WO2017145248A1 - 通信装置、通信方法及び通信プログラム - Google Patents

通信装置、通信方法及び通信プログラム Download PDF

Info

Publication number
WO2017145248A1
WO2017145248A1 PCT/JP2016/055117 JP2016055117W WO2017145248A1 WO 2017145248 A1 WO2017145248 A1 WO 2017145248A1 JP 2016055117 W JP2016055117 W JP 2016055117W WO 2017145248 A1 WO2017145248 A1 WO 2017145248A1
Authority
WO
WIPO (PCT)
Prior art keywords
retransmission
waiting time
control unit
initial transmission
priority
Prior art date
Application number
PCT/JP2016/055117
Other languages
English (en)
French (fr)
Inventor
信吾 杣
章好 八木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055117 priority Critical patent/WO2017145248A1/ja
Priority to US16/066,644 priority patent/US20190342914A1/en
Priority to EP16891407.5A priority patent/EP3399790B1/en
Priority to CN201680059665.7A priority patent/CN108141788B/zh
Priority to JP2016543253A priority patent/JP6026067B1/ja
Publication of WO2017145248A1 publication Critical patent/WO2017145248A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to a technique for controlling a waiting time provided before data transmission.
  • control of waiting time in wireless communication will be mainly described.
  • CSMA / CA Carrier Sense Multiple Access Collision Aviation
  • a random time waiting time is set before transmitting a radio frame, and the radio frame is transmitted after the waiting time expires.
  • the waiting time is set again, and the wireless frame is transmitted again after the waiting time has expired.
  • IEEE 802.15.4 the waiting time for retransmission is reset within the range of “minimum setting value to maximum setting value” of the back-off timer (IEEE Std 802.15.4).
  • a backoff timer is extended for each retransmission by a binary exponential backoff (BEB) method, thereby increasing the probability of collision avoidance with the surroundings (IEEE Std 802. 11).
  • the initial transmission is likely to fail in an environment where radio communication frequently occurs or a situation where alarm notifications are simultaneously generated from multiple nodes. There is a problem that data transmission is not completed within the required time.
  • the main object of the present invention is to solve such a problem, so that even if the initial transmission fails, retransmission can be performed early so that data transmission can be completed within the required time.
  • the main purpose is to do.
  • the communication device is An initial transmission waiting time determination unit for determining an initial transmission waiting time, which is a waiting time before performing the first transmission of data, using a random number from the first time width; When the first transmission fails, a retransmission waiting time that is a waiting time before performing data retransmission is determined from the second time width shorter than the first time width using the random number.
  • a retransmission waiting time determination unit for determining an initial transmission waiting time, which is a waiting time before performing the first transmission of data, using a random number from the first time width;
  • the retransmission waiting time is selected from the second time width shorter than the first time width, it is possible to increase the possibility that the retransmission is performed early even if the initial transmission fails. be able to.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment.
  • FIG. 6 shows another configuration example of the wireless communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating a hardware configuration example of the wireless communication apparatus according to the first embodiment. 3 is a diagram illustrating an example of a functional configuration of a wireless communication apparatus according to Embodiment 1.
  • FIG. FIG. 3 is a flowchart showing an operation example of the wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of the wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of the wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of the wireless communication apparatus according to the first embodiment.
  • FIG. 3 is a flowchart showing an operation example of the wireless communication apparatus according to the first embodiment.
  • FIG. 4 is a diagram illustrating an operation example of a MAC control unit according to the first embodiment.
  • FIG. 4 is a diagram illustrating an operation example of a MAC control unit according to the first embodiment.
  • FIG. 10 is a diagram illustrating an operation example of a MAC control unit according to the fourth embodiment.
  • FIG. *** Explanation of configuration *** FIG. 1 shows a configuration example of a radio communication system according to the present embodiment.
  • the wireless communication system shown in FIG. 1 includes a GW (gateway) device 200 and a plurality of wireless communication devices 101 to 105.
  • Each of the wireless communication devices 101 to 105 transmits data to the GW device 200 by wireless communication.
  • the wireless communication devices 101 to 105 are collectively referred to as a wireless communication device 100.
  • FIG. 2 shows a configuration example of the radio communication system according to the present embodiment.
  • the wireless communication system shown in FIG. 2 includes a GW apparatus 200 and a plurality of wireless communication apparatuses 110 to 151.
  • the wireless communication devices 110, 120, 130, 140, and 150 can directly perform wireless communication with the GW device 200.
  • the wireless communication devices 111, 131, 132, and 151 cannot directly perform wireless communication with the GW device 200, and in order to transmit data to the GW device 200, relaying by another wireless communication device is necessary. It is.
  • the wireless communication device 111 transmits data to the GW device 200 via the wireless communication device 110.
  • the wireless communication devices 131 and 132 transmit data to the GW device 200 via the wireless communication device 130.
  • the wireless communication device 151 transmits data to the GW device 200 via the wireless communication device 150. Also in the wireless communication system of FIG. 2, when it is not necessary to distinguish each of the wireless communication devices 110 to 151, the wireless communication devices 110 to 151 are collectively referred to as the wireless communication device 100.
  • FIG. 3 shows a hardware configuration example of the wireless communication apparatus 100 according to the present embodiment.
  • FIG. 4 shows a functional configuration example of radio communication apparatus 100 according to the present embodiment.
  • the wireless communication device 100 is a computer including a wireless interface 301, a wireless MAC processing processor 302, a sensor interface 303, a processor 304, a ROM (Read Only Memory) 305, and a RAM (Random Access Memory) 306. .
  • the wireless interface 301 is a circuit that serves as an interface with a wireless communication line.
  • the wireless interface 301 implements the sensor interface control unit 401 shown in FIG.
  • the sensor interface 303 is a circuit that serves as an interface with the sensor.
  • the sensor interface 303 receives a signal notifying a phenomenon detected by the sensor (hereinafter referred to as a sensor signal).
  • the sensor detects a phenomenon that is a target of the emergency notification and a phenomenon that is not a target of the emergency notification.
  • the wireless communication device 100 When the sensor detects a phenomenon to be an emergency notification target, the wireless communication device 100 needs to notify the notification destination device of the phenomenon as an emergency notification. On the other hand, when the sensor detects a phenomenon that is not an emergency notification target, the wireless communication device 100 notifies the notification destination device of the phenomenon as a normal application notification.
  • the phenomenon subject to emergency notification is, for example, an earthquake or a fire. Further, for example, the fact that an alarm is output by a device in the factory may be included in the phenomenon that is the subject of the emergency notification.
  • the notification destination apparatus is the GW apparatus 200 in the case of the wireless communication apparatus 101 in FIG. 1, and the wireless communication apparatus 110 in the case of the wireless communication apparatus 111 in FIG.
  • the wireless MAC processor 302 is a processor that executes the MAC controller 404 shown in FIG.
  • the processor 304 is a processor that executes the application determination unit 402 and the priority control unit 403 illustrated in FIG.
  • the wireless MAC processing processor 302 and the processor 304 are, for example, a CPU (Central Processing Unit).
  • the wireless MAC processing processor 302 and the processor 304 may be different CPUs or the same CPU.
  • the application determination unit 402, the priority control unit 403, and the MAC control unit 404 illustrated in FIG. 4 are realized by a program. Programs that implement the application determination unit 402, the priority control unit 403, and the MAC control unit 404 are stored in the ROM 305, loaded into the RAM 306, and executed by the wireless MAC processing processor 302 and the processor 304.
  • the ROM 305 stores control information and setting information necessary for controlling the wireless communication apparatus 100.
  • the RAM 306 constitutes the data management unit 405 shown in FIG.
  • the sensor interface control unit 401 controls the sensor interface 303 in FIG. 3.
  • the application determination unit 402 determines whether or not the phenomenon notified by the sensor signal is a phenomenon that is a target of an emergency notification.
  • the reception of the sensor signal by the sensor interface 303 is also referred to as the occurrence of a transmission event.
  • the case where the phenomenon that is the subject of the emergency notification is notified in the sensor signal is also referred to as the occurrence of an emergency event.
  • the priority control unit 403 sets a priority for the sensor signal. Specifically, the priority control unit 403 sets a high priority for the sensor signal for which the emergency notification is performed, and sets a priority lower than the priority for the emergency notification for the sensor notification for which the normal application notification is performed. .
  • the MAC control unit 404 generates a radio frame that is data including a sensor signal, and determines a waiting time before transmitting the radio frame. More specifically, the MAC control unit 404 determines an initial transmission waiting time, which is a waiting time before performing the initial transmission of the radio frame, using a random number from the first time width. In addition, when the initial transmission fails, the MAC control unit 404 sets a retransmission waiting time, which is a waiting time before performing retransmission of the radio frame, from the second time width shorter than the first time width. Determine using random numbers.
  • the case where the initial transmission fails is a case where the initial transmission cannot be performed by CCA (Clear Channel Attachment) or a case where the initial transmission can be performed but a response to the initial transmission cannot be received.
  • the MAC control unit 404 determines an initial transmission waiting time for each priority set by the priority control unit 403, and determines a retransmission waiting time for each priority set by the priority control unit 403.
  • the MAC control unit 404 sets the determined initial transmission waiting time or retransmission waiting time in the back-off timer.
  • the wireless frame is output to the wireless interface control unit 406.
  • the MAC control unit 404 corresponds to an initial transmission waiting time determining unit and a retransmission waiting time determining unit.
  • the operations performed by the MAC control unit 404 correspond to initial transmission wait time determination processing and retransmission wait time determination processing.
  • the data management unit 405 stores the address of the notification destination device.
  • the wireless interface control unit 406 transmits the wireless frame generated by the MAC control unit 404 to the notification destination apparatus as an emergency notification or a normal application notification.
  • the sensor interface control unit 401 receives a sensor signal from a sensor.
  • the application determination unit 402 analyzes the type of the sensor signal received by the sensor interface control unit 401 and determines a phenomenon notified by the sensor signal. Specifically, a table in which the type (identifier) of the sensor signal is associated with the phenomenon notified by the sensor signal is held in the ROM 305, and the application determination unit 402 refers to the table and uses the sensor signal. Determine the phenomenon being notified. Furthermore, the application determination unit 402 determines whether or not the phenomenon notified by the sensor signal is an emergency notification target.
  • a table describing whether or not each event is subject to emergency notification is held in the ROM 305, and the application determination unit 402 refers to the table and is notified by a sensor signal. It is determined whether or not is subject to emergency notification.
  • the application determination unit 402 outputs a sensor signal and information indicating whether or not the phenomenon notified by the sensor signal is an emergency notification target to the priority control unit 403.
  • the priority control unit 403 sets a priority for the sensor signal. That is, the priority control unit 403 sets a high priority or a highest priority for the sensor signal when the phenomenon notified by the sensor signal is a target of an emergency notification.
  • the priority control unit 403 sets the normal priority or the low priority for the sensor signal. As described above, the priority control unit 403 sets a higher priority for the emergency notification than for the normal application notification.
  • the priority control unit 403 outputs the sensor signal and information indicating the priority set for the sensor signal to the MAC control unit 404.
  • the MAC control unit 404 generates a wireless frame that is data including a sensor signal, stores the generated wireless frame in a queue for initial transmission for each priority, and waits for initial transmission using a random number. The time is determined, and the determined initial transmission waiting time is set in the initial transmission back-off timer. For example, in the case of a high priority sensor signal, the MAC control unit 404 stores the wireless frame in a high priority initial transmission queue, and determines a high priority initial transmission waiting time using a random number. The determined initial transmission waiting time for high priority is set in the initial transmission back-off timer for high priority. When the initial transmission waiting time has expired, the MAC control unit 404 extracts the radio frame from the initial transmission queue and outputs the radio frame to the radio interface control unit 406.
  • the radio interface control unit 406 performs CCA before transmitting the radio frame generated by the MAC control unit 404. As a result of the CCA, if the initial transmission of the radio frame is not possible, the radio interface control unit 406 returns the radio frame to the MAC control unit 404.
  • the MAC control unit 404 stores the radio frame that could not be transmitted for the first time by the CCA in a retransmission credit queue for each priority level, determines a retransmission waiting time using a random number, and determines the determined retransmission time. Set the transmission wait time to the retransmission backoff timer. The operation after the retransmission waiting time expires is the same as the operation after the initial transmission waiting time expires.
  • the MAC control unit 404 determines a retransmission waiting time for further retransmission, and sets the determined retransmission waiting time in the retransmission backoff timer.
  • the wireless interface control unit 406 also transmits the wireless frame that has not received the response to the MAC control unit.
  • the MAC control unit 404 stores the radio frame for which the response has not been received in a retransmission credit queue for each priority, determines a retransmission waiting time using a random number, and re-transmits the determined retransmission waiting time. Set to transmission backoff timer. The operation after the retransmission waiting time expires is the same as the operation after the initial transmission waiting time expires.
  • the MAC control unit 404 determines a retransmission waiting time for further retransmission, and sets the determined retransmission waiting time in the retransmission backoff timer. In addition, when the wireless frame can be retransmitted, but the response to the wireless frame cannot be received from the notification destination device, the MAC control unit 404 also waits for retransmission for further retransmission. And the determined retransmission waiting time is set in the retransmission back-off timer. Thereafter, each time retransmission fails, the above operation is repeated until the upper limit number of retransmissions is reached.
  • FIGS. 5 and 6 show an operation example of the wireless communication apparatus 100 compliant with IEEE 802.15.4. Note that the operation procedures shown in FIGS. 5 and 6 can be applied to the wireless communication apparatus 100 conforming to IEEE 802.15.4, and can be widely applied to the wireless communication apparatus 100 compatible with CSMA / CA.
  • step S501 When a transmission event occurs (step S501), that is, when the sensor interface control unit 401 receives a sensor signal, the application determination unit 402 determines whether the transmission event is an emergency event (step S502). . That is, the application determination unit 402 determines whether or not the phenomenon notified by the sensor signal received by the sensor interface control unit 401 is an emergency notification target.
  • the MAC control unit 404 If the transmission event is not an emergency event, the MAC control unit 404 generates a radio frame including the sensor signal, stores the radio frame in a queue for initial transmission of medium priority or low priority, and waits for initial transmission. Is set as a back-off timer (step S503). Since it is the first transmission, the MAC control unit 404 determines the initial transmission waiting time by a random number from the first time width, and sets the determined initial transmission waiting time in the back-off timer. The first time width is composed of i slots (i is an integer equal to or greater than 3) having a predetermined slot width, and the MAC control unit 404 selects one of the i slots from a random number. The time corresponding to the selected slot is determined as the initial transmission waiting time.
  • the MAC control unit 404 sets 70 milliseconds as the initial transmission waiting time in the back-off timer.
  • the wireless interface control unit 406 performs CCA (step S504) and confirms the wireless status in the wireless communication line (step S505).
  • the wireless interface control unit 406 determines that the wireless frame can be transmitted as a result of the CCA, the wireless interface control unit 406 transmits the wireless frame to the notification destination device (step S507). Then, the MAC control unit 404 returns the back-off count described later to an initial value (step S508).
  • step S505 if the surrounding wireless environment is congested as a result of CCA and the wireless interface control unit 406 determines that the wireless frame cannot be transmitted (retransmission is required), the MAC control unit 404 The off count is incremented by 1 (step S515).
  • the number of backoffs is the number of retransmissions by CCA.
  • the MAC control unit 404 determines whether or not the number of back-offs has reached the upper limit number (step S516). If the back-off number has reached the upper limit number, the MAC control unit 404 determines that the transmission has failed. Determination is made and the number of back-offs is returned to the initial value (step S508).
  • the radio frame is returned to the MAC control unit 404, and the MAC control unit 404 stores the radio frame in a retransmission priority queue of medium priority or low priority.
  • the retransmission waiting time is set in the back-off timer (S503). Since it is retransmission, the MAC control unit 404 determines a retransmission waiting time from a second time width shorter than the first time width by a random number, and sets the determined retransmission waiting time in the back-off timer. To do.
  • the second time width is composed of j slots (j is an integer equal to or larger than 2 and less than i) having a predetermined slot width, and the MAC control unit 404 uses j random numbers. Any slot is selected from among the slots, and a time corresponding to the selected slot is determined as a retransmission waiting time. For example, if the slot width is 1 millisecond and j is 50, the second time width is 50 milliseconds. Then, when the 30th slot is selected by a random number, the MAC control unit 404 sets 30 milliseconds as the initial transmission waiting time in the back-off timer. Since the processing after step S504 is as described above, a description thereof will be omitted.
  • step S502 If it is determined in step S502 that the transmission event is an emergency event, the MAC control unit 404 generates a wireless frame including the sensor signal, stores the wireless frame in a high-priority initial transmission queue, and performs initial transmission.
  • a back-off timer is set for the waiting time (step S509). Since it is the first transmission, the MAC control unit 404 determines the initial transmission waiting time by a random number from the first time width, and sets the determined initial transmission waiting time in the back-off timer. Note that the method for determining the initial transmission wait time in step S509 is the same as the method for determining the initial transmission wait time described in step S503.
  • the MAC control unit 404 may make the first time width of the high-priority wireless frame shorter than the first time width of the low-priority wireless frame. As described above, when the first time width of the low-priority wireless frame is 100 milliseconds, the MAC control unit 404 sets the first time width of the high-priority wireless frame to 60 milliseconds, for example. Seconds may be used.
  • the wireless interface control unit 406 performs CCA (step S510) and confirms the wireless status in the wireless communication line (step S511).
  • the wireless interface control unit 406 determines that the wireless frame can be transmitted as a result of the CCA, the wireless interface control unit 406 transmits the wireless frame to the notification destination device (step S513). Then, the MAC control unit 404 returns the number of backoffs to the initial value (step S514).
  • step S511 if the wireless interface control unit 406 determines that the wireless frame cannot be transmitted (retransmission is necessary) as a result of CCA, the MAC control unit 404 increments the number of backoffs by 1 (step S517).
  • the MAC control unit 404 determines whether or not the number of back-offs has reached the upper limit number (step S518). If the back-off number has reached the upper limit number, the MAC control unit 404 determines that the transmission has failed. Determination is made and the number of back-offs is returned to the initial value (step S514).
  • the radio frame is returned to the MAC control unit 404, and the MAC control unit 404 stores the radio frame in a high-priority retransmission credit queue and waits for retransmission.
  • Time is set in the back-off timer (S509).
  • the retransmission waiting time determination method in step S509 is the same as the retransmission waiting time determination method described in step S503.
  • the MAC control unit 404 may make the second time width of the high-priority wireless frame shorter than the second time width of the low-priority wireless frame.
  • the MAC control unit 404 sets the second time width of the high-priority wireless frame to, for example, 30 milliseconds. Seconds may be used. Since the process after step S510 is as described above, the description thereof is omitted.
  • FIGS. 7 and 8 describe an example in which the retransmission waiting time is set in the back-off timer because the CCA has succeeded and the radio frame has been transmitted, but no response has been received from the notification destination apparatus.
  • S601 to S603 are the same as S501 to S503 in FIG. 7
  • the radio interface control unit 406 When the back-off timer expires, the radio interface control unit 406 performs CCA, and the radio interface control unit 406 determines that transmission of a radio frame is possible (step S604). Then, the wireless interface control unit 406 transmits a wireless frame to the notification destination device (step S605).
  • the wireless interface control unit 406 determines whether a response has been received from the notification destination apparatus within a predetermined time from the transmission of the wireless frame (step S606).
  • the response from the notification destination device is, for example, MAC Ack. If the wireless interface control unit 406 has received a response within a certain period from the transmission of the wireless frame, the MAC control unit 404 returns the number of retransmissions described later to an initial value (step S608).
  • step S606 if the wireless interface control unit 406 does not receive a response within a certain period from the transmission of the wireless frame, the MAC control unit 404 increments the number of retransmissions by 1 (step S607).
  • the number of retransmissions is the number of retransmissions due to a failure to receive a response.
  • the radio frame is returned to the MAC control unit 404, and the MAC control unit 404 stores the radio frame in a medium-priority or low-priority retransmission credit queue and sets a retransmission waiting time in a back-off timer ( S603).
  • the retransmission waiting time determination method here is the same as the retransmission waiting time determination method described in step S503 in FIG. Since the processing after step S604 is as described above, the description thereof is omitted.
  • Step S609 is the same as S509 in FIG.
  • Steps S610 to S614 are the same as S604 to S608 in FIG.
  • the radio frame is returned to the MAC control unit 404.
  • the MAC control unit 404 stores the radio frame in a high-priority retransmission credit queue and backs off the retransmission waiting time.
  • the timer is set (S609).
  • the retransmission waiting time determination method here is the same as the retransmission waiting time determination method described in step S503 in FIG.
  • the MAC control unit 404 compares the number of retransmissions with the upper limit number, and when the number of retransmissions reaches the upper limit number, the retransmission of the radio frame is performed. May be canceled.
  • radio communication device 100 operates in the case of retransmission by CCA (FIG. 5 and FIG. 6) and the operation procedure in the case of retransmission due to failure in receiving a response (FIGS. 7 and 7)
  • the operation combining FIG. 7 and FIG. 8) is performed. That is, radio communication apparatus 100 performs step S606 after step S507 in FIG. 5, and if transmission fails, sets retransmission retransmission waiting time in the backoff timer in step S603 after step S607.
  • radio communication apparatus 100 performs step S612 in FIG. 8 after step S513 in FIG. 6, and if transmission fails, sets retransmission retransmission waiting time in the backoff timer in step S609 after step S613.
  • the operation of the MAC control unit 404 according to the present embodiment will be described in detail with reference to FIG.
  • the operation of the MAC control unit 404 when the CCA is successful and a radio frame is transmitted to the notification destination device but a response from the notification destination device cannot be received will be described.
  • the MAC control unit 404 manages a transmission queue 701, a high priority initial transmission queue 704, a high priority retransmission queue 702, a normal priority initial transmission queue 708, and a normal priority retransmission queue 706. To do. Further, the MAC control unit 404 includes a high priority initial transmission backoff timer 705, a high priority retransmission backoff timer 703, a normal priority initial transmission backoff timer 709, and a normal priority retransmission backoff timer. 707 is managed.
