A1 (ja) 画像処理装置および画像処理方法
CN110168605B (zh) 用于动态范围压缩的视频信号处理装置、视频信号处理方法和计算机可读介质
JP7363767B2 (ja) 画像処理装置と画像処理方法およびプログラム
JPWO2018221041A1 (ja) 医療用観察システム及び医療用観察装置
EP3247113B1 (en) Image processing device, image processing method, program, and endoscope system
US20220217260A1 (en) Signal processing device, imaging device, and signal processing method
JP5177668B2 (ja) 立体画像作成装置及び方法並びに内視鏡検査システム
WO2017082091A1 (ja) 手術システム、手術用制御方法、およびプログラム
US10849482B2 (en) Endoscopic system, image processing apparatus, and image processing method
WO2018179875A1 (ja) 撮像装置とフォーカス制御方法およびフォーカス判定方法
JP2019098005A (ja) 内視鏡画像処理プログラム、内視鏡システム及び内視鏡画像処理方法
JP7456385B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
WO2021230001A1 (ja) 情報処理装置及び情報処理方法
JP7230923B2 (ja) 情報処理装置、情報処理方法及びプログラム
US20220182538A1 (en) Image-processing method, control device, and endoscope system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756229

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP