WO2017141820A1 - Ignition device - Google Patents

Ignition device Download PDF

Info

Publication number
WO2017141820A1
WO2017141820A1 PCT/JP2017/004789 JP2017004789W WO2017141820A1 WO 2017141820 A1 WO2017141820 A1 WO 2017141820A1 JP 2017004789 W JP2017004789 W JP 2017004789W WO 2017141820 A1 WO2017141820 A1 WO 2017141820A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition
switching element
capacitor
constant current
voltage
Prior art date
Application number
PCT/JP2017/004789
Other languages
French (fr)
Japanese (ja)
Inventor
規生 加藤
和紀 笠井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017000858.1T priority Critical patent/DE112017000858T5/en
Priority to BR112018016669-3A priority patent/BR112018016669B1/en
Priority to CN201780012000.5A priority patent/CN108700015B/en
Publication of WO2017141820A1 publication Critical patent/WO2017141820A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • F02P3/0552Opening or closing the primary coil circuit with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression

Definitions

  • the present disclosure relates to an ignition device for igniting a spark plug of an internal combustion engine.
  • an ignition device for igniting an ignition plug of an internal combustion engine an ignition device including an ignition switching element connected to a primary winding of an ignition coil and a predrive circuit connected to a control terminal of the ignition switching element is known. (See Patent Document 1 below).
  • the ignition plug is connected to the secondary winding of the ignition coil.
  • the ignition switching element When the ignition device ignites the ignition plug, the ignition switching element is turned off at high speed using a pre-drive circuit. As a result, the primary current flowing in the primary winding is interrupted at a high speed, and a high secondary voltage is generated in the secondary winding. The secondary plug is used to ignite the spark plug.
  • the ignition device is configured to turn off the ignition switching element while suppressing ignition of the ignition plug when an abnormality occurs.
  • the ignition device is provided with an RC circuit (see FIG. 16) having a resistor and a capacitor.
  • the ignition device gently turns off the ignition switching element using the discharge of the capacitor of the RC circuit. Thereby, a primary current is interrupted
  • the ignition switching element is turned off while suppressing the ignition plug from igniting and igniting the air-fuel mixture.
  • the ignition switching element is slowly turned on using the RC circuit. As a result, the primary current starts to flow slowly, the generation of a high secondary voltage is suppressed, and the ignition of the air-fuel mixture by the spark plug is suppressed.
  • the ignition device uses an RC circuit when interrupting the primary current when an abnormality occurs (hereinafter also referred to as a soft-off operation), a voltage applied to the control terminal of the ignition switching element (hereinafter referred to as a control voltage). ) Decreases exponentially. Therefore, the time change rate of the control voltage is relatively high, and the time change rate of the primary current is relatively high. Therefore, there is a possibility that a high secondary voltage is generated and the spark plug is ignited despite the soft-off operation. In addition, it is desired to apply a high control voltage to the control terminal when the ignition switching element is turned on so that the ignition switching element can be operated in a saturation region with low loss. However, in the above ignition device, the control voltage decreases exponentially during the soft-off operation.
  • the ignition device uses an RC circuit when the ignition switching element is turned on (hereinafter also referred to as a soft-on operation), the voltage applied to the control terminal of the ignition switching element (that is, the control voltage) ) Rises exponentially. Therefore, the time change rate of the control voltage is relatively high, and the time change rate of the primary current is relatively high. Therefore, there is a possibility that a high secondary voltage is generated and the spark plug is ignited even though the soft-on operation is performed.
  • the threshold voltage of the ignition switching element has manufacturing variations. In the above ignition device, the control voltage rises exponentially when the soft-on operation is performed. Therefore, when the threshold voltage varies, the time rate of change of the control voltage when the control voltage reaches the threshold voltage is likely to vary. (See FIG. 13). Therefore, depending on the variation of the threshold voltage, when the soft-on operation is performed, there is a possibility that the temporal change rate of the primary current becomes high, a high secondary voltage is generated, and the spark plug is ignited.
  • This disclosure is intended to provide an ignition device that can further reduce the secondary voltage generated when performing a soft switching operation.
  • a first aspect of the present disclosure is an ignition device for igniting a spark plug connected to a secondary winding of an ignition coil, An ignition switching element connected to the primary winding of the ignition coil; A capacitor connected to the control terminal of the ignition switching element; A pre-drive switching element connected in parallel to the capacitor; A pull-up resistor connected between the control terminal and the capacitor, and a current source; An ignition device comprising: an off constant current circuit that is electrically connected between the control terminal and the capacitor and discharges the electric charge stored in the capacitor with a constant current.
  • a second aspect of the present disclosure is an ignition device for igniting a spark plug connected to a secondary winding of an ignition coil, An ignition switching element connected to the primary winding of the ignition coil; A capacitor connected to the control terminal of the ignition switching element; A pre-drive switching element connected in parallel to the capacitor; An ignition device comprising: an ON constant current circuit that is electrically connected between the control terminal and the capacitor and charges the capacitor with a constant current.
  • the ignition device includes the off-state constant current circuit. Therefore, the secondary voltage generated when performing the soft-off operation can be further reduced, and the variation in the secondary voltage can be reduced. That is, since the off constant current circuit discharges the capacitor with a constant current, the voltage of the capacitor, that is, the voltage applied to the control terminal of the ignition switching element can be reduced linearly. Therefore, the time change rate of the primary current can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is decreased exponentially using an RC circuit, and the secondary winding can be reduced. The generated secondary voltage can be reduced. Therefore, ignition of the spark plug when performing the soft-off operation can be more effectively and stably suppressed.
  • the ignition device can make the rate of change with time of the control voltage constant and small when performing the soft-off operation. Therefore, even if the control voltage when turning on the ignition switching element is increased, the time change rate of the control voltage at the moment of starting the soft-off operation can be reduced. Therefore, the temporal change rate of the primary current at this time can be reduced, and the secondary voltage can be reduced. Therefore, it is possible to increase the control voltage applied at the time of turning on while suppressing ignition of the spark plug at the time of soft-off, and it is possible to operate the ignition switching element in the saturation region. Therefore, the loss of the ignition switching element can be reduced.
  • the ignition device includes the on-state constant current circuit. Therefore, the capacitor can be charged with a constant current when performing the soft-on operation. Therefore, the voltage of the capacitor, that is, the voltage applied to the control terminal of the ignition switching element can be increased in a linear function. Therefore, the time change rate of the primary current can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is increased exponentially using an RC circuit, and the secondary winding is The generated secondary voltage can be reduced. Therefore, ignition of the spark plug when performing the soft-on operation can be more effectively and stably suppressed. Further, the ignition device can make the rate of change of the control voltage with time constant when performing the soft-on operation.
  • the time change rate of the control voltage when the control voltage reaches the threshold voltage during the soft-on operation can be made constant. Therefore, it is possible to suppress variation in the temporal change rate of the primary current at this time, and it is possible to suppress generation of a high secondary voltage. For this reason, even if the threshold voltage of the ignition switching element varies, it is possible to more effectively suppress ignition of the spark plug during the soft-on operation.
  • an ignition device that can further reduce the secondary voltage generated when the soft switching operation is performed.
  • FIG. 1 is a circuit diagram of an ignition device in a state where an ignition switching element is turned off in the first embodiment.
  • FIG. 2 is a circuit diagram of the ignition device when the primary winding is energized in the first embodiment.
  • FIG. 3 is a circuit diagram of the ignition device when performing an ignition operation in the first embodiment.
  • FIG. 4 is a circuit diagram of the ignition device when performing the soft-off operation in the first embodiment.
  • FIG. 5 is a time chart of the ignition device when the ignition operation is repeated in the first embodiment.
  • FIG. 6 is a time chart of the ignition device when the ignition command is not input for a certain period in the first embodiment.
  • FIG. 7 is a waveform diagram of the gate voltage, the primary current, and the secondary voltage when the soft-off operation is performed using the off-state constant current circuit in Embodiment 1, and the soft-off operation is performed using the RC circuit.
  • FIG. 8 is a cross-sectional view of the ignition device in the first embodiment.
  • FIG. 9 is a circuit diagram of the ignition device in the second embodiment.
  • FIG. 10 is a circuit diagram of the ignition device when performing the soft-on operation in the second embodiment.
  • FIG. 11 is a circuit diagram of an ignition device when performing an ignition operation in the second embodiment.
  • FIG. 12 is a circuit diagram of the ignition device when performing the soft-off operation in the second embodiment.
  • FIG. 13 is a waveform diagram of the gate voltage, primary current, and secondary voltage when the soft-on operation is performed using the constant current circuit for turning on in Embodiment 2, and the soft-on operation is performed using the RC circuit.
  • FIG. 14 is a graph showing the variation in the gate voltage increase rate and the variation in the threshold voltage of the ignition switching element in the second embodiment.
  • FIG. 15 is a circuit diagram of the ignition device in the third embodiment.
  • FIG. 16 is a circuit diagram of an ignition device according to a comparative embodiment.
  • FIG. 17 is a graph showing the variation in the rising speed of the gate voltage and the variation in the threshold voltage of the ignition switching element in the comparative example.
  • the ignition device may be a vehicle ignition device for igniting a spark plug of an automobile engine.
  • the ignition device 1 of this embodiment is used for igniting a spark plug 13 connected to the secondary winding 12 of the ignition coil 10.
  • the ignition device 1 includes an ignition switching element 2, a capacitor 3, a pre-drive switching element 5, a pull-up resistor 19, and an off constant current circuit 4 OFF .
  • the off constant current circuit 4 OFF is electrically connected between the control terminal 21 and the capacitor 3. As shown in FIG. 4, the off constant current circuit 4 OFF is configured to discharge the electric charge stored in the capacitor 3 with a constant current I 3D .
  • the ignition device 1 of this embodiment is a vehicle ignition device for igniting a spark plug 13 of an automobile engine.
  • the ignition device 1 first turns off the ignition switching element 2 when the power is turned on.
  • the potential of the signal line 49 (that is, point B) of the OFF constant current circuit 4 OFF is set to L
  • the potential of the control terminal 59 (that is, point A) of the predrive switching element 5 is set to H.
  • the pre-drive switching element 5 is turned on, and the current I 19 flows from the current source 14 through the pull-up resistor 19 and the pre-drive switching element 5 to the ground. Therefore, no charge is stored in the capacitor 3 and the voltage of the capacitor 3 does not increase. Therefore, the voltage at the control terminal 21 does not reach the threshold voltage, and the ignition switching element 2 is turned off.
  • the ignition device 1 receives the Low signal of the ignition operation instruction signal sent from an engine control unit (not shown) or the like, and turns off the pre-drive switching element 5. Therefore, as shown in FIG. 2, the capacitor 3 is charged by the current I 19 flowing through the pull-up resistor 19, the ignition switching element 2 is turned on, and the primary current i 1 starts to flow through the primary winding 11. At this time, the voltage applied to the control terminal 21 gradually increases due to the charging characteristics of the pull-up resistor 19 and the capacitor 3. Therefore, the ignition switching element 2 is turned on slowly, and the primary current i 1 gradually starts to flow through the primary winding 11. As a result, the primary current i 1 is passed through the primary winding 11 while suppressing ignition of the spark plug 13.
  • the voltage applied to the control terminal 21 gradually decreases with a constant slope, and the primary current i 1 gradually decreases with a constant rate of change. Therefore, the secondary voltage V 2 is suppressed compared to the case where the primary current i 1 is changed exponentially as in the conventional case, and the ignition of the spark plug 13 can be suppressed.
  • FIG. 5 is a timing diagram of the ignition device 1 when the ignition of the engine is repeated
  • FIG. 6 is a timing diagram when a soft-off operation is performed when an abnormality occurs.
  • a point A in FIGS. 5 and 6 is the control terminal 59 of the pre-drive switching element 5.
  • a signal for controlling energization and interruption of the primary winding 11 when the ignition operation is performed is input to the point A.
  • Point B is a signal line 49 connected to the control terminal of the OFF constant current circuit 4 OFF .
  • point C is the control terminal 21 of the ignition switching element 2
  • point D is the collector 29 of the ignition switching element 2.
  • the primary coil 11 is first energized. That is, the point B is set to L, and the point A is switched from H to L at time t1. In this way, the pre-drive switching element 5 is turned off, the current I 19 gradually flows from the current source 14 through the pull-up resistor 19, and the capacitor 3 is slowly charged with the RC time constant. Therefore, the voltage of the capacitor 3 gradually increases, the ignition switching element 2 is gradually turned on, and the primary current i 1 flows through the primary winding 11.
  • a soft-off operation is performed. That is, at time t4, the point B is set to H while the point A of the ignition signal is set to L, that is, the predrive switching element 5 is turned off.
  • the off constant current circuit 4 OFF is turned on, and the electric charge stored in the capacitor 3 is discharged with a constant current. Therefore, the voltage at the point C gradually decreases at a constant rate of change, and the primary current i 1 gradually decreases. Therefore, the primary voltage V 1 and the secondary voltage V 2 are suppressed, and the ignition switching element 2 can be turned off while suppressing ignition of the spark plug 13.
  • FIG. 7 shows waveforms of the gate voltage V g , the primary current i 1 , and the secondary voltage V 2 when the ignition switching element 2 is soft-off using the OFF constant current circuit 4 OFF .
  • the waveforms when the ignition switching element 2 is soft-off using the RC circuit are shown superimposed.
  • the voltage of the capacitor 3 decreases in a linear function. Therefore, as shown in FIG. 7, in the case of using the OFF constant current circuit 4 OFF , after starting soft-off at time t4, the voltage of the capacitor 3, that is, the gate voltage V g of the ignition switching element 2 is a linear function. Decline. Accordingly, the primary current i 1 also decreases linearly. For this reason, the temporal change rate di 1 / dt of the primary current i 1 is constant and can be set to a relatively small value, so that the generated secondary voltage V 2 is also relatively low. Therefore, the spark plug 13 rarely sparks and the generated energy is small even if sparks are generated, so that it is possible to suppress ignition of the air-fuel mixture.
  • the gate voltage V g of the ignition switching element 2 decreases exponentially. Therefore, the primary current i 1 also decreases exponentially. Therefore, the temporal change rate di 1 / dt of the primary current i 1 is relatively large, and a high secondary voltage V 2 is likely to be generated. Therefore, the secondary voltage V 2 may cause a spark discharge S in the spark plug 13 and ignite the air-fuel mixture.
  • the off constant current circuit 4 OFF includes a switching transistor 40 and a constant current transistor 41.
  • the switching transistor 40 is provided for switching between energization and non-energization of current.
  • the constant current transistor 41 is provided to keep the current I 40 (see FIG. 4) flowing through the switching transistor 40 at a constant value.
  • an Nch type MOSFET is used as the switching transistor 40, and an NPN type bipolar transistor is used as the constant current transistor 41.
  • the source 401 of the switching transistor 40 is connected to the base 413 of the constant current transistor 41 and is connected to the ground via the second resistor 43 for current setting.
  • the drain 402 of the switching transistor 40 is connected to the capacitor 3.
  • the emitter 411 of the constant current transistor 41 is connected to the ground through the first resistor 42.
  • the collector 412 of the constant current transistor 41 is connected to the gate 403 of the switching transistor 40.
  • the current I 40 is the sum of the discharge current I 3D of the capacitor 3 and the current I 19 flowing from the power source 14 via the pull-up resistor 19.
  • the current I 40 is divided at a connection point 414 into I 43 flowing through the second resistor 43 and a base current I 41b of the constant current transistor 41.
  • the base current I 41b has a correlation with the collector current I 41c of the constant current transistor 41 and the coefficient 1 / h fe .
  • the sum of the base current I 41b and the collector current I 41c is a current I 42 flowing through the first resistor 42.
  • the voltage drop from the connection point 414 to the ground is the same on the first resistor 42 side and the second resistor 43 side. That is, the product of the second resistor 43 and the current I 43 flowing therethrough, the sum of the product of the first resistor 42 and the current I 42 flowing therethrough, and the base-emitter voltage V be of the constant current transistor 41 become equivalent.
  • the voltage of the base 413 is determined, and the current I 43 and the base current I 41b flowing through the second resistor 43 are determined. Therefore, the sum of these currents I 43 and I 41b (current I 40 ) is constant.
  • the current I 40 is the sum of the current I 19 flowing through the pull-up resistor 19 and the discharge current I 3D of the capacitor 3, and the current I 19 is constant. Therefore, the discharge current I 3D is constant.
  • the current I 40 can be arbitrarily set according to the resistance values of the first resistor 42 and the second resistor 43 as described above, even when a high voltage is applied to the control terminal 21 of the ignition switching element 2,
  • the value of the current I 40 can be easily set so that the time change rate di 1 / dt of the current i 1 is constant and small. Therefore, even when a high voltage is applied to the control terminal 21 and the ignition switching element 2 is in the saturation region, the soft-off operation can be reliably performed from this state. Therefore, when performing a normal ignition operation, the ignition switching element 2 can be operated in the saturation region. That is, when the ignition switching element 2 is turned on and the primary current i 1 flows through the primary winding 11 (see FIG. 2), the ignition switching element 2 can be in the saturation region, and the ignition switching element by the primary current i 1 2 loss can be suppressed.
  • the off constant current circuit 4 OFF and the predrive switching element 5 are formed on one semiconductor chip 8. Further, the ignition device 1 includes a control unit 7 for the on-off control of the off constant-current circuit 4 OFF, and the pre-drive switching element 5. The control unit 7, the semiconductor chip 8, and the ignition switching element 2 are sealed by a sealing member 80 and are made into one part.
  • the control unit 7, the semiconductor chip 8, and the ignition switching element 2 are placed on a heat sink 81. Further, a terminal 82 for electrical connection with an external device protrudes from the sealing member 80.
  • the ignition device 1 of this embodiment includes an off constant current circuit 4 OFF .
  • the off constant current circuit 4 OFF is configured to discharge the capacitor 3 connected to the control terminal 21 with a constant current. Therefore, the secondary voltage V 2 generated when performing the soft-off operation can be further reduced. That is, since the off constant current circuit 4 OFF discharges the capacitor 3 with a constant current, the voltage V g applied to the control terminal 21 of the ignition switching element 2 as shown in FIG. It can be reduced by a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is exponentially reduced using an RC circuit. The secondary voltage V 2 generated in the secondary winding 12 can be reduced. Therefore, ignition of the spark plug 13 when performing the soft-off operation can be more effectively suppressed.
  • an ignition device that can further reduce the secondary voltage generated when the soft switching operation is performed.
  • the IGBT is used as the ignition switching element 2, but the present invention is not limited to this, and a MOSFET or a bipolar transistor can also be used.
  • the semiconductor chip 8 on which the off constant current circuit 4 OFF and the predrive switching element 5 are formed, the control unit 7 and the ignition switching element 2 are sealed.
  • the present invention is not limited to this. That is, you may make what is called a discrete product which separated these components.
  • the off-state constant current circuit 4 OFF is not limited to that disclosed in this embodiment, and other known circuit configurations or dedicated ICs may be used.
  • the circuit of the ignition device 1 is changed.
  • the ignition device 1 of the present embodiment includes an ignition switching element 2 connected to a primary winding 11 of an ignition coil 10, a capacitor 3, a predrive switching element 5, and an on-state constant current circuit 4. With ON .
  • the ON constant current circuit 4 ON is connected between the control terminal 21 and the capacitor 3 and is configured to charge the capacitor 3 with a constant current I 3C .
  • the on-state constant current circuit 4 ON includes a switching transistor 40 and a constant-current transistor 41 in the same manner as the off-state constant current circuit 4 OFF .
  • the source of the switching transistor 40 is connected to the current source 14 via the fourth resistor 45.
  • the emitter of the constant current transistor 41 is connected to the current source 14 via the third resistor 44.
  • the capacitor 3 is charged by a constant current I 3C flowing through the switching transistor 40.
  • This current I 3C is the sum of I 45 flowing through the fourth resistor 45 at the connection point 415 and the base current I 41b of the constant current transistor 41.
  • the base current I 41b is correlated with the collector current I 41c of the constant current transistor 41 and the coefficient 1 / h fe, and the sum of the base current I 41b and the collector current I 41c flows through the third resistor 44.
  • the current I 44 is obtained.
  • the product of the fourth resistor 45 and the current I 45 flowing therethrough, the product of the third resistor 44 and the current I 44 flowing therethrough, and the sum of the base-emitter voltage V be of the constant current transistor 41 are made equivalent.
  • the voltage of the base 413 is determined, and the current I 45 flowing through the fourth resistor 45 and the base current I 41b are determined. Therefore, the sum (current I 3C ) of these currents I 45 and I 41b is constant.
  • the ignition device 1 of the present embodiment includes an OFF constant current circuit 4 OFF as in the first embodiment.
  • the off constant current circuit 4 OFF is connected between the control terminal 21 and the capacitor 3 and is configured to discharge the electric charge stored in the capacitor 3 with a constant current I 3D .
  • the ignition device 1 first performs a soft-on operation. That is, by turning on the ignition switching element 2 slowly at a constant current, the primary current i 1 flows through the primary winding 11 while suppressing ignition of the spark plug 13 at the start of energization. At this time, both point A and point B are set to L as shown in FIG. In this way, the ON constant current circuit 4 ON is turned ON and the soft-off constant current circuit 4 OFF is turned OFF , so that the capacitor 3 is charged with a constant current I 3C . Therefore, the voltage of the capacitor 3, that is, the voltage of the control terminal 21 increases in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the secondary voltage V 2 can be reduced. Therefore, it is possible to flow the primary current i 1 while suppressing ignition of the spark plug 13.
  • the point A is switched from L to H while the point B is kept at L.
  • the pre-drive switching element 5 is turned on, and the electric charge stored in the capacitor 3 is rapidly discharged through the pre-drive switching element 5. Therefore, it is suddenly cut off the primary current i 1, the secondary winding high 12 secondary voltage V 2 is generated. Accordingly, a spark discharge S is generated in the spark plug 13.
  • the point B is switched to H while the point A is kept low as shown in FIG.
  • the on-state constant current circuit 4 ON is turned off and the flowing current I 3C is stopped, and the off-state constant current circuit 4 OFF is turned on, so that a constant current I 3D flows. Therefore, the capacitor 3 is discharged with a constant current I 3D , and the voltage of the capacitor 3, that is, the voltage of the control terminal 21 is reduced in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the secondary voltage V 2 can be reduced. Therefore, the ignition switching element 2 can be turned off while suppressing ignition of the spark plug 13.
  • FIG. 13 shows waveforms of the gate voltage V g , the primary current i 1 , and the secondary voltage V 2 when the ignition switching element 2 is soft-on using the ON constant current circuit 4 ON .
  • the waveforms when the ignition switching element 2 is soft-on using the RC circuit are shown superimposed.
  • the ignition switching element 2 is turned on and the primary current i 1 starts to flow.
  • the capacitor 3 is charged with a constant current, so that the voltage of the capacitor 3 rises in a linear function. Therefore, in the case of using a constant current circuit 4 ON for one, after starting to soft on at time t1, the voltage of the capacitor 3, i.e., the gate voltage V g of the ignition switching element 2 rises a linear function manner. Therefore, the primary current i 1 can be increased linearly. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the generated secondary voltage V 2 can be made relatively small. Therefore, it is possible to suppress the occurrence of the spark discharge S in the spark plug 13.
  • the gate voltage V g of the ignition switching element 2 increases exponentially. Therefore, the primary current i 1 also increases exponentially. Therefore, the temporal change rate di 1 / dt of the primary current i 1 is relatively large, and a high secondary voltage V 2 is generated. Therefore, the secondary voltage V 2, the spark discharge S may occur in the spark plug 13.
  • the switching transistor 40p for the ON constant current circuit 4 ON and the switching transistor 40n for the OFF constant current circuit 4 OFF are connected to each other in series.
  • the control terminals (that is, the gates 403) of these two switching transistors 40p and 40n are connected to a common signal line 49.
  • the two switching transistors 40p and 40n are complementary transistors, as shown in FIGS. 10 and 12, in which one is turned on and the other is turned off.
  • the ignition device 1 of the present embodiment includes an ON constant current circuit 4 ON . Therefore, it is possible to perform a soft-on operation, that is, an operation that starts flowing the primary current i 1 while suppressing ignition of the spark plug 13. That is, in this embodiment, since the ON constant current circuit 4 ON is provided, the capacitor 3 can be charged with a constant current I 3C . Therefore, the voltage applied to the capacitor 3, that is, the voltage applied to the control terminal 21 of the ignition switching element 2 can be increased in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is increased exponentially using an RC circuit. The secondary voltage V 2 generated in the secondary winding 12 can be reduced. Therefore, it is possible to suppress ignition of the spark plug when performing the soft-on operation.
  • a soft-on operation that is, an operation that starts flowing the primary current i 1 while suppressing ignition of the spark plug 13. That is, in this embodiment, since the ON constant current
  • the ON constant current circuit 4 ON is used as in this embodiment, even when the threshold voltage V th of the ignition switching element 2 varies due to manufacturing variations, the variation in the secondary voltage V 2 can be reduced. Can do. That is, as shown in FIG. 17, the threshold voltage V th of the ignition switching element 2 varies.
  • the manufacturing variation of the resistance R and the capacitor C included in the RC circuit, variation RC time constant, the rising speed of the gate voltage V g varies.
  • the curve L3 is when the rising speed is the fastest, and the curve L4 is when the slowing speed is the slowest.
  • the threshold voltage V th is low and if the rising speed of the gate voltage V g is high (i.e., the curve L3), the switching element 2 is turned on ignition at a relatively earlier time T11. Further, since the gate voltage V g rises exponentially, the time change rate dV g / dt of the gate voltage Vg at time T11 is high, and the time change rate di 1 / dt of the primary current i 1 is also high. Therefore, a particularly high secondary voltage V 2 is likely to be generated. Further, when the threshold voltage V th is high and the rising speed of the gate voltage V g is slow (that is, in the case of the curve L4), the ignition switching element 2 is turned on at a relatively late time T12.
  • the secondary voltage V 2 is relatively low.
  • the threshold voltage V th and the RC time constant vary and the time when the ignition switching element 2 is turned on varies between T11 and T12, The voltage V 2 tends to vary greatly. Therefore, it is necessary to design the circuit in consideration of the case where the highest secondary voltage V 2 is generated, and the circuit design tends to be difficult.
  • the ON constant current circuit 4 ON when used as in this embodiment, the variation in the secondary voltage V 2 can be reduced even if the threshold voltage V th of the ignition switching element 2 varies. it can. That is, as shown in FIG. 14, when the ON constant current circuit 4 ON is used, the rising speed of the gate voltage V g varies due to manufacturing variations of the capacitor 3. The straight line L1 is when the rising speed is the fastest, and the straight line L2 is when the rising speed is the slowest. Therefore, the threshold voltage V th is low, if the rising speed of the gate voltage V g is high (i.e., when the straight line L1), the switching element 2 is turned on ignition at a relatively earlier time t11.
  • the threshold voltage V th is high, if the rising speed of the gate voltage V g is low (i.e., when the straight line L2), the switching element 2 is turned on ignition at a relatively slow time t12.
  • the gate voltage V g increases a linear function manner. Therefore, even if the threshold value of the ignition switching element 2 varies between V th 1 and V th 2, the time change rate dV g / dt of the gate voltage V g at the threshold value does not vary. Therefore, the temporal change rate di 1 / dt of the primary current i 1 does not vary, and variations in the primary voltage V 1 generated according to the current change can be suppressed. Therefore, variations in the secondary voltage V 2 can be suppressed, and the circuit design of the ignition device 1 can be easily performed.
  • the ignition device 1 of the present embodiment includes both an on-state constant current circuit 4 ON and an off-state constant current circuit 4 OFF . Therefore, both the soft-on operation and the soft-off operation can be performed.
  • the on-state constant current circuit 4 ON and the off-state constant current circuit 4 OFF of this embodiment are switching transistors 40 (40p, 40n) for switching between energization and non-energization of the current I. Each is provided.
  • the control terminals (that is, the gates 403) of these two switching transistors 40 are connected to a common signal line 49.
  • the two switching transistors 40 are of a complementary type in which one is on and the other is off. Therefore, in the case where a current is passed only to the ON constant current circuit 4 ON out of the two constant current circuits 4 ON and 4 OFF while the signal line 49 is single (see FIG.
  • the OFF constant current circuit 4 OFF It is possible to switch between the case where the current flows only in the case (see FIG. 12). Therefore, the circuit configuration of the ignition device 1 can be simplified. In addition, the same configuration and operational effects as those of the first embodiment are provided.
  • the circuit configuration of the ignition device 1 is changed.
  • the ignition device 1 of the present embodiment includes an ignition switching element 2 connected to the primary winding 11 of the ignition coil 10, a capacitor 3, a predrive switching element 5, and an ON constant current circuit 4. With ON .
  • the off constant current circuit 4 OFF is not provided.
  • the pre-drive switching element 5 when the soft-on operation is performed, the pre-drive switching element 5 is turned off and the switching transistor 40 is turned on. Thereby, the capacitor 3 is charged with a constant current I using the ON constant current circuit 4 ON, and the voltage of the capacitor 3, that is, the voltage applied to the control terminal 21 of the ignition switching element 2 is increased with a constant slope. Thereby, the time change rate of the primary current i 1 is made constant and small. Thereby, ignition of the spark plug 13 is suppressed.
  • the pre-drive switching element 5 is turned on. Thereby, the electric charge stored in the capacitor 3 is rapidly discharged, and the ignition switching element 2 is turned off at high speed. As a result, the primary current i 1 is quickly cut off, a high secondary voltage V 2 is generated, and the spark plug 13 is ignited.
  • the same configuration and operational effects as those of the first embodiment are provided.

Abstract

An ignition device (1) is provided with: an ignition switching element (2); a capacitor (3); a pre-drive switching element (5); and a turn-off constant current circuit (4OFF). The ignition switching element (2) is connected to a primary winding (11) of an ignition coil (10). The capacitor (3) is connected to a control terminal (21) of the ignition switching element (2). The pre-drive switching element (5) is connected in parallel with the capacitor (3). The turn-off constant current circuit (4OFF) is electrically connected between the control terminal (21) and the capacitor (3). The turn-off constant current circuit (4OFF) discharges, at constant current, electric charge accumulated in the capacitor (3).

Description

点火装置Ignition device 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年2月17日に出願された日本出願番号2016-28248号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-28248 filed on February 17, 2016, the contents of which are incorporated herein by reference.
 本開示は、内燃機関の点火プラグを点火するための点火装置に関する。 The present disclosure relates to an ignition device for igniting a spark plug of an internal combustion engine.
 内燃機関の点火プラグを点火するための点火装置として、点火コイルの一次巻線に接続した点火用スイッチング素子と、該点火用スイッチング素子の制御端子に接続したプリドライブ回路とを備えるものが知られている(下記特許文献1参照)。上記点火コイルの二次巻線には、上記点火プラグが接続している。 As an ignition device for igniting an ignition plug of an internal combustion engine, an ignition device including an ignition switching element connected to a primary winding of an ignition coil and a predrive circuit connected to a control terminal of the ignition switching element is known. (See Patent Document 1 below). The ignition plug is connected to the secondary winding of the ignition coil.
 上記点火装置は、点火プラグを点火する際には、プリドライブ回路を用いて点火用スイッチング素子を高速でオフする。これにより、一次巻線に流れる一次電流を高速で遮断し、二次巻線に高い二次電圧を発生させる。この二次電圧を利用して、点火プラグを点火している。 When the ignition device ignites the ignition plug, the ignition switching element is turned off at high speed using a pre-drive circuit. As a result, the primary current flowing in the primary winding is interrupted at a high speed, and a high secondary voltage is generated in the secondary winding. The secondary plug is used to ignite the spark plug.
 また、上記点火装置は、異常発生時に、点火プラグの点火を抑制しつつ、点火用スイッチング素子をオフできるよう構成されている。この目的のため、上記点火装置には、抵抗とコンデンサとを有するRC回路(図16参照)を設けてある。点火装置は、何らかの異常が発生したときには、RC回路のコンデンサの放電を利用して、緩やかに点火用スイッチング素子をオフさせる。これにより、一次電流をゆっくり遮断し、高い二次電圧が発生することを抑制している。これによって、異常発生時に、点火プラグが点火して混合気に着火することを抑制しつつ、点火用スイッチング素子をオフしている。 The ignition device is configured to turn off the ignition switching element while suppressing ignition of the ignition plug when an abnormality occurs. For this purpose, the ignition device is provided with an RC circuit (see FIG. 16) having a resistor and a capacitor. When any abnormality occurs, the ignition device gently turns off the ignition switching element using the discharge of the capacitor of the RC circuit. Thereby, a primary current is interrupted | blocked slowly and it suppresses that a high secondary voltage generate | occur | produces. Thus, when an abnormality occurs, the ignition switching element is turned off while suppressing the ignition plug from igniting and igniting the air-fuel mixture.
 また、上記点火装置は、一次巻線に一次電流を流し始めるときには、上記RC回路を用いて、点火用スイッチング素子をゆっくりオンさせている。これにより、一次電流をゆっくり流し始め、高い二次電圧が発生することを抑制して、点火プラグによる混合気の着火を抑制している。 In the ignition device, when the primary current starts to flow in the primary winding, the ignition switching element is slowly turned on using the RC circuit. As a result, the primary current starts to flow slowly, the generation of a high secondary voltage is suppressed, and the ignition of the air-fuel mixture by the spark plug is suppressed.
特許第5517686号公報Japanese Patent No. 5517686
 上記点火装置は、異常発生時に一次電流を遮断する際(以下、ソフトオフ動作とも記す)に、RC回路を利用しているため、点火用スイッチング素子の制御端子に加わる電圧(以下、制御電圧とも記す)が指数関数的に低下する。そのため、上記制御電圧の時間変化率が比較的高く、一次電流の時間変化率が比較的高い。したがって、ソフトオフ動作を行っているにもかかわらず、高い二次電圧が発生して、点火プラグが点火するおそれが考えられる。
 また、点火用スイッチング素子を、損失が低い飽和領域で動作できるよう、オン時には、上記制御端子に高い制御電圧を加えることが望まれている。しかしながら、上記点火装置では、ソフトオフ動作時に制御電圧が指数関数的に低下するため、オン時の制御電圧を高くしておくと、ソフトオフ動作が始まる際における制御電圧の時間変化率が高くなりやすい(図7参照)。そのため、一次電流の時間変化率が高くなり、高い二次電圧が発生しやすくなる。したがって、ソフトオフ動作を行っているにもかかわらず、点火プラグが点火するおそれが考えられる。そのため、制御電圧を低くせざるを得ず、点火用スイッチング素子の損失が高くなりやすいという問題もある。
Since the ignition device uses an RC circuit when interrupting the primary current when an abnormality occurs (hereinafter also referred to as a soft-off operation), a voltage applied to the control terminal of the ignition switching element (hereinafter referred to as a control voltage). ) Decreases exponentially. Therefore, the time change rate of the control voltage is relatively high, and the time change rate of the primary current is relatively high. Therefore, there is a possibility that a high secondary voltage is generated and the spark plug is ignited despite the soft-off operation.