  • the MAC control unit 404 generates a radio frame including the sensor signal, and stores the generated radio frame in the transmission queue 701. Then, if the wireless frame is an emergency notification target, the MAC control unit 404 stores the wireless frame in the high priority first transmission queue 704. On the other hand, if the wireless frame is a target of normal application notification, the MAC control unit 404 stores the wireless frame in the normal priority initial transmission queue 708. In the initial transmission of the high priority wireless frame, the MAC control unit 404 sets the initial transmission waiting time in the high priority initial transmission backoff timer 705.
  • the MAC control unit 404 extracts the radio frame from the high priority initial transmission queue 704 and outputs the radio frame to the radio interface control unit 406.
  • the MAC control unit 404 sets the initial transmission waiting time in the normal priority initial transmission back-off timer 709.
  • the MAC control unit 404 extracts the radio frame from the normal priority initial transmission queue 708 and outputs the radio frame to the radio interface control unit 406.
  • the MAC control unit 404 stores the radio frame from the transmission queue 701 to the high priority retransmission queue 702 if the radio frame is an emergency notification target. On the other hand, if the radio frame is the target of normal application notification, the MAC control unit 404 stores the radio frame from the transmission queue 701 to the normal priority retransmission queue 706.
  • the MAC control unit 404 sets a retransmission waiting time in the high priority retransmission backoff timer 703.
  • the MAC control unit 404 extracts the radio frame from the high-priority retransmission queue 702 and outputs the radio frame to the radio interface control unit 406.
  • the MAC control unit 404 sets a retransmission waiting time in the normal priority retransmission back-off timer 707.
  • the MAC control unit 404 extracts the radio frame from the normal priority retransmission queue 706 and outputs the radio frame to the radio interface control unit 406.
  • the first transmission queue and the retransmission credit queue are separated, but only one queue is used if the first transmission radio frame and the retransmission radio frame can be distinguished. You may make it do.
  • the priority hierarchy is not limited to two.
  • the MAC control unit 404 manages a transmission queue 801, a high priority initial transmission queue 804, a high priority retransmission queue 802, a normal priority initial transmission queue 808, and a normal priority retransmission queue 806. To do. Further, the MAC control unit 404 includes a high priority initial transmission back-off timer 805, a high priority re-CCA back-off timer 803, a normal priority initial transmission back-off timer 809, and a normal priority re-CCA back-off timer. 807 is managed.
  • the transmission queue 801 is the same as the transmission queue 701 in FIG.
  • the high priority initial transmission queue 804 is the same as the high priority initial transmission queue 704 of FIG.
  • the high priority retransmission queue 802 is the same as the high priority retransmission queue 702 of FIG.
  • the normal priority retransmission queue 806 is the same as the normal priority retransmission queue 706 of FIG.
  • the normal priority initial transmission queue 808 is the same as the normal priority initial transmission queue 708 of FIG.
  • the high priority initial transmission backoff timer 805 is the same as the high priority initial transmission backoff timer 705 of FIG.
  • the high priority retransmission CCA back-off timer 803 is the same as the high priority retransmission back-off timer 703 of FIG.
  • the normal priority initial transmission backoff timer 809 is the same as the normal priority initial transmission backoff timer 709 of FIG.
  • the normal priority retransmission CCA back-off timer 807 is the same as the normal priority retransmission back-off timer 707 of FIG.
  • the MAC control unit 404 generates a radio frame including the sensor signal, and stores the generated radio frame in the transmission queue 801. Then, the MAC control unit 404 stores the radio frame in the high priority first transmission queue 804 if the radio frame is a target of emergency notification. On the other hand, if the wireless frame is the target of normal application notification, the MAC control unit 404 stores the wireless frame in the normal priority first transmission queue 808. In the initial transmission of the high priority radio frame, the MAC control unit 404 sets the initial transmission waiting time in the high priority initial transmission backoff timer 805.
  • the MAC control unit 404 extracts the radio frame from the high priority initial transmission queue 804 and outputs the radio frame to the radio interface control unit 406.
  • the MAC control unit 404 sets the initial transmission waiting time in the normal priority initial transmission back-off timer 809.
  • the MAC control unit 404 extracts the radio frame from the normal priority initial transmission queue 808 and outputs the radio frame to the radio interface control unit 406.
  • the CCA fails, the wireless frame is returned from the wireless interface control unit 406 to the MAC control unit 404 and stored in the transmission queue 801.
  • the MAC control unit 404 stores the radio frame from the transmission queue 801 to the high priority retransmission queue 802 if the radio frame is an emergency notification target. On the other hand, if the wireless frame is the target of normal application notification, the MAC control unit 404 stores the wireless frame from the transmission queue 801 into the normal priority retransmission queue 806. In retransmission of a high priority radio frame, the MAC control unit 404 sets a retransmission waiting time in the high priority re-CCA backoff timer 803. When the high priority re-CCA back-off timer 803 expires, the MAC control unit 404 extracts the radio frame from the high priority retransmission queue 802 and outputs the radio frame to the radio interface control unit 406.
  • the MAC control unit 404 sets a retransmission waiting time in the normal priority re-CCA back-off timer 807.
  • the MAC control unit 404 extracts the radio frame from the normal priority retransmission queue 806 and outputs the radio frame to the radio interface control unit 406.
  • FIG. 11 shows an example of the initial transmission waiting time and an example of the retransmission waiting time set when the CCA fails.
  • the wireless communication apparatus 101 determines an initial transmission waiting time 901 from the first time width using a random number. Then, after the initial transmission waiting time 901 expires, the wireless communication apparatus 101 performs CCA, succeeds in CCA, and transmits a wireless frame.
  • the wireless communication apparatus 102 determines the initial transmission waiting time 902 from the first time width using a random number. Since the initial transmission waiting time is determined by a random number, the initial transmission waiting time 901 of the wireless communication apparatus 101 and the initial transmission waiting time 902 of the wireless communication apparatus 102 are different. After the initial transmission waiting time 902 expires, the wireless communication device 102 performs CCA and fails in CCA.
  • the wireless communication apparatus 102 determines the retransmission waiting time 903 by using a random number from the second time width. After the retransmission waiting time 903 expires, CCA is performed and the CCA fails. For this reason, the wireless communication apparatus 102 further determines a retransmission waiting time 904 using a random number from the second time width. Since the retransmission waiting time is determined by a random number, the retransmission waiting time 903 and the retransmission waiting time 904 are different. In the example of FIG. 11, the wireless communication device 102 succeeds in CCA after expiration of the retransmission waiting time 904 and transmits a wireless frame to the notification destination device.
  • FIG. 12 shows an example of an initial transmission waiting time and an example of a retransmission waiting time set when reception of a response fails.
  • the wireless communication apparatus 101 determines an initial transmission waiting time 1001 using a random number from the first time width. Then, after the initial transmission waiting time 1001 expires, the wireless communication device 101 performs CCA, succeeds in CCA, and transmits a wireless frame. However, the wireless communication apparatus 101 cannot receive a response from the GW apparatus 200 that is a notification destination apparatus. For this reason, the wireless communication apparatus 101 determines the retransmission waiting time 1002 using a random number from the second time width. After the retransmission waiting time 1002 expires, CCA is performed, the CCA is successful, and a radio frame is transmitted. However, the wireless communication apparatus 101 cannot receive a response from the GW apparatus 200.
  • the wireless communication apparatus 101 further determines a retransmission waiting time 1003 by a random number from the second time width. Since the retransmission waiting time is determined by a random number, the retransmission waiting time 1002 and the retransmission waiting time 1003 are different. In the example of FIG. 12, the wireless communication device 101 succeeds in CCA after expiration of the retransmission waiting time 1003, transmits a wireless frame to the notification destination device, and receives a response from the GW device 200.
  • Embodiment 2 the example in which the MAC control unit 404 determines the retransmission waiting time based on the fixed second time width has been described.
  • the MAC control unit 404 may determine the retransmission waiting time based on the variable second time width.
  • the MAC control unit 404 may change the length of the second time width according to the communication status in the wireless communication line on which the wireless interface control unit 406 performs retransmission.
  • the MAC control unit 404 increases the second time width as the communication amount on the wireless communication line increases, that is, as the wireless communication line is congested.
  • the MAC control unit 404 prevents the second time width from exceeding the first time width.
  • This embodiment is the same as Embodiment 1 except that the second time width is variable. That is, the hardware configuration and functional configuration of radio communication apparatus 100 and the operation procedure of radio communication apparatus 100 are as described in the first embodiment.
  • the first time width is configured by i slots having a predetermined slot width
  • the second time width is configured by j slots (j ⁇ i) having the same slot width.
  • the first time width is composed of n slots (n is an integer of 2 or more) of the first slot width
  • the second time width is shorter than the first slot width. It may be composed of n slots having a slot width of 2.
  • the slot width (second slot width) of the slot 1302 constituting the second time width is shorter than the slot width (first slot width) of the slot 1301 constituting the first time width.
  • the second time width is shorter than the first time width.
  • FIG. 13 shows the second time width that is a premise of the retransmission waiting time when the CCA fails, but the second time width that is a premise of the retransmission waiting time when the response from the notification destination apparatus fails to be received.
  • the time width may be constituted by slots having a second slot width shorter than the first slot width.
  • This embodiment is the same as Embodiment 1 except that the configurations of the first time width and the second time width are different. That is, the hardware configuration and functional configuration of radio communication apparatus 100 and the operation procedure of radio communication apparatus 100 are as described in the first embodiment.
  • Embodiment 4 FIG.
  • a retransmission credit back-off timer (high-priority retransmission back-off timer 703, normal-priority retransmission back-off timer) for each of high priority and normal priority. 707), but as shown in FIG. 14, with normal priority, the retransmission credit back-off timer (normal priority retransmission back-off timer 707) may be omitted. Also in the configuration of FIG. 13, the normal priority retransmission credit back-off timer (normal priority re-CCA back-off timer 807) may be omitted.
  • the second time width is shorter than the first time width for all priorities, but the second time width is the first time width for the lowest priority. It may be made longer. That is, at the lowest priority, the probability that the retransmission waiting time becomes longer than the initial transmission waiting time may be increased. By doing so, it is possible to reduce congestion in wireless communication.
  • the operation of the wireless communication device 100 described in the first to fourth embodiments can be applied to a communication device that performs wired communication.
  • the ROM 305 stores an OS (Operating System) in addition to programs for realizing the application determination unit 402, the priority control unit 403, and the MAC control unit 404. At least a part of the OS is executed by the processor 304. When the processor 304 executes the OS, task management, memory management, file management, communication control, and the like are performed. In addition, information, data, signal values, and variable values indicating the processing results of the application determination unit 402, the priority control unit 403, and the MAC control unit 404 are stored in the RAM 306, the wireless MAC processing processor 302 or the processor 304 in the register 304 or cache. Stored in memory.
  • OS Operating System
  • a program that realizes the application determination unit 402, the priority control unit 403, and the MAC control unit 404 is stored in a portable storage medium such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. May be.
  • the “unit” of the application determination unit 402, the priority control unit 403, and the MAC control unit 404 may be read as “circuit”, “process”, “procedure”, or “processing”.
  • the wireless communication device 100 may be realized by an electronic circuit such as a logic IC (Integrated Circuit), a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array).
  • the application determination unit 402, the priority control unit 403, and the MAC control unit 404 are each realized as part of an electronic circuit.
  • the processor and the electronic circuit are also collectively referred to as a processing circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

