WO2017143596A1 - 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人 - Google Patents

弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人 Download PDF

Info

Publication number
WO2017143596A1
WO2017143596A1 PCT/CN2016/074730 CN2016074730W WO2017143596A1 WO 2017143596 A1 WO2017143596 A1 WO 2017143596A1 CN 2016074730 W CN2016074730 W CN 2016074730W WO 2017143596 A1 WO2017143596 A1 WO 2017143596A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed measuring
marble
light
measuring tube
sensing element
Prior art date
Application number
PCT/CN2016/074730
Other languages
English (en)
French (fr)
Inventor
韩家斌
苗向鹏
包玉奇
贝世猛
朱志龙
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680002471.3A priority Critical patent/CN107087425A/zh
Priority to PCT/CN2016/074730 priority patent/WO2017143596A1/zh
Publication of WO2017143596A1 publication Critical patent/WO2017143596A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/80Devices characterised by the determination of the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/64Devices characterised by the determination of the time taken to traverse a fixed distance
    • G01P3/68Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light
    • G01P3/685Devices characterised by the determination of the time taken to traverse a fixed distance using optical means, i.e. using infrared, visible, or ultraviolet light for projectile velocity measurements

Definitions

  • the invention relates to the technical field of robot parts, in particular to a marble launcher and a muzzle speed measuring device thereof, and a robot using the marble launcher.
  • each robot includes a main body and a marble launcher mounted on the main body.
  • the marble launcher includes a launching system for launching a BB bomb, a golf ball, or the like.
  • the speed at which the launching system launches the ball is very important for the control of the game.
  • the range tempometer includes two speed plates mounted on the base, two infrared ray sensors and a timer. Wherein, the two speed measuring plates are spaced apart by a predetermined distance and arranged along the gravity direction, and each of the speed measuring boards is provided with a through hole for the bullet to pass through. Two infrared ray sensors are respectively disposed at two through hole positions for sensing whether the bullet passes through the corresponding through hole.
  • the timer is electrically connected to two infrared ray sensors to record the time difference between the bullet passing through the two infrared ray sensors. Finally, the flight speed of the bullet is calculated based on the recorded time difference.
  • the existing range speedometer has a complicated structure, is heavy in weight, cannot move flexibly, and can only be used to test the speed of a target in a bullet. Therefore, it cannot be directly applied to a ballistic launcher in a robot confrontation game.
  • the initial velocity of the launched pinball is measured in real time.
  • the object of the present invention is to provide a marble launcher and a muzzle velocity measuring device thereof, which use the robot of the marble launcher to solve the technical problem that the prior art range finder cannot measure the initial velocity of the marble in real time.
  • the present invention provides the following technical solutions:
  • a muzzle velocity measuring device for a marble launcher comprising: a first sensing element a second sensing element, a controller, and a tachometer for the passage of the pachinko ball;
  • the inlet end of the speed measuring tube is fixed to the muzzle of the launching system of the marble launcher;
  • the first sensing element and the second sensing element are disposed along a channel direction of the speed measuring tube and are spaced apart by a preset distance;
  • the first sensing element is configured to detect whether a marble ball passes through a first position of the speed measuring tube, and the second sensing element is configured to detect whether a marble ball passes through a second position of the speed measuring tube;
  • the controller is electrically connected to the first inductive element and the second inductive element for recording a time difference between the first position and the second position of the pachinko ball, and calculating the initial of the pachinko ball according to the time difference speed.
  • a ball launcher comprising: a launching system and a muzzle speed measuring device;
  • the muzzle velocity measuring device comprises: a first sensing element, a second sensing element, a controller and a speed measuring tube for the ball to pass through;
  • the inlet end of the speed measuring tube is fixed to the muzzle of the launching system
  • the first sensing element and the second sensing element are disposed along a channel direction of the speed measuring tube and are spaced apart by a preset distance;
  • the first sensing element is configured to detect whether a marble ball passes through a first position of the speed measuring tube, and the second sensing element is configured to detect whether a marble ball passes through a second position of the speed measuring tube;
  • the controller is electrically connected to the first inductive element and the second inductive element for recording a time difference between the first position and the second position of the pachinko ball, and calculating the initial of the pachinko ball according to the time difference speed.
  • a third aspect provides a robot using a marble launcher, comprising: a main body and a marble launcher mounted on the main body; wherein the marble launcher comprises: a launching system and a muzzle speed measuring device;
  • the muzzle speed measuring device includes: a first sensing element, a second sensing element, a controller, and a tachometer for supplying a pachinko ball;
  • the inlet end of the speed measuring tube is fixed to the muzzle of the launching system
  • the first sensing element and the second sensing element are disposed along a channel direction of the speed measuring tube and are spaced apart by a preset distance;
  • the first sensing element is configured to detect whether a marble ball passes through a first position of the speed measuring tube, and the second sensing element is configured to detect whether a marble ball passes through a second position of the speed measuring tube;
  • the controller is electrically connected to the first inductive element and the second inductive element for recording a time difference between the first position and the second position of the pachinko ball, and calculating the initial of the pachinko ball according to the time difference speed.
  • the marble launcher and the muzzle speed measuring device provided by the invention adopt a robot of a marble launcher, and can set a speed measuring tube which can be fixed with the muzzle of the launching system of the marble launcher, so that the passing speed can be passed through the marble ball
  • the time difference between the two sensing elements having the preset distance is triggered to calculate the initial velocity of the marble after being emitted from the transmitting system.
  • the muzzle speed measuring device of the embodiment not only has a very simple structure, but also can follow the movement of the muzzle of the marble launcher, and can realize the real-time measurement of the initial velocity of the marble ball flexibly and conveniently.
  • FIG. 1 is a schematic diagram of the principle of a muzzle velocity measuring device according to an embodiment of the present invention
  • Figure 2 is a schematic structural view of the muzzle speed measuring device of Figure 1;
  • Figure 3 is a front elevational view of the muzzle speed measuring device of Figure 2;
  • Figure 4 is a plan view of the muzzle speed measuring device of Figure 2;
  • Figure 5 is a left side view of the muzzle speed measuring device of Figure 2;
  • FIG. 6 is a schematic structural view of a circuit board after the muzzle speed measuring device of FIG. 2 is removed from the outer casing;
  • Figure 7 is a schematic view showing the structure of the circuit board of Figure 6 in another direction of observation;
  • Figure 8 is a bottom plan view of the circuit board structure of Figure 7;
  • Figure 9 is a front elevational view showing the structure of the circuit board of Figure 7;
  • Figure 10 is a top plan view of the circuit board structure of Figure 7.
  • the first sensing element 31, a light emitting diode
  • first and second are used for descriptive purposes only and are not to be understood as indicating or implying a sequential relationship, relative importance, or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; may be directly connected, or may be indirectly connected through an intermediate medium, may be the internal communication of two elements or the interaction of two elements, unless explicitly defined otherwise.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature may be "above”, “above” and “above” the second feature.
  • the feature is directly above or above the second feature, or merely indicates that the first feature is at a higher level than the second feature.
  • the first feature "below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • FIG. 1 is a schematic view of the muzzle velocity measuring device provided in the embodiment
  • FIG. 2 is a schematic structural view of the muzzle velocity measuring device of FIG. 1
  • FIG. 3 is a front view of the muzzle velocity measuring device of FIG. 2
  • Fig. 5 is a left side view of the muzzle speed measuring device of Fig. 2.
  • the muzzle speed measuring device includes: a first sensing element 3, a second sensing element 6, a controller 7, and a tachometer 1 for the ball 5 to pass through.
  • the speed measuring tube 1 is used for the passage of the marble ball 5 emitted from the launching system of the marble launcher, and the inlet end 11 of the speed measuring tube 1 is used for fixed connection with the muzzle of the launching system of the marble launcher.
  • the ball 5 is ejected from the muzzle of the launching system, enters the passage in the tachometer 1 from the inlet of the tachometer 1, and the tachometer 1 is ejected from the outlet of the tachometer 1.
  • the pachinko ball 5 emitted by the launching system of the marble launcher may be a BB bomb, a golf ball or a rubber bullet.
  • the speed measuring tube 1 is not specifically limited, and only needs to have a passage through which the bullet can pass. Therefore, the speed measuring tube 1 can have any appearance shape.
  • the speed measuring tube 1 may be composed of two spaced-apart side walls 19, or may be composed of a top wall 17 and two side walls 19 connected under the top wall 17 and spaced apart.
  • the speed measuring tube 1 It may also be constituted by a top wall 17, a bottom wall 15, and two spaced apart side walls 19 connecting the top wall 17 and the bottom wall 15, or the speed measuring tube 1 may be constituted by a cylindrical hollow tube. From the above description, it will be apparent to those skilled in the art that the speed measuring tube 1 has a straight passage through which the pinball 5 passes.
  • the speed measuring tube 1 may be a rectangular parallelepiped having a hollow passage.
  • protrusions, ridges, pits or grooves or the like may be formed on the outer wall of the rectangular parallelepiped.
  • the speed measuring tube 1 and the muzzle of the transmitting system may be directly connected or indirectly connected, for example, through the connecting member 8.
  • the connector 8 is disposed at The outlet end 13 of the tachometer 1 is connected, and the connector 8 is also connected to the muzzle of the launching system.
  • the connecting member 8 also has a connecting passage connecting the inlet of the tachometer 1 and the outlet of the muzzle. That is, one end of the connecting member 8 is connected to the tachometer tube 1 and the other end is used to connect the muzzle of the launching system.
  • the connection manner of the connecting member 8 and the tachometer tube 1 and the connecting member 8 and the muzzle is not specifically limited.
  • the connecting member 8 may be fixed to the inlet end 11 of the tachometer 1 or integrated with the tachometer 1.
  • the connecting piece 8 and the muzzle can be connected by a snap connection or by a screw connection.
  • the length of the speed measuring tube 1 can also be reasonably set according to actual needs to meet the requirement of measuring the speed of different pinballs 5.
  • a speed measuring tube 1 having a preset length is provided so that the bullet can fly in the speed measuring tube 1 for a sufficient time to improve the accuracy of the speed measurement.
  • the first sensing element 3 is configured to detect whether the pachinko ball 5 passes through the first position of the tachometer tube 1 and is disposed on the tachometer tube 1 along the pipe direction of the tachometer tube 1.
  • the mounting position of the first sensing element 3 at the speed measuring tube 1 is not specifically limited, and it may be disposed at the inlet end 11, the outlet end 13 or the middle portion of the speed measuring tube 1, which may be disposed at the speed measuring tube.
  • the type of the first inductive element 3 is not particularly limited, and it may be an infrared photosensor, a laser sensor, or a radar sensor.
  • the first position of the speed measuring tube is not specifically limited, and those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 as the first position according to actual needs.
  • the second sensing element 6 is configured to detect whether the pachinko ball 5 passes through the second position of the tachometer tube 1, which is disposed along the pipe direction of the tachometer tube 1 and is spaced apart from the first inductive element 3 by a predetermined distance.
  • the position of the first sensing element 3 in this embodiment is not otherwise limited.
  • the type of the second inductive element 6 is not particularly limited in this embodiment, and it may also be an infrared photosensor, a laser sensor or a radar sensor.
  • the first inductive element 3 and the second inductive element 6 use the same type of inductive element, for example using an infrared photosensor.
  • the first position of the speed measuring tube is not specifically limited, and those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 that is different from the first position according to actual needs. Two locations.
  • the first position refers to the cross section of the tachometer tube 1 at the first inductive element 3
  • the second position refers to the cross section of the tachometer tube 1 at the second inductive element 6.
  • the first inductive element 3 is disposed adjacent to the outlet end 13 of the tachometer 1, and correspondingly, the second inductive element 6 is disposed adjacent the inlet end 11 of the tachometer 1.
  • the first sense The component 3 can also be placed close to the inlet end 11 of the tachometer 1, and correspondingly the second inductive element 6 is placed close to the outlet end 13 of the tachometer 1.
  • the first inductive element 3 can be placed on the side close to the outlet end 13 and the second inductive element 6 can be placed on the side of the inlet end 11, thereby reducing the height of the tachometer 1 to facilitate the aiming of the marble emitter.
  • the controller 7 is electrically connected to the first inductive element 3 and the second inductive element 6 for recording the time difference of the pachinko ball 5 passing through the second position and the first position, and calculating the time when the pachinko ball 5 is emitted from the transmitting system according to the time difference The initial speed.
  • the structure and type of the controller 7 are not specifically limited, and may be an integrated circuit board, a chip or software, or may be a collection of several circuits or several functional modules.
  • the controller 7 can be configured as an integrated circuit including a timing circuit, a calculation circuit, clocked by a timing circuit, and the initial speed is calculated by the calculation circuit.
  • the controller 7 can be set to include a set of timing functions, a set of calculation functions, a timing by a timing program, and a calculation by a calculation program.
  • the timing can be performed by reading the system time of the CPU, or it can be performed by direct timing.
  • the electrical connection manner of the controller 7 and the first inductive component 3 and the second inductive component 6 is not specifically limited in this embodiment, and the electrical connection should be explained in a broad sense, which may be through a wire connection, or may be Through signal connections, such as wifi signals, Bluetooth signals or GPRS signals.
  • the pachinko ball 5 is ejected from the launching system of the pinball launcher, into the duct of the tachometer 1 from the inlet of the tachometer 1 of the muzzle speed measuring device, and then passes through the second position of the second inductive element 6 That is, when the pachinko ball 5 flies to the sensing position of the second inductive element 6, the second inductive element 6 is triggered, at which time the controller 7 records the time when the second inductive element 6 is triggered.
  • the pachinko ball 5 passes through the first position sensed by the first inductive element 3 and triggers the first inductive element 3, and the controller 7 records the time when the first inductive element 3 is triggered, thereby recording the ball 5 through the first The time difference between the two positions and the first position, that is, the time difference t at which the second inductive element 6 and the first inductive element 3 are triggered is recorded.
  • the pinball 5 can be calculated.
  • the muzzle speed measuring device of the embodiment is configured to fix the speed measuring tube 1 fixed to the muzzle of the launching system of the marble emitter, so that the two preset lengths can be triggered when the marble ball 5 passes through the speed measuring tube 1.
  • the time difference of the sensing elements is used to calculate the initial velocity of the pachinkoi 5 after it has been ejected from the launching system.
  • the muzzle velocity measuring device of the embodiment not only has a very simple structure, but also can follow the muzzle movement of the marble emitter, and can realize the real-time measurement of the initial velocity of the pachinko 5 flexibly and conveniently.
  • the embodiment provides a muzzle velocity measuring device for a marble launcher for measuring the initial velocity of the pachinko ball 5 emitted from the muzzle of the marble launcher and the radio frequency (shooting frequency) of the plurality of pachinko balls 5.
  • Figure 6 is a schematic view showing the structure of the circuit board after the muzzle speed measuring device of Figure 2 is removed;
  • Figure 7 is a schematic view of the circuit board structure of Figure 6 in another direction of observation;
  • Figure 8 is a bottom view of the circuit board structure of Figure 7;
  • Figure 9 is a front elevational view of the circuit board structure of Figure 7;
  • Figure 10 is a plan view of the circuit board structure of Figure 7.
  • the present embodiment is based on the technical solution provided in Embodiment 1, and uses the controller 7 to record the number of the pachinko balls 5 passing through the first position and each of the pachinko balls 5 passing through.
  • the time at the first position, and the radio frequency (i.e., the firing frequency) of the plurality of pachinko balls 5 is calculated based on the number of the pachinko balls 5 and the time that each of the pachinko balls 5 passes through the first position.
  • the structure and specific type of the controller 7 are not specifically limited, and those skilled in the art can arbitrarily select an integrated circuit, a chip or software to implement the above functions.
  • the controller 7 can be configured as a circuit board, which can include a counting circuit and a timing circuit, the counting circuit recording through the first position (ie, triggering the first sensing element 3) The number of the pachinko balls 5, and the time at which each of the pachinko balls 5 triggers the first sensing element 3 is recorded. Then, the radio frequency of the pachinko ball 5 is calculated based on the recorded number of the pachinko balls 5 and the time at which each of the recorded pachinko balls 5 triggers the first inductive element 3.
  • the counting circuit starts counting and counts up when the first sensing element 3 is triggered by each of the pachinko balls 5; the timing circuit records each bomb. The time when the ball 5 triggers the first sensing element 3; finally, the ratio of the time difference between the last ball 5 and the first pinball 5 recorded by the timing circuit and the number of the pinballs is calculated.
  • Radio frequency of multiple pinballs 5 For example, when three pinballs 5 trigger the first sensing element 3, and the time difference between the third pinball 5 and the first pinball 5 is 1 s, the radio frequency is 3 s/s.
  • the controller 7 can also calculate the radio frequency by recording the parameters of the pinball passing through the second position, that is, the number of the pinballs that trigger the second inductive element 6 and the number of the pinballs 5 triggering the second inductive element.
  • the time of 6 is used to calculate the radio frequency of the plurality of pinballs 5, and the principle thereof is consistent with the principle that the controller 7 measures the radio frequency through the first inductive component 3, and details are not described herein again.
  • the first sensing element 3 is preferably disposed adjacent to the inlet end 11 of the tachometer tube 1, and the second sensing element 6 is disposed adjacent to the outlet end 13 of the tachometer tube 1.
  • the length of the speed measuring tube 1 can be minimized, thereby reducing the weight of the muzzle speed measuring device; and the preset distance of the first sensing element 3 and the second sensing element 6 can be increased as much as possible to eliminate the timing error of the controller 7.
  • the measurement of the pinball 5 speed and radio frequency is more accurate.
  • the first inductive element 3 can be placed at the inlet end 11 of the tachometer tube 1 and the second inductive element 6 can be placed at the outlet end 13 of the tachometer tube 1.
  • the specific forms of the first sensing element 3 and the second sensing element 6 are not specifically limited, and may be separately provided sensing elements, or may be integrated with the circuit board as shown in FIG. 6-10. .
  • the trigger information of the first inductive component 3 and the second inductive component 6 is not specifically limited, that is, the controller 7 acquires the first information of the first inductive component 3 and the controller 7
  • the second information of the second inductive element 6 is not specifically limited.
  • the controller 7 may be the first information of the first sensing element 3 and the second information of the second sensing element 6 at the same time, or may be the first information of the first sensing element 3 and the second of the second sensing element 6 information.
  • the first information refers to that the first sensing element 3 detects the information that the pachinko ball 5 passes through the first position
  • the second information refers to that the second sensing element 6 detects the information that the pachinko ball 5 passes through the second position.
  • the second information is acquired after the controller 7 obtains the first information. Specifically, when the first sensing element 3 is triggered, the controller 7 then detects whether the second sensing element 6 is also triggered. By obtaining the above information for the controller 7, the controller 7 can be made to recognize whether the first sensing element 3 is triggered by a false trigger, thereby improving the reliability of the muzzle speed measuring device.
  • the controller 7 may be configured to detect whether the second sensing element 6 is triggered within a certain period of time before the first sensing element 3 is triggered after acquiring the first information of the first sensing element 3. Passing; if triggered, acquiring the second information of the second sensing element 6; otherwise, the controller 7 does not acquire the second sensing element The second information of piece 6.
  • the controller 7 determines that the number of times and the time of the currently recorded pinball are invalid. That is, when the controller 7 recognizes that the first sensing element 3 is erroneously triggered, the number of the pinballs 5 and the time of the triggering are not accumulated, thereby ensuring the accuracy of the radio frequency calculation.
  • the controller 7 calculates the radio frequency of the plurality of pinballs 5, for example, the controller 7 first accumulates the number of the pachinod balls 5 and stores the current triggering time when acquiring the first information, and further acquires the first Two information. If the second information is not acquired (i.e., the second sensing element 6 is not triggered), the number of stored pachinko balls is decremented by one and the time of the last recorded record is deleted. Of course, when the controller 7 obtains the first information, the second information may be acquired first. If the second information is acquired, the number of the marbles 5 is accumulated and the time when the first sensing element 3 is triggered is stored.
  • the number of the pinballs passing through the first position or the second position and the time when each of the pachinko balls 5 pass through the first position or the second position are recorded by the controller 7 It is convenient to calculate the radio frequency of a plurality of pinballs 5. Moreover, in this embodiment, by acquiring the time selection of the first information and the second information by the controller 7, the possible false triggering problem is eliminated, and the reliability of the muzzle velocity measuring device is improved.
  • the embodiment provides a muzzle velocity measuring device for a marble launcher for measuring the initial velocity of the pachinko ball 5 emitted from the muzzle of the marble launcher and illuminating the flight path of the pachinko ball 5.
  • a light-emitting element 4 electrically connected to the controller 7 is fixedly connected to the speed measuring tube 1 for illuminating the pinball 5.
  • the flight path ie, the ballistics of the pinball 5.
  • the controller 7 controls the light-emitting element 4 to emit light for a predetermined time, and the light beam extends in the outgoing direction after the projectile 5 is ejected from the launching system.
  • the mounting position of the light-emitting element 4 is not specifically limited, and it may be disposed at any position of the speed measuring tube 1, such as the top, the bottom, any one of the side portions or the outlet end 13.
  • the specific shape of the light-emitting element 4 is not limited, and it may be a dot shape, a line shape, or a planar shape.
  • the light source type of the light-emitting element 4 is not limited in this embodiment, and it may be an incandescent lamp, an LED lamp, or other forms of light source.
  • the number of light sources is not specifically limited in the present embodiment, and may be one, two or two or more.
  • the colors of the light sources may be one type, two types, or two or more types.
  • the structure of the light-emitting element 4 is not specifically limited, and may be a plurality of point light sources directly mounted on the speed measuring tube 1 alone, or may be integrated with a plurality of light sources on one circuit board.
  • the light-emitting element 4 may include only electronic components, and may include other components than the electronic components. Further, in the present embodiment, the light-emitting element 4 may be separately mounted on the speed measuring tube 1, or may be mounted on the speed measuring tube 1 by other components or structures.
  • the electrical connection manner of the controller 7 and the light-emitting element 4 is not specifically limited in the embodiment, and may be connected through a wire or through a wireless connection, such as a wifi signal, a Bluetooth signal, or a GPRS signal.
  • the muzzle speed measuring device of this embodiment is provided with the light-emitting element 4 electrically connected to the controller 7, so that when the pachinko ball 5 passes through the first position, the controller 7 can control the light-emitting element 4 to emit light for a preset time. Since the light emitted by the light-emitting element 4 coincides with the outgoing direction of the marble 5, the flight path of the marble 5, that is, the ballistics of the marble 5 can be accurately distinguished. In this way, the viewer in the audience area can tell which side of the game the marble launcher is shooting, and in which direction the pinball 5 will fly, roughly where it will fall.
  • the viewer can promptly distinguish whether the pachinko ball 5 will fly to itself, and then timely avoidance to avoid being accidentally injured. That is, in the present embodiment, the safety of the field personnel can be improved by providing the light-emitting elements 4.
  • the mounting positions of the first inductive element 3 and the second inductive element 6 are not specifically limited except that they need to have a preset distance therebetween, and the two sensing elements can be mounted on the tachometer 1 .
  • Location such as top, bottom, or side.
  • the first inductive element 3 is placed close to the outlet end 13 of the tachometer tube 1 and the second inductive element 6 is placed close to the inlet end 11 of the tachometer tube 1.
  • the light-emitting element 4 can emit light after the ball 5 passes through the first position, saving energy.
  • the light-emitting element 4 can be controlled to emit light by other control methods, such as the controller 7 controls the light-emitting element 4 to emit light after a period of time after the ball 5 passes through the first sensing element 3. Therefore, in the present embodiment, the specific control strategy for controlling the light-emitting element 4 by the controller 7 is not specifically limited.
  • the controller 7 only passes the second position in the pachinko ball 5, and the pachinko ball 5 also passes through the first position for a preset time, that is, the controller 7 passes through the second only in the pachinko ball 5 in sequence. Light is emitted within a preset time after the position and the first position.
  • the controller 7 determines that the first sensing element 3 detects that the ball 5 has passed through the first position. Is there a pinball 5 that passes through the second position. If yes, it indicates that the ball 5 passes through the second position and the first position in sequence, and the controller 7 controls the light-emitting element 4 to emit light within a preset time; if not, it indicates that there is no ball 5 in the speed measuring tube 1 Passing inside, at this time, the light-emitting element 4 does not emit light.
  • the controller 7 has the above control strategy, the false illumination of the light-emitting element 4 can be prevented, and the muzzle speed measuring device can be improved. Reliability.
  • the light-emitting element 4 includes a laser generator 41 fixedly coupled to the tachometer tube 1 for emitting laser light which extends along the exit direction of the pachinko ball 5 after being ejected from the muzzle speed measuring device.
  • the specific structure and type of the laser generator 41 are not particularly limited, and those skilled in the art can arbitrarily select a suitable laser generator 41 as needed. Because the laser has good directivity and illumination intensity, it has a better indication function, which enables the distant audience to see the flight path of the bullet more clearly, and to clear the location of the drop point, so that the audience can better avoid the flight.
  • the audience's pinball 5 further enhances the safety of the audience.
  • the light-emitting element 4 further includes a base 43 on which the laser generator 41 is mounted.
  • the base 43 is fixed to the outlet end 13 of the tachometer 1, and a through hole 431 communicating with the outlet of the tachometer 1 is provided on the base 43 for the passage of the pachinko ball 5.
  • a plurality of laser generators 41 are disposed on the end surface of the base 43 remote from the speed measuring tube 1, that is, the left end surface in FIG. 2, and the laser light emitted from the laser generators 41 is emitted from the through hole 431 along the marble ball 5 The direction of the exit extends.
  • the specific shape, structure and material of the base 43 and the specific connection manner thereof with the speed measuring tube 1 are not specifically limited.
  • the base 43 can be circular, rectangular or other shape.
  • the base 43 may be of a uniform structure or may have a certain number of protrusions and grooves thereon.
  • the connection between the base 43 and the speed measuring tube 1 may be a non-detachable connection or a detachable connection.
  • the base 43 is a rectangular parallelepiped, and a through hole 431 communicating with the outlet of the speed measuring tube 1 is opened on the rectangular parallelepiped, and a groove communicating with the through hole 431 is opened at the bottom of the rectangular parallelepiped.
  • a plurality of laser generators 41 are uniformly disposed on the outer circumference of the through hole 431. Furthermore, referring to FIG. 2, the connection between the two side faces of the rectangular parallelepiped and the top surface and the bottom surface is a circular arc transition. Of course, in the preferred example, the right end face of the base 43 connected to the tachometer 1 is the same size and shape as the end face of the inlet end 11 of the tachometer 1.
  • the muzzle velocity measuring device of the present embodiment is provided with a plurality of lasers on the base 43 of the light-emitting element 4
  • the generator 41 can further improve the light intensity when the light-emitting element 4 emits light, thereby improving the visibility of the flying trajectory of the marble 5 to improve safety.
  • the plurality of laser generators 41 include at least two sets of laser generators 41 that emit different colors, and the laser emitters of the different colors are spaced apart.