In addition, it is desired to apply a high control voltage to the control terminal when the ignition switching element is turned on so that the ignition switching element can be operated in a saturation region with low loss. However, in the above ignition device, the control voltage decreases exponentially during the soft-off operation. Therefore, if the control voltage during the on-time is increased, the rate of time change of the control voltage when the soft-off operation starts increases. Easy (see FIG. 7). Therefore, the time change rate of the primary current is increased, and a high secondary voltage is easily generated. Therefore, there is a possibility that the spark plug may ignite despite the soft-off operation. Therefore, there is a problem that the control voltage has to be lowered, and the loss of the ignition switching element tends to increase.
 また、上記点火装置は、点火用スイッチング素子をオンするとき(以下、ソフトオン動作とも記す)に、RC回路を使用しているため、点火用スイッチング素子の制御端子に加わる電圧(すなわち、制御電圧)が指数関数的に上昇する。そのため、上記制御電圧の時間変化率が比較的高く、一次電流の時間変化率が比較的高い。そのため、ソフトオン動作を行っているにもかかわらず、高い二次電圧が発生して、点火プラグが点火するおそれが考えられる。
 また、点火用スイッチング素子の閾電圧には、製造ばらつきがある。上記点火装置では、ソフトオン動作を行うときに制御電圧が指数関数的に上昇するため、閾電圧がばらつくと、制御電圧が閾電圧に到達したときにおける、制御電圧の時間変化率がばらつきやすくなる(図13参照)。そのため、閾電圧のばらつきによっては、ソフトオン動作を行うときに、一次電流の時間変化率が高くなり、高い二次電圧が発生して、点火プラグが点火するおそれが考えられる。
Further, since the ignition device uses an RC circuit when the ignition switching element is turned on (hereinafter also referred to as a soft-on operation), the voltage applied to the control terminal of the ignition switching element (that is, the control voltage) ) Rises exponentially. Therefore, the time change rate of the control voltage is relatively high, and the time change rate of the primary current is relatively high. Therefore, there is a possibility that a high secondary voltage is generated and the spark plug is ignited even though the soft-on operation is performed.
Further, the threshold voltage of the ignition switching element has manufacturing variations. In the above ignition device, the control voltage rises exponentially when the soft-on operation is performed. Therefore, when the threshold voltage varies, the time rate of change of the control voltage when the control voltage reaches the threshold voltage is likely to vary. (See FIG. 13). Therefore, depending on the variation of the threshold voltage, when the soft-on operation is performed, there is a possibility that the temporal change rate of the primary current becomes high, a high secondary voltage is generated, and the spark plug is ignited.
 本開示は、ソフトスイッチング動作を行う際に発生する二次電圧を、より低減できる点火装置を提供することを目的とする。 This disclosure is intended to provide an ignition device that can further reduce the secondary voltage generated when performing a soft switching operation.
 本開示の第1の態様は、点火コイルの二次巻線に接続した点火プラグを点火するための点火装置であって、
 上記点火コイルの一次巻線に接続される点火用スイッチング素子と、
 該点火用スイッチング素子の制御端子に接続したコンデンサと、
 該コンデンサに並列接続したプリドライブ用スイッチング素子と、
 上記制御端子と上記コンデンサとの間と、電流源との間に接続したプルアップ抵抗と、
 上記制御端子と上記コンデンサとの間に電気接続し、該コンデンサに蓄えられた電荷を一定の電流で放電するオフ用定電流回路と、を備える点火装置にある。
A first aspect of the present disclosure is an ignition device for igniting a spark plug connected to a secondary winding of an ignition coil,
An ignition switching element connected to the primary winding of the ignition coil;
A capacitor connected to the control terminal of the ignition switching element;
A pre-drive switching element connected in parallel to the capacitor;
A pull-up resistor connected between the control terminal and the capacitor, and a current source;
An ignition device comprising: an off constant current circuit that is electrically connected between the control terminal and the capacitor and discharges the electric charge stored in the capacitor with a constant current.
 また、本開示の第2の態様は、点火コイルの二次巻線に接続した点火プラグを点火するための点火装置であって、
 上記点火コイルの一次巻線に接続される点火用スイッチング素子と、
 該点火用スイッチング素子の制御端子に接続したコンデンサと、
 該コンデンサに並列接続したプリドライブ用スイッチング素子と、
 上記制御端子と上記コンデンサとの間に電気接続し、該コンデンサを一定の電流で充電するオン用定電流回路と、を備える点火装置にある。
A second aspect of the present disclosure is an ignition device for igniting a spark plug connected to a secondary winding of an ignition coil,
An ignition switching element connected to the primary winding of the ignition coil;
A capacitor connected to the control terminal of the ignition switching element;
A pre-drive switching element connected in parallel to the capacitor;
An ignition device comprising: an ON constant current circuit that is electrically connected between the control terminal and the capacitor and charges the capacitor with a constant current.
 上記第1の態様における点火装置は、上記オフ用定電流回路を備える。
 そのため、ソフトオフ動作を行うときに発生する二次電圧をより低減でき、かつ、二次電圧のばらつきを小さくすることができる。すなわち、上記オフ用定電流回路は、コンデンサを一定の電流で放電するため、コンデンサの電圧、すなわち点火用スイッチング素子の制御端子に加わる電圧を、一次関数的に低下させることができる。そのため、従来のようにRC回路を用いて、制御端子に加わる電圧を指数関数的に低下させる場合と比べて、一次電流の時間変化率を一定でかつ小さくすることができ、二次巻線に発生する二次電圧を低減することができる。そのため、ソフトオフ動作を行うときに点火プラグが点火することを、より効果的に安定して抑制できる。
 また、上記点火装置は、ソフトオフ動作を行うときの、制御電圧の時間変化率を一定でかつ小さくすることができる。そのため、点火用スイッチング素子をオンするときの制御電圧を高くしても、ソフトオフ動作を開始する瞬間における制御電圧の時間変化率を小さくすることができる。したがって、このときにおける一次電流の時間変化率を低減でき、二次電圧を低減することができる。そのため、ソフトオフ時に点火プラグが点火することを抑制しつつ、オン時に加える制御電圧を高くすることができ、点火用スイッチング素子を飽和領域で動作させることが可能になる。したがって、点火用スイッチング素子の損失を低減することができる。
The ignition device according to the first aspect includes the off-state constant current circuit.
Therefore, the secondary voltage generated when performing the soft-off operation can be further reduced, and the variation in the secondary voltage can be reduced. That is, since the off constant current circuit discharges the capacitor with a constant current, the voltage of the capacitor, that is, the voltage applied to the control terminal of the ignition switching element can be reduced linearly. Therefore, the time change rate of the primary current can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is decreased exponentially using an RC circuit, and the secondary winding can be reduced. The generated secondary voltage can be reduced. Therefore, ignition of the spark plug when performing the soft-off operation can be more effectively and stably suppressed.
Further, the ignition device can make the rate of change with time of the control voltage constant and small when performing the soft-off operation. Therefore, even if the control voltage when turning on the ignition switching element is increased, the time change rate of the control voltage at the moment of starting the soft-off operation can be reduced. Therefore, the temporal change rate of the primary current at this time can be reduced, and the secondary voltage can be reduced. Therefore, it is possible to increase the control voltage applied at the time of turning on while suppressing ignition of the spark plug at the time of soft-off, and it is possible to operate the ignition switching element in the saturation region. Therefore, the loss of the ignition switching element can be reduced.
 また、上記第2の態様における点火装置は、上記オン用定電流回路を備える。
 そのため、ソフトオン動作を行うときに、コンデンサを一定の電流で充電することができる。したがって、コンデンサの電圧、すなわち点火用スイッチング素子の制御端子に加わる電圧を、一次関数的に上昇させることができる。そのため、従来のようにRC回路を用いて、制御端子に加わる電圧を指数関数的に上昇させる場合と比べて、一次電流の時間変化率を一定でかつ小さくすることができ、二次巻線に発生する二次電圧を低減できる。そのため、ソフトオン動作を行うときに点火プラグが点火することを、より効果的に安定して抑制できる。
 また、上記点火装置は、ソフトオン動作を行うときの、制御電圧の時間変化率を一定にすることができる。そのため、点火用スイッチング素子の閾電圧がばらついても、ソフトオン動作時に、制御電圧が閾電圧に達したときにおける、制御電圧の時間変化率を一定にすることができる。したがって、このときの一次電流の時間変化率がばらつくことを抑制でき、高い二次電圧が発生することを抑制できる。そのため、点火用スイッチング素子の閾電圧がばらついても、ソフトオン動作時に点火プラグが点火することを、より効果的に抑制することが可能になる。
The ignition device according to the second aspect includes the on-state constant current circuit.
Therefore, the capacitor can be charged with a constant current when performing the soft-on operation. Therefore, the voltage of the capacitor, that is, the voltage applied to the control terminal of the ignition switching element can be increased in a linear function. Therefore, the time change rate of the primary current can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is increased exponentially using an RC circuit, and the secondary winding is The generated secondary voltage can be reduced. Therefore, ignition of the spark plug when performing the soft-on operation can be more effectively and stably suppressed.
Further, the ignition device can make the rate of change of the control voltage with time constant when performing the soft-on operation. Therefore, even if the threshold voltage of the ignition switching element varies, the time change rate of the control voltage when the control voltage reaches the threshold voltage during the soft-on operation can be made constant. Therefore, it is possible to suppress variation in the temporal change rate of the primary current at this time, and it is possible to suppress generation of a high secondary voltage. For this reason, even if the threshold voltage of the ignition switching element varies, it is possible to more effectively suppress ignition of the spark plug during the soft-on operation.
 以上のごとく、本態様によれば、ソフトスイッチング動作を行う際に発生する二次電圧を、より低減できる点火装置を提供することができる。 As described above, according to this aspect, it is possible to provide an ignition device that can further reduce the secondary voltage generated when the soft switching operation is performed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態1における、点火用スイッチング素子をオフしている状態での、点火装置の回路図である。 図2は、実施形態1における、一次巻線の通電動作を行う際の、点火装置の回路図である。 図3は、実施形態1における、点火動作を行う際の、点火装置の回路図である。 図4は、実施形態1における、ソフトオフ動作を行う際の、点火装置の回路図である。 図5は、実施形態1における、点火動作を繰り返す際の、点火装置のタイムチャートである。 図6は、実施形態1における、一定期間、点火指令が入力されなかったときの、点火装置のタイムチャートである。 図7は、実施形態1における、オフ用定電流回路を用いてソフトオフ動作を行ったときの、ゲート電圧、一次電流、二次電圧の波形図に、RC回路を用いてソフトオフ動作を行ったときの波形図を重ねて描いたものである。 図8は、実施形態1における、点火装置の断面図である。 図9は、実施形態2における、点火装置の回路図である。 図10は、実施形態2における、ソフトオン動作を行う際の、点火装置の回路図である。 図11は、実施形態2における、点火動作を行う際の、点火装置の回路図である。 図12は、実施形態2における、ソフトオフ動作を行う際の、点火装置の回路図である。 図13は、実施形態2における、オン用定電流回路を用いてソフトオン動作を行ったときの、ゲート電圧、一次電流、二次電圧の波形図に、RC回路を用いてソフトオン動作を行ったときの波形図を重ねて描いたものである。 図14は、実施形態2における、ゲート電圧の上昇速度のばらつきと、点火用スイッチング素子の閾電圧のばらつきとを表したグラフである。 図15は、実施形態3における、点火装置の回路図である。 図16は、比較形態における、点火装置の回路図である。 図17は、比較形態における、ゲート電圧の上昇速度のばらつきと、点火用スイッチング素子の閾電圧のばらつきとを表したグラフである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a circuit diagram of an ignition device in a state where an ignition switching element is turned off in the first embodiment. FIG. 2 is a circuit diagram of the ignition device when the primary winding is energized in the first embodiment. FIG. 3 is a circuit diagram of the ignition device when performing an ignition operation in the first embodiment. FIG. 4 is a circuit diagram of the ignition device when performing the soft-off operation in the first embodiment. FIG. 5 is a time chart of the ignition device when the ignition operation is repeated in the first embodiment. FIG. 6 is a time chart of the ignition device when the ignition command is not input for a certain period in the first embodiment. FIG. 7 is a waveform diagram of the gate voltage, the primary current, and the secondary voltage when the soft-off operation is performed using the off-state constant current circuit in Embodiment 1, and the soft-off operation is performed using the RC circuit. This is a drawing of overlapping waveform diagrams. FIG. 8 is a cross-sectional view of the ignition device in the first embodiment. FIG. 9 is a circuit diagram of the ignition device in the second embodiment. FIG. 10 is a circuit diagram of the ignition device when performing the soft-on operation in the second embodiment. FIG. 11 is a circuit diagram of an ignition device when performing an ignition operation in the second embodiment. FIG. 12 is a circuit diagram of the ignition device when performing the soft-off operation in the second embodiment. FIG. 13 is a waveform diagram of the gate voltage, primary current, and secondary voltage when the soft-on operation is performed using the constant current circuit for turning on in Embodiment 2, and the soft-on operation is performed using the RC circuit. This is a drawing of overlapping waveform diagrams. FIG. 14 is a graph showing the variation in the gate voltage increase rate and the variation in the threshold voltage of the ignition switching element in the second embodiment. FIG. 15 is a circuit diagram of the ignition device in the third embodiment. FIG. 16 is a circuit diagram of an ignition device according to a comparative embodiment. FIG. 17 is a graph showing the variation in the rising speed of the gate voltage and the variation in the threshold voltage of the ignition switching element in the comparative example.