MAC制御部(404)は、データの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定する。また、MAC制御部(404)は、初送信に失敗した場合に、データの再送信を行う前の待ち時間である再送信待ち時間を第1の時間幅よりも短い第2の時間幅の中から乱数を用いて決定する。

Description

通信装置、通信方法及び通信プログラム
 本発明は、データ送信の前に設けられる待ち時間を制御する技術に関する。
 以下では、主に無線通信における待ち時間の制御について説明する。
 IEEE802.11及びIEEE802.15.4に代表される無線通信規格では、無線通信の通信手順としてCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)が採用されている。CSMA/CA方式では、無線フレームの送信前にランダム時間の待ち時間が設定され、待ち時間が満了した後に無線フレームの送信が行われる。そして、無線フレームの送信の失敗が検出された場合には、再度待ち時間が設定され、待ち時間が満了した後に、再び無線フレームの送信が行われる。
 再送信における待ち時間は、IEEE802.15.4では、バックオフタイマの「最小設定値~最大設定値」の範囲内で再設定される(IEEE Std 802.15.4)。また、IEEE802.11では、Binary Exponential Backoff(BEB)方式により、バックオフタイマが再送信ごとに延長されることで、周囲との衝突回避の確率を高める方式がとられている(IEEE Std 802.11)。
N-BEB:New backoff algorithm for IEEE 802.11 MAC protocol<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6859627&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6859627> IEEE 802.15.4<https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf>
 警報装置のアラーム通知のような、緊急性を有するメッセージでは、送信までの時間の短縮が要求される。しかし、ノードが密集しているような環境では、無線通信の衝突が発生しやすい。無線通信の衝突が発生しやすい環境では、初送信は失敗に終わる可能性が高く、初送信が失敗に終わると再送信のための待ち時間を待った後に再送信が行われる。IEEE802.15.4では再送信では、初送信と同等の待ち時間を要する。また、IEEE802.11のBEB方式では、再送信のための待ち時間は、再送信の度に増加する。
 このように、従来技術では、無線通信が頻繁に発生する環境、または複数のノードからアラーム通知が同時に発生してしまう状況では初送信が失敗する可能性が高く、初送信が失敗すると、再送信が行われるまでに時間を要し、要求される時間内にデータ送信が完了ないという課題がある。
 本発明は、このような課題を解決することを主な目的としており、要求される時間内にデータ送信を完了できるように、初送信が失敗した場合にも早期に再送信が行われるようにすることを主な目的とする。
 本発明に係る通信装置は、
 データの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定する初送信待ち時間決定部と、
 前記初送信に失敗した場合に、データの再送信を行う前の待ち時間である再送信待ち時間を前記第1の時間幅よりも短い第2の時間幅の中から前記乱数を用いて決定する再送信待ち時間決定部とを有する。
 本発明によれば、再送信待ち時間を第1の時間幅よりも短い第2の時間幅の中から選択するため、初送信が失敗した場合にも早期に再送信が行われる可能性を高めることができる。
実施の形態1に係る無線通信システムの構成例を示す図。 実施の形態1に係る無線通信システムの別の構成例を示す図。 実施の形態1に係る無線通信装置のハードウェア構成例を示す図。 実施の形態1に係る無線通信装置の機能構成例を示す図。 実施の形態1に係る無線通信装置の動作例を示すフローチャート図。 実施の形態1に係る無線通信装置の動作例を示すフローチャート図。 実施の形態1に係る無線通信装置の動作例を示すフローチャート図。 実施の形態1に係る無線通信装置の動作例を示すフローチャート図。 実施の形態1に係るMAC制御部の動作例を示す図。 実施の形態1に係るMAC制御部の動作例を示す図。 実施の形態1に係る初送信待ち時間と再送信待ち時間の例を示す図。 実施の形態1に係る初送信待ち時間と再送信待ち時間の例を示す図。 実施の形態3に係る初送信待ち時間と再送信待ち時間の例を示す図。 実施の形態4に係るMAC制御部の動作例を示す図。
実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る無線通信システムの構成例を示す。
 図1に示す無線通信システムでは、GW(ゲートウェイ)装置200と、複数の無線通信装置101~105で構成される。
 無線通信装置101~105の各々は、GW装置200に無線通信によりデータを送信する。
 なお、無線通信装置101~105の各々を区別する必要がない場合は、無線通信装置101~105を無線通信装置100と総称する。
 図2は、本実施の形態に係る無線通信システムの構成例を示す。
 図2に示す無線通信システムでは、GW装置200と、複数の無線通信装置110~151で構成される。
 無線通信装置110、120、130、140、150は、GW装置200と直接無線通信を行うことができる。
 一方、無線通信装置111、131、132、151は、GW装置200とは直接無線通信を行うことができず、GW装置200にデータを送信するためには、他の無線通信装置による中継が必要である。
 具体的には、無線通信装置111は、無線通信装置110を経由してGW装置200にデータを送信する。
 また、無線通信装置131、132は、無線通信装置130を経由してGW装置200にデータを送信する。
 また、無線通信装置151は、無線通信装置150を経由してGW装置200にデータを送信する。
 図2の無線通信システムにおいても、無線通信装置110~151の各々を区別する必要がない場合は、無線通信装置110~151を無線通信装置100と総称する。
 図3は、本実施の形態に係る無線通信装置100のハードウェア構成例を示す。また、図4は、本実施の形態に係る無線通信装置100の機能構成例を示す。
 図3に示すように、無線通信装置100は、無線インタフェース301、無線MAC処理プロセッサ302、センサインタフェース303、プロセッサ304、ROM(Read Only Memory)305、RAM(Random Access Memory)306を備えるコンピュータである。
 無線インタフェース301は、無線通信回線とのインタフェースとなる回路である。無線インタフェース301は、図4に示すセンサインタフェース制御部401を実現する。
 センサインタフェース303は、センサとのインタフェースとなる回路である。センサインタフェース303は、センサが検知した現象を通知する信号(以下、センサ信号という)を受信する。センサは、緊急通知の対象となる現象と、緊急通知の対象とならない現象を検出する。センサが緊急通知の対象となる現象を検出した場合は、無線通信装置100は、当該現象を通知先装置に緊急通知として緊急に通知する必要がある。一方、センサが緊急通知の対象とならない現象を検出した場合は、無線通信装置100は、当該現象を通常アプリケーション通知として通知先装置に通知する。緊急通知の対象の現象は、例えば、地震や火災等である。また、例えば、工場内の機器によりアラームが出力されたことも緊急通知の対象の現象に含めてもよい。通知先装置は、図1の無線通信装置101であればGW装置200であり、図2の無線通信装置111であれば無線通信装置110である。
 無線MAC処理プロセッサ302は、図4に示すMAC制御部404を実行するプロセッサである。
 プロセッサ304は、図4に示すアプリケーション判定部402及び優先制御部403を実行するプロセッサである。
 無線MAC処理プロセッサ302及びプロセッサ304は、例えば、CPU(Central Processing Unit)である。無線MAC処理プロセッサ302及びプロセッサ304は、異なるCPUであってもよいし、同じCPUであってもよい。
 図4に示すアプリケーション判定部402、優先制御部403及びMAC制御部404はプログラムで実現される。アプリケーション判定部402、優先制御部403及びMAC制御部404を実現するプログラムは、ROM305に記憶されており、RAM306にロードされ、無線MAC処理プロセッサ302及びプロセッサ304により実行される。
 ROM305には、上記プログラムの他、無線通信装置100の制御に必要な制御情報及び設定情報が記憶されている。
 RAM306は、図4に示すデータ管理部405を構成する。
 図4において、センサインタフェース制御部401は、図3のセンサインタフェース303を制御する。
 アプリケーション判定部402は、センサインタフェース303がセンサ信号を受信した際に、センサ信号が通知する現象が緊急通知の対象の現象であるか否かを判定する。
 なお、以下では、センサインタフェース303がセンサ信号を受信したことを、送信イベントの発生ともいう。また、以下では、センサ信号において緊急通知の対象の現象が通知されている場合を、緊急イベントの発生ともいう。
 優先制御部403は、センサ信号に優先度を設定する。具体的には、優先制御部403は、緊急通知が行われるセンサ信号には高い優先度を設定し、通常アプリケーション通知が行われるセンサ通知には緊急通知の優先度よりも低い優先度を設定する。
 MAC制御部404は、センサ信号を含むデータである無線フレームを生成し、無線フレームの送信前の待ち時間を決定する。
 より具体的には、MAC制御部404は、無線フレームの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定する。また、MAC制御部404は、初送信に失敗した場合に、無線フレームの再送信を行う前の待ち時間である再送信待ち時間を第1の時間幅よりも短い第2の時間幅の中から乱数を用いて決定する。初送信に失敗した場合とは、CCA(Clear Channel Assessment)により初送信を行うことができなかった場合又は初送信を行うことができたが初送信への応答を受信できなかった場合である。
 また、MAC制御部404は、優先制御部403で設定された優先度別に、初送信待ち時間を決定し、また、優先制御部403で設定された優先度別に、再送信待ち時間を決定する。
 MAC制御部404は、決定した初送信待ち時間又は再送信待ち時間をバックオフタイマに設定する。そして、バックオフタイマが満了した際(初送信待ち時間又は再送信待ち時間が満了した際)に、無線フレームを無線インタフェース制御部406に出力する。