  • the four laser generators 41 are disposed on the base 43, and the four laser generators 41 include two laser generators 41 that emit red laser light and two laser generators 41 that emit green laser light.
  • the four laser generators 41 are spaced apart, that is, two red lasers are located on one diagonal of the rectangle, and two green lasers are located on the other diagonal of the rectangle.
  • the laser generators 41 of different colors by setting the laser generators 41 of different colors, it is possible to indicate different belligerents by color in the game. Furthermore, the audience located far away can more intuitively grasp the situation of the game on the spot. At the same time, the laser spacing of different colors can make the illumination area of the laser more uniform.
  • This embodiment provides a muzzle velocity measuring device for a marble launcher.
  • the muzzle testing device provided in this embodiment is based on the technical solutions provided in Embodiment 1, Embodiment 2 or Embodiment 3, and the first inductive component 3 and the second inductive component are provided.
  • 6 is provided to include a light generating device and a light receiving device which are symmetrically arranged.
  • the specific types and structures of the light generating device and the light receiving device are not particularly limited, and those skilled in the art can select any suitable electronic component.
  • the light-emitting diode 31 or the light-emitting diode is selected as the light-generating device; the photo-diode or the photo-transistor 33 is selected as the light-receiving device.
  • a light-emitting diode 31 as a light generating device and a phototransistor 33 as a light-receiving device are disposed on opposite sides of the tachometer tube 1.
  • the connection between the light-emitting diode 31 and the phototransistor 33 intersects with the center line of the pipe of the tachometer 1, and the light emitted by the light-emitting diode 31 is incident on the phototransistor 33 along the line connecting the light-emitting diode 31 and the phototransistor 33.
  • the first sensing element 3 and the second sensing element 6 of the muzzle testing device of the present embodiment each include a symmetrically disposed light generating device and a light receiving device, thereby constituting a photoelectric sensor for detecting the light intensity between the wires.
  • the pinball 5 passes through the wire, the light emitted by the light generating device can be blocked, thereby triggering the circuit of the light receiving device, that is, the first sensing element 3 (the second sensing element) Item 6) Trigger, that is, detecting that the pachinko ball 5 passes through the first position (second position).
  • both the light generating device and the light receiving device have high sensitivity, especially the photoelectric sensor composed of the light emitting diode 31 and the phototransistor 33 has very high sensitivity, it is very suitable for detecting the high speed of the pachinko ball 5 object.
  • the specific shape and structure of the tachometer tube 1 are not particularly limited, and may be a hollow rectangular parallelepiped, a hollow cylinder or the like.
  • protrusions or depressions may be formed on the outer wall of the speed measuring tube 1.
  • the speed measuring tube 1 comprises: a top wall 17 and two side walls 19 disposed under the top wall 17, the light emitting diode 31 and the phototransistor 33 are symmetrically disposed on the two side walls 19, respectively, and the controller 7 is disposed at the top On the wall 17.
  • the entire structure of the muzzle speed measuring device can be made more compact, thereby reducing The volume of the muzzle speed measuring device.
  • the tachometer tube 1 further includes a bottom wall 15 opposite to the top wall 17 and connected to the two side walls 19, so that the influence of external light on the light emitting diode 31 and the phototransistor 33 can be reduced.
  • This embodiment provides a muzzle velocity measuring device for a marble launcher.
  • the muzzle velocity measuring device provided in this embodiment is based on the technical solutions provided in Embodiment 1, Embodiment 2, Embodiment 3 or Embodiment 4, and an aiming component 9 is disposed.
  • the aiming element 9 comprises an aiming laser generator 91 for aiming when the pachinkocket 5 is launched.
  • the aiming laser generator 91 is fixed to the wall of the tachometer 1, and the laser light emitted by the aiming laser generator 91 extends in the direction in which the pinball 5 is ejected from the speed measuring device.
  • the mounting position of the aiming laser generator 91 is not particularly limited, and it can be installed at any position of the speed measuring tube 1.
  • the structure, type, and color of the laser of the aiming laser generator 91 are not specifically limited.
  • a long tubular infrared laser generator 41 may be selected.
  • those skilled in the art can make selections according to needs, and details are not described herein again.
  • the aiming laser generator 91 can be controlled individually or electrically connected to the controller 7 to be controlled by the controller 7. At the same time, it is possible to control the laser to be turned on or to control the laser to be turned off after the pinball 5 is emitted.
  • the muzzle speed measuring device of the present embodiment by mounting the aiming member 9 including the aiming laser generator 91 on the speed measuring tube 1, can aim at the laser light emitted by the aiming laser generator 91 before the projectile 5 is launched, thereby improving The hit rate of Pinball 5.
  • the aiming element 9 further includes a mounting seat 93, and the laser generator 41 is fixed to the bottom of the tachometer tube 1 through the mounting seat 93, thereby reinforcing the laser generator 41 and the tachometer tube 1.
  • the connection strength is prevented from falling during the game and the service life of the muzzle speed measuring device is improved.
  • the specific shape and structure of the mount 93 are not specifically limited.
  • a person skilled in the art can select any suitable shape of the mount 93 for connecting the tachometer tube 1 and the aiming laser generator 91.
  • a hollow column-shaped mount 93 is selected so that the long tubular infrared laser generator 41 can be sleeved in the inner cavity of the mount 93.
  • the manner of connecting the mounting seat 93 to the tachometer tube 1 is not specifically limited, and it may be non-detachably fixed to the bottom of the tachometer tube 1, for example, welded to the bottom of the tachometer tube 1.
  • the mount 93 can also be detachably attached to the bottom of the tachometer 1, such as a snap or threaded connection.
  • connection manner between the laser generator 41 and the base 43 in the present embodiment is not particularly limited, and it may be connected to the base 43 in a detachable manner or may be connected to the base 43 in a non-detachable manner.
  • This embodiment provides a marble emitter.
  • the marble launcher provided in this embodiment includes: a launching system and a muzzle speed measuring device.
  • the muzzle speed measuring device comprises: a first sensing element 3, a second sensing element 6, a controller 7 and a tachometer 1 for the ball 5 to pass through.
  • the speed measuring tube 1 is used for the passage of the marble ball 5 emitted from the launching system of the marble launcher, and the inlet end 11 of the speed measuring tube 1 is used for fixed connection with the muzzle of the launching system of the marble launcher.
  • the ball 5 is ejected from the muzzle of the launching system, enters the passage in the tachometer 1 from the inlet of the tachometer 1, and the tachometer 1 is ejected from the outlet of the tachometer 1.
  • the pachinko ball 5 emitted by the launching system of the marble launcher may be a BB bomb, a golf ball or a rubber bullet.
  • the speed measuring tube 1 is not specifically limited, and only needs to have a passage through which the bullet can pass. Therefore, the speed measuring tube 1 can have any appearance shape.
  • the speed measuring tube 1 can be composed of two spaced apart side walls 19, or can be connected by the top wall 17 and The top wall 17 is formed by two side walls 19 spaced apart from each other.
  • the speed measuring tube 1 can also be composed of a top wall 17, a bottom wall 15, and two spaced sides connecting the top wall 17 and the bottom wall 15.
  • the wall 19 is constructed, or the speed measuring tube 1 can also be constituted by a cylindrical hollow tube. From the above description, it will be apparent to those skilled in the art that the speed measuring tube 1 has a straight passage through which the pinball 5 passes.
  • the speed measuring tube 1 may be a rectangular parallelepiped having a hollow passage.
  • protrusions, ridges, pits or grooves or the like may be formed on the outer wall of the rectangular parallelepiped.
  • the speed measuring tube 1 and the muzzle of the transmitting system may be directly connected or indirectly connected, for example, through the connecting member 8.
  • the connecting member 8 is disposed at the outlet end 13 of the tachometer 1, and the connecting member 8 is also connected to the muzzle of the launching system.
  • the connecting member 8 also has an inlet for connecting the tachometer 1 and a muzzle exit.
  • the connection channel of the mouth That is, one end of the connecting member 8 is connected to the tachometer tube 1 and the other end is used to connect the muzzle of the launching system.
  • the connection manner of the connecting member 8 and the tachometer tube 1 and the connecting member 8 and the muzzle is not specifically limited.
  • the connecting member 8 may be fixed to the inlet end 11 of the tachometer 1 or integrated with the tachometer 1.
  • the connecting piece 8 and the muzzle can be connected by a snap connection or by a screw connection.
  • the length of the speed measuring tube 1 can also be reasonably set according to actual needs to meet the requirement of measuring the speed of different pinballs 5.
  • a speed measuring tube 1 having a preset length is provided so that the bullet can fly in the speed measuring tube 1 for a sufficient time to improve the accuracy of the speed measurement.
  • the first sensing element 3 is configured to detect whether the pachinko ball 5 is in the first position of the tachometer tube 1 and is disposed on the tachometer tube 1 along the pipe direction of the tachometer tube 1.
  • the mounting position of the first sensing element 3 at the speed measuring tube 1 is not specifically limited, and it may be disposed at the inlet end 11, the outlet end 13 or the middle portion of the speed measuring tube 1, which may be disposed at the speed measuring tube.
  • the type of the first inductive element 3 is not particularly limited, and it may be an infrared photosensor, a laser sensor, or a radar sensor.
  • the first position of the speed measuring tube is not specifically limited, and those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 as the first position according to actual needs.
  • the second sensing element 6 is configured to detect whether the pachinko ball 5 passes through the second position of the tachometer tube 1, which is disposed along the pipe direction of the tachometer tube 1 and is spaced apart from the first inductive element 3 by a predetermined distance.
  • the position of the first sensing element 3 in this embodiment is not otherwise limited.
  • the type of the second inductive element 6 is not specifically limited, and it may also be an infrared photoelectric sensor, a laser sensor or a radar. sensor.
  • the first inductive element 3 and the second inductive element 6 use the same type of inductive element, for example using an infrared photosensor.
  • the first position of the speed measuring tube is not specifically limited, and those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 that is different from the first position according to actual needs. Two locations.
  • the first position refers to the cross section of the tachometer tube 1 at the first inductive element 3
  • the second position refers to the cross section of the tachometer tube 1 at the second inductive element 6.
  • the first position refers to a cross section of the speed measuring tube at the first sensing element
  • the second position refers to a cross section of the speed measuring tube at the second sensing element
  • the first inductive element 3 is disposed adjacent to the outlet end 13 of the tachometer 1, and correspondingly, the second inductive element 6 is disposed adjacent the inlet end 11 of the tachometer 1.
  • the first inductive element 3 can also be arranged close to the inlet end 11 of the tachometer 1, and correspondingly, the second inductive element 6 can be placed close to the outlet end 13 of the tachometer 1.
  • the first inductive element 3 can be placed on the side close to the outlet end 13 and the second inductive element 6 can be placed on the side of the inlet end 11, thereby reducing the height of the tachometer 1 to facilitate the aiming of the marble emitter.
  • the controller 7 is electrically connected to the first inductive element 3 and the second inductive element 6 for recording the time difference of the pachinko ball 5 passing through the second position and the first position, and calculating the time when the pachinko ball 5 is emitted from the transmitting system according to the time difference The initial speed.
  • the structure and type of the controller 7 are not specifically limited, and may be an integrated circuit board, a chip or software, or may be a collection of several circuits or several functional modules.
  • the controller 7 can be configured as an integrated circuit including a timing circuit, a calculation circuit, clocked by a timing circuit, and the initial speed is calculated by the calculation circuit.
  • the controller 7 can be set to include a set of timing functions, a set of calculation functions, a timing by a timing program, and a calculation by a calculation program.
  • the timing can be performed by reading the system time of the CPU, or it can be performed by direct timing.
  • the electrical connection manner of the controller 7 and the first inductive component 3 and the second inductive component 6 is not specifically limited in this embodiment, and the electrical connection should be explained in a broad sense, which may be through a wire connection, or may be Via a wireless connection, such as wifi signal, Bluetooth signal or GPRS signal.
  • the pachinko ball 5 is ejected from the launching system of the pinball launcher, into the duct of the tachometer 1 from the inlet of the tachometer 1 of the muzzle speed measuring device, and then passes through the second position of the second inductive element 6 That is, when the pachinko ball 5 flies to the sensing position of the second inductive element 6, the second inductive element 6 is triggered, at which time the controller 7 records the time when the second inductive element 6 is triggered.
  • the pachinko ball 5 passes through the first position sensed by the first inductive element 3 and triggers the first inductive element 3, and the controller 7 records the time when the first inductive element 3 is triggered, thereby recording the ball 5 through the first
  • the time difference between the two positions and the first position that is, the time difference t at which the second inductive element 6 and the first inductive element 3 are triggered is recorded.
  • the pinball 5 can be calculated.
  • the marble emitter of the embodiment is provided with a speed measuring tube 1 that can be fixed to the muzzle of the launching system of the marble emitter, so that the two preset lengths can be triggered when the marble ball 5 passes through the speed measuring tube 1.
  • the time difference of the sensing elements is used to calculate the initial velocity of the pachinkoi 5 after it has been ejected from the launching system.
  • the muzzle velocity measuring device of the embodiment not only has a very simple structure, but also can follow the muzzle movement of the marble emitter, and can realize the real-time measurement of the initial velocity of the pachinko 5 flexibly and conveniently.
  • the present embodiment provides a marble launcher for measuring the initial velocity of the pachinko ball 5 ejected from the muzzle of the launching system and the radio frequency (shooting frequency) of the plurality of pachinko balls 5.
  • this embodiment is based on the technical solution provided in Embodiment 6, and uses the controller 7 to record the number of the pachinko balls 5 passing through the first position and each of the pachinko balls 5 passes through the The time at the first position, and the radio frequency (i.e., the firing frequency) of the plurality of pinballs 5 is calculated based on the number of the pachinko balls 5 and the time that each of the pachinko balls 5 passes through the first position.
  • the radio frequency i.e., the firing frequency
  • the structure and specific type of the controller 7 are not specifically limited, and those skilled in the art can arbitrarily select an integrated circuit, a chip or software to implement the above functions.
  • the controller 7 can be configured as a circuit board, which can include a counting circuit and a timing circuit, the counting circuit recording through the first position (ie, triggering the first sensing element 3) The number of the pachinko balls 5, and the time at which each of the pachinko balls 5 triggers the first sensing element 3 is recorded. Then, the radio frequency of the pachinko ball 5 is calculated based on the recorded number of the pachinko balls 5 and the time at which each of the recorded pachinko balls 5 triggers the first inductive element 3.
  • the counting circuit starts counting and counts up when the first sensing element 3 is triggered by each of the pachinko balls 5; the timing circuit records each bomb. The time when the ball 5 triggers the first sensing element 3; finally, the ratio of the time difference between the last ball 5 and the first pinball 5 recorded by the timing circuit and the number of the pinball 5 is calculated to obtain the RF of the plurality of pinballs 5 .
  • the radio frequency is 3 s/s.
  • the controller 7 can also calculate the radio frequency by recording the parameters of the pinball passing through the second position, that is, the number of the pinballs that trigger the second inductive element 6 and the number of the pinballs 5 triggering the second inductive element.
  • the time of 6 is used to calculate the radio frequency of the plurality of pinballs 5, and the principle thereof is consistent with the principle that the controller 7 measures the radio frequency through the first inductive component 3, and details are not described herein again.
  • the first sensing element 3 is preferably disposed adjacent to the inlet end 11 of the tachometer tube 1, and the second sensing element 6 is disposed adjacent to the outlet end 13 of the tachometer tube 1.
  • the length of the speed measuring tube 1 can be minimized, thereby reducing the weight of the muzzle speed measuring device; and the preset distance of the first sensing element 3 and the second sensing element 6 can be increased as much as possible to eliminate the timing error of the controller 7.
  • the measurement of the pinball 5 speed and radio frequency is more accurate.
  • the first inductive element 3 can be placed at the inlet end 11 of the tachometer tube 1 and the second inductive element 6 can be placed at the outlet end 13 of the tachometer tube 1.
  • the specific forms of the first sensing element 3 and the second sensing element 6 are not specifically limited, and may be separately provided sensing elements, or may be integrated with the circuit board as shown in FIG. 6-10. .
  • the trigger information of the first inductive component 3 and the second inductive component 6 is not specifically limited, that is, the controller 7 acquires the first information of the first inductive component 3 and the controller 7
  • the second information of the second inductive element 6 is not specifically limited.
  • the controller 7 may be the first information of the first sensing element 3 and the second information of the second sensing element 6 at the same time, or may be the first information of the first sensing element 3 and the second of the second sensing element 6 information.
  • the first information refers to that the first sensing element 3 detects the information that the pachinko ball 5 passes through the first position
  • the second information refers to that the second sensing element 6 detects the information that the pachinko ball 5 passes through the second position.
  • the second information is acquired after the controller 7 obtains the first information. Specifically, it is when the first induction When element 3 is triggered, controller 7 again detects if second sensing element 6 is also triggered.
  • the controller 7 can be made to recognize whether the first sensing element 3 is triggered by a false trigger, thereby improving the reliability of the muzzle speed measuring device.
  • the controller 7 may be configured to detect whether the second sensing element 6 is triggered within a certain period of time before the first sensing element 3 is triggered after acquiring the first information of the first sensing element 3. If it is triggered, the second information of the second sensing element 6 is acquired; otherwise, the controller 7 does not acquire the second information of the second sensing element 6.
  • the controller 7 determines that the number of times and the time of the currently recorded pinball are invalid. That is, when the controller 7 recognizes that the first sensing element 3 is erroneously triggered, the number of the pinballs 5 and the time of the triggering are not accumulated, thereby ensuring the accuracy of the radio frequency calculation.
  • the controller 7 calculates the radio frequency of the plurality of pinballs 5, for example, the controller 7 first accumulates the number of the pachinod balls 5 and stores the current triggering time when acquiring the first information, and further acquires the first Two information. If the second information is not acquired (i.e., the second sensing element 6 is not triggered), the number of stored pachinko balls is decremented by one and the time of the last recorded record is deleted. Of course, when the controller 7 obtains the first information, the second information may be acquired first. If the second information is acquired, the number of the marbles 5 is accumulated and the time when the first sensing element 3 is triggered is stored.
  • the number of the pinballs passing through the first position or the second position and the time when each of the pachinko balls 5 pass through the first position or the second position are recorded by the controller 7 It is convenient to calculate the radio frequency of a plurality of pinballs 5. Moreover, in this embodiment, by acquiring the time selection of the first information and the second information by the controller 7, the possible false triggering problem is eliminated, and the reliability of the muzzle velocity measuring device is improved.
  • the present embodiment provides a marble launcher for measuring the initial velocity of the pachinko ball 5 ejected from the muzzle of the launching system and illuminating the flight path of the pachinko ball 5.
  • a light-emitting element 4 electrically connected to the controller 7 is fixedly connected to the speed measuring tube 1 for illuminating the pinball 5.
  • the flight path ie, the ballistics of the pinball 5.
  • the controller 7 controls the light-emitting element 4 to emit light for a predetermined time, and the light beam extends in the outgoing direction after the projectile 5 is ejected from the launching system.
  • the mounting position of the light-emitting element 4 is not specifically limited, and it may be disposed at any position of the speed measuring tube 1, such as the top, the bottom, any one of the side portions or the outlet end 13.
  • the specific shape of the light-emitting element 4 is not limited, and it may be a dot shape, a line shape, or a planar shape.
  • the light source type of the light-emitting element 4 is not limited in this embodiment, and it may be an incandescent lamp, an LED lamp, or other forms of light source.
  • the number of light sources is not specifically limited in the present embodiment, and may be one, two or two or more.
  • the colors of the light sources may be one type, two types, or two or more types.
  • the structure of the light-emitting element 4 is not specifically limited, and may be a plurality of point light sources directly mounted on the speed measuring tube 1 alone, or may be integrated with a plurality of light sources on one circuit board.
  • the light-emitting element 4 may include only electronic components, and may include other components than the electronic components. Further, in the present embodiment, the light-emitting element 4 may be separately mounted on the speed measuring tube 1, or may be mounted on the speed measuring tube 1 by other components or structures.
  • the electrical connection manner of the controller 7 and the light-emitting element 4 is not specifically limited in the embodiment, and may be connected through a wire or through a wireless connection, such as a wifi signal, a Bluetooth signal, or a GPRS signal.
  • the marble emitter of the present embodiment is provided with the light-emitting element 4 electrically connected to the controller 7, so that when the pachinko ball 5 passes through the first position, the controller 7 can control the light-emitting element 4 to emit light for a preset time. Since the light emitted by the light-emitting element 4 coincides with the outgoing direction of the marble 5, the flight path of the marble 5, that is, the ballistics of the marble 5 can be accurately distinguished. In this way, the viewer in the audience area can tell which side of the game the marble launcher is shooting, and in which direction the pinball 5 will fly, roughly where it will fall.
  • the viewer can promptly distinguish whether the pachinko ball 5 will fly to itself, and then timely avoidance to avoid being accidentally injured. That is, in the present embodiment, the safety of the field personnel can be improved by providing the light-emitting elements 4.
  • the mounting positions of the first inductive element 3 and the second inductive element 6 are not specifically limited except that they need to have a preset distance therebetween, and the two sensing elements can be mounted on the tachometer 1 .
  • Location such as top, bottom, or side.
  • the first inductive element 3 is placed close to the outlet end 13 of the tachometer tube 1 and the second inductive element 6 is placed close to the inlet end 11 of the tachometer tube 1.
  • the light-emitting element 4 can emit light after the ball 5 passes through the first position, saving energy.
  • the light-emitting element 4 can be controlled to emit light by other control methods, such as the controller 7 controls the light-emitting element 4 to emit light after a period of time after the ball 5 passes through the first sensing element 3. Therefore, in the present embodiment, the specific control strategy for controlling the light-emitting element 4 by the controller 7 is not specifically limited.
  • the controller 7 only passes the second position in the pachinko ball 5, and the pachinko ball 5 also passes through the first position for a preset time, that is, the controller 7 passes through the second only in the pachinko ball 5 in sequence. Light is emitted within a preset time after the position and the first position.
  • the controller 7 determines that the first sensing element 3 detects that the ball 5 has passed through the first position. Is there a pinball 5 that passes through the second position. If yes, it indicates that the ball 5 passes through the second position and the first position in sequence, and the controller 7 controls the light-emitting element 4 to emit light within a preset time; if not, it indicates that there is no ball 5 in the speed measuring tube 1 Passing inside, at this time, the light-emitting element 4 does not emit light.
  • the controller 7 has the above control strategy, the false illumination of the light-emitting element 4 can be prevented, and the muzzle speed measuring device can be improved. Reliability.
  • the light-emitting element 4 includes a laser generator 41 fixedly coupled to the tachometer tube 1 for emitting laser light which extends along the exit direction of the pachinko ball 5 after being ejected from the muzzle speed measuring device.
  • the specific structure and type of the laser generator 41 are not particularly limited, and those skilled in the art can arbitrarily select a suitable laser generator 41 as needed. Because the laser has good directivity and illumination intensity, it has a better indication function, which enables the distant audience to see the flight path of the bullet more clearly, and to clear the location of the drop point, so that the audience can better avoid the flight.
  • the audience's pinball 5 further enhances the safety of the audience.
  • the light-emitting element 4 further includes a base 43 on which the laser generator 41 is mounted.
  • the base 43 is fixed to the outlet end 13 of the tachometer 1, and a through hole 431 communicating with the outlet of the tachometer 1 is provided on the base 43 for the passage of the pachinko ball 5.
  • a plurality of laser generators 41 are disposed on the end surface of the base 43 remote from the speed measuring tube 1, that is, the left end surface in FIG. 2, and the laser light emitted from the laser generators 41 is emitted from the through hole 431 along the marble ball 5 The direction of the exit extends.
  • the specific shape, structure and material of the base 43 and the specific connection manner thereof with the speed measuring tube 1 are not specifically limited.
  • the base 43 can be circular, rectangular or other shape.
  • the base 43 may be of a uniform structure or may have a certain number of protrusions and grooves thereon.
  • the connection between the base 43 and the speed measuring tube 1 may be a non-detachable connection or a detachable connection.
  • the base 43 is a rectangular parallelepiped having a through hole 431 communicating with the outlet of the speed measuring tube 1 and a groove communicating with the through hole 431 at the bottom of the rectangular parallelepiped.
  • a plurality of laser generators 41 are uniformly disposed on the outer circumference of the through hole 431. Furthermore, referring to FIG.
  • connection between the two side faces of the rectangular parallelepiped and the top surface and the bottom surface is a circular arc transition.
  • the right end face of the base 43 connected to the tachometer 1 is the same size and shape as the end face of the inlet end 11 of the tachometer 1.
  • the light intensity when the light-emitting element 4 emits light can be further improved, thereby improving the recognition degree of the flying trajectory of the marble ball 5, To improve security.
  • the plurality of laser generators 41 include at least two sets of laser generators 41 that emit different colors, and the laser emitters of the different colors are spaced apart.
  • the four laser generators 41 are disposed on the base 43, and the four laser generators 41 include two laser generators 41 that emit red laser light and two laser generators 41 that emit green laser light.
  • the four laser generators 41 are spaced apart, that is, two red lasers are located on one diagonal of the rectangle, and two green lasers are located on the other diagonal of the rectangle.
  • the laser generators 41 of different colors by setting the laser generators 41 of different colors, it is possible to indicate different belligerents by color in the game. Furthermore, the audience located far away can more intuitively grasp the situation of the game on the spot. At the same time, the laser spacing of different colors can make the illumination area of the laser more uniform.
  • This embodiment provides a marble emitter.
  • the marble launcher provided in this embodiment is based on the technical solutions provided in Embodiment 6, Embodiment 7, or Embodiment 8, and the first sensing component 3 and the second sensing component 6 are provided. It is provided to include a light generating device and a light receiving device which are symmetrically arranged.
  • the specific types and structures of the light generating device and the light receiving device are not particularly limited, and those skilled in the art can select any suitable electronic component.
  • the light-emitting diode 31 or the light-emitting diode is selected as the light-generating device; the photodiode or the photo-transistor 33 is selected as the light-receiving device.
  • a light-emitting diode 31 as a light generating device and a phototransistor 33 as a light-receiving device are disposed on opposite sides of the tachometer tube 1.
  • the light emitting diode 31 and the photosensitive three-pole The line connecting the tube 33 intersects the center line of the tube of the tachometer 1, and the light emitted from the light-emitting diode 31 is incident on the phototransistor 33 along the line connecting the light-emitting diode 31 and the phototransistor 33.
  • the first sensing element 3 and the second sensing element 6 of the muzzle testing device of the marble emitter of the embodiment each include a symmetrically disposed light generating device and a light receiving device, thereby constituting a light intensity between the two wires. Photoelectric sensor.
  • the pinball 5 passes through the wire, the light emitted by the light generating device can be blocked, thereby triggering the circuit of the light receiving device, that is, the first sensing element 3 (the second sensing element 6) is triggered, that is, It is detected that the pachinko ball 5 passes through the first position (second position).
  • both the light generating device and the light receiving device have high sensitivity, especially the photoelectric sensor composed of the light emitting diode 31 and the phototransistor 33 has very high sensitivity, it is very suitable for detecting the high speed of the pachinko ball 5 object.
  • the specific shape and structure of the tachometer tube 1 are not particularly limited, and may be a hollow rectangular parallelepiped, a hollow cylinder or the like.
  • protrusions or depressions may be formed on the outer wall of the speed measuring tube 1.