 上記点火装置は、自動車のエンジンの点火プラグを点火するための車両用点火装置とすることができる。 The ignition device may be a vehicle ignition device for igniting a spark plug of an automobile engine.
(実施形態1)
 上記点火装置に係る実施形態について、図1~図8を用いて説明する。本形態の点火装置1は、点火コイル10の二次巻線12に接続した点火プラグ13を点火するために用いられる。図1に示すごとく、点火装置1は、点火用スイッチング素子2と、コンデンサ3と、プリドライブ用スイッチング素子5と、プルアップ抵抗19と、オフ用定電流回路4OFFとを備える。
(Embodiment 1)
An embodiment according to the ignition device will be described with reference to FIGS. The ignition device 1 of this embodiment is used for igniting a spark plug 13 connected to the secondary winding 12 of the ignition coil 10. As shown in FIG. 1, the ignition device 1 includes an ignition switching element 2, a capacitor 3, a pre-drive switching element 5, a pull-up resistor 19, and an off constant current circuit 4 OFF .
 点火コイル10の一次巻線11の一端は電源18に接続され、他端は点火用スイッチング素子2のコレクタに接続している。点火用スイッチング素子2のエミッタはグランドに接続している。
 コンデンサ3は、点火用スイッチング素子2の制御端子21に接続し、一端がグランドに接続されている。
 プリドライブ用スイッチング素子5は、コンデンサ3に並列接続している。
 プルアップ抵抗19は、制御端子21とコンデンサ3との間と、電流源14との間に接続している。電流源14は、鉛蓄電池等の低電圧電源である。
 オフ用定電流回路4OFFは、制御端子21とコンデンサ3との間に電気接続している。図4に示すごとく、オフ用定電流回路4OFFは、コンデンサ3に蓄えられた電荷を一定の電流I3Dで放電するよう構成されている。
One end of the primary winding 11 of the ignition coil 10 is connected to the power source 18, and the other end is connected to the collector of the ignition switching element 2. The emitter of the ignition switching element 2 is connected to the ground.
The capacitor 3 is connected to the control terminal 21 of the ignition switching element 2, and one end is connected to the ground.
The predrive switching element 5 is connected to the capacitor 3 in parallel.
The pull-up resistor 19 is connected between the control terminal 21 and the capacitor 3 and between the current source 14. The current source 14 is a low voltage power source such as a lead storage battery.
The off constant current circuit 4 OFF is electrically connected between the control terminal 21 and the capacitor 3. As shown in FIG. 4, the off constant current circuit 4 OFF is configured to discharge the electric charge stored in the capacitor 3 with a constant current I 3D .
 本形態の点火装置1は、自動車のエンジンの点火プラグ13に点火するための車両用点火装置である。 The ignition device 1 of this embodiment is a vehicle ignition device for igniting a spark plug 13 of an automobile engine.
 次に、点火プラグ13に点火する際における、点火装置1の動作について説明する。図1に示すごとく、点火装置1は、電源が投入されると、まず、点火用スイッチング素子2をオフにする。この際、オフ用定電流回路4OFFの信号線49(すなわち、B点)の電位をLにするとともに、プリドライブ用スイッチング素子5の制御端子59(すなわち、A点)の電位をHにする。このようにすると、プリドライブ用スイッチング素子5がオンし、電流源14から電流I19が、プルアップ抵抗19及びプリドライブ用スイッチング素子5を通って、グランドに流れる。したがって、コンデンサ3に電荷は蓄えられず、コンデンサ3の電圧は上昇しない。そのため、制御端子21の電圧は閾電圧に達せず、点火用スイッチング素子2はオフになる。 Next, the operation of the ignition device 1 when the ignition plug 13 is ignited will be described. As shown in FIG. 1, the ignition device 1 first turns off the ignition switching element 2 when the power is turned on. At this time, the potential of the signal line 49 (that is, point B) of the OFF constant current circuit 4 OFF is set to L, and the potential of the control terminal 59 (that is, point A) of the predrive switching element 5 is set to H. . As a result, the pre-drive switching element 5 is turned on, and the current I 19 flows from the current source 14 through the pull-up resistor 19 and the pre-drive switching element 5 to the ground. Therefore, no charge is stored in the capacitor 3 and the voltage of the capacitor 3 does not increase. Therefore, the voltage at the control terminal 21 does not reach the threshold voltage, and the ignition switching element 2 is turned off.
 その後、点火装置1は、図示しないエンジンコントロールユニット等から送られる点火動作指示信号のLow信号を受けて、プリドライブ用スイッチング素子5をオフにする。そのため、図2に示すごとく、プルアップ抵抗19を流れる電流I19によってコンデンサ3が充電され、点火用スイッチング素子2がオンして、一次巻線11に一次電流i1が流れ始める。この際、プルアップ抵抗19およびコンデンサ3の充電特性により、制御端子21に加わる電圧が徐々に上昇する。そのため、点火用スイッチング素子2はゆっくりオンし、一次巻線11に一次電流i1が徐々に流れ始める。これにより、点火プラグ13が点火することを抑制しつつ、一次巻線11に一次電流i1を流している。 Thereafter, the ignition device 1 receives the Low signal of the ignition operation instruction signal sent from an engine control unit (not shown) or the like, and turns off the pre-drive switching element 5. Therefore, as shown in FIG. 2, the capacitor 3 is charged by the current I 19 flowing through the pull-up resistor 19, the ignition switching element 2 is turned on, and the primary current i 1 starts to flow through the primary winding 11. At this time, the voltage applied to the control terminal 21 gradually increases due to the charging characteristics of the pull-up resistor 19 and the capacitor 3. Therefore, the ignition switching element 2 is turned on slowly, and the primary current i 1 gradually starts to flow through the primary winding 11. As a result, the primary current i 1 is passed through the primary winding 11 while suppressing ignition of the spark plug 13.
 その後、図3に示すごとく、A点をHにすると、プリドライブ用スイッチング素子5がオンになり、コンデンサ3が急速に放電する。そのため、点火用スイッチング素子2が急にオフになり、一次電流i1が急に遮断される。これに伴い、二次巻線12に高い二次電圧V2が発生し、点火プラグ13に火花放電Sが発生して、シリンダー内の混合気が点火される。 Thereafter, as shown in FIG. 3, when the point A is set to H, the pre-drive switching element 5 is turned on and the capacitor 3 is rapidly discharged. Therefore, the ignition switching element 2 is suddenly turned off, and the primary current i 1 is suddenly cut off. Along with this, a high secondary voltage V 2 is generated in the secondary winding 12, a spark discharge S is generated in the spark plug 13, and the air-fuel mixture in the cylinder is ignited.
 また、図2に示すように一次電流i1を流した後、何らかの異常が発生し、プリドライブ用スイッチング素子5をオンにするA点のH信号が一定時間入力されない場合は、ソフトオフ動作を行う。すなわち、点火プラグ13の点火を抑制しつつ、点火用スイッチング素子2をオフさせる。ソフトオフ動作を行う場合は、図4に示すごとく、A点をLにしたまま、B点をHにする。このようにすると、オフ用定電流回路4OFFがオンし、回路定数により設定された一定の電流が流れる。そのため、コンデンサ3に蓄えられていた電荷が一定の電流I3Dで放電され、コンデンサ3の電圧が一定の傾きで減少する。したがって、制御端子21に加わる電圧が一定の傾きで徐々に減少し、一次電流i1が一定の変化率で徐々に減少する。そのため、従来のように指数関数的に一次電流i1を変化させた場合と比べて二次電圧V2が抑制され、点火プラグ13が点火することを抑制できる。 In addition, as shown in FIG. 2, when an abnormality occurs after the primary current i 1 flows and the H signal at point A that turns on the pre-drive switching element 5 is not input for a certain period of time, a soft-off operation is performed. Do. That is, the ignition switching element 2 is turned off while suppressing ignition of the spark plug 13. When the soft-off operation is performed, the point B is set to H while the point A is set to L as shown in FIG. In this way, the off constant current circuit 4 OFF is turned on, and a constant current set by the circuit constant flows. For this reason, the electric charge stored in the capacitor 3 is discharged with a constant current I 3D , and the voltage of the capacitor 3 decreases with a constant slope. Therefore, the voltage applied to the control terminal 21 gradually decreases with a constant slope, and the primary current i 1 gradually decreases with a constant rate of change. Therefore, the secondary voltage V 2 is suppressed compared to the case where the primary current i 1 is changed exponentially as in the conventional case, and the ignition of the spark plug 13 can be suppressed.
 次に、図5、図6を用いて、点火装置1のタイミング図の説明をする。図5は、エンジンの点火を繰り返す際の、点火装置1のタイミング図であり、図6は、異常発生時にソフトオフ動作をする際のタイミング図である。図5、図6におけるA点は、プリドライブ用スイッチング素子5の制御端子59である。A点には、点火動作を行うときにおける、一次巻線11の通電と通電遮断とを制御する信号が入力される。B点は、オフ用定電流回路4OFFの制御端子に接続した信号線49である。また、C点は、点火用スイッチング素子2の制御端子21であり、D点は、点火用スイッチング素子2のコレクタ29である。 Next, the timing chart of the ignition device 1 will be described with reference to FIGS. 5 and 6. FIG. 5 is a timing diagram of the ignition device 1 when the ignition of the engine is repeated, and FIG. 6 is a timing diagram when a soft-off operation is performed when an abnormality occurs. A point A in FIGS. 5 and 6 is the control terminal 59 of the pre-drive switching element 5. A signal for controlling energization and interruption of the primary winding 11 when the ignition operation is performed is input to the point A. Point B is a signal line 49 connected to the control terminal of the OFF constant current circuit 4 OFF . Further, point C is the control terminal 21 of the ignition switching element 2, and point D is the collector 29 of the ignition switching element 2.