 なお、MAC制御部404は、初送信待ち時間決定部及び再送信待ち時間決定部に相当する。また、MAC制御部404で行われる動作は、初送信待ち時間決定処理及び再送信待ち時間決定処理に相当する。
 データ管理部405は、通知先装置のアドレスを記憶する。
 無線インタフェース制御部406は、MAC制御部404により生成された無線フレームを緊急通知又は通常アプリケーション通知として通知先装置に送信する。
***動作の説明***
 次に、本実施の形態に係る無線通信装置100の動作の概要を説明する。なお、以下に示す無線通信装置100の動作は、通信方法及び通信プログラムの例である。
 まず、センサインタフェース制御部401が、センサからセンサ信号を受信する。
 次に、アプリケーション判定部402が、センサインタフェース制御部401で受信されたセンサ信号の種別を解析し、センサ信号で通知されている現象を判別する。具体的には、センサ信号の種別(識別子)とセンサ信号で通知される現象とが対応付けられたテーブルがROM305で保持されており、アプリケーション判定部402が当該テーブルを参照して、センサ信号で通知されている現象を判別する。更に、アプリケーション判定部402は、センサ信号で通知されている現象が緊急通知の対象であるか否かを判定する。具体的には、現象ごとに緊急通知の対象となるか否かが記述されたテーブルがROM305で保持されており、アプリケーション判定部402が当該テーブルを参照して、センサ信号で通知されている現象が緊急通知の対象であるか否かを判定する。
 次に、アプリケーション判定部402は、センサ信号と、当該センサ信号で通知されている現象が緊急通知の対象であるか否かを示す情報とを優先制御部403に出力する。
 優先制御部403は、センサ信号に対して優先度を設定する。つまり、優先制御部403は、センサ信号で通知されている現象が緊急通知の対象である場合は、センサ信号に対して高優先度又は最高優先度を設定する。一方、センサ信号で通知されている現象が通常アプリケーション通知の対象である場合は、優先制御部403は、センサ信号に対して通常優先度又は低優先度を設定する。このように、優先制御部403は、緊急通知には、通常アプリケーション通知よりも高い優先度を設定するものとする。
 優先制御部403は、センサ信号と、センサ信号に設定した優先度を示す情報をMAC制御部404に出力する。
 次に、MAC制御部404は、センサ信号を含むデータである無線フレームを生成し、生成した無線フレームを優先度別の初送信用のキューに格納し、また、乱数を用いて、初送信待ち時間を決定し、決定した初送信待ち時間を初送信バックオフタイマに設定する。
 例えば、高優先度のセンサ信号であれば、MAC制御部404は、無線フレームを高優先度の初送信用のキューに格納し、乱数を用いて高優先度用の初送信待ち時間を決定し、決定した高優先度用の初送信待ち時間を高優先度用の初送信バックオフタイマに設定する。
 初送信待ち時間が満了した場合に、MAC制御部404は、無線フレームを初送信用のキューから取り出し、無線フレームを無線インタフェース制御部406に出力する。
 無線インタフェース制御部406は、MAC制御部404で生成された無線フレームを送信する前にCCAを行う。CCAの結果、無線フレームの初送信ができない場合は、無線インタフェース制御部406は、無線フレームをMAC制御部404に戻す。
 MAC制御部404は、CCAにより初送信を行うことができなかった無線フレームを優先度別の再送信用のキューに格納し、また、乱数を用いて、再送信待ち時間を決定し、決定した再送信待ち時間を再送信バックオフタイマに設定する。
 再送信待ち時間が満了した後の動作は、初送信待ち時間が満了した後の動作と同じである。CCAにより無線フレームの再送信ができない場合は、MAC制御部404は、更なる再送信のために再送信待ち時間を決定し、決定した再送信待ち時間を再送信バックオフタイマに設定する。
 無線フレームの初送信を行うことができたが、無線フレームへの応答を通知先装置から受信できなかった場合にも、無線インタフェース制御部406は、応答を受信できなかった無線フレームをMAC制御部404に戻す。
 MAC制御部404は、応答を受信できなかった無線フレームを優先度別の再送信用のキューに格納し、また、乱数を用いて、再送信待ち時間を決定し、決定した再送信待ち時間を再送信バックオフタイマに設定する。
 再送信待ち時間が満了した後の動作は、初送信待ち時間が満了した後の動作と同じである。CCAにより無線フレームの再送信ができない場合は、MAC制御部404は、更なる再送信のために再送信待ち時間を決定し、決定した再送信待ち時間を再送信バックオフタイマに設定する。
 また、無線フレームの再送信を行うことができたが、無線フレームへの応答を通知先装置から受信できなかった場合にも、MAC制御部404は、更なる再送信のために再送信待ち時間を決定し、決定した再送信待ち時間を再送信バックオフタイマに設定する。
 以降は、再送信に失敗する度に、再送信の上限回数に達するまで、上記の動作が繰り返される。
 次に、図5及び図6のフローチャートを参照して、本実施の形態に係る無線通信装置100の動作例を説明する。なお、図5及び図6のフローチャートは、IEEE802.15.4に準拠する無線通信装置100の動作例を示す。なお、図5及び図6に示す動作手順は、IEEE802.15.4に準拠する無線通信装置100にも適用可能であり、更に、CSMA/CAに対応した無線通信装置100に広く適用できる。
 送信イベントが発生した際(ステップS501)、すなわち、センサインタフェース制御部401がセンサ信号を受信した際に、アプリケーション判定部402が当該送信イベントが緊急イベントであるか否かを判定する(ステップS502)。すなわち、アプリケーション判定部402は、センサインタフェース制御部401が受信したセンサ信号で通知されている現象が緊急通知の対象であるか否かを判定する。
 送信イベントが緊急イベントではない場合は、MAC制御部404が、センサ信号を含む無線フレームを生成し、無線フレームを中優先度又は低優先度の初送信用のキューに格納し、初送信待ち時間をバックオフタイマに設定する(ステップS503)。
 初送信であるため、MAC制御部404は、第1の時間幅の中から乱数により初送信待ち時間を決定し、決定した初送信待ち時間をバックオフタイマに設定する。
 第1の時間幅は、規定のスロット幅のi個(iは3以上の整数)のスロットで構成され、MAC制御部404は、乱数によりi個のスロットの中からいずれかのスロットを選択し、選択したスロットに対応する時間を初送信待ち時間として決定する。
 例えば、スロット幅が1ミリ秒であり、iが100であれば、第1の時間幅は100ミリ秒である。そして、MAC制御部404は、乱数により70番目のスロットを選択した場合は、70ミリ秒を初送信待ち時間としてバックオフタイマに設定する。
 バックオフタイマが満了したら、無線インタフェース制御部406がCCAを実施(ステップS504)し、無線通信回線における無線状況を確認する(ステップS505)。
 CCAの結果、無線インタフェース制御部406が無線フレームの送信が可能と判定した場合は、無線インタフェース制御部406は、無線フレームを通知先装置に送信する(ステップS507)。
 そして、MAC制御部404が、後述するバックオフ回数を初期値に戻す(ステップS508)。
 一方、ステップS505において、CCAの結果、周囲の無線環境が混雑しており、無線インタフェース制御部406が無線フレームの送信ができない(再送信が必要)と判定した場合は、MAC制御部404はバックオフ回数を+1する(ステップS515)。バックオフ回数は、CCAによる再送信の回数である。
 次に、MAC制御部404は、バックオフ回数が上限回数に達したか否かを判定し(ステップS516)、バックオフ回数が上限回数に達している場合は、MAC制御部404は送信失敗と判定し、バックオフ回数を初期値に戻す(ステップS508)。
 一方、バックオフ回数が上限回数に達していない場合は、無線フレームがMAC制御部404に戻され、MAC制御部404は、無線フレームを中優先度又は低優先度の再送信用のキューに格納し、再送信待ち時間をバックオフタイマに設定する(S503)。
 再送信であるため、MAC制御部404は、第1の時間幅よりも短い第2の時間幅の中から乱数により再送信待ち時間を決定し、決定した再送信待ち時間をバックオフタイマに設定する。
 より具体的には、第2の時間幅は、規定のスロット幅のj個(jは2以上の整数であって、i未満)のスロットで構成され、MAC制御部404は、乱数によりj個のスロットの中からいずれかのスロットを選択し、選択したスロットに対応する時間を再送信待ち時間として決定する。
 例えば、スロット幅が1ミリ秒であり、jが50であれば、第2の時間幅は50ミリ秒である。そして、MAC制御部404は、乱数により30番目のスロットを選択した場合は、30ミリ秒を初送信待ち時間としてバックオフタイマに設定する。
 ステップS504以降の処理は、前述したとおりであるため、説明を省略する。
 ステップS502において、送信イベントが緊急イベントと判定された場合は、MAC制御部404が、センサ信号を含む無線フレームを生成し、無線フレームを高優先度の初送信用のキューに格納し、初送信待ち時間をバックオフタイマを設定する(ステップS509)。
 初送信であるため、MAC制御部404は、第1の時間幅の中から乱数により初送信待ち時間を決定し、決定した初送信待ち時間をバックオフタイマに設定する。
 なお、ステップS509での初送信待ち時間の決定方法は、ステップS503で説明した初送信待ち時間の決定方法と同じである。但し、MAC制御部404は、高優先度の無線フレームの第1の時間幅を低優先度の無線フレームの第1の時間幅よりも短くしてもよい。前述のように、低優先度の無線フレームの第1の時間幅が100ミリ秒である場合は、MAC制御部404は、高優先度の無線フレームの第1の時間幅を、例えば、60ミリ秒としてしてもよい。
 バックオフタイマが満了したら、無線インタフェース制御部406がCCAを実施(ステップS510)し、無線通信回線における無線状況を確認する(ステップS511)。
 CCAの結果、無線インタフェース制御部406が無線フレームの送信が可能と判定した場合は、無線インタフェース制御部406は、無線フレームを通知先装置に送信する(ステップS513)。
 そして、MAC制御部404が、バックオフ回数を初期値に戻す(ステップS514)。
 一方、ステップS511において、CCAの結果、無線インタフェース制御部406が無線フレームの送信ができない(再送信が必要)と判定した場合は、MAC制御部404はバックオフ回数を+1する(ステップS517)。
 次に、MAC制御部404は、バックオフ回数が上限回数に達したか否かを判定し(ステップS518)、バックオフ回数が上限回数に達している場合は、MAC制御部404は送信失敗と判定し、バックオフ回数を初期値に戻す(ステップS514)。