  • the speed measuring tube 1 comprises: a top wall 17 and two side walls 19 disposed under the top wall 17, the light emitting diode 31 and the phototransistor 33 are symmetrically disposed on the two side walls 19, respectively, and the controller 7 is disposed at the top On the wall 17.
  • the entire structure of the muzzle speed measuring device can be made more compact, thereby reducing The volume of the muzzle speed measuring device.
  • the tachometer tube 1 further includes a bottom wall 15 opposite to the top wall 17 and connected to the two side walls 19, so that the influence of external light on the light emitting diode 31 and the phototransistor 33 can be reduced.
  • This embodiment provides a marble emitter.
  • the marble launcher provided in this embodiment is based on the technical solution provided in Embodiment 6, Embodiment 7, Embodiment 8, or Embodiment 9, and an aiming component 9 is disposed.
  • the aiming element 9 comprises an aiming laser generator 91 for aiming when the pachinkocket 5 is launched.
  • the aiming laser generator 91 is fixed to the wall of the tachometer 1, and the laser light emitted by the aiming laser generator 91 extends in the direction in which the pinball 5 is ejected from the speed measuring device.
  • the mounting position of the aiming laser generator 91 is not particularly limited, and it can be installed at any position of the speed measuring tube 1.
  • the structure, type, and color of the laser of the aiming laser generator 91 are not specifically limited.
  • a long tubular infrared laser generator 41 may be selected.
  • those skilled in the art can make selections according to needs, and details are not described herein again.
  • the aiming laser generator 91 can be controlled individually or electrically connected to the controller 7 to be controlled by the controller 7. At the same time, it is possible to control the laser to be turned on or to control the laser to be turned off after the pinball 5 is emitted.
  • the sighting element 9 including the aiming laser generator 91 on the speed measuring tube 1, the aiming of the laser light emitted by the laser generator 91 can be aimed at before the launching of the marble ball 5, thereby improving The hit rate of Pinball 5.
  • the aiming element 9 further includes a mounting seat 93, and the laser generator 41 is fixed to the bottom of the tachometer tube 1 through the mounting seat 93, thereby reinforcing the laser generator 41 and the tachometer tube 1.
  • the connection strength is prevented from falling during the game and the service life of the muzzle speed measuring device is improved.
  • the specific shape and structure of the mount 93 are not specifically limited.
  • a person skilled in the art can select any suitable shape of the mount 93 for connecting the tachometer tube 1 and the aiming laser generator 91.
  • a hollow column-shaped mount 93 is selected so that the long tubular infrared laser generator 41 can be sleeved in the inner cavity of the mount 93.
  • the manner of connecting the mounting seat 93 to the tachometer tube 1 is not specifically limited, and it may be non-detachably fixed to the bottom of the tachometer tube 1, for example, welded to the bottom of the tachometer tube 1.
  • the mount 93 can also be detachably attached to the bottom of the tachometer 1, such as a snap or threaded connection.
  • connection manner between the laser generator 41 and the base 43 in the present embodiment is not particularly limited, and it may be connected to the base 43 in a detachable manner or may be connected to the base 43 in a non-detachable manner.
  • This embodiment provides a robot using a marble launcher.
  • the robot provided in this embodiment includes: a main body and a marble launcher mounted on the main body.
  • the marble launcher comprises: a launching system and a muzzle speed measuring device.
  • the muzzle speed measuring device includes a first inductive element 3, a second inductive element 6, a controller 7, and a tachometer 1 for passing the pachinko ball 5.
  • the speed measuring tube 1 is used for the passing of the marble ball 5 emitted from the launching system of the marble launcher
  • the inlet end 11 of the speed measuring tube 1 is used to be fixedly connected to the muzzle of the launching system of the marble emitter.
  • the ball 5 is ejected from the muzzle of the launching system, enters the passage in the tachometer 1 from the inlet of the tachometer 1, and the tachometer 1 is ejected from the outlet of the tachometer 1.
  • the pachinko ball 5 emitted by the launching system of the marble launcher may be a BB bomb, a golf ball or a rubber bullet.
  • the speed measuring tube 1 is not specifically limited, and only needs to have a passage through which the bullet can pass. Therefore, the speed measuring tube 1 can have any appearance shape.
  • the speed measuring tube 1 may be composed of two spaced-apart side walls 19, or may be composed of a top wall 17 and two side walls 19 connected under the top wall 17 and spaced apart.
  • the speed measuring tube 1 It may also be constituted by a top wall 17, a bottom wall 15, and two spaced apart side walls 19 connecting the top wall 17 and the bottom wall 15, or the speed measuring tube 1 may be constituted by a cylindrical hollow tube. From the above description, it will be apparent to those skilled in the art that the speed measuring tube 1 has a straight passage through which the pinball 5 passes.
  • the speed measuring tube 1 may be a rectangular parallelepiped having a hollow passage.
  • protrusions, ridges, pits or grooves or the like may be formed on the outer wall of the rectangular parallelepiped.
  • the speed measuring tube 1 and the muzzle of the transmitting system may be directly connected or indirectly connected, for example, through the connecting member 8.
  • the connecting member 8 is disposed at the outlet end 13 of the tachometer 1, and the connecting member 8 is also connected to the muzzle of the launching system.
  • the connecting member 8 also has an inlet for connecting the tachometer 1 and a muzzle exit.
  • the connection channel of the mouth That is, one end of the connecting member 8 is connected to the tachometer tube 1 and the other end is used to connect the muzzle of the launching system.
  • the connection manner of the connecting member 8 and the tachometer tube 1 and the connecting member 8 and the muzzle is not specifically limited.
  • the connecting member 8 may be fixed to the inlet end 11 of the tachometer 1 or integrated with the tachometer 1.
  • the connecting piece 8 and the muzzle can be connected by a snap connection or by a screw connection.
  • the length of the speed measuring tube 1 can also be reasonably set according to actual needs to meet the requirement of measuring the speed of different pinballs 5.
  • a speed measuring tube 1 having a preset length is provided so that the bullet can fly in the speed measuring tube 1 for a sufficient time to improve the accuracy of the speed measurement.
  • the first sensing element 3 is configured to detect whether the pachinko ball 5 passes through the first position of the tachometer tube 1 and is disposed on the tachometer tube 1 along the pipe direction of the tachometer tube 1.
  • the mounting position of the first sensing element 3 at the speed measuring tube 1 is not specifically limited, and it may be disposed at the inlet end 11, the outlet end 13 or the middle portion of the speed measuring tube 1, which may be disposed at the speed measuring tube.
  • the type of the first inductive element 3 is not particularly limited, and it may be an infrared photosensor, a laser sensor, or a radar sensor.
  • the first position of the speed measuring tube is not specifically limited. Those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 as the first position according to actual needs.
  • the second sensing element 6 is configured to detect whether the pachinko ball 5 passes through the second position of the tachometer tube 1, which is disposed along the pipe direction of the tachometer tube 1 and is spaced apart from the first inductive element 3 by a predetermined distance.
  • the position of the first sensing element 3 in this embodiment is not otherwise limited.
  • the type of the second inductive element 6 is not particularly limited in this embodiment, and it may also be an infrared photosensor, a laser sensor or a radar sensor.
  • the first inductive element 3 and the second inductive element 6 use the same type of inductive element, for example using an infrared photosensor.
  • the first position of the speed measuring tube is not specifically limited, and those skilled in the art can select any position on the flight path of the pinball 5 in the speed measuring tube 1 that is different from the first position according to actual needs. Two locations.
  • the first position refers to the cross section of the tachometer tube 1 at the first inductive element 3
  • the second position refers to the cross section of the tachometer tube 1 at the second inductive element 6.
  • the first inductive element 3 is disposed adjacent to the outlet end 13 of the tachometer 1, and correspondingly, the second inductive element 6 is disposed adjacent the inlet end 11 of the tachometer 1.
  • the first inductive element 3 can also be arranged close to the inlet end 11 of the tachometer 1, and correspondingly, the second inductive element 6 can be placed close to the outlet end 13 of the tachometer 1.
  • the first inductive element 3 can be placed on the side close to the outlet end 13 and the second inductive element 6 can be placed on the side of the inlet end 11, thereby reducing the height of the tachometer 1 to facilitate the aiming of the marble emitter.
  • the controller 7 is electrically connected to the first inductive element 3 and the second inductive element 6 for recording the time difference of the pachinko ball 5 passing through the second position and the first position, and calculating the time when the pachinko ball 5 is emitted from the transmitting system according to the time difference The initial speed.
  • the structure and type of the controller 7 are not specifically limited, and may be an integrated circuit board, a chip or software, or may be a collection of several circuits or several functional modules.
  • the controller 7 can be configured as an integrated circuit including a timing circuit, a calculation circuit, clocked by a timing circuit, and the initial speed is calculated by the calculation circuit.
  • the controller 7 can be set to include a set of timing functions, a set of calculation functions, a timing by a timing program, and a calculation by a calculation program.
  • the timing can be performed by reading the system time of the CPU, or it can be performed by direct timing.
  • the electrical connection manner of the controller 7 and the first inductive component 3 and the second inductive component 6 is not specifically limited in this embodiment, and the electrical connection should be explained in a broad sense, which may be through a wire connection, or may be Through signal connections, such as wifi signals, Bluetooth signals or GPRS signals.
  • the pachinko ball 5 is ejected from the launching system of the pinball launcher, into the duct of the tachometer 1 from the inlet of the tachometer 1 of the muzzle speed measuring device, and then passes through the second position of the second inductive element 6 That is, when the pachinko ball 5 flies to the sensing position of the second inductive element 6, the second inductive element 6 is triggered, at which time the controller 7 records the time when the second inductive element 6 is triggered.
  • the pachinko ball 5 passes through the first position sensed by the first inductive element 3 and triggers the first inductive element 3, and the controller 7 records the time when the first inductive element 3 is triggered, thereby recording the ball 5 through the first
  • the time difference between the two positions and the first position that is, the time difference t at which the second inductive element 6 and the first inductive element 3 are triggered is recorded.
  • the pinball 5 can be calculated.
  • the robot of the present embodiment can set the two speed measuring tubes 1 that can be fixed to the firing port of the ballistic launcher, so that the two sensing elements having the preset distance can be triggered when the ball 5 passes through the speed measuring tube 1.
  • the time difference is used to calculate the initial velocity of the pachinko ball 5 after it is emitted from the launching system.
  • the muzzle velocity measuring device of the embodiment not only has a very simple structure, but also can follow the muzzle movement of the marble emitter, and can realize the real-time measurement of the initial velocity of the pachinko 5 flexibly and conveniently.
  • This embodiment provides a robot using a marble launcher.
  • this embodiment is based on the technical solution provided in Embodiment 11, and uses the controller 7 to record the number of the pachinko balls 5 passing through the first position and each of the pachinko balls 5 passes through the The time at the first position, and the radio frequency (i.e., the firing frequency) of the plurality of pinballs 5 is calculated based on the number of the pachinko balls 5 and the time that each of the pachinko balls 5 passes through the first position.
  • the radio frequency i.e., the firing frequency
  • the structure and specific type of the controller 7 are not specifically limited, and those skilled in the art can arbitrarily select an integrated circuit, a chip or software to implement the above functions.
  • the controller 7 can be configured as a circuit board, which can include a counting circuit and a timing circuit, the counting circuit recording through the first position (ie, triggering the first sensing element 3) The number of the pachinko balls 5, and the time at which each of the pachinko balls 5 triggers the first sensing element 3 is recorded. Then, the radio frequency of the pachinko ball 5 is calculated based on the recorded number of the pachinko balls 5 and the time at which each of the recorded pachinko balls 5 triggers the first inductive element 3.
  • the counting circuit starts counting and counts up when the first sensing element 3 is triggered by each of the pachinko balls 5; the timing circuit records each bomb. The time when the ball 5 triggers the first sensing element 3; finally, the ratio of the time difference between the last ball 5 and the first pinball 5 recorded by the timing circuit and the number of the pinball 5 is calculated to obtain the RF of the plurality of pinballs 5 .
  • the radio frequency is 3 s/s.
  • the controller 7 can also calculate the radio frequency by recording the parameters of the pinball passing through the second position, that is, the number of the pinballs that trigger the second inductive element 6 and the number of the pinballs 5 triggering the second inductive element.
  • the time of 6 is used to calculate the radio frequency of the plurality of pinballs 5, and the principle thereof is consistent with the principle that the controller 7 measures the radio frequency through the first inductive component 3, and details are not described herein again.
  • the first sensing element 3 is preferably disposed adjacent to the inlet end 11 of the tachometer tube 1, and the second sensing element 6 is disposed adjacent to the outlet end 13 of the tachometer tube 1.
  • the length of the speed measuring tube 1 can be minimized, thereby reducing the weight of the muzzle speed measuring device; and the preset distance of the first sensing element 3 and the second sensing element 6 can be increased as much as possible to eliminate the timing error of the controller 7.
  • the measurement of the pinball 5 speed and radio frequency is more accurate.
  • the first inductive element 3 can be placed at the inlet end 11 of the tachometer tube 1 and the second inductive element 6 can be placed at the outlet end 13 of the tachometer tube 1.
  • the specific forms of the first sensing element 3 and the second sensing element 6 are not specifically limited, and may be separately provided sensing elements, or may be integrated with the circuit board as shown in FIG. 6-10. .
  • the trigger information of the first inductive component 3 and the second inductive component 6 is not specifically limited, that is, the controller 7 acquires the first information of the first inductive component 3 and the controller 7
  • the second information of the second inductive element 6 is not specifically limited.
  • the controller 7 may be the first information of the first sensing element 3 and the second information of the second sensing element 6 at the same time, or The first information of the first inductive element 3 and the second information of the second inductive element 6 are obtained in succession.
  • the first information refers to that the first sensing element 3 detects the information that the pachinko ball 5 passes through the first position
  • the second information refers to that the second sensing element 6 detects the information that the pachinko ball 5 passes through the second position.
  • the second information is acquired after the controller 7 obtains the first information. Specifically, when the first sensing element 3 is triggered, the controller 7 then detects whether the second sensing element 6 is also triggered. By obtaining the above information for the controller 7, the controller 7 can be made to recognize whether the first sensing element 3 is triggered by a false trigger, thereby improving the reliability of the muzzle speed measuring device.
  • the controller 7 may be configured to detect whether the second sensing element 6 is triggered within a certain period of time before the first sensing element 3 is triggered after acquiring the first information of the first sensing element 3. If it is triggered, the second information of the second sensing element 6 is acquired; otherwise, the controller 7 does not acquire the second information of the second sensing element 6.
  • the controller 7 determines that the number of times and the time of the currently recorded pinball are invalid. That is, when the controller 7 recognizes that the first sensing element 3 is erroneously triggered, the number of the pinballs 5 and the time of the triggering are not accumulated, thereby ensuring the accuracy of the radio frequency calculation.
  • the controller 7 calculates the radio frequency of the plurality of pinballs 5, for example, the controller 7 first accumulates the number of the pachinod balls 5 and stores the current triggering time when acquiring the first information, and further acquires the first Two information. If the second information is not acquired (i.e., the second sensing element 6 is not triggered), the number of stored pachinko balls is decremented by one and the time of the last recorded record is deleted. Of course, when the controller 7 obtains the first information, the second information may be acquired first. If the second information is acquired, the number of the marbles 5 is accumulated and the time when the first sensing element 3 is triggered is stored.
  • the robot of the embodiment can record the number of the pachinko balls passing through the first position or the second position by the controller 7 and the time when each of the pachinko balls 5 passes through the first position or the second position, which can be conveniently calculated.
  • This embodiment provides a robot using a marble launcher.
  • the embodiment is based on Embodiment 11 and Embodiment 12, and a light-emitting element 4 electrically connected to the controller 7 is fixedly connected to the speed measuring tube 1 for illuminating the pinball 5 .
  • the flight path ie, the ballistics of the pinball 5.
  • the controller 7 controls the light-emitting element 4 to emit light for a predetermined time, and the light beam extends in the outgoing direction after the projectile 5 is ejected from the launching system.
  • the mounting position of the light-emitting element 4 is not specifically limited, and it may be disposed at any position of the speed measuring tube 1, such as the top, the bottom, any one of the side portions or the outlet end 13.
  • the specific shape of the light-emitting element 4 is not limited, and it may be a dot shape, a line shape, or a planar shape.
  • the light source type of the light-emitting element 4 is not limited in this embodiment, and it may be an incandescent lamp, an LED lamp, or other forms of light source.
  • the number of light sources is not specifically limited in the present embodiment, and may be one, two or two or more.
  • the colors of the light sources may be one type, two types, or two or more types.
  • the structure of the light-emitting element 4 is not specifically limited, and may be a plurality of point light sources directly mounted on the speed measuring tube 1 alone, or may be integrated with a plurality of light sources on one circuit board.
  • the light-emitting element 4 may include only electronic components, and may include other components than the electronic components. Further, in the present embodiment, the light-emitting element 4 may be separately mounted on the speed measuring tube 1, or may be mounted on the speed measuring tube 1 by other components or structures.
  • the electrical connection manner of the controller 7 and the light-emitting element 4 is not specifically limited in the embodiment, and may be connected by a wire or by a signal connection, such as a wifi signal, a Bluetooth signal or a GPRS signal.
  • the robot of the present embodiment by providing the light-emitting element 4 electrically connected to the controller 7, so that when the pachinko ball 5 passes through the first position, the controller 7 can control the light-emitting element 4 to emit light for a preset time. Since the light emitted by the light-emitting element 4 coincides with the outgoing direction of the marble 5, the flight path of the marble 5, that is, the ballistics of the marble 5 can be accurately distinguished. In this way, the viewer in the audience area can tell which side of the game the marble launcher is shooting, and in which direction the pinball 5 will fly, roughly where it will fall.
  • the viewer can promptly distinguish whether the pachinko ball 5 will fly to itself, and then timely avoidance to avoid being accidentally injured. That is, in the present embodiment, the safety of the field personnel can be improved by providing the light-emitting elements 4.
  • the mounting positions of the first inductive element 3 and the second inductive element 6 are not specifically limited except that they need to have a preset distance therebetween, and the two sensing elements can be mounted on the tachometer 1 .
  • Location such as top, bottom, or side.
  • the first inductive element 3 is disposed adjacent to the outlet end 13 of the tachometer tube 1
  • the second inductive element 6 is disposed adjacent to the tachometer tube 1 The inlet end 11.
  • the light-emitting element 4 can emit light after the ball 5 passes through the first position, saving energy.
  • the light-emitting element 4 can be controlled to emit light by other control methods, such as the controller 7 controls the light-emitting element 4 to emit light after a period of time after the ball 5 passes through the first sensing element 3. Therefore, in the present embodiment, the specific control strategy for controlling the light-emitting element 4 by the controller 7 is not specifically limited.
  • the controller 7 only passes the second position in the pachinko ball 5, and the pachinko ball 5 also passes through the first position for a preset time, that is, the controller 7 passes through the second only in the pachinko ball 5 in sequence. Light is emitted within a preset time after the position and the first position.
  • the controller 7 determines that the first sensing element 3 detects that the ball 5 has passed through the first position. Is there a pinball 5 that passes through the second position. If yes, it indicates that the ball 5 passes through the second position and the first position in sequence, and the controller 7 controls the light-emitting element 4 to emit light within a preset time; if not, it indicates that there is no ball 5 in the speed measuring tube 1 Passing inside, at this time, the light-emitting element 4 does not emit light.
  • the controller 7 has the above control strategy, the false illumination of the light-emitting element 4 can be prevented, and the muzzle speed measuring device can be improved. Reliability.
  • the light-emitting element 4 includes a laser generator 41 fixedly coupled to the tachometer tube 1 for emitting laser light which extends along the exit direction of the pachinko ball 5 after being ejected from the muzzle speed measuring device.
  • the specific structure and type of the laser generator 41 are not particularly limited, and those skilled in the art can arbitrarily select a suitable laser generator 41 as needed. Because the laser has good directivity and illumination intensity, it has a better indication function, which enables the distant audience to see the flight path of the bullet more clearly, and to clear the location of the drop point, so that the audience can better avoid the flight.
  • the audience's pinball 5 further enhances the safety of the audience.
  • the light-emitting element 4 further includes a base 43 on which the laser generator 41 is mounted.
  • the base 43 is fixed to the outlet end 13 of the tachometer 1, and a through hole 431 communicating with the outlet of the tachometer 1 is provided on the base 43 for the passage of the pachinko ball 5.
  • a plurality of laser generators 41 are disposed on the end surface of the base 43 remote from the speed measuring tube 1, that is, the left end surface in FIG. 2, and the laser light emitted from the laser generators 41 is emitted from the through hole 431 along the marble ball 5 The direction of the exit extends.
  • the specific shape, structure and material of the base 43 and the specific connection manner thereof with the speed measuring tube 1 are not specifically limited.
  • the base 43 can be circular, rectangular or otherwise shaped shape.
  • the base 43 may be of a uniform structure or may have a certain number of protrusions and grooves thereon.
  • the connection between the base 43 and the speed measuring tube 1 may be a non-detachable connection or a detachable connection.
  • the base 43 is a rectangular parallelepiped, and a through hole 431 communicating with the outlet of the speed measuring tube 1 is opened on the rectangular parallelepiped, and a groove communicating with the through hole 431 is opened at the bottom of the rectangular parallelepiped.
  • a plurality of laser generators 41 are uniformly disposed on the outer circumference of the through hole 431. Furthermore, referring to FIG. 2, the connection between the two side faces of the rectangular parallelepiped and the top surface and the bottom surface is a circular arc transition. Of course, in the preferred example, the base 43 is connected to the tachometer 1 and the end of the end portion 11 of the tachometer 1 is the same size and shape.
  • the robot of the embodiment by providing a plurality of laser generators 41 on the base 43 of the light-emitting element 4, the light intensity when the light-emitting element 4 emits light can be further improved, thereby improving the visibility of the flying path of the marble 5, thereby improving safety. Sex.
  • the plurality of laser generators 41 include at least two sets of laser generators 41 that emit different colors, and the laser emitters of the different colors are spaced apart.
  • the four laser generators 41 are disposed on the base 43, and the four laser generators 41 include two laser generators 41 that emit red laser light and two laser generators 41 that emit green laser light.
  • the four laser generators 41 are spaced apart, that is, two red lasers are located on one diagonal of the rectangle, and two green lasers are located on the other diagonal of the rectangle.
  • the laser generators 41 of different colors by setting the laser generators 41 of different colors, it is possible to indicate different belligerents by color in the game. Furthermore, the audience located far away can more intuitively grasp the situation of the game on the spot. At the same time, the laser spacing of different colors can make the illumination area of the laser more uniform.
  • This embodiment provides a robot using a marble launcher.
  • the first sensing element 3 and the second sensing element 6 are arranged to include symmetric settings on the basis of the technical solutions provided in Embodiment 11, Embodiment 12 or Embodiment 13.
  • Light generating device and light receiving device are arranged to include symmetric settings on the basis of the technical solutions provided in Embodiment 11, Embodiment 12 or Embodiment 13.
  • the specific types and structures of the light generating device and the light receiving device are not particularly limited, and those skilled in the art can select any suitable electronic component.
  • the light-emitting diode 31 or the light-emitting diode is selected as the light-generating device; the photo-diode or the photo-transistor 33 is selected as the light-receiving device.
  • the specific setting positions of the light generating device and the light receiving device are not specified. limit.
  • a light-emitting diode 31 as a light generating device and a phototransistor 33 as a light-receiving device are disposed on opposite sides of the tachometer tube 1.
  • the connection between the light-emitting diode 31 and the phototransistor 33 intersects with the center line of the pipe of the tachometer 1, and the light emitted by the light-emitting diode 31 is incident on the phototransistor 33 along the line connecting the light-emitting diode 31 and the phototransistor 33.
  • the first sensing element 3 and the second sensing element 6 of the muzzle testing device of the robot of the present embodiment each include a symmetrically disposed light generating device and a light receiving device, thereby constituting a photoelectric sensor for detecting the light intensity between the two wires. .
  • the pinball 5 passes through the wire, the light emitted by the light generating device can be blocked, thereby triggering the circuit of the light receiving device, that is, the first sensing element 3 (the second sensing element 6) is triggered, that is, It is detected that the pachinko ball 5 passes through the first position (second position).
  • both the light generating device and the light receiving device have high sensitivity, especially the photoelectric sensor composed of the light emitting diode 31 and the phototransistor 33 has very high sensitivity, it is very suitable for detecting the high speed of the pachinko ball 5 object.
  • the specific shape and structure of the tachometer tube 1 are not particularly limited, and may be a hollow rectangular parallelepiped, a hollow cylinder or the like.
  • protrusions or depressions may be formed on the outer wall of the speed measuring tube 1.
  • the speed measuring tube 1 comprises: a top wall 17 and two side walls 19 disposed under the top wall 17, the light emitting diode 31 and the phototransistor 33 are symmetrically disposed on the two side walls 19, respectively, and the controller 7 is disposed at the top On the wall 17.
  • the entire structure of the muzzle speed measuring device can be made more compact, thereby reducing The volume of the muzzle speed measuring device.
  • the tachometer tube 1 further includes a bottom wall 15 opposite to the top wall 17 and connected to the two side walls 19, so that the influence of external light on the light emitting diode 31 and the phototransistor 33 can be reduced.
  • This embodiment provides a robot using a marble launcher.
  • the present embodiment is based on the technical solutions provided in Embodiment 11, Embodiment 12, Embodiment 13 or Embodiment 14, and an aiming element 9 is provided.
  • the aiming element 9 includes an aiming laser.
  • the device 91 is for aiming when the pachinko ball 5 is launched.
  • the aiming laser generator 91 is fixed to the wall of the tachometer 1, and the laser light emitted by the aiming laser generator 91 extends in the direction in which the pinball 5 is ejected from the speed measuring device.
  • the mounting position of the aiming laser generator 91 is not particularly limited, and it can be installed at any position of the speed measuring tube 1.
  • the structure, type, and color of the laser of the aiming laser generator 91 are not specifically limited.
  • a long tubular infrared laser generator 41 may be selected.
  • those skilled in the art can make selections according to needs, and details are not described herein again.
  • the aiming laser generator 91 can be controlled individually or electrically connected to the controller 7 to be controlled by the controller 7. At the same time, it is possible to control the laser to be turned on or to control the laser to be turned off after the pinball 5 is emitted.
  • the robot of this embodiment by mounting the aiming element 9 including the aiming laser generator 91 on the tachometer 1, can aim at the laser light emitted by the aiming laser generator 91 before the launch of the pinball 5, thereby improving the pinball 5 Hit rate.
  • the aiming element 9 further includes a mounting seat 93, and the laser generator 41 is fixed to the bottom of the tachometer tube 1 through the mounting seat 93, thereby reinforcing the laser generator 41 and the tachometer tube 1.
  • the connection strength is prevented from falling during the game and the service life of the muzzle speed measuring device is improved.
  • the specific shape and structure of the mount 93 are not specifically limited.
  • a person skilled in the art can select any suitable shape of the mount 93 for connecting the tachometer tube 1 and the aiming laser generator 91.
  • a hollow column-shaped mount 93 is selected so that the long tubular infrared laser generator 41 can be sleeved in the inner cavity of the mount 93.
  • the manner of connecting the mounting seat 93 to the tachometer tube 1 is not specifically limited, and it may be non-detachably fixed to the bottom of the tachometer tube 1, for example, welded to the bottom of the tachometer tube 1.
  • the mount 93 can also be detachably attached to the bottom of the tachometer 1, such as a snap or threaded connection.
  • connection manner between the laser generator 41 and the base 43 in the present embodiment is not particularly limited, and it may be connected to the base 43 in a detachable manner or may be connected to the base 43 in a non-detachable manner.