 図5に示すごとく、エンジンを点火する際には、まず一次コイル11への通電動作を行う。すなわち、B点をLにしておき、時刻t1において、A点をHからLに切り替える。このようにすると、プリドライブ用スイッチング素子5がオフになり、電流源14から電流I19が、プルアップ抵抗19を通って徐々に流れ、RC時定数でコンデンサ3がゆっくり充電される。そのため、コンデンサ3の電圧が徐々に上昇し、点火用スイッチング素子2が徐々にオンし、一次巻線11に一次電流i1が流れる。 As shown in FIG. 5, when the engine is ignited, the primary coil 11 is first energized. That is, the point B is set to L, and the point A is switched from H to L at time t1. In this way, the pre-drive switching element 5 is turned off, the current I 19 gradually flows from the current source 14 through the pull-up resistor 19, and the capacitor 3 is slowly charged with the RC time constant. Therefore, the voltage of the capacitor 3 gradually increases, the ignition switching element 2 is gradually turned on, and the primary current i 1 flows through the primary winding 11.
 その後、時刻t2において、A点をHに切り替えると、プリドライブ用スイッチング素子5がオンになり、コンデンサ3に蓄えられた電荷が急速に放電される。そのため、点火用スイッチング素子2がオフになり、一次電流i1が急速に遮断される。そのため、一次巻線11に高い一次電圧V1が発生する。これに伴って、二次巻線12にも高い二次電圧V2が発生し、点火プラグ13に火花放電Sが発生して、エンジン内の混合気が点火される。 Thereafter, when the point A is switched to H at time t2, the pre-drive switching element 5 is turned on, and the charge stored in the capacitor 3 is rapidly discharged. Therefore, the ignition switching element 2 is turned off, and the primary current i 1 is rapidly cut off. Therefore, a high primary voltage V 1 is generated in the primary winding 11. Along with this, a high secondary voltage V 2 is also generated in the secondary winding 12, a spark discharge S is generated in the spark plug 13, and the air-fuel mixture in the engine is ignited.
 また、図6に示すごとく、時刻t3においてA点をLにした後、何らかの異常が発生し、点火プラグ13を点火する指令が一定時間入力されない場合は、ソフトオフ動作を行う。すなわち、時刻t4において、点火信号のA点をLにしたまま、つまりプリドライブ用スイッチング素子5をオフにしたまま、B点をHにする。このようにすると、オフ用定電流回路4OFFがオンし、コンデンサ3に蓄えられた電荷が一定の電流で放電される。そのため、C点の電圧が一定の変化率で徐々に低下し、一次電流i1が徐々に減少する。したがって、一次電圧V1および二次電圧V2は抑制され、点火プラグ13の点火を抑制しつつ、点火用スイッチング素子2をオフすることができる。 Further, as shown in FIG. 6, when an abnormality occurs after the point A is set to L at time t <b> 3 and a command for igniting the spark plug 13 is not input for a certain period of time, a soft-off operation is performed. That is, at time t4, the point B is set to H while the point A of the ignition signal is set to L, that is, the predrive switching element 5 is turned off. By doing so, the off constant current circuit 4 OFF is turned on, and the electric charge stored in the capacitor 3 is discharged with a constant current. Therefore, the voltage at the point C gradually decreases at a constant rate of change, and the primary current i 1 gradually decreases. Therefore, the primary voltage V 1 and the secondary voltage V 2 are suppressed, and the ignition switching element 2 can be turned off while suppressing ignition of the spark plug 13.
 図7に、オフ用定電流回路4OFFを用いて点火用スイッチング素子2をソフトオフしたときの、ゲート電圧Vg、一次電流i1、二次電圧V2の波形を示す。また、同図に、従来のようにRC回路(図16参照)を用いて点火用スイッチング素子2をソフトオフしたときの波形を重ねて示す。 FIG. 7 shows waveforms of the gate voltage V g , the primary current i 1 , and the secondary voltage V 2 when the ignition switching element 2 is soft-off using the OFF constant current circuit 4 OFF . In addition, in the same figure, the waveforms when the ignition switching element 2 is soft-off using the RC circuit (see FIG. 16) as in the prior art are shown superimposed.
 オフ用定電流回路4OFFを用いてコンデンサ3を一定の電流で放電させると、コンデンサ3の電圧が一次関数的に低下する。そのため、図7に示すごとく、オフ用定電流回路4OFFを用いる場合は、時刻t4においてソフトオフし始めた後、コンデンサ3の電圧、すなわち点火用スイッチング素子2のゲート電圧Vgが、一次関数的に低下する。したがって、一次電流i1も直線的に低下する。そのため、一次電流i1の時間変化率di1/dtは一定となり、かつ比較的小さな値に設定できるので、発生する二次電圧V2も比較的低くなる。したがって、点火プラグ13の発生電圧で飛び火することが少なく、また飛び火しても発生エネルギが少ないため、混合気に着火することを抑制することができる。 When the capacitor 3 is discharged with a constant current using the OFF constant current circuit 4 OFF , the voltage of the capacitor 3 decreases in a linear function. Therefore, as shown in FIG. 7, in the case of using the OFF constant current circuit 4 OFF , after starting soft-off at time t4, the voltage of the capacitor 3, that is, the gate voltage V g of the ignition switching element 2 is a linear function. Decline. Accordingly, the primary current i 1 also decreases linearly. For this reason, the temporal change rate di 1 / dt of the primary current i 1 is constant and can be set to a relatively small value, so that the generated secondary voltage V 2 is also relatively low. Therefore, the spark plug 13 rarely sparks and the generated energy is small even if sparks are generated, so that it is possible to suppress ignition of the air-fuel mixture.
 これに対して、従来のようにRC回路を用いる場合は、時刻t4においてソフトオフし始めた後、点火用スイッチング素子2のゲート電圧Vgが指数関数的に低下する。そのため、一次電流i1も指数関数的に低下する。したがって、一次電流i1の時間変化率di1/dtが比較的大きく、高い二次電圧V2が発生しやすい。したがって、この二次電圧V2によって点火プラグ13に火花放電Sが発生し、混合気に着火するおそれがある。 In contrast, in the case of using an RC circuit as in the prior art, after starting to soft-off at time t4, the gate voltage V g of the ignition switching element 2 decreases exponentially. Therefore, the primary current i 1 also decreases exponentially. Therefore, the temporal change rate di 1 / dt of the primary current i 1 is relatively large, and a high secondary voltage V 2 is likely to be generated. Therefore, the secondary voltage V 2 may cause a spark discharge S in the spark plug 13 and ignite the air-fuel mixture.
 次に、オフ用定電流回路4OFFの回路構成について説明する。図1に示すごとく、オフ用定電流回路4OFFは、切替用トランジスタ40と、定電流用トランジスタ41とを備える。切替用トランジスタ40は、電流の通電と非通電とを切り替えるために設けられている。定電流用トランジスタ41は、切替用トランジスタ40に流れる電流I40(図4参照)を一定値に保つために設けられている。 Next, a description will be given of a circuit configuration of the constant current circuit 4 OFF for off. As shown in FIG. 1, the off constant current circuit 4 OFF includes a switching transistor 40 and a constant current transistor 41. The switching transistor 40 is provided for switching between energization and non-energization of current. The constant current transistor 41 is provided to keep the current I 40 (see FIG. 4) flowing through the switching transistor 40 at a constant value.
 本形態では、切替用トランジスタ40としてNch型のMOSFETを用い、定電流用トランジスタ41としてNPN型のバイポーラトランジスタを用いている。切替用トランジスタ40のソース401は定電流トランジスタ41のベース413に接続されるとともに、電流設定用の第2抵抗43を介してグランドに接続されている。切替用トランジスタ40のドレイン402はコンデンサ3に接続している。また、定電流用トランジスタ41のエミッタ411は、第1抵抗42を介してグランドに接続している。定電流用トランジスタ41のコレクタ412は、切替用トランジスタ40のゲート403に接続している。 In this embodiment, an Nch type MOSFET is used as the switching transistor 40, and an NPN type bipolar transistor is used as the constant current transistor 41. The source 401 of the switching transistor 40 is connected to the base 413 of the constant current transistor 41 and is connected to the ground via the second resistor 43 for current setting. The drain 402 of the switching transistor 40 is connected to the capacitor 3. The emitter 411 of the constant current transistor 41 is connected to the ground through the first resistor 42. The collector 412 of the constant current transistor 41 is connected to the gate 403 of the switching transistor 40.
 図4に示すごとく、ゲート403の電位をHにすると、切替用トランジスタ40がオンし、電流I40が流れる。電流I40は、コンデンサ3の放電電流I3Dと、電源14からプルアップ抵抗19を介して流れる電流I19との和である。電流I40は、接続点414で、第2抵抗43に流れるI43と、定電流用トランジスタ41のベース電流I41bとに分かれる。このベース電流I41bは、定電流用トランジスタ41のコレクタ電流I41cと係数1/hfeとに相関関係がある。ベース電流I41bとコレクタ電流I41cの和が、第1抵抗42に流れる電流I42となる。 As shown in FIG. 4, when the potential of the gate 403 is set to H, the switching transistor 40 is turned on and a current I 40 flows. The current I 40 is the sum of the discharge current I 3D of the capacitor 3 and the current I 19 flowing from the power source 14 via the pull-up resistor 19. The current I 40 is divided at a connection point 414 into I 43 flowing through the second resistor 43 and a base current I 41b of the constant current transistor 41. The base current I 41b has a correlation with the collector current I 41c of the constant current transistor 41 and the coefficient 1 / h fe . The sum of the base current I 41b and the collector current I 41c is a current I 42 flowing through the first resistor 42.
 接続点414からグランドまでの電圧降下は、第1抵抗42側と第2抵抗43側とで等しい。すなわち、第2抵抗43とそこに流れる電流I43の積と、第1抵抗42とそこに流れる電流I42の積と定電流用トランジスタ41のベース・エミッタ間電圧Vbeの和が等価になるように、ベース413の電圧が決まり、第2抵抗43に流れる電流I43とベース電流I41bが決まる。そのため、これらの電流I43,I41bの和(電流I40)は一定になる。また、電流I40は、プルアップ抵抗19を流れる電流I19と、コンデンサ3の放電電流I3Dとの和であり、上記電流I19は一定である。そのため、放電電流I3Dは一定になる。 The voltage drop from the connection point 414 to the ground is the same on the first resistor 42 side and the second resistor 43 side. That is, the product of the second resistor 43 and the current I 43 flowing therethrough, the sum of the product of the first resistor 42 and the current I 42 flowing therethrough, and the base-emitter voltage V be of the constant current transistor 41 become equivalent. As described above, the voltage of the base 413 is determined, and the current I 43 and the base current I 41b flowing through the second resistor 43 are determined. Therefore, the sum of these currents I 43 and I 41b (current I 40 ) is constant. The current I 40 is the sum of the current I 19 flowing through the pull-up resistor 19 and the discharge current I 3D of the capacitor 3, and the current I 19 is constant. Therefore, the discharge current I 3D is constant.
 また、電流I40は上述のように第1抵抗42と第2抵抗43との抵抗値によって任意に設定できるため、点火用スイッチング素子2の制御端子21に高い電圧が加わっているときでも、一次電流i1の時間変化率di1/dtが一定でかつ小さくなるように、上記電流I40の値を容易に設定することができる。従って、制御端子21に高い電圧が加わり、点火用スイッチング素子2が飽和領域になっていても、この状態から、確実にソフトオフ動作を行うことができる。そのため、通常の点火動作を行う際には、点火用スイッチング素子2を飽和領域で動作させることが可能になる。すなわち、点火用スイッチング素子2をオンして一次巻線11に一次電流i1を流すとき(図2参照)に、点火用スイッチング素子2を飽和領域にでき、一次電流i1による点火用スイッチング素子2の損失を抑制することができる。 Further, since the current I 40 can be arbitrarily set according to the resistance values of the first resistor 42 and the second resistor 43 as described above, even when a high voltage is applied to the control terminal 21 of the ignition switching element 2, The value of the current I 40 can be easily set so that the time change rate di 1 / dt of the current i 1 is constant and small. Therefore, even when a high voltage is applied to the control terminal 21 and the ignition switching element 2 is in the saturation region, the soft-off operation can be reliably performed from this state. Therefore, when performing a normal ignition operation, the ignition switching element 2 can be operated in the saturation region. That is, when the ignition switching element 2 is turned on and the primary current i 1 flows through the primary winding 11 (see FIG. 2), the ignition switching element 2 can be in the saturation region, and the ignition switching element by the primary current i 1 2 loss can be suppressed.