 一方、バックオフ回数が上限回数に達していない場合は、無線フレームがMAC制御部404に戻され、MAC制御部404は、無線フレームを高優先度の再送信用のキューに格納し、再送信待ち時間をバックオフタイマに設定する(S509)。
 なお、ステップS509での再送信待ち時間の決定方法は、ステップS503で説明した再送信待ち時間の決定方法と同じである。但し、MAC制御部404は、高優先度の無線フレームの第2の時間幅を低優先度の無線フレームの第2の時間幅よりも短くしてもよい。前述のように、低優先度の無線フレームの第2の時間幅が50ミリ秒である場合は、MAC制御部404は、高優先度の無線フレームの第2の時間幅を、例えば、30ミリ秒としてしてもよい。
 ステップS510以降の処理は、前述したとおりであるため、説明を省略する。
 次に、図7及び図8のフローチャートを参照して、通知先装置からの応答を受信できなかった場合の無線通信装置100の動作例を説明する。
 図5及び図6のフローチャートでは、CCAによって無線フレームができなかったために再送信待ち時間をバックオフタイマに設定する例を説明した。図7及び図8のフローチャートでは、CCAに成功し、無線フレームを送信したが、通知先装置から応答を受信できなかったために再送信待ち時間をバックオフタイマに設定する例を説明する。
 図7において、S601~S603は、図5のS501~S503と同じであるため、説明を省略する。
 バックオフタイマが満了したら、無線インタフェース制御部406がCCAを実施し、無線インタフェース制御部406が無線フレームの送信が可能と判定する(ステップS604)。
 そして、無線インタフェース制御部406は、無線フレームを通知先装置に送信する(ステップS605)。
 無線インタフェース制御部406は、無線フレームの送信から一定時間内に通知先装置から応答を受信したか否かを判定する(ステップS606)。通知先装置からの応答は、例えば、MAC Ackである。
 無線フレームの送信から一定期間内に無線インタフェース制御部406が応答を受信している場合は、MAC制御部404は、後述する再送回数を初期値に戻す(ステップS608)。
 一方、ステップS606において、無線フレームの送信から一定期間内に無線インタフェース制御部406が応答を受信しなかった場合は、MAC制御部404は再送信回数を+1する(ステップS607)。再送信回数は、応答の受信失敗による再送信の回数である。
 そして、無線フレームがMAC制御部404に戻され、MAC制御部404は、無線フレームを中優先度又は低優先度の再送信用のキューに格納し、再送信待ち時間をバックオフタイマに設定する(S603)。
 なお、ここでの再送信待ち時間の決定方法は、図5のステップS503で説明した再送信待ち時間の決定方法と同じである。
 ステップS604以降の処理は、前述したとおりであるため、説明を省略する。
 ステップS609は、図6のS509と同じであるため、説明を省略する。
 また、ステップS610~S614は、図7のS604~S608と同じであるため、説明を省略する。
 ステップS613で再送回数が+1された後、無線フレームがMAC制御部404に戻され、MAC制御部404は、無線フレームを高優先度の再送信用のキューに格納し、再送信待ち時間をバックオフタイマに設定する(S609)。
 なお、ここでの再送信待ち時間の決定方法は、図5のステップS503で説明した再送信待ち時間の決定方法と同じである。
 なお、図7及び図8では、図示を省略しているが、MAC制御部404が、再送信回数と上限回数とを比較し、再送回数が上限回数に達した場合に、無線フレームの再送信を中止するようにしてもよい。
 なお、本実施の形態では、理解を容易にするために、CCAによる再送信の場合の動作手順(図5及び図6)と、応答の受信失敗による再送信の場合の動作手順(図7及び図8)に分けて説明を行っているが、無線通信装置100は、CCAによる再送信の場合の動作手順(図5及び図6)と、応答の受信失敗による再送信の場合の動作手順(図7及び図8)を組み合わせた動作を行う。
 つまり、無線通信装置100は、図5のステップS507の後にステップS606を行い、送信失敗であれば、ステップS607の後に、ステップS603にて、再送信用待ち時間をバックオフタイマに設定する。
 同様に、無線通信装置100は、図6のステップS513の後に図8のステップS612を行い、送信失敗であれば、ステップS613の後に、ステップS609にて、再送信用待ち時間をバックオフタイマに設定する。
 次に、図9を参照して、本実施の形態に係るMAC制御部404の動作を詳細に説明する。
 以下では、CCAに成功し、無線フレームを通知先装置に送信したが、通知先装置からの応答が受信できない場合のMAC制御部404の動作を説明する。
 図9に示すように、MAC制御部404は、送信キュー701、高優先度初送信キュー704、高優先度再送信キュー702、通常優先度初送信キュー708、通常優先度再送信キュー706を管理する。
 更に、MAC制御部404は、高優先度用初送信バックオフタイマ705、高優先度用再送信バックオフタイマ703、通常優先度用初送信バックオフタイマ709、通常優先度用再送信バックオフタイマ707を管理する。
 MAC制御部404は、まず、センサ信号が含まれる無線フレームを生成し、生成した無線フレームを送信キュー701に格納する。そして、MAC制御部404は、無線フレームが緊急通知の対象であれば、無線フレームを高優先度初送信キュー704に格納する。一方、無線フレームが通常アプリケーション通知の対象であれば、MAC制御部404は、無線フレームを通常優先度初送信キュー708に格納する。
 高優先度の無線フレームの初送信では、MAC制御部404は、高優先度用初送信バックオフタイマ705に初送信待ち時間を設定する。高優先度用初送信バックオフタイマ705が満了すると、MAC制御部404は、高優先度初送信キュー704から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。通常優先度の無線フレームの初送信では、MAC制御部404は、通常優先度用初送信バックオフタイマ709に初送信待ち時間を設定する。通常優先度用初送信バックオフタイマ709が満了すると、MAC制御部404は、通常優先度初送信キュー708から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。
 CCAに成功し、無線フレームが無線インタフェース制御部406から送信されたが、通知先装置からの応答がない場合は、無線インタフェース制御部406からMAC制御部404に無線フレームが戻され、送信キュー701に格納される。
 MAC制御部404は、無線フレームが緊急通知の対象であれば、無線フレームを送信キュー701から高優先度再送信キュー702に格納する。一方、無線フレームが通常アプリケーション通知の対象であれば、MAC制御部404は、無線フレームを送信キュー701から通常優先度再送信キュー706に格納する。
 高優先度の無線フレームの再送信では、MAC制御部404は、高優先度用再送信バックオフタイマ703に再送信待ち時間を設定する。高優先度用再送信バックオフタイマ703が満了すると、MAC制御部404は、高優先度再送信キュー702から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。通常優先度の無線フレームの再送信では、MAC制御部404は、通常優先度用再送信バックオフタイマ707に再送信待ち時間を設定する。通常優先度用再送信バックオフタイマ707が満了すると、MAC制御部404は、通常優先度再送信キュー706から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。
 なお、図9では、初送信用のキューと再送信用のキューとを分けているが、初送信の無線フレームと再送信の無線フレームを区別することができるのであれば、1つのキューのみを使用するようにしてもよい。
 また、図9では、優先度の階層として、高優先度と通常優先度という二つの階層の例を示しているが、優先度の階層は二つに限らない。
 次に、図10を参照して、CCAに失敗した場合のMAC制御部404の動作例を説明する。
 図10に示すように、MAC制御部404は、送信キュー801、高優先度初送信キュー804、高優先度再送信キュー802、通常優先度初送信キュー808、通常優先度再送信キュー806を管理する。
 更に、MAC制御部404は、高優先度用初送信バックオフタイマ805、高優先度用再CCAバックオフタイマ803、通常優先度用初送信バックオフタイマ809、通常優先度用再CCAバックオフタイマ807を管理する。
 送信キュー801は、図9の送信キュー701と同じである。高優先度初送信キュー804は、図9の高優先度初送信キュー704と同じである。高優先度再送信キュー802は、図9の高優先度再送信キュー702と同じである。通常優先度再送信キュー806は、図9の通常優先度再送信キュー706と同じである。通常優先度初送信キュー808は、図9の通常優先度初送信キュー708と同じである。高優先度用初送信バックオフタイマ805は、図9の高優先度用初送信バックオフタイマ705と同じである。高優先度用再CCAバックオフタイマ803は、図9の高優先度用再送信バックオフタイマ703と同じである。通常優先度用初送信バックオフタイマ809は、図9の通常優先度用初送信バックオフタイマ709と同じである。通常優先度用再CCAバックオフタイマ807は、図9の通常優先度用再送信バックオフタイマ707と同じである。
 MAC制御部404は、まず、センサ信号が含まれる無線フレームを生成し、生成した無線フレームを送信キュー801に格納する。そして、MAC制御部404は、無線フレームが緊急通知の対象であれば、無線フレームを高優先度初送信キュー804に格納する。一方、無線フレームが通常アプリケーション通知の対象であれば、MAC制御部404は、無線フレームを通常優先度初送信キュー808に格納する。
 高優先度の無線フレームの初送信では、MAC制御部404は、高優先度用初送信バックオフタイマ805に初送信待ち時間を設定する。高優先度用初送信バックオフタイマ805が満了すると、MAC制御部404は、高優先度初送信キュー804から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。通常優先度の無線フレームの初送信では、MAC制御部404は、通常優先度用初送信バックオフタイマ809に初送信待ち時間を設定する。通常優先度用初送信バックオフタイマ809が満了すると、MAC制御部404は、通常優先度初送信キュー808から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。
 CCAに失敗した場合は、無線インタフェース制御部406からMAC制御部404に無線フレームが戻され、送信キュー801に格納される。