Abstract

一种弹珠发射器及其枪口测速装置,采用该弹珠发射器的机器人。其中,弹珠发射器的枪口测速装置包括:测速管(1)、两端分别固定测速管的进口端(11)和枪口的连接件(8)、沿测速管的通道方向间隔设置的第一感应元件(3)和第二感应元件(6)以及控制器(7),当弹球穿过测速管(1)时,该控制器(7)记录第一感应元件(3)和第二感应元件(6)被触发的时间差,并根据该时间差计算弹球的初速度。弹珠发射器,包括发射系统及固定在该发射系统的枪口上的上述枪口测速装置。机器人,包括主体及安装在该主体上的上述弹珠发射器。该弹珠发射器及其枪口测速装置,采用该弹珠发射器的机器人,可以实时测量从发射系统枪口发射出的弹球的初速度,不仅方便而且灵活。

Description

弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人 技术领域
本发明涉及机器人零部件技术领域,尤其涉及一种弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人。
背景技术
在机器人的对抗赛中,每一台机器人都包括主体和安装在该主体上的弹珠发射器。其中,弹珠发射器包括用于发射BB弹、高尔夫球等弹球的发射系统。在比赛过程中,获取发射系统所发射出的弹球的速度对于比赛的控制非常的重要。
目前,只有靶场测速仪,用于测量子弹中靶时的速度,该靶场测速仪包括:安装在底座上的两个测速板,两个红外射线感应器以及计时器。其中,两个测速板间间隔预设距离且沿重力方向设置,在每一个测速板上均开设有供子弹通过的通孔。两个红外射线感应器则分别设置在两个通孔位置用于感应子弹是否穿过相应的通孔。计时器与两个红外射线感应器电连接,记录子弹穿过两个红外射线感应器的时间差。最后根据记录的时间差计算得出子弹的飞行速度。
但是,现有的这种靶场测速仪结构复杂,重量大,无法灵活移动,并且只能用来测试子弹中靶时的速度,因此,无法直接应用在机器人对抗比赛中用于对弹珠发射器所发射出的弹球的初速度进行实时测量。
发明内容
本发明的目的是提供一种弹珠发射器及其枪口测速装置,采用该弹珠发射器的机器人,以解决现有技术中的靶场测速仪无法实时测量弹球的初速度的技术问题。
为了实现上述目的,本发明提供了以下技术方案:
第一方面,提供一种弹珠发射器的枪口测速装置,包括:第一感应元 件、第二感应元件、控制器以及用于供弹球穿过的测速管;
所述测速管的进口端用于与所述弹珠发射器的发射系统的枪口固定;
所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
第二方面,提供一种弹珠发射器,包括:发射系统及枪口测速装置;
其中,所述枪口测速装置包括:第一感应元件、第二感应元件、控制器以及用于供弹球穿过的测速管;
所述测速管的进口端与所述发射系统的枪口固定;
所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
第三方面,提供一种采用弹珠发射器的机器人,包括:主体和安装在该主体上的弹珠发射器;其中,所述弹珠发射器包括:发射系统以及枪口测速装置;
所述枪口测速装置包括:第一感应元件、第二感应元件、控制器以及用于供弹球穿过的测速管;
所述测速管的进口端与所述发射系统的枪口固定;
所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
本发明提供的弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人,通过设置能够与弹珠发射器的发射系统的枪口固定的测速管,从而可以通过弹球穿过测速管时触发这两个具有预设距离的感应元件的时间差来计算弹球从发射系统射出后的初速度。本实施例的这种枪口测速装置,不仅结构非常的简单,而且能够跟随弹珠发射器的枪口移动,可以灵活方便的实现对弹球初速度的实时测量。
附图说明
图1为本发明实施例所给出的枪口测速装置的原理示意图;
图2为图1中枪口测速装置的结构示意图;
图3为图2中枪口测速装置的正视图;
图4为图2中枪口测速装置的俯视图;
图5为图2中枪口测速装置的左视图;
图6为图2中枪口测速装置去掉外壳后的电路板的结构示意图;
图7为图6中电路板结构在另外一个观测方向的示意图;
图8为图7中电路板结构的仰视图;
图9为图7中电路板结构的正视图;
图10为图7中电路板结构的俯视图。
图中:
1、测速管;               11、进口端;
13、出口端;              15、底壁;
17、顶壁;                                     19、侧壁;
3、第一感应元件;                              31、发光二极管;
33、光敏三极管;                               4、发光元件;
41、激光发生器;                               43、底座;
431、通孔;                                    5、弹球;
6、第二感应元件;                              7、控制器;
8、连接件;                                    9、瞄准元件;
91、瞄准激光发生器;                           93、安装座。
具体实施方式
下面结合附图,对本发明的一些实施方式作详细说明。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一 特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书中,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
实施例1
本实施例提供一种弹珠发射器的枪口测速装置。图1为本实施例提供的枪口测速装置的原理示意图;图2为图1中枪口测速装置的结构示意图;图3为图2中枪口测速装置的正视图;图4为图2中枪口测速装置的俯视图;图5为图2中枪口测速装置的左视图。
如图1-5所示,本实施例提供的枪口测速装置,包括:第一感应元件3、第二感应元件6、控制器7以及用于供弹球5穿过的测速管1。
其中,测速管1用于供从弹珠发射器的发射系统射出的弹球5穿过,该测速管1的进口端11用来与弹珠发射器的发射系统的枪口固定连接。具体来说就是弹球5从发射系统的枪口射出后从测速管1的进口进入测速管1内的通道,并从测速管1的出口射出测速管1。在本实施例中,弹珠发射器的发射系统所发射出的弹球5可以是BB弹、高尔夫球或者橡胶子弹等。
具体的,在本实施例中对于测速管1不作具体限制,其仅需具有一可供子弹穿过的通道即可。因此,该测速管1可以具有任意外观形状。举例来说,测速管1可以由两个间隔设置的侧壁19构成,也可以由顶壁17以及连接在顶壁17下方且间隔设置的两个侧壁19所构成,当然,该测速管1还可以由顶壁17、底壁15以及连接所述顶壁17和底壁15的两个间隔设置的侧壁19所构成,或者该测速管1还可以由圆柱形的中空管所构成。通过以上的描述本领域技术人员可以明确,测速管1内具有一个直线型的供弹球5穿过的通道。优选地,如图2所示,该测速管1可以为一个具有中空通道的长方体。当然,在该长方体的外壁上可以形成有凸起、凸条、凹点或者凹槽等。
在本实施例中,测速管1与发射系统的枪口之间可以直接连接,也可以间接连接,比如通过连接件8连接。优选地,请参阅图3,连接件8设置在 测速管1的出口端13,并且该连接件8还与发射系统的枪口连接,该连接件8还具有连通测速管1进口和枪口出射口的连接通道。也即,连接件8的一端连接测速管1,另一端用来连接发射系统的枪口。具体的,在本实施例中对于连接件8和测速管1以及连接件8与枪口的连接方式不做具体限制。比如,连接件8可以是固定在测速管1进口端11上的或者是与测速管1一体的。连接件8与枪口可以通过卡接连接也可以通过螺纹连接。
同时,测速管1的长度也可以根据实际需要进行合理设置,以满足测量不同弹球5速度的需求。优选地,设置一个具有预设长度的测速管1,从而使子弹能够在测速管1中飞行足够的时间,以提高测速的准确性。
第一感应元件3,用来检测弹球5是否穿过测速管1的第一位置,沿测速管1的管道方向设置在测速管1上。具体的,在本实施例中对第一感应元件3在测速管1的安装位置不作具体限制,其可以设置在测速管1的进口端11、出口端13或者是中段,其可以设置在测速管1的顶部、底部或者是侧部。同时,在本实施例中,对于第一感应元件3的类型也不进行具体限制,其可以是红外光电传感器、激光传感器或者雷达传感器。并且,在本实施例中,对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上的任意位置作为第一位置。
第二感应元件6,用来检测弹球5是否穿过测速管1的第二位置,其沿测速管1的管道方向设置并与第一感应元件3间隔预设距离。除了上述对第二感应元件6与第一感应元件3具有预设距离的限制外,本实施例中对第一感应元件3的设置位置不再作其他限定。在本实施例中对第二感应元件6的类型也不作具体的限制,其也可以是红外光电传感器、激光传感器或者雷达传感器。优选地,第一感应元件3和第二感应元件6使用相同类型的感应元件,例如,都使用红外光电传感器。并且,在本实施例中,对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上与第一位置相异的任意位置作为第二位置。
具体地,在图1-5所示的示例中,该第一位置指第一感应元件3处测速管1的横截面,第二位置指第二感应元件6处测速管1的横截面。
优选地,如图1所示,第一感应元件3设置在靠近测速管1的出口端13,相应的,将第二感应元件6设置在靠近测速管1的进口端11。当然,第一感 应元件3也可以设置在靠近测速管1的进口端11,相应的,将第二感应元件6设置在靠近测速管1的出口端13。进一步,可以将第一感应元件3设置在靠近出口端13的侧面,并将第二感应元件6设置在进口端11的侧面,从而降低测速管1的高度,以利于弹珠发射器的瞄准。
控制器7与第一感应元件3和第二感应元件6电连接,用于记录弹球5穿过第二位置和第一位置的时间差,并根据该时间差计算弹球5从发射系统发射出时的初速度。
在本实施例中,对控制器7的结构和类型不作具体限制,其可以是集成电路板、芯片或者软件,也可以是几个电路或者几个功能模块的集合。例如,在一些示例中可以将控制器7设置成包括计时电路、计算电路的集成电路,通过计时电路进行计时,通过计算电路计算初速度。在另一些示例中,可以将控制器7设置成包括计时功能、计算功能的程序集合,通过计时程序进行计时,通过计算程序进行计算。并且,在通过计时软件进行计时的时候,其计时可以通过读取CPU的系统时间来进行,或者也可以是通过直接计时来进行。这些都是本领域的常规技术,在此不再进行过多的赘述,本领域技术人员可以根据需要任意选用合适的常规技术。
另外,控制器7与第一感应元件3和第二感应元件6的电连接方式在本实施例中也不作具体限制,对于电连接应该做广义的解释,其可以是通过导线连接,也可以是通过信号连接,比如wifi信号、蓝牙信号或者GPRS信号等。
下面以图1为例,简单介绍本实施例中的枪口测速装置的工作原理,以使本领域技术人员更好地理解本实用新型的技术方案:
在工作时,弹球5从弹珠发射器的发射系统中射出,从枪口测速装置的测速管1的进口进入测速管1的管道中,然后穿过第二感应元件6所在的第二位置,也即,当弹球5飞到第二感应元件6的感应位置时,第二感应元件6被触发,此时,控制器7记录第二感应元件6被触发的时间。之后,弹球5穿过第一感应元件3感应的第一位置并触发该第一感应元件3,控制器7记录下第一感应元件3被触发的时间,从而记录到弹球5穿过第二位置和第一位置的时间差,也即,记录第二感应元件6和第一感应元件3被触发的时间差t。最后,再根据上述时间差以及第一感应元件3和第二 感应元件6的预设距离s通过时间速度函数(v=s/t)计算出弹球5的初速度v。举例来说,当第一感应元件3和第二干感应元件被触发的时间差为0.0001s,并且第一感应元件3和第二感应元件6的预设距离为3cm时,可以计算出弹球5的初速度V=0.03m/0.001s=30m/s。
本实施例的枪口测速装置,通过设置能够与弹珠发射器的发射系统的枪口固定的测速管1,从而可以通过弹球5穿过测速管1时触发这两个具有预设距离的感应元件的时间差来计算弹球5从发射系统射出后的初速度。本实施例的这种枪口测速装置,不仅结构非常的简单,而且能够跟随弹珠发射器的枪口移动,可以灵活方便的实现对弹球5初速度的实时测量。
实施例2
本实施例提供一种弹珠发射器的枪口测速装置,用于测量从弹珠发射器的枪口射出的弹球5的初速度及多颗弹球5的射频(射击频率)。图6为图2中枪口测速装置去掉外壳后的电路板的结构示意图;图7为图6中电路板结构在另外一个观测方向的示意图;图8为图7中电路板结构的仰视图;图9为图7中电路板结构的正视图;图10为图7中电路板结构的俯视图。
如图1-10所示,本实施例是在实施例1提供的技术方案的基础上,使用控制器7记录穿过第一位置的弹球5的个数以及每一颗弹球5穿过该第一位置时的时间,并根据弹球5的个数以及每一颗弹球5穿过所述第一位置的时间计算多颗弹球5的射频(也即,射击频率)。
在本实施例中,对控制器7的结构和具体类型不作具体的限制,本领域技术人员可以任意选择集成电路、芯片或者软件来实现上述功能。优选地,请参阅图6-10,可以将控制器7设置成一电路板,该电路板可以包括计数电路和计时电路,计数电路记录穿过第一位置(也即,触发第一感应元件3)的弹球5的个数,并记录每一颗弹球5触发第一感应元件3的时间。然后,根据所记录的弹球5个数和记录的每一颗弹球5触发第一感应元件3的时间计算弹球5的射频。详细来说,当第一颗弹球5触发第一感应元件3时,计数电路开始计数并在每一颗弹球5触发第一感应元件3时计数加一;计时电路则记录每一颗弹球5触发第一感应元件3的时间;最终,通过计时电路记录的最后一颗弹球5与第一颗弹球5的时间差与弹球5个数的比值计算得到 多颗弹球5的射频。举例而言,就是当有三颗弹球5触发第一感应元件3,并且第三颗弹球5和第一颗弹球5之间的时间差为1s时,则射频为3发/s。
当然,控制器7也可以通过记录弹球穿过第二位置的各项参数来计算射频,也即,触发第二感应元件6的弹球5个数及每颗弹球5触发第二感应元件6的时间来计算多颗弹球5的射频,其原理与上述控制器7通过第一感应元件3测射频的原理一致,在此不再赘述。
进一步,参阅图8和图10,本实施例还可以优选地将第一感应元件3设置在靠近测速管1的进口端11,第二感应元件6设置在靠近测速管1的出口端13。这样,可以尽量减小测速管1的长度,从而减轻枪口测速装置的重量;并且能尽量增大第一感应元件3和第二感应元件6的预设距离,消除控制器7的计时误差,使得弹球5速度和射频的测量更加准确。更优选地,可以将第一感应元件3设置在测速管1的进口端11,并将第二感应元件6设置在测速管1的出口端13。
在本实施例中,第一感应元件3和第二感应元件6的具体形式不作具体限制,其可以是单独设置的感应元件,也可以是如图6-10所示的与电路板集成在一起。
在本实施例中,对于控制器7获取第一感应元件3和第二感应元件6的触发信息不做具体限制,也即,控制器7获取第一感应元件3的第一信息以及控制器7获取第二感应元件6的第二信息不作具体的限制。控制器7可以是同时获取第一感应元件3的第一信息和第二感应元件6的第二信息,也可以是先后获取第一感应元件3的第一信息以及第二感应元件6的第二信息。其中,第一信息指第一感应元件3检测到有弹球5穿过第一位置的信息,第二信息指第二感应元件6检测到有弹球5穿过第二位置的信息。优选地,当控制器7获取到第一信息之后再获取第二信息。具体来说,就是当第一感应元件3被触发时,控制器7再检测第二感应元件6是否也被触发。通过对控制器7获取信息作上述限定,可以使得控制器7能够识别第一感应元件3被触发是否为误触发,从而提高枪口测速装置的可靠性。举例而言,控制器7可以是在获取到第一感应元件3的第一信息后再检测是否第二感应元件6在第一感应元件3被触发的时间点之前的某个时间段内被触发过;如果被触发,则获取第二感应元件6的第二信息;否则,控制器7则未获取到第二感应元 件6的第二信息。
更进一步地,当控制器7仅获取到第一信息时,控制器7判定当前记录的弹球5个数和时间无效。也即,当控制器7识别到第一感应元件3是被误触发时,则不累加弹球5的个数与该次触发的时间,从而保证射频计算的准确性。
以上描述了控制器7计算多颗弹球5射频的原理,举例来说,就是控制器7在获取到第一信息时首先累加弹球5的个数并存储当前触发的时间,并进一步获取第二信息。如果没有获取到第二信息(也即,第二感应元件6未被触发),则将存储的弹球5个数减一,并删除所存储的最后一次记录的时间。当然,也可以在控制器7获取到第一信息时,先获取第二信息,如果获取到第二信息,则累加弹球5的个数并存储第一感应元件3被触发时的时间。
本实施例的枪口测速装置,通过控制器7记录穿过第一位置或者第二位置的弹球5个数及每一颗弹球5穿过第一位置或者第二位置的时间,可以非常方便的计算出多颗弹球5的射频。并且,本实施例还通过对控制器7获取第一信息和第二信息的时间选择,消除了可能的误触发问题,提高了枪口测速装置的可靠性。
实施例3
本实施例提供一种弹珠发射器的枪口测速装置,用于测量从弹珠发射器的枪口射出的弹球5的初速度并照亮弹球5的飞行轨迹。
如图1-10所示,本实施例是在实施例1和实施例2的基础上,在测速管1上固定连接一个与控制器7电连接的发光元件4,用于照亮弹球5的飞行轨迹(即,弹球5的弹道)。当弹球5穿过第一位置后,控制器7控制发光元件4在一个预设时间内发射光线,并且该光线沿弹球5从发射系统射出后的出射方向延伸。
具体的,在本实施例中,不对发光元件4的安装位置做具体限制,其可以设置在测速管1的任意位置,比如顶部、底部、任意一个侧部或者出口端13。并且,在本实施例中,也不限制发光元件4的具体形状,其可以为点状、线状或者面状。同时,在本实施例中也不限制发光元件4的光源类型,其可以是白炽灯、LED灯或者其他形式的光源。而且,在本实施例中也不对光源的数量进行具体限制,其可以是一个、两个或者两个以上。 并且,当光源为多个时,光源的颜色可以是一种、两种或者两种以上。另外,在本实施例中对于发光元件4的结构也不作具体限制,其可以是直接单独安装在测速管1上的多个点光源,也可以是将多个光源集成在一个电路板上,同时,发光元件4可以仅包括电子元件,也可以包括电子元件之外的其他部件。并且,在本实施例中,发光元件4可以单独安装在测速管1上,也可以通过其他部件或者结构安装在测速管1上。
同时,控制器7与发光元件4的电连接方式在本实施例中也不作具体限定,其可以是通过导线连接,也可以是通过无线连接,比如wifi信号、蓝牙信号或者GPRS信号等。
本实施例的枪口测速装置,通过设置与控制器7电连接的发光元件4,从而当弹球5穿过第一位置后,控制器7可以控制发光元件4在预设时间内发光。由于发光元件4所发射的光线与弹球5射出的出射方向一致,因而,可以准确分辨出弹球5的飞行轨迹,也即,弹球5的弹道。这样,位于观众区的观众就可分辨出对抗比赛中哪一方的弹珠发射器正在射击,以及弹球5将往哪个方向飞行,大致会落在什么位置。从而当弹珠发射器出现射击偏差时,观众可以及时分辨出弹球5是否会飞向自己,进而及时进行避让,避免被误伤。也即,在本实施例中通过设置发光元件4可以提高比赛现场人员的安全性。
在本实施例中对于第一感应元件3和第二感应元件6的安装位置除了二者之间需要具有预设距离之外也不作具体限定,这两个感应元件可以安装在测速管1的任意位置,比如顶部、底部或者侧边。优选地,将第一感应元件3设置在靠近测速管1的出口端13,将第二感应元件6设置在靠近测速管1的进口端11。从而可以使发光元件4在弹球5穿过第一位置后才发射光线,节约能源。
当然,在本实施例中还可以通过其他控制方式来控制发光元件4发射光线,比如当弹球5穿过第一感应元件3之后控制器7就控制发光元件4在一段时间之后发射光线。因此,在本实施例中,对于控制器7控制发光元件4的具体控制策略不作具体限制。优选地,控制器7仅在弹球5穿过第二位置,并且该弹球5还穿过第一位置开启预设时间,也就是说,控制器7仅在弹球5依次穿过第二位置和第一位置后在预设时间内发射光线。
具体来说,控制器7可以在第一感应元件3检测到有弹球5穿过第一位置后,判断在第一感应元件3检测到有弹球5穿过第一位置之前的一段时间内是否有弹球5穿过第二位置。如果有,则说明有弹球5依次穿过了第二位置和第一位置,则控制器7控制发光元件4在预设时间内发射光线;如果没有,则说明没有弹球5在测速管1内通过,此时,发光元件4不发射光线。
根据上述分析可知,当本实施例中的第一感应元件3和第二感应元件6的位置如上设置并且控制器7具有如上控制策略时,可以防止发光元件4的误发光,提高枪口测速装置的可靠性。
更进一步,如图2所示,发光元件4包括与测速管1固定连接的激光发生器41,用于发射激光,所述激光沿弹球5从枪口测速装置射出后的出射方向延伸。在本实施例中,对于激光发生器41的具体结构和类型不作具体限制,本领域技术人员可以根据需要任意选择合适的激光发生器41。由于激光具有良好的方向性和光照强度,因此,其具有更好的指示作用,能够使远方的观众更清晰地看见子弹的飞行轨迹,并且明确其落点位置,可以使观众更好的避让飞行观众的弹球5,进一步提高观众观赛的安全性。
再进一步,如图2所示,发光元件4还包括安装激光发生器41的底座43。该底座43固定在测速管1的出口端13,并且在底座43上开设有与测速管1的出口连通的通孔431,用于供弹球5穿过。在该底座43远离测速管1的端面上,也即图2中的左端面设置有多个激光发生器41,这些激光发生器41所发射的激光均沿弹球5从该通孔431射出后的出射方向延伸。
在本实施例中,对于底座43的具体形状、结构及材质以及其与测速管1的具体连接方式不作具体限制。例如,该底座43可以圆形、矩形或者其他形状。该底座43可以是均匀结构也可以是其上具有一定数量的凸起、凹槽。该底座43和测速管1的连接方式可以是不可拆卸连接也可以是可拆卸连接。优选地,该底座43为一个长方体,在该长方体上开设有与测速管1出口连通的通孔431,在该长方体的底部开设有与该通孔431连通的凹槽。多个激光发生器41则均匀的设置在通孔431的外周。进一步,参照图2可知,该长方体的两侧面与顶面和底面的连线均为圆弧过渡。当然,在优选的示例中底座43与测速管1连接的右端面与测速管1进口端11的端面大小和形状相同。
本实施例的枪口测速装置,通过在发光元件4的底座43上设置多个激光 发生器41,可以进一步提高发光元件4发射光线时的光强度,从而提高弹球5飞行轨迹的辨识度,以提高安全性。
优选地,如图2所示,上述多个激光发生器41包括至少两组发射不同颜色的激光发生器41,这些不同颜色的激光发射器间隔设置。比如在图2中,在底座43上设置有四个激光发生器41,这四个激光发生器41包括两个发射红色激光的激光发生器41以及两个发射绿色激光的激光发生器41。这四个激光发生器41间隔设置,也即,两个红色激光位于矩形的一条对角线上,两个绿色激光位于矩形的另一条对角线上。
在上述优选的方案中,通过设置不同颜色的激光发生器41,从而可以在比赛中通过颜色来指示出不同的交战方。进而,使得位于远方的观众能够更加直观的掌握现场的比赛情况。同时,不同颜色的激光器间隔设置可以使激光的照射区域更加均匀。
实施例4
本实施例提供一种弹珠发射器的枪口测速装置。