 次に、図8を用いて、点火装置1の立体的な構造について説明する。同図に示すごとく、本形態では、オフ用定電流回路4OFFとプリドライブ用スイッチング素子5とを一つの半導体チップ8に形成してある。また、点火装置1は、オフ用定電流回路4OFF及びプリドライブ用スイッチング素子5のオンオフ制御をするための制御部7を備える。これら制御部7と半導体チップ8と点火用スイッチング素子2とを封止部材80によって封止し、一部品化してある。 Next, the three-dimensional structure of the ignition device 1 will be described with reference to FIG. As shown in the figure, in this embodiment, the off constant current circuit 4 OFF and the predrive switching element 5 are formed on one semiconductor chip 8. Further, the ignition device 1 includes a control unit 7 for the on-off control of the off constant-current circuit 4 OFF, and the pre-drive switching element 5. The control unit 7, the semiconductor chip 8, and the ignition switching element 2 are sealed by a sealing member 80 and are made into one part.
 制御部7と半導体チップ8と点火用スイッチング素子2とは、放熱板81に載置されている。また、封止部材80から、外部機器と電気接続するための端子82が突出している。 The control unit 7, the semiconductor chip 8, and the ignition switching element 2 are placed on a heat sink 81. Further, a terminal 82 for electrical connection with an external device protrudes from the sealing member 80.
 次に、本形態の作用効果について説明する。図1に示すごとく、本形態の点火装置1は、オフ用定電流回路4OFFを備える。このオフ用定電流回路4OFFにより、制御端子21に接続したコンデンサ3の電荷を、一定の電流で放電させることができるよう構成されている。
 そのため、ソフトオフ動作を行うときに発生する二次電圧V2を、より低減することができる。すなわち、オフ用定電流回路4OFFは、コンデンサ3を一定の電流で放電するため、図7に示すごとく、コンデンサ3の電圧、すなわち点火用スイッチング素子2の制御端子21に加わる電圧Vgを、一次関数的に低下させることができる。そのため、従来のようにRC回路を用いて、制御端子に加わる電圧を指数関数的に低下させる場合と比べて、一次電流i1の時間変化率di1/dtを一定に、かつ小さくすることができ、二次巻線12に発生する二次電圧V2を低減することができる。そのため、ソフトオフ動作を行うときに点火プラグ13が点火することを、より効果的に抑制できる。
Next, the effect of this form is demonstrated. As shown in FIG. 1, the ignition device 1 of this embodiment includes an off constant current circuit 4 OFF . The off constant current circuit 4 OFF is configured to discharge the capacitor 3 connected to the control terminal 21 with a constant current.
Therefore, the secondary voltage V 2 generated when performing the soft-off operation can be further reduced. That is, since the off constant current circuit 4 OFF discharges the capacitor 3 with a constant current, the voltage V g applied to the control terminal 21 of the ignition switching element 2 as shown in FIG. It can be reduced by a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is exponentially reduced using an RC circuit. The secondary voltage V 2 generated in the secondary winding 12 can be reduced. Therefore, ignition of the spark plug 13 when performing the soft-off operation can be more effectively suppressed.
 以上のごとく、本形態によれば、ソフトスイッチング動作を行う際に発生する二次電圧を、より低減できる点火装置を提供することができる。 As described above, according to this embodiment, it is possible to provide an ignition device that can further reduce the secondary voltage generated when the soft switching operation is performed.
 なお、本形態においては、図1に示すごとく、点火用スイッチング素子2としてIGBTを用いたが、本発明はこれに限るものではなく、MOSFETやバイポーラトランジスタを用いることもできる。 In this embodiment, as shown in FIG. 1, the IGBT is used as the ignition switching element 2, but the present invention is not limited to this, and a MOSFET or a bipolar transistor can also be used.
 また、本形態においては、図8に示すごとく、オフ用定電流回路4OFF及びプリドライブ用スイッチング素子5を形成した半導体チップ8と、制御部7と、点火用スイッチング素子2とを封止して一部品化しているが、本発明はこれに限るものではない。すなわち、これらの部品を別々にした、いわゆるディスクリート品にしてもよい。また、オフ用定電流回路4OFFは本形態において開示したものに限定されず、他の公知の回路構成や専用ICを使用してもよい。 Further, in this embodiment, as shown in FIG. 8, the semiconductor chip 8 on which the off constant current circuit 4 OFF and the predrive switching element 5 are formed, the control unit 7 and the ignition switching element 2 are sealed. However, the present invention is not limited to this. That is, you may make what is called a discrete product which separated these components. Further, the off-state constant current circuit 4 OFF is not limited to that disclosed in this embodiment, and other known circuit configurations or dedicated ICs may be used.
 以下の実施形態においては、図面に用いた符号のうち、実施形態1において用いた符号と同一のものは、特に示さない限り、実施形態1と同様の構成要素等を表す。 In the following embodiments, the same reference numerals used in the drawings among the reference numerals used in the drawings represent the same constituent elements as those in the first embodiment unless otherwise specified.
(実施形態2)
 本形態は、点火装置1の回路を変更した例である。図9に示すごとく、本形態の点火装置1は、点火コイル10の一次巻線11に接続した点火用スイッチング素子2と、コンデンサ3と、プリドライブ用スイッチング素子5と、オン用定電流回路4ONとを備える。
(Embodiment 2)
In this embodiment, the circuit of the ignition device 1 is changed. As shown in FIG. 9, the ignition device 1 of the present embodiment includes an ignition switching element 2 connected to a primary winding 11 of an ignition coil 10, a capacitor 3, a predrive switching element 5, and an on-state constant current circuit 4. With ON .
 図10に示すごとく、オン用定電流回路4ONは、制御端子21とコンデンサ3との間に接続しており、コンデンサ3を一定の電流I3Cで充電するよう構成されている。オン用定電流回路4ONは、オフ用定電流回路4OFFと同様に、切替用トランジスタ40と、定電流用トランジスタ41とを備える。切替用トランジスタ40のソースは、第4抵抗45を介して電流源14に接続している。また、定電流用トランジスタ41のエミッタは、第3抵抗44を介して電流源14に接続している。 As shown in FIG. 10, the ON constant current circuit 4 ON is connected between the control terminal 21 and the capacitor 3 and is configured to charge the capacitor 3 with a constant current I 3C . The on-state constant current circuit 4 ON includes a switching transistor 40 and a constant-current transistor 41 in the same manner as the off-state constant current circuit 4 OFF . The source of the switching transistor 40 is connected to the current source 14 via the fourth resistor 45. The emitter of the constant current transistor 41 is connected to the current source 14 via the third resistor 44.
 切替用トランジスタ40を流れる一定の電流I3Cによって、コンデンサ3が充電される。この電流I3Cは、接続点415で、第4抵抗45に流れるI45と、定電流用トランジスタ41のベース電流I41bが合わさったものである。このベース電流I41bは、定電流用トランジスタ41のコレクタ電流I41cと、係数1/hfeとに相関関係があり、ベース電流I41bとコレクタ電流I41cの和が、第3抵抗44に流れる電流I44となる。第4抵抗45とそこに流れる電流I45の積と、第3抵抗44とそこに流れる電流I44の積と定電流用トランジスタ41のベース・エミッタ間電圧Vbeの和が等価になるように、ベース413の電圧が決まり、第4抵抗45に流れる電流I45とベース電流I41bが決まる。そのため、これらの電流I45,I41bの和(電流I3C)は一定になる。 The capacitor 3 is charged by a constant current I 3C flowing through the switching transistor 40. This current I 3C is the sum of I 45 flowing through the fourth resistor 45 at the connection point 415 and the base current I 41b of the constant current transistor 41. The base current I 41b is correlated with the collector current I 41c of the constant current transistor 41 and the coefficient 1 / h fe, and the sum of the base current I 41b and the collector current I 41c flows through the third resistor 44. The current I 44 is obtained. The product of the fourth resistor 45 and the current I 45 flowing therethrough, the product of the third resistor 44 and the current I 44 flowing therethrough, and the sum of the base-emitter voltage V be of the constant current transistor 41 are made equivalent. The voltage of the base 413 is determined, and the current I 45 flowing through the fourth resistor 45 and the base current I 41b are determined. Therefore, the sum (current I 3C ) of these currents I 45 and I 41b is constant.
 電流I3Cは上述のように、第3抵抗44と第4抵抗45の抵抗値によって任意に設定できるため、制御端子21に高い電圧を加えるときでも、一次電流i1の時間変化率di1/dtが一定でかつ小さくなるように、電流I3Cの値を容易に設定することができる。従って、一次電流i1を流し始めるときに、制御端子21に徐々に高い電圧を加えることができ、点火用スイッチング素子2を飽和領域にすることができる。そのため、一次電流i1による点火用スイッチング素子2の損失を抑制できる。 Current I 3C, as described above, it is possible to arbitrarily set by the third resistor 44 resistance value of the fourth resistor 45, even when applying a high voltage to the control terminal 21, the time rate of change of the primary current i 1 di 1 / The value of the current I 3C can be easily set so that dt is constant and small. Accordingly, when the primary current i 1 starts to flow, a high voltage can be gradually applied to the control terminal 21, and the ignition switching element 2 can be brought into a saturation region. Therefore, the loss of the ignition switching element 2 due to the primary current i 1 can be suppressed.
 また、本形態の点火装置1は、実施形態1と同様に、オフ用定電流回路4OFFを備える。オフ用定電流回路4OFFは、制御端子21とコンデンサ3との間に接続しており、コンデンサ3に蓄えられた電荷を一定の電流I3Dで放電するよう構成されている。 Further, the ignition device 1 of the present embodiment includes an OFF constant current circuit 4 OFF as in the first embodiment. The off constant current circuit 4 OFF is connected between the control terminal 21 and the capacitor 3 and is configured to discharge the electric charge stored in the capacitor 3 with a constant current I 3D .
 次に、点火プラグ13を点火するときにおける、点火装置1の動作について説明する。図10に示すごとく、点火装置1は、まずソフトオン動作を行う。すなわち、点火用スイッチング素子2を一定電流で、ゆっくりオンすることにより、通電開始時点での点火プラグ13の点火を抑制しつつ、一次巻線11に一次電流i1を流す。この際、図10に示すごとく、A点とB点を両方ともLにする。このようにすると、オン用定電流回路4ONがオンしかつ、ソフトオフ用定電流回路4OFFがオフして、コンデンサ3が一定の電流I3Cで充電される。そのため、コンデンサ3の電圧、すなわち制御端子21の電圧が一次関数的に上昇する。したがって、一次電流i1の時間変化率di1/dtを一定に、かつ小さくすることができ、二次電圧V2を低減することができる。そのため、点火プラグ13の点火を抑制しつつ、一次電流i1を流すことができる。 Next, the operation of the ignition device 1 when the ignition plug 13 is ignited will be described. As shown in FIG. 10, the ignition device 1 first performs a soft-on operation. That is, by turning on the ignition switching element 2 slowly at a constant current, the primary current i 1 flows through the primary winding 11 while suppressing ignition of the spark plug 13 at the start of energization. At this time, both point A and point B are set to L as shown in FIG. In this way, the ON constant current circuit 4 ON is turned ON and the soft-off constant current circuit 4 OFF is turned OFF , so that the capacitor 3 is charged with a constant current I 3C . Therefore, the voltage of the capacitor 3, that is, the voltage of the control terminal 21 increases in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the secondary voltage V 2 can be reduced. Therefore, it is possible to flow the primary current i 1 while suppressing ignition of the spark plug 13.