 MAC制御部404は、無線フレームが緊急通知の対象であれば、無線フレームを送信キュー801から高優先度再送信キュー802に格納する。一方、無線フレームが通常アプリケーション通知の対象であれば、MAC制御部404は、無線フレームを送信キュー801から通常優先度再送信キュー806に格納する。
 高優先度の無線フレームの再送信では、MAC制御部404は、高優先度用再CCAバックオフタイマ803に再送信待ち時間を設定する。高優先度用再CCAバックオフタイマ803が満了すると、MAC制御部404は、高優先度再送信キュー802から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。通常優先度の無線フレームの再送信では、MAC制御部404は、通常優先度用再CCAバックオフタイマ807に再送信待ち時間を設定する。通常優先度用再CCAバックオフタイマ807が満了すると、MAC制御部404は、通常優先度再送信キュー806から無線フレームを取り出し、無線インタフェース制御部406に無線フレームを出力する。
 図11は、初送信待ち時間の例と、CCAに失敗した場合に設定される再送信待ち時間の例を示す。
 図11において、無線通信装置101は、第1の時間幅から乱数により初送信待ち時間901を決定する。そして、無線通信装置101は、初送信待ち時間901が満了した後、CCAを実施し、CCAに成功し、無線フレームを送信している。
 無線通信装置102は、第1の時間幅から乱数により初送信待ち時間902を決定する。初送信待ち時間は乱数により決定されるので、無線通信装置101の初送信待ち時間901と無線通信装置102の初送信待ち時間902が異なっている。
 無線通信装置102は、初送信待ち時間902が満了した後、CCAを実施し、CCAに失敗する。このため、無線通信装置102は、第2の時間幅から乱数により再送信待ち時間903を決定する。再送信待ち時間903が満了した後、CCAを実施し、CCAに失敗する。このため、無線通信装置102は、更に、第2の時間幅から乱数により再送信待ち時間904を決定する。再送信待ち時間は乱数により決定されるので、再送信待ち時間903と再送信待ち時間904が異なっている。図11の例では、無線通信装置102は、再送信待ち時間904の満了後のCCAに成功し、無線フレームを通知先装置に送信する。
 図12は、初送信待ち時間の例と、応答の受信に失敗した場合に設定される再送信待ち時間の例を示す。
 図12において、無線通信装置101は、第1の時間幅から乱数により初送信待ち時間1001を決定する。そして、無線通信装置101は、初送信待ち時間1001が満了した後、CCAを実施し、CCAに成功し、無線フレームを送信する。しかしながら、無線通信装置101は、通知先装置であるGW装置200からの応答を受信できない。
 このため、無線通信装置101は、第2の時間幅から乱数により再送信待ち時間1002を決定する。再送信待ち時間1002が満了した後、CCAを実施し、CCAに成功し、無線フレームを送信する。しかしながら、無線通信装置101は、GW装置200からの応答を受信できない。このため、無線通信装置101は、更に、第2の時間幅から乱数により再送信待ち時間1003を決定する。再送信待ち時間は乱数により決定されるので、再送信待ち時間1002と再送信待ち時間1003が異なっている。図12の例では、無線通信装置101は、再送信待ち時間1003の満了後のCCAに成功し、無線フレームを通知先装置に送信し、GW装置200からの応答を受信する。
***実施の形態の効果の説明***
 本実施の形態によれば、再送信待ち時間を第1の時間幅よりも短い第2の時間幅の中から選択するため、初送信が失敗した場合にも早期に再送信が行われる可能性を高めることができる。
 従って、複数の無線通信装置において緊急通知が同時に発生しうる状況下においても、全ての無線通信装置からの緊急通知の送信を、期待される要求時間で完了することができる。
実施の形態2.
 実施の形態1では、MAC制御部404が、固定値の第2の時間幅に基づいて再送信待ち時間を決定する例を説明した。
 これに代えて、MAC制御部404が、可変値の第2の時間幅に基づいて再送信待ち時間を決定するようにしてもよい。
 例えば、MAC制御部404は、無線インタフェース制御部406が再送信を行う無線通信回線における通信状況に応じて、第2の時間幅の長さを変化させてもよい。
 具体的には、MAC制御部404は、無線通信回線における通信量が多い程、つまり、無線通信回線が混雑している程、第2の時間幅を長くする。
 但し、MAC制御部404は、第2の時間幅が第1の時間幅を超えないようにする。
 本実施の形態では、第2の時間幅を可変とすることを除いては、実施の形態1と同じである。つまり、無線通信装置100のハードウェア構成、機能構成、無線通信装置100の動作手順は、実施の形態1に示した通りである。
実施の形態3.
 実施の形態1では、第1の時間幅が規定のスロット幅のi個のスロットで構成され、第2の時間幅が同じスロット幅のj個(j<i)のスロットで構成されている例を説明した。
 これに代えて、第1の時間幅が、第1のスロット幅のn(nは2以上の整数)個のスロットで構成され、第2の時間幅が、第1のスロット幅よりも短い第2のスロット幅のn個のスロットで構成されていてもよい。
 図13は、本実施の形態に係る第1の時間幅と、第2の時間幅の例を示す。
 図13では、n=10である。つまり、第1の時間幅と第2の時間幅は、それぞれ10個のスロットで構成される。
 しかし、第2の時間幅を構成するスロット1302のスロット幅(第2のスロット幅)は、第1の時間幅を構成するスロット1301のスロット幅(第1のスロット幅)よりも短い。
 このため、第2の時間幅は、第1の時間幅よりも短い。
 本実施の形態によれば、第2の時間幅のスロット幅を第1の時間幅のスロット幅よりも短くすることで、無線フレームの再送信の際のCCAに失敗する確率(他の無線通信装置100と衝突する確率)を低減することができる。
 また、図13では、CCA失敗時の再送信待ち時間の前提となる第2の時間幅を示しているが、通知先装置からの応答の受信失敗時の再送信待ち時間の前提となる第2の時間幅も、図13と同様に、第1のスロット幅よりも短い第2のスロット幅のスロットで構成されていてもよい。
 本実施の形態では、第1の時間幅及び第2の時間幅の構成が異なる点を除いては、実施の形態1と同じである。つまり、無線通信装置100のハードウェア構成、機能構成、無線通信装置100の動作手順は、実施の形態1に示した通りである。
実施の形態4.
 実施の形態1では、図9に示すように、高優先度及び通常優先度の各々で再送信用のバックオフタイマ(高優先度用再送信バックオフタイマ703、通常優先度用再送信バックオフタイマ707)を設けているが、図14に示すように、通常優先度では、再送信用のバックオフタイマ(通常優先度用再送信バックオフタイマ707)を省略してもよい。
 また、図13の構成においても、通常優先度の再送信用のバックオフタイマ(通常優先度用再CCAバックオフタイマ807)を省略してもよい。
 また、実施の形態1では、全ての優先度で、第2の時間幅を第1の時間幅よりも短くしているが、最低の優先度では、第2の時間幅を第1の時間幅よりも長くするようにしてもよい。つまり、最低の優先度では、初送信待ち時間よりも再送信待ち時間が長くなる確率が高くなるようにしてもよい。
 このようにすることで、無線通信の混雑緩和を図ることができる。
 なお、実施の形態1~4では、無線通信装置100について説明したが、実施の形態1~4で説明した無線通信装置100の動作を、有線通信を行う通信装置に適用することができる。
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、2つ以上を組み合わせて実施しても構わない。
 あるいは、これらの実施の形態のうち、1つを部分的に実施しても構わない。
 あるいは、これらの実施の形態のうち、2つ以上を部分的に組み合わせて実施しても構わない。
 なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。
***ハードウェア構成の説明***
 最後に、無線通信装置100のハードウェア構成の補足説明を行う。
 ROM305には、アプリケーション判定部402、優先制御部403及びMAC制御部404を実現するプログラムの他、OS(Operating System)も記憶されている。
 そして、OSの少なくとも一部がプロセッサ304により実行される。
 プロセッサ304がOSを実行することで、タスク管理、メモリ管理、ファイル管理、通信制御等が行われる。
 また、アプリケーション判定部402、優先制御部403及びMAC制御部404の処理の結果を示す情報やデータや信号値や変数値が、RAM306、又は、無線MAC処理プロセッサ302又はプロセッサ304内のレジスタ又はキャッシュメモリに記憶される。
 また、アプリケーション判定部402、優先制御部403及びMAC制御部404を実現するプログラムは、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD等の可搬記憶媒体に記憶されてもよい。
 また、アプリケーション判定部402、優先制御部403及びMAC制御部404の「部」を、「回路」又は「工程」又は「手順」又は「処理」に読み替えてもよい。
 また、無線通信装置100は、ロジックIC(Integrated Circuit)、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)といった電子回路により実現されてもよい。
 この場合は、アプリケーション判定部402、優先制御部403及びMAC制御部404は、それぞれ電子回路の一部として実現される。
 なお、プロセッサ及び上記の電子回路を総称してプロセッシングサーキットリーともいう。
 100 無線通信装置、200 GW装置、301 無線インタフェース、302 無線MAC処理プロセッサ、303 センサインタフェース、304 プロセッサ、305 ROM、306 RAM、401 センサインタフェース制御部、402 アプリケーション判定部、403 優先制御部、404 MAC制御部、405 データ管理部、406 無線インタフェース制御部、701 送信キュー、702 高優先度再送信キュー、703 高優先度用再送信バックオフタイマ、704 高優先度初送信キュー、705 高優先度用初送信バックオフタイマ、706 通常優先度再送信キュー、707 通常優先度用再送信バックオフタイマ、708 通常優先度初送信キュー、709 通常優先度用初送信バックオフタイマ、801 送信キュー、802 高優先度再送信キュー、803 高優先度用再CCAバックオフタイマ、804 高優先度初送信キュー、805 高優先度用初送信バックオフタイマ、806 通常優先度再送信キュー、807 通常優先度用再CCAバックオフタイマ、808 通常優先度初送信キュー、809 通常優先度用初送信バックオフタイマ。