如图8和10所示,本实施例提供的枪口测试装置是在实施例1、实施例2或者实施例3所提供的技术方案的基础上,将第一感应元件3和第二感应元件6设置成包括对称设置的光发生器件和光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体类型和结构不作具体限定,本领域技术人员可以选择任意合适的电子元器件。比如,选择发光二极管31或者发光三极管作为光发生器件;选择光敏二极管或者光敏三极管33作为光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体设置位置不作具体限制。比如将作为光发生器件的发光二极管31和作为光接收器件的光敏三极管33设置在测速管1相对的两侧面上。具体的,发光二极管31和光敏三极管33的连线与测速管1的管道的中心线相交,发光二极管31所发出的光线沿发光二极管31和光敏三极管33的连线照射到光敏三极管33上。
本实施例的枪口测试装置的第一感应元件3和第二感应元件6均包括对称设置的光发生器件和光接收器件,因而组成了一个检测二者连线间光照强度的光电感应器。当弹球5穿过该连线时,即可将光发生器件所发出的光线挡住,从而触发光接收器件的电路,也就使得第一感应元件3(第二感应元 件6)触发,也即检测到有弹球5穿过第一位置(第二位置)。由于光发生器件和光接收器件均具有高的灵敏度,尤其是发光二极管31和光敏三极管33所组成的光电感应器具有非常高的灵敏度,因此,非常适宜于检测弹球5这种具有很高速度的物体。
在本实施例中对测速管1的具体形状和结构不作具体限制,其可以是中空长方体、中空圆柱等。当然在测速管1的外壁上还可以形成有凸起或者是凹陷。优选地,测速管1包括:顶壁17和设置在顶壁17下方的两个侧壁19,发光二极管31和光敏三极管33分别对称设置在两个侧壁19上,控制器7则设置在顶壁17上。
上述优选的方案中,通过将发光二极管31和光敏三极管33设置在两个侧壁19上并将控制器7设置在顶壁17上,可以使枪口测速装置的整个结构更加紧凑,从而减小枪口测速装置的体积。
更优选地,如图2所示,测速管1还包括与顶壁17相对并与两个侧壁19连接的底壁15,从而可以降低外部光线对发光二极管31和光敏三极管33的影响。
实施例5
本实施例提供一种弹珠发射器的枪口测速装置。
如图1-10所示,本实施例提供的枪口测速装置,是在实施例1、实施例2、实施例3或者实施例4所提供的技术方案的基础上,设置一瞄准元件9,该瞄准元件9包括瞄准激光发生器91,用于在发射弹球5时瞄准。该瞄准激光发生器91固定在测速管1的管壁上,并且,该瞄准激光发生器91所发射的激光沿弹球5从测速装置射出后的出射方向延伸。
在本实施例中,瞄准激光发生器91的安装位置不作具体限定,其可以安装在测速管1的任意位置。比如测速管1的顶部、底部或者两侧。
同时,在本实施例中,瞄准激光发生器91的结构、类型以及激光的颜色也不作具体的限定,比如,可以选用长管状的红外激光发生器41。在实际应用时,本领域技术人员可以根据需要进行选择,在此不再赘述。
另外,瞄准激光发生器91可以单独控制,也可以与控制器7电连接从而通过控制器7进行控制。同时,可以控制激光一直开启或者控制激光在弹球5发出后关闭。
本实施例的枪口测速装置,通过在测速管1上安装包括瞄准激光发生器91的瞄准元件9,从而在弹球5发射前可以通过瞄准激光发生器91所发射的激光进行瞄准,以提高弹球5的命中率。
在本实施例中,如图2所示,优选地,瞄准元件9还包括安装座93,激光发生器41通过安装座93固定在测速管1的底部,从而加强激光发生器41与测速管1的连接强度,避免其在比赛中掉落,提高枪口测速装置的使用寿命。
在本实施例中,安装座93的具体形状和结构不作具体限制。本领域技术人员可以选用任意适宜形状的安装座93用于连接测速管1和瞄准激光发生器91。比如选用中空柱状的安装座93,从而可以将长管状的红外激光发生器41套接在安装座93的内腔中。另外,安装座93与测速管1的连接方式也不作具体限定,其可以是不可拆卸的固定在测速管1的底部,比如,焊接在测速管1的底部。该安装座93也可以是可拆卸的固定在测速管1的底部,比如,卡接或者螺纹连接。
另外,在本实施例中激光发生器41与底座43之间的连接方式也不作具体限制,其可以通过可拆卸的方式与底座43连接,也可以通过不可拆卸的方式与底座43连接。
实施例6
本实施例提供一种弹珠发射器。
请参阅图1-10,本实施例提供的弹珠发射器包括:发射系统及枪口测速装置。其中,枪口测速装置包括:第一感应元件3、第二感应元件6、控制器7以及用于供弹球5穿过的测速管1。
其中,测速管1用于供从弹珠发射器的发射系统射出的弹球5穿过,该测速管1的进口端11用来与弹珠发射器的发射系统的枪口固定连接。具体来说就是弹球5从发射系统的枪口射出后从测速管1的进口进入测速管1内的通道,并从测速管1的出口射出测速管1。在本实施例中,弹珠发射器的发射系统所发射出的弹球5可以是BB弹、高尔夫球或者橡胶子弹等。
具体的,在本实施例中对于测速管1不作具体限制,其仅需具有一可供子弹穿过的通道即可。因此,该测速管1可以具有任意外观形状。举例来说,测速管1可以由两个间隔设置的侧壁19构成,也可以由顶壁17以及连接在 顶壁17下方且间隔设置的两个侧壁19所构成,当然,该测速管1还可以由顶壁17、底壁15以及连接所述顶壁17和底壁15的两个间隔设置的侧壁19所构成,或者该测速管1还可以由圆柱形的中空管所构成。通过以上的描述本领域技术人员可以明确,测速管1内具有一个直线型的供弹球5穿过的通道。优选地,如图2所示,该测速管1可以为一个具有中空通道的长方体。当然,在该长方体的外壁上可以形成有凸起、凸条、凹点或者凹槽等。
在本实施例中,测速管1与发射系统的枪口之间可以直接连接,也可以间接连接,比如通过连接件8连接。优选地,请参阅图3,连接件8设置在测速管1的出口端13,并且该连接件8还与发射系统的枪口连接,该连接件8还具有连通测速管1进口和枪口出射口的连接通道。也即,连接件8的一端连接测速管1,另一端用来连接发射系统的枪口。具体的,在本实施例中对于连接件8和测速管1以及连接件8与枪口的连接方式不做具体限制。比如,连接件8可以是固定在测速管1进口端11上的或者是与测速管1一体的。连接件8与枪口可以通过卡接连接也可以通过螺纹连接。
同时,测速管1的长度也可以根据实际需要进行合理设置,以满足测量不同弹球5速度的需求。优选地,设置一个具有预设长度的测速管1,从而使子弹能够在测速管1中飞行足够的时间,以提高测速的准确性。
第一感应元件3,用来检测弹球5是否测速管1的第一位置,沿测速管1的管道方向设置在测速管1上。具体的,在本实施例中对第一感应元件3在测速管1的安装位置不作具体限制,其可以设置在测速管1的进口端11、出口端13或者是中段,其可以设置在测速管1的顶部、底部或者是侧部。同时,在本实施例中,对于第一感应元件3的类型也不进行具体限制,其可以是红外光电传感器、激光传感器或者雷达传感器。并且,在本实施例中,对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上的任意位置作为第一位置。
第二感应元件6,用来检测弹球5是否穿过测速管1的第二位置,其沿测速管1的管道方向设置并与第一感应元件3间隔预设距离。除了上述对第二感应元件6与第一感应元件3具有预设距离的限制外,本实施例中对第一感应元件3的设置位置不再作其他限定。在本实施例中对第二感应元件6的类型也不作具体的限制,其也可以是红外光电传感器、激光传感器或者雷达 传感器。优选地,第一感应元件3和第二感应元件6使用相同类型的感应元件,例如,都使用红外光电传感器。并且,在本实施例中,对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上与第一位置相异的任意位置作为第二位置。
具体地,在图1-5所示的示例中,该第一位置指第一感应元件3处测速管1的横截面,第二位置指第二感应元件6处测速管1的横截面。
具体在图示的实施例中,所述第一位置指所述第一感应元件处测速管的横截面,所述第二位置指所述第二感应元件处测速管的横截面;
优选地,如图1所示,第一感应元件3设置在靠近测速管1的出口端13,相应的,将第二感应元件6设置在靠近测速管1的进口端11。当然,第一感应元件3也可以设置在靠近测速管1的进口端11,相应的,将第二感应元件6设置在靠近测速管1的出口端13。进一步,可以将第一感应元件3设置在靠近出口端13的侧面,并将第二感应元件6设置在进口端11的侧面,从而降低测速管1的高度,以利于弹珠发射器的瞄准。
控制器7与第一感应元件3和第二感应元件6电连接,用于记录弹球5穿过第二位置和第一位置的时间差,并根据该时间差计算弹球5从发射系统发射出时的初速度。
在本实施例中,对控制器7的结构和类型不作具体限制,其可以是集成电路板、芯片或者软件,也可以是几个电路或者几个功能模块的集合。例如,在一些示例中可以将控制器7设置成包括计时电路、计算电路的集成电路,通过计时电路进行计时,通过计算电路计算初速度。在另一些示例中,可以将控制器7设置成包括计时功能、计算功能的程序集合,通过计时程序进行计时,通过计算程序进行计算。并且,在通过计时软件进行计时的时候,其计时可以通过读取CPU的系统时间来进行,或者也可以是通过直接计时来进行。这些都是本领域的常规技术,在此不再进行过多的赘述,本领域技术人员可以根据需要任意选用合适的常规技术。
另外,控制器7与第一感应元件3和第二感应元件6的电连接方式在本实施例中也不作具体限制,对于电连接应该做广义的解释,其可以是通过导线连接,也可以是通过无线连接,比如wifi信号、蓝牙信号或者GPRS信号等。
下面以图1为例,简单介绍本实施例中的枪口测速装置的工作原理,以使本领域技术人员更好地理解本实用新型的技术方案:
在工作时,弹球5从弹珠发射器的发射系统中射出,从枪口测速装置的测速管1的进口进入测速管1的管道中,然后穿过第二感应元件6所在的第二位置,也即,当弹球5飞到第二感应元件6的感应位置时,第二感应元件6被触发,此时,控制器7记录第二感应元件6被触发的时间。之后,弹球5穿过第一感应元件3感应的第一位置并触发该第一感应元件3,控制器7记录下第一感应元件3被触发的时间,从而记录到弹球5穿过第二位置和第一位置的时间差,也即,记录第二感应元件6和第一感应元件3被触发的时间差t。最后,再根据上述时间差以及第一感应元件3和第二感应元件6的预设距离s通过时间速度函数(v=s/t)计算出弹球5的初速度v。举例来说,当第一感应元件3和第二干感应元件被触发的时间差为0.0001s,并且第一感应元件3和第二感应元件6的预设距离为3cm时,可以计算出弹球5的初速度V=0.03m/0.001s=30m/s。
本实施例的弹珠发射器,通过设置能够与弹珠发射器的发射系统的枪口固定的测速管1,从而可以通过弹球5穿过测速管1时触发这两个具有预设距离的感应元件的时间差来计算弹球5从发射系统射出后的初速度。本实施例的这种枪口测速装置,不仅结构非常的简单,而且能够跟随弹珠发射器的枪口移动,可以灵活方便的实现对弹球5初速度的实时测量。
实施例7
本实施例提供一种弹珠发射器,用于测量从发射系统的枪口射出的弹球5的初速度及多颗弹球5的射频(射击频率)。
请参阅图1-10,本实施例是在实施例6提供的技术方案的基础上,使用控制器7记录穿过第一位置的弹球5的个数以及每一颗弹球5穿过该第一位置时的时间,并根据弹球5的个数以及每一颗弹球5穿过所述第一位置的时间计算多颗弹球5的射频(也即,射击频率)。
在本实施例中,对控制器7的结构和具体类型不作具体的限制,本领域技术人员可以任意选择集成电路、芯片或者软件来实现上述功能。优选地,请参阅图6-10,可以将控制器7设置成一电路板,该电路板可以包括计数电路和计时电路,计数电路记录穿过第一位置(也即,触发第一感应元件3) 的弹球5的个数,并记录每一颗弹球5触发第一感应元件3的时间。然后,根据所记录的弹球5个数和记录的每一颗弹球5触发第一感应元件3的时间计算弹球5的射频。详细来说,当第一颗弹球5触发第一感应元件3时,计数电路开始计数并在每一颗弹球5触发第一感应元件3时计数加一;计时电路则记录每一颗弹球5触发第一感应元件3的时间;最终,通过计时电路记录的最后一颗弹球5与第一颗弹球5的时间差与弹球5个数的比值计算得到多颗弹球5的射频。举例而言,就是当有三颗弹球5触发第一感应元件3,并且第三颗弹球5和第一颗弹球5之间的时间差为1s时,则射频为3发/s。
当然,控制器7也可以通过记录弹球穿过第二位置的各项参数来计算射频,也即,触发第二感应元件6的弹球5个数及每颗弹球5触发第二感应元件6的时间来计算多颗弹球5的射频,其原理与上述控制器7通过第一感应元件3测射频的原理一致,在此不再赘述。
进一步,参阅图8和图10,本实施例还可以优选地将第一感应元件3设置在靠近测速管1的进口端11,第二感应元件6设置在靠近测速管1的出口端13。这样,可以尽量减小测速管1的长度,从而减轻枪口测速装置的重量;并且能尽量增大第一感应元件3和第二感应元件6的预设距离,消除控制器7的计时误差,使得弹球5速度和射频的测量更加准确。更优选地,可以将第一感应元件3设置在测速管1的进口端11,并将第二感应元件6设置在测速管1的出口端13。
在本实施例中,第一感应元件3和第二感应元件6的具体形式不作具体限制,其可以是单独设置的感应元件,也可以是如图6-10所示的与电路板集成在一起。
在本实施例中,对于控制器7获取第一感应元件3和第二感应元件6的触发信息不做具体限制,也即,控制器7获取第一感应元件3的第一信息以及控制器7获取第二感应元件6的第二信息不作具体的限制。控制器7可以是同时获取第一感应元件3的第一信息和第二感应元件6的第二信息,也可以是先后获取第一感应元件3的第一信息以及第二感应元件6的第二信息。其中,第一信息指第一感应元件3检测到有弹球5穿过第一位置的信息,第二信息指第二感应元件6检测到有弹球5穿过第二位置的信息。优选地,当控制器7获取到第一信息之后再获取第二信息。具体来说,就是当第一感应 元件3被触发时,控制器7再检测第二感应元件6是否也被触发。通过对控制器7获取信息作上述限定,可以使得控制器7能够识别第一感应元件3被触发是否为误触发,从而提高枪口测速装置的可靠性。举例而言,控制器7可以是在获取到第一感应元件3的第一信息后再检测是否第二感应元件6在第一感应元件3被触发的时间点之前的某个时间段内被触发过;如果被触发,则获取第二感应元件6的第二信息;否则,控制器7则未获取到第二感应元件6的第二信息。
更进一步地,当控制器7仅获取到第一信息时,控制器7判定当前记录的弹球5个数和时间无效。也即,当控制器7识别到第一感应元件3是被误触发时,则不累加弹球5的个数与该次触发的时间,从而保证射频计算的准确性。
以上描述了控制器7计算多颗弹球5射频的原理,举例来说,就是控制器7在获取到第一信息时首先累加弹球5的个数并存储当前触发的时间,并进一步获取第二信息。如果没有获取到第二信息(也即,第二感应元件6未被触发),则将存储的弹球5个数减一,并删除所存储的最后一次记录的时间。当然,也可以在控制器7获取到第一信息时,先获取第二信息,如果获取到第二信息,则累加弹球5的个数并存储第一感应元件3被触发时的时间。
本实施例的弹珠发射器,通过控制器7记录穿过第一位置或者第二位置的弹球5个数及每一颗弹球5穿过第一位置或者第二位置的时间,可以非常方便的计算出多颗弹球5的射频。并且,本实施例还通过对控制器7获取第一信息和第二信息的时间选择,消除了可能的误触发问题,提高了枪口测速装置的可靠性。
实施例8
本实施例提供一种弹珠发射器,用于测量从发射系统的枪口射出的弹球5的初速度并照亮弹球5的飞行轨迹。
请参阅图1-10,本实施例是在实施例6和实施例7的基础上,在测速管1上固定连接一个与控制器7电连接的发光元件4,用于照亮弹球5的飞行轨迹(即,弹球5的弹道)。当弹球5穿过第一位置后,控制器7控制发光元件4在一个预设时间内发射光线,并且该光线沿弹球5从发射系统射出后的出射方向延伸。
具体的,在本实施例中,不对发光元件4的安装位置做具体限制,其可以设置在测速管1的任意位置,比如顶部、底部、任意一个侧部或者出口端13。并且,在本实施例中,也不限制发光元件4的具体形状,其可以为点状、线状或者面状。同时,在本实施例中也不限制发光元件4的光源类型,其可以是白炽灯、LED灯或者其他形式的光源。而且,在本实施例中也不对光源的数量进行具体限制,其可以是一个、两个或者两个以上。并且,当光源为多个时,光源的颜色可以是一种、两种或者两种以上。另外,在本实施例中对于发光元件4的结构也不作具体限制,其可以是直接单独安装在测速管1上的多个点光源,也可以是将多个光源集成在一个电路板上,同时,发光元件4可以仅包括电子元件,也可以包括电子元件之外的其他部件。并且,在本实施例中,发光元件4可以单独安装在测速管1上,也可以通过其他部件或者结构安装在测速管1上。
同时,控制器7与发光元件4的电连接方式在本实施例中也不作具体限定,其可以是通过导线连接,也可以是通过无线连接,比如wifi信号、蓝牙信号或者GPRS信号等。
本实施例的弹珠发射器,通过设置与控制器7电连接的发光元件4,从而当弹球5穿过第一位置后,控制器7可以控制发光元件4在预设时间内发光。由于发光元件4所发射的光线与弹球5射出的出射方向一致,因而,可以准确分辨出弹球5的飞行轨迹,也即,弹球5的弹道。这样,位于观众区的观众就可分辨出对抗比赛中哪一方的弹珠发射器正在射击,以及弹球5将往哪个方向飞行,大致会落在什么位置。从而当弹珠发射器出现射击偏差时,观众可以及时分辨出弹球5是否会飞向自己,进而及时进行避让,避免被误伤。也即,在本实施例中通过设置发光元件4可以提高比赛现场人员的安全性。
在本实施例中对于第一感应元件3和第二感应元件6的安装位置除了二者之间需要具有预设距离之外也不作具体限定,这两个感应元件可以安装在测速管1的任意位置,比如顶部、底部或者侧边。优选地,将第一感应元件3设置在靠近测速管1的出口端13,将第二感应元件6设置在靠近测速管1的进口端11。从而可以使发光元件4在弹球5穿过第一位置后才发射光线,节约能源。
当然,在本实施例中还可以通过其他控制方式来控制发光元件4发射光线,比如当弹球5穿过第一感应元件3之后控制器7就控制发光元件4在一段时间之后发射光线。因此,在本实施例中,对于控制器7控制发光元件4的具体控制策略不作具体限制。优选地,控制器7仅在弹球5穿过第二位置,并且该弹球5还穿过第一位置开启预设时间,也就是说,控制器7仅在弹球5依次穿过第二位置和第一位置后在预设时间内发射光线。
具体来说,控制器7可以在第一感应元件3检测到有弹球5穿过第一位置后,判断在第一感应元件3检测到有弹球5穿过第一位置之前的一段时间内是否有弹球5穿过第二位置。如果有,则说明有弹球5依次穿过了第二位置和第一位置,则控制器7控制发光元件4在预设时间内发射光线;如果没有,则说明没有弹球5在测速管1内通过,此时,发光元件4不发射光线。
根据上述分析可知,当本实施例中的第一感应元件3和第二感应元件6的位置如上设置并且控制器7具有如上控制策略时,可以防止发光元件4的误发光,提高枪口测速装置的可靠性。
更进一步,如图2所示,发光元件4包括与测速管1固定连接的激光发生器41,用于发射激光,所述激光沿弹球5从枪口测速装置射出后的出射方向延伸。在本实施例中,对于激光发生器41的具体结构和类型不作具体限制,本领域技术人员可以根据需要任意选择合适的激光发生器41。由于激光具有良好的方向性和光照强度,因此,其具有更好的指示作用,能够使远方的观众更清晰地看见子弹的飞行轨迹,并且明确其落点位置,可以使观众更好的避让飞行观众的弹球5,进一步提高观众观赛的安全性。
再进一步,如图2所示,发光元件4还包括安装激光发生器41的底座43。该底座43固定在测速管1的出口端13,并且在底座43上开设有与测速管1的出口连通的通孔431,用于供弹球5穿过。在该底座43远离测速管1的端面上,也即图2中的左端面设置有多个激光发生器41,这些激光发生器41所发射的激光均沿弹球5从该通孔431射出后的出射方向延伸。
在本实施例中,对于底座43的具体形状、结构及材质以及其与测速管1的具体连接方式不作具体限制。例如,该底座43可以圆形、矩形或者其他形状。该底座43可以是均匀结构也可以是其上具有一定数量的凸起、凹槽。该底座43和测速管1的连接方式可以是不可拆卸连接也可以是可拆卸连接。优 选地,该底座43为一个长方体,在该长方体上开设有与测速管1出口连通的通孔431,在该长方体的底部开设有与该通孔431连通的凹槽。多个激光发生器41则均匀的设置在通孔431的外周。进一步,参照图2可知,该长方体的两侧面与顶面和底面的连线均为圆弧过渡。当然,在优选的示例中底座43与测速管1连接的右端面与测速管1进口端11的端面大小和形状相同。
本实施例的弹珠发射器,通过在发光元件4的底座43上设置多个激光发生器41,可以进一步提高发光元件4发射光线时的光强度,从而提高弹球5飞行轨迹的辨识度,以提高安全性。
优选地,如图2所示,上述多个激光发生器41包括至少两组发射不同颜色的激光发生器41,这些不同颜色的激光发射器间隔设置。比如在图2中,在底座43上设置有四个激光发生器41,这四个激光发生器41包括两个发射红色激光的激光发生器41以及两个发射绿色激光的激光发生器41。这四个激光发生器41间隔设置,也即,两个红色激光位于矩形的一条对角线上,两个绿色激光位于矩形的另一条对角线上。
在上述优选的方案中,通过设置不同颜色的激光发生器41,从而可以在比赛中通过颜色来指示出不同的交战方。进而,使得位于远方的观众能够更加直观的掌握现场的比赛情况。同时,不同颜色的激光器间隔设置可以使激光的照射区域更加均匀。
实施例9
本实施例提供一种弹珠发射器。
请参阅图1-10,本实施例提供的弹珠发射器是在实施例6、实施例7或者实施例8所提供的技术方案的基础上,将第一感应元件3和第二感应元件6设置成包括对称设置的光发生器件和光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体类型和结构不作具体限定,本领域技术人员可以选择任意合适的电子元器件。比如,选择发光二极管31或者发光三极管作为光发生器件;选择光敏二极管或者和光敏三极管33作为光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体设置位置不作具体限制。比如将作为光发生器件的发光二极管31和作为光接收器件的光敏三极管33设置在测速管1相对的两侧面上。具体的,发光二极管31和光敏三极 管33的连线与测速管1的管道的中心线相交,发光二极管31所发出的光线沿发光二极管31和光敏三极管33的连线照射到光敏三极管33上。
本实施例的弹珠发射器的枪口测试装置的第一感应元件3和第二感应元件6均包括对称设置的光发生器件和光接收器件,因而组成了一个检测二者连线间光照强度的光电感应器。当弹球5穿过该连线时,即可将光发生器件所发出的光线挡住,从而触发光接收器件的电路,也就使得第一感应元件3(第二感应元件6)触发,也即检测到有弹球5穿过第一位置(第二位置)。由于光发生器件和光接收器件均具有高的灵敏度,尤其是发光二极管31和光敏三极管33所组成的光电感应器具有非常高的灵敏度,因此,非常适宜于检测弹球5这种具有很高速度的物体。
在本实施例中对测速管1的具体形状和结构不作具体限制,其可以是中空长方体、中空圆柱等。当然在测速管1的外壁上还可以形成有凸起或者是凹陷。优选地,测速管1包括:顶壁17和设置在顶壁17下方的两个侧壁19,发光二极管31和光敏三极管33分别对称设置在两个侧壁19上,控制器7则设置在顶壁17上。
上述优选的方案中,通过将发光二极管31和光敏三极管33设置在两个侧壁19上并将控制器7设置在顶壁17上,可以使枪口测速装置的整个结构更加紧凑,从而减小枪口测速装置的体积。
更优选地,如图2所示,测速管1还包括与顶壁17相对并与两个侧壁19连接的底壁15,从而可以降低外部光线对发光二极管31和光敏三极管33的影响。
实施例10
本实施例提供一种弹珠发射器。
请参阅图1-10,本实施例提供的弹珠发射器,是在实施例6、实施例7、实施例8或者实施例9所提供的技术方案的基础上,设置一瞄准元件9,该瞄准元件9包括瞄准激光发生器91,用于在发射弹球5时瞄准。该瞄准激光发生器91固定在测速管1的管壁上,并且,该瞄准激光发生器91所发射的激光沿弹球5从测速装置射出后的出射方向延伸。
在本实施例中,瞄准激光发生器91的安装位置不作具体限定,其可以安装在测速管1的任意位置。比如测速管1的顶部、底部或者两侧。
同时,在本实施例中,瞄准激光发生器91的结构、类型以及激光的颜色也不作具体的限定,比如,可以选用长管状的红外激光发生器41。在实际应用时,本领域技术人员可以根据需要进行选择,在此不再赘述。
另外,瞄准激光发生器91可以单独控制,也可以与控制器7电连接从而通过控制器7进行控制。同时,可以控制激光一直开启或者控制激光在弹球5发出后关闭。
本实施例的弹珠发射器,通过在测速管1上安装包括瞄准激光发生器91的瞄准元件9,从而在弹球5发射前可以通过瞄准激光发生器91所发射的激光进行瞄准,以提高弹球5的命中率。
在本实施例中,如图2所示,优选地,瞄准元件9还包括安装座93,激光发生器41通过安装座93固定在测速管1的底部,从而加强激光发生器41与测速管1的连接强度,避免其在比赛中掉落,提高枪口测速装置的使用寿命。
在本实施例中,安装座93的具体形状和结构不作具体限制。本领域技术人员可以选用任意适宜形状的安装座93用于连接测速管1和瞄准激光发生器91。比如选用中空柱状的安装座93,从而可以将长管状的红外激光发生器41套接在安装座93的内腔中。另外,安装座93与测速管1的连接方式也不作具体限定,其可以是不可拆卸的固定在测速管1的底部,比如,焊接在测速管1的底部。该安装座93也可以是可拆卸的固定在测速管1的底部,比如,卡接或者螺纹连接。
另外,在本实施例中激光发生器41与底座43之间的连接方式也不作具体限制,其可以通过可拆卸的方式与底座43连接,也可以通过不可拆卸的方式与底座43连接。
实施例11
本实施例提供一种采用弹珠发射器的机器人。
请参阅图1-10,本实施例提供的机器人,包括:主体和安装在该主体上的弹珠发射器。其中,该弹珠发射器包括:发射系统和枪口测速装置。该枪口测速装置包括:第一感应元件3、第二感应元件6、控制器7以及用于供弹球5穿过的测速管1。
其中,测速管1用于供从弹珠发射器的发射系统射出的弹球5穿过,该 测速管1的进口端11用来与弹珠发射器的发射系统的枪口固定连接。具体来说就是弹球5从发射系统的枪口射出后从测速管1的进口进入测速管1内的通道,并从测速管1的出口射出测速管1。在本实施例中,弹珠发射器的发射系统所发射出的弹球5可以是BB弹、高尔夫球或者橡胶子弹等。
具体的,在本实施例中对于测速管1不作具体限制,其仅需具有一可供子弹穿过的通道即可。因此,该测速管1可以具有任意外观形状。举例来说,测速管1可以由两个间隔设置的侧壁19构成,也可以由顶壁17以及连接在顶壁17下方且间隔设置的两个侧壁19所构成,当然,该测速管1还可以由顶壁17、底壁15以及连接所述顶壁17和底壁15的两个间隔设置的侧壁19所构成,或者该测速管1还可以由圆柱形的中空管所构成。通过以上的描述本领域技术人员可以明确,测速管1内具有一个直线型的供弹球5穿过的通道。优选地,如图2所示,该测速管1可以为一个具有中空通道的长方体。当然,在该长方体的外壁上可以形成有凸起、凸条、凹点或者凹槽等。
在本实施例中,测速管1与发射系统的枪口之间可以直接连接,也可以间接连接,比如通过连接件8连接。优选地,请参阅图3,连接件8设置在测速管1的出口端13,并且该连接件8还与发射系统的枪口连接,该连接件8还具有连通测速管1进口和枪口出射口的连接通道。也即,连接件8的一端连接测速管1,另一端用来连接发射系统的枪口。具体的,在本实施例中对于连接件8和测速管1以及连接件8与枪口的连接方式不做具体限制。比如,连接件8可以是固定在测速管1进口端11上的或者是与测速管1一体的。连接件8与枪口可以通过卡接连接也可以通过螺纹连接。
同时,测速管1的长度也可以根据实际需要进行合理设置,以满足测量不同弹球5速度的需求。优选地,设置一个具有预设长度的测速管1,从而使子弹能够在测速管1中飞行足够的时间,以提高测速的准确性。
第一感应元件3,用来检测弹球5是否穿过测速管1的第一位置,沿测速管1的管道方向设置在测速管1上。具体的,在本实施例中对第一感应元件3在测速管1的安装位置不作具体限制,其可以设置在测速管1的进口端11、出口端13或者是中段,其可以设置在测速管1的顶部、底部或者是侧部。同时,在本实施例中,对于第一感应元件3的类型也不进行具体限制,其可以是红外光电传感器、激光传感器或者雷达传感器。并且,在本实施例中, 对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上的任意位置作为第一位置。
第二感应元件6,用来检测弹球5是否穿过测速管1的第二位置,其沿测速管1的管道方向设置并与第一感应元件3间隔预设距离。除了上述对第二感应元件6与第一感应元件3具有预设距离的限制外,本实施例中对第一感应元件3的设置位置不再作其他限定。在本实施例中对第二感应元件6的类型也不作具体的限制,其也可以是红外光电传感器、激光传感器或者雷达传感器。优选地,第一感应元件3和第二感应元件6使用相同类型的感应元件,例如,都使用红外光电传感器。并且,在本实施例中,对于测速管的第一位置也不作具体限定,本领域技术人员可以根据实际需要选择测速管1内弹球5飞行轨迹上与第一位置相异的任意位置作为第二位置。
具体地,在图1-5所示的示例中,该第一位置指第一感应元件3处测速管1的横截面,第二位置指第二感应元件6处测速管1的横截面。
优选地,如图1所示,第一感应元件3设置在靠近测速管1的出口端13,相应的,将第二感应元件6设置在靠近测速管1的进口端11。当然,第一感应元件3也可以设置在靠近测速管1的进口端11,相应的,将第二感应元件6设置在靠近测速管1的出口端13。进一步,可以将第一感应元件3设置在靠近出口端13的侧面,并将第二感应元件6设置在进口端11的侧面,从而降低测速管1的高度,以利于弹珠发射器的瞄准。
控制器7与第一感应元件3和第二感应元件6电连接,用于记录弹球5穿过第二位置和第一位置的时间差,并根据该时间差计算弹球5从发射系统发射出时的初速度。
在本实施例中,对控制器7的结构和类型不作具体限制,其可以是集成电路板、芯片或者软件,也可以是几个电路或者几个功能模块的集合。例如,在一些示例中可以将控制器7设置成包括计时电路、计算电路的集成电路,通过计时电路进行计时,通过计算电路计算初速度。在另一些示例中,可以将控制器7设置成包括计时功能、计算功能的程序集合,通过计时程序进行计时,通过计算程序进行计算。并且,在通过计时软件进行计时的时候,其计时可以通过读取CPU的系统时间来进行,或者也可以是通过直接计时来进行。这些都是本领域的常规技术,在此不再进行过多的赘述,本领域技术人 员可以根据需要任意选用合适的常规技术。
另外,控制器7与第一感应元件3和第二感应元件6的电连接方式在本实施例中也不作具体限制,对于电连接应该做广义的解释,其可以是通过导线连接,也可以是通过信号连接,比如wifi信号、蓝牙信号或者GPRS信号等。
下面以图1为例,简单介绍本实施例中的枪口测速装置的工作原理,以使本领域技术人员更好地理解本实用新型的技术方案:
在工作时,弹球5从弹珠发射器的发射系统中射出,从枪口测速装置的测速管1的进口进入测速管1的管道中,然后穿过第二感应元件6所在的第二位置,也即,当弹球5飞到第二感应元件6的感应位置时,第二感应元件6被触发,此时,控制器7记录第二感应元件6被触发的时间。之后,弹球5穿过第一感应元件3感应的第一位置并触发该第一感应元件3,控制器7记录下第一感应元件3被触发的时间,从而记录到弹球5穿过第二位置和第一位置的时间差,也即,记录第二感应元件6和第一感应元件3被触发的时间差t。最后,再根据上述时间差以及第一感应元件3和第二感应元件6的预设距离s通过时间速度函数(v=s/t)计算出弹球5的初速度v。举例来说,当第一感应元件3和第二干感应元件被触发的时间差为0.0001s,并且第一感应元件3和第二感应元件6的预设距离为3cm时,可以计算出弹球5的初速度V=0.03m/0.001s=30m/s。
本实施例的机器人,通过设置能够与弹珠发射器的发射系统的枪口固定的测速管1,从而可以通过弹球5穿过测速管1时触发这两个具有预设距离的感应元件的时间差来计算弹球5从发射系统射出后的初速度。本实施例的这种枪口测速装置,不仅结构非常的简单,而且能够跟随弹珠发射器的枪口移动,可以灵活方便的实现对弹球5初速度的实时测量。
实施例12
本实施例提供一种采用弹珠发射器的机器人。
请参阅图1-10,本实施例是在实施例11提供的技术方案的基础上,使用控制器7记录穿过第一位置的弹球5的个数以及每一颗弹球5穿过该第一位置时的时间,并根据弹球5的个数以及每一颗弹球5穿过所述第一位置的时间计算多颗弹球5的射频(也即,射击频率)。
在本实施例中,对控制器7的结构和具体类型不作具体的限制,本领域技术人员可以任意选择集成电路、芯片或者软件来实现上述功能。优选地,请参阅图6-10,可以将控制器7设置成一电路板,该电路板可以包括计数电路和计时电路,计数电路记录穿过第一位置(也即,触发第一感应元件3)的弹球5的个数,并记录每一颗弹球5触发第一感应元件3的时间。然后,根据所记录的弹球5个数和记录的每一颗弹球5触发第一感应元件3的时间计算弹球5的射频。详细来说,当第一颗弹球5触发第一感应元件3时,计数电路开始计数并在每一颗弹球5触发第一感应元件3时计数加一;计时电路则记录每一颗弹球5触发第一感应元件3的时间;最终,通过计时电路记录的最后一颗弹球5与第一颗弹球5的时间差与弹球5个数的比值计算得到多颗弹球5的射频。举例而言,就是当有三颗弹球5触发第一感应元件3,并且第三颗弹球5和第一颗弹球5之间的时间差为1s时,则射频为3发/s。
当然,控制器7也可以通过记录弹球穿过第二位置的各项参数来计算射频,也即,触发第二感应元件6的弹球5个数及每颗弹球5触发第二感应元件6的时间来计算多颗弹球5的射频,其原理与上述控制器7通过第一感应元件3测射频的原理一致,在此不再赘述。
进一步,参阅图8和图10,本实施例还可以优选地将第一感应元件3设置在靠近测速管1的进口端11,第二感应元件6设置在靠近测速管1的出口端13。这样,可以尽量减小测速管1的长度,从而减轻枪口测速装置的重量;并且能尽量增大第一感应元件3和第二感应元件6的预设距离,消除控制器7的计时误差,使得弹球5速度和射频的测量更加准确。更优选地,可以将第一感应元件3设置在测速管1的进口端11,并将第二感应元件6设置在测速管1的出口端13。
在本实施例中,第一感应元件3和第二感应元件6的具体形式不作具体限制,其可以是单独设置的感应元件,也可以是如图6-10所示的与电路板集成在一起。
在本实施例中,对于控制器7获取第一感应元件3和第二感应元件6的触发信息不做具体限制,也即,控制器7获取第一感应元件3的第一信息以及控制器7获取第二感应元件6的第二信息不作具体的限制。控制器7可以是同时获取第一感应元件3的第一信息和第二感应元件6的第二信息,也可 以是先后获取第一感应元件3的第一信息以及第二感应元件6的第二信息。其中,第一信息指第一感应元件3检测到有弹球5穿过第一位置的信息,第二信息指第二感应元件6检测到有弹球5穿过第二位置的信息。优选地,当控制器7获取到第一信息之后再获取第二信息。具体来说,就是当第一感应元件3被触发时,控制器7再检测第二感应元件6是否也被触发。通过对控制器7获取信息作上述限定,可以使得控制器7能够识别第一感应元件3被触发是否为误触发,从而提高枪口测速装置的可靠性。举例而言,控制器7可以是在获取到第一感应元件3的第一信息后再检测是否第二感应元件6在第一感应元件3被触发的时间点之前的某个时间段内被触发过;如果被触发,则获取第二感应元件6的第二信息;否则,控制器7则未获取到第二感应元件6的第二信息。
更进一步地,当控制器7仅获取到第一信息时,控制器7判定当前记录的弹球5个数和时间无效。也即,当控制器7识别到第一感应元件3是被误触发时,则不累加弹球5的个数与该次触发的时间,从而保证射频计算的准确性。
以上描述了控制器7计算多颗弹球5射频的原理,举例来说,就是控制器7在获取到第一信息时首先累加弹球5的个数并存储当前触发的时间,并进一步获取第二信息。如果没有获取到第二信息(也即,第二感应元件6未被触发),则将存储的弹球5个数减一,并删除所存储的最后一次记录的时间。当然,也可以在控制器7获取到第一信息时,先获取第二信息,如果获取到第二信息,则累加弹球5的个数并存储第一感应元件3被触发时的时间。
本实施例的机器人,通过控制器7记录穿过第一位置或者第二位置的弹球5个数及每一颗弹球5穿过第一位置或者第二位置的时间,可以非常方便的计算出多颗弹球5的射频。并且,本实施例还通过对控制器7获取第一信息和第二信息的时间选择,消除了可能的误触发问题,提高了枪口测速装置的可靠性。
实施例13
本实施例提供一种采用弹珠发射器的机器人。
请参阅图1-10,本实施例是在实施例11和实施例12的基础上,在测速管1上固定连接一个与控制器7电连接的发光元件4,用于照亮弹球5 的飞行轨迹(即,弹球5的弹道)。当弹球5穿过第一位置后,控制器7控制发光元件4在一个预设时间内发射光线,并且该光线沿弹球5从发射系统射出后的出射方向延伸。
具体的,在本实施例中,不对发光元件4的安装位置做具体限制,其可以设置在测速管1的任意位置,比如顶部、底部、任意一个侧部或者出口端13。并且,在本实施例中,也不限制发光元件4的具体形状,其可以为点状、线状或者面状。同时,在本实施例中也不限制发光元件4的光源类型,其可以是白炽灯、LED灯或者其他形式的光源。而且,在本实施例中也不对光源的数量进行具体限制,其可以是一个、两个或者两个以上。并且,当光源为多个时,光源的颜色可以是一种、两种或者两种以上。另外,在本实施例中对于发光元件4的结构也不作具体限制,其可以是直接单独安装在测速管1上的多个点光源,也可以是将多个光源集成在一个电路板上,同时,发光元件4可以仅包括电子元件,也可以包括电子元件之外的其他部件。并且,在本实施例中,发光元件4可以单独安装在测速管1上,也可以通过其他部件或者结构安装在测速管1上。
同时,控制器7与发光元件4的电连接方式在本实施例中也不作具体限定,其可以是通过导线连接,也可以是通过信号连接,比如wifi信号、蓝牙信号或者GPRS信号等。
本实施例的机器人,通过设置与控制器7电连接的发光元件4,从而当弹球5穿过第一位置后,控制器7可以控制发光元件4在预设时间内发光。由于发光元件4所发射的光线与弹球5射出的出射方向一致,因而,可以准确分辨出弹球5的飞行轨迹,也即,弹球5的弹道。这样,位于观众区的观众就可分辨出对抗比赛中哪一方的弹珠发射器正在射击,以及弹球5将往哪个方向飞行,大致会落在什么位置。从而当弹珠发射器出现射击偏差时,观众可以及时分辨出弹球5是否会飞向自己,进而及时进行避让,避免被误伤。也即,在本实施例中通过设置发光元件4可以提高比赛现场人员的安全性。
在本实施例中对于第一感应元件3和第二感应元件6的安装位置除了二者之间需要具有预设距离之外也不作具体限定,这两个感应元件可以安装在测速管1的任意位置,比如顶部、底部或者侧边。优选地,将第一感应元件3设置在靠近测速管1的出口端13,将第二感应元件6设置在靠近测速管1 的进口端11。从而可以使发光元件4在弹球5穿过第一位置后才发射光线,节约能源。
当然,在本实施例中还可以通过其他控制方式来控制发光元件4发射光线,比如当弹球5穿过第一感应元件3之后控制器7就控制发光元件4在一段时间之后发射光线。因此,在本实施例中,对于控制器7控制发光元件4的具体控制策略不作具体限制。优选地,控制器7仅在弹球5穿过第二位置,并且该弹球5还穿过第一位置开启预设时间,也就是说,控制器7仅在弹球5依次穿过第二位置和第一位置后在预设时间内发射光线。
具体来说,控制器7可以在第一感应元件3检测到有弹球5穿过第一位置后,判断在第一感应元件3检测到有弹球5穿过第一位置之前的一段时间内是否有弹球5穿过第二位置。如果有,则说明有弹球5依次穿过了第二位置和第一位置,则控制器7控制发光元件4在预设时间内发射光线;如果没有,则说明没有弹球5在测速管1内通过,此时,发光元件4不发射光线。
根据上述分析可知,当本实施例中的第一感应元件3和第二感应元件6的位置如上设置并且控制器7具有如上控制策略时,可以防止发光元件4的误发光,提高枪口测速装置的可靠性。
更进一步,如图2所示,发光元件4包括与测速管1固定连接的激光发生器41,用于发射激光,所述激光沿弹球5从枪口测速装置射出后的出射方向延伸。在本实施例中,对于激光发生器41的具体结构和类型不作具体限制,本领域技术人员可以根据需要任意选择合适的激光发生器41。由于激光具有良好的方向性和光照强度,因此,其具有更好的指示作用,能够使远方的观众更清晰地看见子弹的飞行轨迹,并且明确其落点位置,可以使观众更好的避让飞行观众的弹球5,进一步提高观众观赛的安全性。
再进一步,如图2所示,发光元件4还包括安装激光发生器41的底座43。该底座43固定在测速管1的出口端13,并且在底座43上开设有与测速管1的出口连通的通孔431,用于供弹球5穿过。在该底座43远离测速管1的端面上,也即图2中的左端面设置有多个激光发生器41,这些激光发生器41所发射的激光均沿弹球5从该通孔431射出后的出射方向延伸。
在本实施例中,对于底座43的具体形状、结构及材质以及其与测速管1的具体连接方式不作具体限制。例如,该底座43可以圆形、矩形或者其他形 状。该底座43可以是均匀结构也可以是其上具有一定数量的凸起、凹槽。该底座43和测速管1的连接方式可以是不可拆卸连接也可以是可拆卸连接。优选地,该底座43为一个长方体,在该长方体上开设有与测速管1出口连通的通孔431,在该长方体的底部开设有与该通孔431连通的凹槽。多个激光发生器41则均匀的设置在通孔431的外周。进一步,参照图2可知,该长方体的两侧面与顶面和底面的连线均为圆弧过渡。当然,在优选的示例中底座43与测速管1连接的右与测速管1进口端11的端面大小和形状相同。
本实施例的机器人,通过在发光元件4的底座43上设置多个激光发生器41,可以进一步提高发光元件4发射光线时的光强度,从而提高弹球5飞行轨迹的辨识度,以提高安全性。
优选地,如图2所示,上述多个激光发生器41包括至少两组发射不同颜色的激光发生器41,这些不同颜色的激光发射器间隔设置。比如在图2中,在底座43上设置有四个激光发生器41,这四个激光发生器41包括两个发射红色激光的激光发生器41以及两个发射绿色激光的激光发生器41。这四个激光发生器41间隔设置,也即,两个红色激光位于矩形的一条对角线上,两个绿色激光位于矩形的另一条对角线上。
在上述优选的方案中,通过设置不同颜色的激光发生器41,从而可以在比赛中通过颜色来指示出不同的交战方。进而,使得位于远方的观众能够更加直观的掌握现场的比赛情况。同时,不同颜色的激光器间隔设置可以使激光的照射区域更加均匀。
实施例14
本实施例提供一种采用弹珠发射器的机器人。
请参阅图1-10,本实施例是在实施例11、实施例12或者实施例13所提供的技术方案的基础上,将第一感应元件3和第二感应元件6设置成包括对称设置的光发生器件和光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体类型和结构不作具体限定,本领域技术人员可以选择任意合适的电子元器件。比如,选择发光二极管31或者发光三极管作为光发生器件;选择光敏二极管或者光敏三极管33作为光接收器件。
在本实施例中,对于光发生器件和光接收器件的具体设置位置不作具体 限制。比如将作为光发生器件的发光二极管31和作为光接收器件的光敏三极管33设置在测速管1相对的两侧面上。具体的,发光二极管31和光敏三极管33的连线与测速管1的管道的中心线相交,发光二极管31所发出的光线沿发光二极管31和光敏三极管33的连线照射到光敏三极管33上。
本实施例的机器人的枪口测试装置的第一感应元件3和第二感应元件6均包括对称设置的光发生器件和光接收器件,因而组成了一个检测二者连线间光照强度的光电感应器。当弹球5穿过该连线时,即可将光发生器件所发出的光线挡住,从而触发光接收器件的电路,也就使得第一感应元件3(第二感应元件6)触发,也即检测到有弹球5穿过第一位置(第二位置)。由于光发生器件和光接收器件均具有高的灵敏度,尤其是发光二极管31和光敏三极管33所组成的光电感应器具有非常高的灵敏度,因此,非常适宜于检测弹球5这种具有很高速度的物体。
在本实施例中对测速管1的具体形状和结构不作具体限制,其可以是中空长方体、中空圆柱等。当然在测速管1的外壁上还可以形成有凸起或者是凹陷。优选地,测速管1包括:顶壁17和设置在顶壁17下方的两个侧壁19,发光二极管31和光敏三极管33分别对称设置在两个侧壁19上,控制器7则设置在顶壁17上。
上述优选的方案中,通过将发光二极管31和光敏三极管33设置在两个侧壁19上并将控制器7设置在顶壁17上,可以使枪口测速装置的整个结构更加紧凑,从而减小枪口测速装置的体积。
更优选地,如图2所示,测速管1还包括与顶壁17相对并与两个侧壁19连接的底壁15,从而可以降低外部光线对发光二极管31和光敏三极管33的影响。
实施例15
本实施例提供一种采用弹珠发射器的机器人。
请参阅图1-10,本实施例是在实施例11、实施例12、实施例13或者实施例14所提供的技术方案的基础上,设置一瞄准元件9,该瞄准元件9包括瞄准激光发生器91,用于在发射弹球5时瞄准。该瞄准激光发生器91固定在测速管1的管壁上,并且,该瞄准激光发生器91所发射的激光沿弹球5从测速装置射出后的出射方向延伸。
在本实施例中,瞄准激光发生器91的安装位置不作具体限定,其可以安装在测速管1的任意位置。比如测速管1的顶部、底部或者两侧。
同时,在本实施例中,瞄准激光发生器91的结构、类型以及激光的颜色也不作具体的限定,比如,可以选用长管状的红外激光发生器41。在实际应用时,本领域技术人员可以根据需要进行选择,在此不再赘述。
另外,瞄准激光发生器91可以单独控制,也可以与控制器7电连接从而通过控制器7进行控制。同时,可以控制激光一直开启或者控制激光在弹球5发出后关闭。
本实施例的机器人,通过在测速管1上安装包括瞄准激光发生器91的瞄准元件9,从而在弹球5发射前可以通过瞄准激光发生器91所发射的激光进行瞄准,以提高弹球5的命中率。
在本实施例中,如图2所示,优选地,瞄准元件9还包括安装座93,激光发生器41通过安装座93固定在测速管1的底部,从而加强激光发生器41与测速管1的连接强度,避免其在比赛中掉落,提高枪口测速装置的使用寿命。
在本实施例中,安装座93的具体形状和结构不作具体限制。本领域技术人员可以选用任意适宜形状的安装座93用于连接测速管1和瞄准激光发生器91。比如选用中空柱状的安装座93,从而可以将长管状的红外激光发生器41套接在安装座93的内腔中。另外,安装座93与测速管1的连接方式也不作具体限定,其可以是不可拆卸的固定在测速管1的底部,比如,焊接在测速管1的底部。该安装座93也可以是可拆卸的固定在测速管1的底部,比如,卡接或者螺纹连接。
另外,在本实施例中激光发生器41与底座43之间的连接方式也不作具体限制,其可以通过可拆卸的方式与底座43连接,也可以通过不可拆卸的方式与底座43连接。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (45)