Claims (11)

  1.  データの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定する初送信待ち時間決定部と、
     前記初送信に失敗した場合に、データの再送信を行う前の待ち時間である再送信待ち時間を前記第1の時間幅よりも短い第2の時間幅の中から前記乱数を用いて決定する再送信待ち時間決定部とを有する通信装置。
  2.  前記再送信待ち時間決定部は、
     前記初送信を行うことができなかった場合及び前記初送信を行うことができたが前記初送信への応答を受信できなかった場合の少なくともいずれかにて、前記再送信待ち時間を決定する請求項1に記載の通信装置。
  3.  前記再送信待ち時間決定部は、
     前記再送信に失敗した場合に、更なる再送信を行う前の待ち時間を前記第2の時間幅の中から前記乱数を用いて決定する請求項1に記載の通信装置。
  4.  前記再送信待ち時間決定部は、
     前記再送信を行うことができなかった場合及び前記再送信を行うことができたが前記再送信への応答を受信できなかった場合の少なくともいずれかにて、前記更なる再送信を行う前の待ち時間を決定する請求項3に記載の通信装置。
  5.  前記再送信待ち時間決定部は、
     前記通信装置が前記再送信を行う通信回線における通信状況に応じて、前記第2の時間幅の長さを変化させる請求項1に記載の通信装置。
  6.  前記再送信待ち時間決定部は、
     前記通信回線における通信量が多い程、前記第2の時間幅を長くする請求項5に記載の通信装置。
  7.  前記初送信待ち時間決定部は、
     各々が第1のスロット幅のn(nは2以上の整数)個のスロットで構成される前記第1の時間幅の中から前記乱数を用いて、前記初送信待ち時間を決定し、
     前記再送信待ち時間決定部は、
     各々が前記第1のスロット幅よりも短い第2のスロット幅のn個のスロットで構成される前記第2の時間幅の中から前記乱数を用いて、前記再送信待ち時間を決定する請求項1に記載の通信装置。
  8.  前記初送信待ち時間決定部は、
     データの優先度別に、前記初送信待ち時間を決定し、
     前記再送信待ち時間決定部は、
     前記優先度別に、前記再送信待ち時間を決定する請求項1に記載の通信装置。
  9.  前記通信装置は、無線通信装置である請求項1に記載の通信装置。
  10.  コンピュータが、データの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定し、
     前記コンピュータが、前記初送信に失敗した場合に、データの再送信を行う前の待ち時間である再送信待ち時間を前記第1の時間幅よりも短い第2の時間幅の中から前記乱数を用いて決定する通信方法。
  11.  データの初送信を行う前の待ち時間である初送信待ち時間を第1の時間幅の中から乱数を用いて決定する初送信待ち時間決定処理と、
     前記初送信に失敗した場合に、データの再送信を行う前の待ち時間である再送信待ち時間を前記第1の時間幅よりも短い第2の時間幅の中から前記乱数を用いて決定する再送信待ち時間決定処理とをコンピュータに実行させる通信プログラム。
PCT/JP2016/055117 2016-02-22 2016-02-22 通信装置、通信方法及び通信プログラム WO2017145248A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/055117 WO2017145248A1 (ja) 2016-02-22 2016-02-22 通信装置、通信方法及び通信プログラム
US16/066,644 US20190342914A1 (en) 2016-02-22 2016-02-22 Communication apparatus, communication method, and computer readable medium
EP16891407.5A EP3399790B1 (en) 2016-02-22 2016-02-22 Communication apparatus, communication method, and communication program
CN201680059665.7A CN108141788B (zh) 2016-02-22 2016-02-22 通信装置、通信方法和计算机能读取的记录介质
JP2016543253A JP6026067B1 (ja) 2016-02-22 2016-02-22 通信装置、通信方法及び通信プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055117 WO2017145248A1 (ja) 2016-02-22 2016-02-22 通信装置、通信方法及び通信プログラム

Publications (1)

Publication Number Publication Date
WO2017145248A1 true WO2017145248A1 (ja) 2017-08-31

Family

ID=57326671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055117 WO2017145248A1 (ja) 2016-02-22 2016-02-22 通信装置、通信方法及び通信プログラム

Country Status (5)

Country Link
US (1) US20190342914A1 (ja)
EP (1) EP3399790B1 (ja)
JP (1) JP6026067B1 (ja)
CN (1) CN108141788B (ja)
WO (1) WO2017145248A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536536A (ja) * 2019-06-18 2022-08-17 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2834240C (en) 2011-04-29 2017-08-15 Harnischfeger Technologies, Inc. Controlling a digging operation of an industrial machine
CN109195128B (zh) * 2018-08-24 2023-09-22 江西环保股份有限公司 利用无线检测终端的水污染监测方法及系统
US10820349B2 (en) * 2018-12-20 2020-10-27 Autonomous Roadway Intelligence, Llc Wireless message collision avoidance with high throughput

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238735A (ja) * 1989-03-13 1990-09-21 Nippon Telegr & Teleph Corp <Ntt> 無線通信信号伝送方式
JPH089462A (ja) * 1994-06-20 1996-01-12 Toshiba Corp Asapメッセージ通信方式
WO2005119969A1 (ja) * 2004-06-02 2005-12-15 Matsushita Electric Industrial Co., Ltd. 無線伝送方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353287A (en) * 1992-03-25 1994-10-04 Alcatel Network Systems, Inc. Local area network with message priority
WO2002037754A2 (en) * 2000-11-03 2002-05-10 At & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
US7570656B2 (en) * 2001-06-18 2009-08-04 Yitran Communications Ltd. Channel access method for powerline carrier based media access control protocol
US7539168B2 (en) * 2003-02-03 2009-05-26 Avaya Inc. Emergency call handling in contention-based wireless local-area networks
CN101442396A (zh) * 2004-06-02 2009-05-27 松下电器产业株式会社 无线传送方法
US20070110092A1 (en) * 2005-05-13 2007-05-17 Texas Instruments Incorporated System and method to support priority in wireless LAN mesh networks
JP2012094976A (ja) * 2010-10-25 2012-05-17 Mitsubishi Electric Corp 無線通信システムおよび無線制御方法
CN103812791B (zh) * 2012-11-14 2017-07-04 电信科学技术研究院 一种数据包发送方法及装置
US8837515B1 (en) * 2013-06-06 2014-09-16 Futurewei Technologies, Inc. System and method for collision resolution
CN105163391B (zh) * 2015-09-11 2018-11-23 小米科技有限责任公司 数据传输方法、终端及无线访问接入点

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238735A (ja) * 1989-03-13 1990-09-21 Nippon Telegr & Teleph Corp <Ntt> 無線通信信号伝送方式
JPH089462A (ja) * 1994-06-20 1996-01-12 Toshiba Corp Asapメッセージ通信方式
WO2005119969A1 (ja) * 2004-06-02 2005-12-15 Matsushita Electric Industrial Co., Ltd. 無線伝送方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022536536A (ja) * 2019-06-18 2022-08-17 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム
JP7334804B2 (ja) 2019-06-18 2023-08-29 ソニーグループ株式会社 リアルタイムアプリケーションのための即時再送スキーム

Also Published As

Publication number Publication date
EP3399790B1 (en) 2020-08-12
JP6026067B1 (ja) 2016-11-16
EP3399790A4 (en) 2018-12-19
JPWO2017145248A1 (ja) 2018-03-01
CN108141788A (zh) 2018-06-08
US20190342914A1 (en) 2019-11-07
CN108141788B (zh) 2019-11-05
EP3399790A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6026067B1 (ja) 通信装置、通信方法及び通信プログラム
US10051647B2 (en) Data streams with different priorities in contention-based systems
JP6357537B2 (ja) リソース利用制御方法および無線装置
JP2014504461A (ja) マシン間アプリケーションベース輻輳制御のシステム及び方法
JP6546283B2 (ja) 無線ネットワークにおけるリソース割り当て
JP2016208193A (ja) 基地局及び通信制御方法
JP5708102B2 (ja) 無線通信端末装置及び無線通信端末装置制御方法
US8725827B2 (en) Data communication system and data communication apparatus in a token passing system with improved recovery
EP3393085B1 (en) Method and device for time sequence data detection
US11025551B2 (en) Weighted fair queueing using severity-based window in reliable packet delivery network
WO2018014552A1 (zh) 用于数据传输的方法和装置
JP2014204443A (ja) コンテンション・アクセス・ネットワーク向けの輻輳制御の方法
JP2011035600A (ja) 無線通信システム
JP6406559B2 (ja) 通信装置、通信方法、およびプログラム
US10003470B2 (en) Method and terminal for transmitting and receiving data
US20160381141A1 (en) Communication method between terminals and terminal
JP4563210B2 (ja) 通信制御方法、通信ノード、及び通信システム
WO2017075857A1 (zh) 信息传输的方法、终端和基站
US20190059017A1 (en) Communications resource control by a network node
JP6673860B2 (ja) 無線通信システム、無線通信方法及び無線通信装置
EP4346182A1 (en) Data sending method and communication device
JP7392110B2 (ja) コンテンションウィンドウ維持方法、及びデバイス
JPH1084343A (ja) パケット通信装置及び通信制御方法
JP6534017B2 (ja) 通信システム、通信装置、及び、通信システムの制御方法
JP2005184863A (ja) パケット通信装置及び通信制御方法及びアクセスポイント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016543253

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016891407

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891407

Country of ref document: EP

Effective date: 20180730

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891407

Country of ref document: EP

Kind code of ref document: A1