  1. 一种弹珠发射器的枪口测速装置,其特征在于,包括:第一感应元件、第二感应元件、控制器以及用于供弹球穿过的测速管;
    所述测速管的进口端用于与所述弹珠发射器的发射系统的枪口固定;
    所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
    所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
    所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
  2. 根据权利要求1所述的枪口测速装置,其特征在于,所述控制器用于记录穿过所述第一位置或所述第二位置的弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间,并根据所述弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间计算多颗弹球的射频。
  3. 根据权利要求2所述的枪口测速装置,其特征在于,所述第一感应元件靠近所述测速管的出口端,所述第二感应元件靠近所述测速管的进口端。
  4. 根据权利要求3所述的枪口测速装置,其特征在于,所述控制器用于获取所述第一感应元件检测到有弹球穿过所述第一位置的第一信息之后,获取所述第二感应元件检测到有弹球穿过所述第二位置的第二信息。
  5. 根据权利要求4所述的枪口测速装置,其特征在于,所述控制器用于当仅获取到所述第一信息时判定当前记录的弹球个数和时间无效。
  6. 根据权利要求1所述的枪口测速装置,其特征在于,还包括发光元件,所述发光元件与所述测速管固定连接,且所述发光元件与所述控制器电连接,所述控制器控制所述发光元件在弹球穿过第一位置后在预设时间内发 射光线,所述光线沿弹球从所述发射系统射出后的出射方向延伸。
  7. 根据权利要求6所述的枪口测速装置,其特征在于,所述第一感应元件设置在靠近所述测速管的出口端,所述第二感应元件设置在靠近所述测速管的进口端;在弹球依次穿过所述第二位置和第一位置后,所述控制器控制所述发光元件在预设时间内发射光线。
  8. 根据权利要求7所述的枪口测速装置,其特征在于,所述发光元件包括:激光发生器,所述激光发生器与所述测速管固定连接,所述激光发生器发射的激光沿弹球从所述枪口测速装置射出后的出射方向延伸。
  9. 根据权利要求7所述的枪口测速装置,其特征在于,所述发光元件还包括底座,所述底座固定在所述测速管的出口端,所述底座上开设有与所述测速管的出口连通并供弹球穿过的通孔,所述底座远离所述测速管的端面上设置有多个激光发生器,所述激光发生器发射的激光沿弹球从所述通孔射出后的出射方向延伸。
  10. 根据权利要求9所述的枪口测速装置,其特征在于,所述多个激光发生器包括至少两组发射不同颜色激光的激光发生器,所述不同颜色的激光发生器间隔设置。
  11. 根据权利要求10所述的枪口测速装置,其特征在于,所述激光发生器包括:两个发射红色激光的激光发生器和两个发射绿色激光的激光发生器。
  12. 根据权利要求1-11任一项所述的枪口测速装置,其特征在于,所述第一感应元件和第二感应元件均包括:对称设置的光发生器件和光接收器件。
  13. 根据权利要求12所述的枪口测速装置,其特征在于,所述测速管包括:顶壁和设置在顶壁下方的两个侧壁,所述光发生器件和光接收器件分别对称设置在所述两个侧壁上,所述控制器设置在所述顶壁上。
  14. 根据权利要求1-11任一项所述的枪口测速装置,其特征在于,还包 括瞄准元件,所述瞄准元件包括瞄准激光发生器,所述瞄准激光发生器固定在所述测速管的管壁上,且所述瞄准激光发生器所发射的激光沿所述弹球从所述枪口测速装置射出后的出射方向延伸。
  15. 根据权利要求14所述的枪口测速装置,其特征在于,所述瞄准元件还包括安装座,所述瞄准激光发生器通过安装座固定在所述测速管的底部。
  16. 一种弹珠发射器,其特征在于,包括:发射系统及枪口测速装置;
    所述枪口测速装置包括:第一感应元件、第二感应元件、控制器以及用于供弹球穿过的测速管;
    所述测速管的进口端与所述发射系统的枪口固定;
    所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
    所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
    所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
  17. 根据权利要求16所述的弹珠发射器,其特征在于,所述控制器用于记录穿过所述第一位置或所述第二位置的弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间,并根据所述弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间计算多颗弹球的射频。
  18. 根据权利要求17所述的弹珠发射器,其特征在于,所述第一感应元件靠近所述测速管的出口端,所述第二感应元件靠近所述测速管的进口端。
  19. 根据权利要求18所述的弹珠发射器,其特征在于,所述控制器用于获取所述第一感应元件检测到有弹球穿过所述第一位置的第一信息之后,获取所述第二感应元件检测到有弹球穿过所述第二位置的第二信息。
  20. 根据权利要求19所述的弹珠发射器,其特征在于,所述控制器用于当仅获取到所述第一信息时判定当前记录的弹球个数和时间无效。
  21. 根据权利要求16所述的弹珠发射器,其特征在于,还包括发光元件,所述发光元件与所述测速管固定连接,且所述发光元件与所述控制器电连接,所述控制器控制所述发光元件在弹球穿过第一位置后在预设时间内发射光线,所述光线沿弹球从所述发射系统射出后的出射方向延伸。
  22. 根据权利要求21所述的弹珠发射器,其特征在于,所述第一感应元件设置在靠近所述测速管的出口端,所述第二感应元件设置在靠近所述测速管的进口端;在弹球依次穿过所述第二位置和第一位置后,所述控制器控制所述发光元件在预设时间内发射光线。
  23. 根据权利要求22所述的弹珠发射器,其特征在于,所述发光元件包括:激光发生器,所述激光发生器与所述测速管固定连接,所述激光发生器发射的激光沿弹球从所述枪口测速装置射出后的出射方向延伸。
  24. 根据权利要求22所述的弹珠发射器,其特征在于,所述发光元件还包括底座,所述底座固定在所述测速管的出口端,所述底座上开设有与所述测速管的出口连通并供弹球穿过的通孔,所述底座远离所述测速管的端面上设置有多个激光发生器,所述激光发生器发射的激光沿弹球从所述通孔射出后的出射方向延伸。
  25. 根据权利要求24所述的弹珠发射器,其特征在于,所述多个激光发生器包括至少两组发射不同颜色激光的激光发生器,所述不同颜色的激光发生器间隔设置。
  26. 根据权利要求25所述的弹珠发射器,其特征在于,所述激光发生器包括:两个发射红色激光的激光发生器和两个发射绿色激光的激光发生器。
  27. 根据权利要求16-26任一项所述的弹珠发射器,其特征在于,所述第一感应元件和第二感应元件均包括:对称设置的光发生器件和光接收器件。
  28. 根据权利要求27所述的弹珠发射器,其特征在于,所述测速管包括: 顶壁和设置在顶壁下方的两个侧壁,所述光发生器件和光接收器件分别对称设置在所述两个侧壁上,所述控制器设置在所述顶壁上。
  29. 根据权利要求16-26任一项所述的弹珠发射器,其特征在于,还包括瞄准元件,所述瞄准元件包括瞄准激光发生器,所述瞄准激光发生器固定在所述测速管的管壁上,且所述瞄准激光发生器所发射的激光沿所述弹球从所述枪口测速装置射出后的出射方向延伸。
  30. 根据权利要求29所述的弹珠发射器,其特征在于,所述瞄准元件还包括安装座,所述瞄准激光发生器通过安装座固定在所述测速管的底部。
  31. 一种采用弹珠发射器的机器人,包括:主体和安装在该主体上的弹珠发射器,其特征在于,所述弹珠发射器包括:发射系统以及枪口测速装置;
    所述枪口测速装置包括:第一感应元件、第二感应元件、控制器以及用于供弹球穿过的测速管;
    所述测速管的进口端与所述发射系统的枪口固定;
    所述第一感应元件和第二感应元件沿所述测速管的通道方向设置且间隔预设距离;
    所述第一感应元件用于检测弹球是否穿过所述测速管的第一位置,所述第二感应元件用于检测弹球是否穿过所述测速管的第二位置;
    所述控制器与所述第一感应元件和第二感应元件电连接,用于记录弹球穿过所述第一位置与所述第二位置的时间差,并根据所述时间差计算弹球的初速度。
  32. 根据权利要求31所述的机器人,其特征在于,所述控制器用于记录穿过所述第一位置或所述第二位置的弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间,并根据所述弹球的个数以及每一颗弹球穿过所述第一位置或所述第二位置的时间计算多颗弹球的射频。
  33. 根据权利要求32所述的机器人,其特征在于,所述第一感应元件靠近所述测速管的出口端,所述第二感应元件靠近所述测速管的进口端。
  34. 根据权利要求33所述的机器人,其特征在于,所述控制器用于获取所述第一感应元件检测到有弹球穿过所述第一位置的第一信息之后,获取所述第二感应元件检测到有弹球穿过所述第二位置的第二信息。
  35. 根据权利要求34所述的机器人,其特征在于,所述控制器用于当仅获取到所述第一信息时判定当前记录的弹球个数和时间无效。
  36. 根据权利要求31所述的机器人,其特征在于,还包括发光元件,所述发光元件与所述测速管固定连接,且所述发光元件与所述控制器电连接,所述控制器控制所述发光元件在弹球穿过第一位置后在预设时间内发射光
    线,所述光线沿弹球从所述发射系统射出后的出射方向延伸。
  37. 根据权利要求36所述的机器人,其特征在于,所述第一感应元件设置在靠近所述测速管的出口端,所述第二感应元件设置在靠近所述测速管的进口端;在弹球依次穿过所述第二位置和第一位置后,所述控制器控制所述发光元件在预设时间内发射光线。
  38. 根据权利要求37所述的机器人,其特征在于,所述发光元件包括:激光发生器,所述激光发生器与所述测速管固定连接,所述激光发生器发射的激光沿弹球从所述枪口测速装置射出后的出射方向延伸。
  39. 根据权利要求37所述的机器人,其特征在于,所述发光元件还包括底座,所述底座固定在所述测速管的出口端,所述底座上开设有与所述测速管的出口连通并供弹球穿过的通孔,所述底座远离所述测速管的端面上设置有多个激光发生器,所述激光发生器发射的激光沿弹球从所述通孔射出后的出射方向延伸。
  40. 根据权利要求39所述的机器人,其特征在于,所述多个激光发生器包括至少两组发射不同颜色激光的激光发生器,所述不同颜色的激光发生器间隔设置。
  41. 根据权利要求40所述的机器人,其特征在于,所述激光发生器包括:两个发射红色激光的激光发生器和两个发射绿色激光的激光发生器。
  42. 根据权利要求31-41任一项所述的机器人,其特征在于,所述第一感应元件和第二感应元件均包括:对称设置的光发生器件和光接收器件。
  43. 根据权利要求42所述的机器人,其特征在于,所述测速管包括:顶壁和设置在顶壁下方的两个侧壁,所述光发生器件和光接收器件分别对称设置在所述两个侧壁上,所述控制器设置在所述顶壁上。
  44. 根据权利要求31-41任一项所述的机器人,其特征在于,还包括瞄准元件,所述瞄准元件包括瞄准激光发生器,所述瞄准激光发生器固定在所述测速管的管壁上,且所述瞄准激光发生器所发射的激光沿所述弹球从所述枪口测速装置射出后的出射方向延伸。
  45. 根据权利要求44所述的机器人,其特征在于,所述瞄准元件还包括
    安装座,所述瞄准激光发生器通过安装座固定在所述测速管的底部。
PCT/CN2016/074730 2016-02-26 2016-02-26 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人 WO2017143596A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002471.3A CN107087425A (zh) 2016-02-26 2016-02-26 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人
PCT/CN2016/074730 WO2017143596A1 (zh) 2016-02-26 2016-02-26 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074730 WO2017143596A1 (zh) 2016-02-26 2016-02-26 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人

Publications (1)

Publication Number Publication Date
WO2017143596A1 true WO2017143596A1 (zh) 2017-08-31

Family

ID=59614382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074730 WO2017143596A1 (zh) 2016-02-26 2016-02-26 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人

Country Status (2)

Country Link
CN (1) CN107087425A (zh)
WO (1) WO2017143596A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939579A (zh) * 2018-08-03 2018-12-07 宁波沸柴机器人科技有限公司 一种圆形弹珠发射器
CN110881275A (zh) * 2018-10-26 2020-03-13 深圳市大疆创新科技有限公司 测速方法、测速装置、玩具枪、可移动机器人及控制系统
CN110314359B (zh) * 2019-06-04 2020-12-01 五邑大学 一种网球测速装置
CN111267125B (zh) * 2020-03-24 2022-05-13 戴福全 一种机器人比赛系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333701A1 (de) * 1983-09-17 1985-04-04 Kempf, Alfons, Dipl.-Ing. (FH), 8950 Kaufbeuren Geraet zur ermittlung von geschossgeschwindigkeiten
KR20040000806A (ko) * 2002-06-25 2004-01-07 국방과학연구소 총구속도 측정장치 및 측정 방법
CN204101581U (zh) * 2014-07-09 2015-01-14 北京信安通靶场装备技术有限公司 子弹测速仪
CN205374499U (zh) * 2016-02-26 2016-07-06 深圳市大疆创新科技有限公司 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482311B1 (de) * 2003-05-28 2012-08-29 Rheinmetall Air Defence AG Vorrichtung und Verfahren zur Ermittlung der Mündungsgeschwindigkeit eines Projektils
CN2757090Y (zh) * 2004-12-29 2006-02-08 南京森林公安高等专科学校 手枪基础训练检查器
CN102854335A (zh) * 2012-09-20 2013-01-02 西北工业大学 一种弹丸速度及加速度的测量方法及装置
CN105300181B (zh) * 2015-10-30 2017-11-17 北京艾克利特光电科技有限公司 一种可预先提示射击的精准光电瞄准器及其调校方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333701A1 (de) * 1983-09-17 1985-04-04 Kempf, Alfons, Dipl.-Ing. (FH), 8950 Kaufbeuren Geraet zur ermittlung von geschossgeschwindigkeiten
KR20040000806A (ko) * 2002-06-25 2004-01-07 국방과학연구소 총구속도 측정장치 및 측정 방법
CN204101581U (zh) * 2014-07-09 2015-01-14 北京信安通靶场装备技术有限公司 子弹测速仪
CN205374499U (zh) * 2016-02-26 2016-07-06 深圳市大疆创新科技有限公司 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人

Also Published As

Publication number Publication date
CN107087425A (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
WO2017143596A1 (zh) 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人
CN205374499U (zh) 弹珠发射器及其枪口测速装置,采用弹珠发射器的机器人
US6473980B2 (en) Infrared laser transmitter alignment verifier and targeting system
US10648775B2 (en) Apparatus for correcting ballistic aim errors using special tracers
US20110252682A1 (en) Ammunition supply indicator device
CN101610820B (zh) 用于对战的射击玩具
JPS62194198A (ja) 玩具銃遊技装置
JP3662863B2 (ja) 光銃、標的ボックス、射撃ボックス、及び、光銃の射撃システム
US20220333893A1 (en) Shooting game system using airsoft gun, method for controlling safe distance, and method for controlling auto-tracer
KR20110022553A (ko) 가상 화살을 이용한 스크린 체험장치
CA2655297A1 (en) Targeting system for a robot gaming environment
JP6887645B2 (ja) 射的ゲーム機
CN218129872U (zh) 足球训练靶及应用其的足球训练系统
CN107438736B (zh) 发光体,该发光体的应用以及发射装置
US3502333A (en) Electronic trap and skeet target
KR102004993B1 (ko) 안전 사고 예방을 위한 양궁 체험 시스템 및 방법
CN105311804B (zh) 一种篮球架
CN215676654U (zh) 一种激光模拟射击枪及系统
CN211205697U (zh) 检测装置及检测组件
KR20190031917A (ko) 다단 어신감지 표시가 가능한 발광낚시장치
CN113883967B (zh) 一种罐装靶机系统
CN113916060B (zh) 一种靶机控制方法及系统
CN102374835A (zh) 量测仪
US20030085523A1 (en) Novel paintball velocimeter and closed-loop regulation
CN210543350U (zh) 弹丸、充电组件和用于比赛的发射机构以及机器人

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891050

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891050

Country of ref document: EP

Kind code of ref document: A1