 その後、図11に示すごとく、B点をLにしたまま、A点をLからHに切り替える。このようにするとプリドライブ用スイッチング素子5がオンし、コンデンサ3に蓄えられた電荷が、プリドライブ用スイッチング素子5を通って急速に放電する。そのため、一次電流i1が急に遮断され、二次巻線12に高い二次電圧V2が発生する。したがって、点火プラグ13に火花放電Sが発生する。 Thereafter, as shown in FIG. 11, the point A is switched from L to H while the point B is kept at L. As a result, the pre-drive switching element 5 is turned on, and the electric charge stored in the capacitor 3 is rapidly discharged through the pre-drive switching element 5. Therefore, it is suddenly cut off the primary current i 1, the secondary winding high 12 secondary voltage V 2 is generated. Accordingly, a spark discharge S is generated in the spark plug 13.
 また、図10の状態から、点火プラグ13を点火する信号が一定時間入力されなかった場合、図12に示すごとく、A点をLにしたまま、B点をHに切り替える。このようにすると、オン用定電流回路4ONがオフし流れる電流I3Cが停止するとともに、オフ用定電流回路4OFFがオンして、一定の電流I3Dが流れる。そのため、コンデンサ3が一定の電流I3Dで放電され、コンデンサ3の電圧、すなわち制御端子21の電圧が一次関数的に低下する。したがって、一次電流i1の時間変化率di1/dtを一定に、かつ小さくすることができ、二次電圧V2を低減することができる。そのため、点火プラグ13の点火を抑制しつつ、点火用スイッチング素子2をオフすることができる。 If the signal for igniting the spark plug 13 is not input for a certain time from the state shown in FIG. 10, the point B is switched to H while the point A is kept low as shown in FIG. In this way, the on-state constant current circuit 4 ON is turned off and the flowing current I 3C is stopped, and the off-state constant current circuit 4 OFF is turned on, so that a constant current I 3D flows. Therefore, the capacitor 3 is discharged with a constant current I 3D , and the voltage of the capacitor 3, that is, the voltage of the control terminal 21 is reduced in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the secondary voltage V 2 can be reduced. Therefore, the ignition switching element 2 can be turned off while suppressing ignition of the spark plug 13.
 次に、図13に、オン用定電流回路4ONを用いて点火用スイッチング素子2をソフトオンしたときの、ゲート電圧Vg、一次電流i1、二次電圧V2の波形を示す。また、同図に、従来のようにRC回路(図16参照)を用いて点火用スイッチング素子2をソフトオンしたときの波形を重ねて示す。 Next, FIG. 13 shows waveforms of the gate voltage V g , the primary current i 1 , and the secondary voltage V 2 when the ignition switching element 2 is soft-on using the ON constant current circuit 4 ON . In addition, in the same figure, the waveforms when the ignition switching element 2 is soft-on using the RC circuit (see FIG. 16) as in the prior art are shown superimposed.
 図13に示すごとく、ゲート電圧Vgが上昇して閾電圧Vthを超えると、点火用スイッチング素子2がオンして、一次電流i1が流れ始める。また、上述したように、オン用定電流回路4ONを用いる場合は、コンデンサ3を一定の電流で充電するため、コンデンサ3の電圧が一次関数的に上昇する。そのため、オン用定電流回路4ONを用いる場合は、時刻t1においてソフトオンし始めた後、コンデンサ3の電圧、すなわち点火用スイッチング素子2のゲート電圧Vgが、一次関数的に上昇する。したがって、一次電流i1を直線的に上昇させることができる。そのため、一次電流i1の時間変化率di1/dtを一定でかつ小さくでき、発生する二次電圧V2を比較的小さくすることができる。したがって、点火プラグ13に火花放電Sが発生することを抑制できる。 As shown in FIG. 13, when the gate voltage V g rises and exceeds the threshold voltage V th , the ignition switching element 2 is turned on and the primary current i 1 starts to flow. Further, as described above, when the ON constant current circuit 4 ON is used, the capacitor 3 is charged with a constant current, so that the voltage of the capacitor 3 rises in a linear function. Therefore, in the case of using a constant current circuit 4 ON for one, after starting to soft on at time t1, the voltage of the capacitor 3, i.e., the gate voltage V g of the ignition switching element 2 rises a linear function manner. Therefore, the primary current i 1 can be increased linearly. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small, and the generated secondary voltage V 2 can be made relatively small. Therefore, it is possible to suppress the occurrence of the spark discharge S in the spark plug 13.
 これに対して、従来のようにRC回路を用いる場合は、時刻t1においてソフトオンし始めた後、点火用スイッチング素子2のゲート電圧Vgが指数関数的に上昇する。そのため、一次電流i1も指数関数的に上昇する。したがって、一次電流i1の時間変化率di1/dtが比較的大きく、高い二次電圧V2が発生する。そのため、この二次電圧V2によって、点火プラグ13に火花放電Sが発生するおそれがある。 In contrast, in the case of using an RC circuit as in the prior art, after starting to soft on at time t1, the gate voltage V g of the ignition switching element 2 increases exponentially. Therefore, the primary current i 1 also increases exponentially. Therefore, the temporal change rate di 1 / dt of the primary current i 1 is relatively large, and a high secondary voltage V 2 is generated. Therefore, the secondary voltage V 2, the spark discharge S may occur in the spark plug 13.
 一方、図9に示すごとく、オン用定電流回路4ONの切替用トランジスタ40pと、オフ用定電流回路4OFFの切替用トランジスタ40nとは、互いに直列に接続されている。また、これら2つの切替用トランジスタ40p,40nの制御端子(すなわち、ゲート403)は、共通の信号線49に接続している。また、上記2つの切替用トランジスタ40p,40nは、図10、図12に示すごとく、一方がオンのとき他方がオフになる、相補型のトランジスタである。 On the other hand, as shown in FIG. 9, the switching transistor 40p for the ON constant current circuit 4 ON and the switching transistor 40n for the OFF constant current circuit 4 OFF are connected to each other in series. The control terminals (that is, the gates 403) of these two switching transistors 40p and 40n are connected to a common signal line 49. The two switching transistors 40p and 40n are complementary transistors, as shown in FIGS. 10 and 12, in which one is turned on and the other is turned off.
 次に、本形態の作用効果について説明する。本形態の点火装置1は、図10に示すごとく、オン用定電流回路4ONを備える。
 そのため、ソフトオン動作、すなわち、点火プラグ13の点火を抑制しつつ、一次電流i1を流し始める動作を行うことができる。つまり、本形態ではオン用定電流回路4ONを設けているため、コンデンサ3を一定の電流I3Cで充電することができる。したがって、コンデンサ3の電圧、すなわち点火用スイッチング素子2の制御端子21に加わる電圧を、一次関数的に上昇させることができる。そのため、従来のようにRC回路を用いて、制御端子に加わる電圧を指数関数的に上昇させる場合と比べて、一次電流i1の時間変化率di1/dtを一定でかつ小さくすることができ、二次巻線12に発生する二次電圧V2を低減できる。そのため、ソフトオン動作を行うときに点火プラグが点火することを抑制できる。
Next, the effect of this form is demonstrated. As shown in FIG. 10, the ignition device 1 of the present embodiment includes an ON constant current circuit 4 ON .
Therefore, it is possible to perform a soft-on operation, that is, an operation that starts flowing the primary current i 1 while suppressing ignition of the spark plug 13. That is, in this embodiment, since the ON constant current circuit 4 ON is provided, the capacitor 3 can be charged with a constant current I 3C . Therefore, the voltage applied to the capacitor 3, that is, the voltage applied to the control terminal 21 of the ignition switching element 2 can be increased in a linear function. Therefore, the time change rate di 1 / dt of the primary current i 1 can be made constant and small as compared with the conventional case where the voltage applied to the control terminal is increased exponentially using an RC circuit. The secondary voltage V 2 generated in the secondary winding 12 can be reduced. Therefore, it is possible to suppress ignition of the spark plug when performing the soft-on operation.
 また、本形態のようにオン用定電流回路4ONを用いれば、製造ばらつきにより、点火用スイッチング素子2の閾電圧Vth等がばらついた場合でも、二次電圧V2のばらつきを低減することができる。すなわち、図17に示すごとく、点火用スイッチング素子2の閾電圧Vthには、ばらつきがある。また、RC回路を用いてソフトオン動作を行う場合、RC回路に含まれる抵抗RとコンデンサCとの製造ばらつきにより、RC時定数がばらつき、ゲート電圧Vgの上昇速度がばらつく。上昇速度が最も早い場合が曲線L3であり、最も遅い場合が曲線L4である。そのため、例えば閾電圧Vthが低く、かつゲート電圧Vgの上昇速度が速い場合(すなわち、曲線L3の場合)、比較的早い時刻T11において点火用スイッチング素子2がオンする。また、ゲート電圧Vgは指数関数的に上昇するため、時刻T11におけるゲート電圧Vgの時間変化率dVg/dtは高く、一次電流i1の時間変化率di1/dtも高い。そのため、特に高い二次電圧V2が発生しやすくなる。また、閾電圧Vthが高く、かつゲート電圧Vgの上昇速度が遅い場合(すなわち、曲線L4の場合)、比較的遅い時刻T12において点火用スイッチング素子2がオンする。このとき、ゲート電圧Vgの時間変化率dVg/dtは低いため、二次電圧V2は比較的低くなる。
 このように、RC回路を用いてソフトオン動作を行うときは、閾電圧VthやRC時定数がばらついて、点火用スイッチング素子2がオンする時刻がT11からT12の間でばらつくと、二次電圧V2が大きくばらつきやすい。したがって、最も高い二次電圧V2が発生する場合を考慮して回路設計をする必要が生じ、回路設計が困難になりやすい。
Further, when the ON constant current circuit 4 ON is used as in this embodiment, even when the threshold voltage V th of the ignition switching element 2 varies due to manufacturing variations, the variation in the secondary voltage V 2 can be reduced. Can do. That is, as shown in FIG. 17, the threshold voltage V th of the ignition switching element 2 varies. When performing the soft-ON operation using the RC circuit, the manufacturing variation of the resistance R and the capacitor C included in the RC circuit, variation RC time constant, the rising speed of the gate voltage V g varies. The curve L3 is when the rising speed is the fastest, and the curve L4 is when the slowing speed is the slowest. Therefore, for example, the threshold voltage V th is low and if the rising speed of the gate voltage V g is high (i.e., the curve L3), the switching element 2 is turned on ignition at a relatively earlier time T11. Further, since the gate voltage V g rises exponentially, the time change rate dV g / dt of the gate voltage Vg at time T11 is high, and the time change rate di 1 / dt of the primary current i 1 is also high. Therefore, a particularly high secondary voltage V 2 is likely to be generated. Further, when the threshold voltage V th is high and the rising speed of the gate voltage V g is slow (that is, in the case of the curve L4), the ignition switching element 2 is turned on at a relatively late time T12. At this time, since the time change rate dV g / dt of the gate voltage V g is low, the secondary voltage V 2 is relatively low.
As described above, when the soft-on operation is performed using the RC circuit, if the threshold voltage V th and the RC time constant vary and the time when the ignition switching element 2 is turned on varies between T11 and T12, The voltage V 2 tends to vary greatly. Therefore, it is necessary to design the circuit in consideration of the case where the highest secondary voltage V 2 is generated, and the circuit design tends to be difficult.
 これに対して、本形態のように、オン用定電流回路4ONを用いれば、点火用スイッチング素子2の閾電圧Vth等がばらついても、二次電圧V2のばらつきを低減することができる。すなわち、図14に示すごとく、オン用定電流回路4ONを用いる場合は、ゲート電圧Vgの上昇速度は、コンデンサ3の製造ばらつきが原因となってばらつく。上昇速度が最も早いときが直線L1であり、最も遅いときが直線L2である。したがって、閾電圧Vthが低く、ゲート電圧Vgの上昇速度が速い場合(すなわち、直線L1の場合)、比較的早い時刻t11において点火用スイッチング素子2がオンする。また、閾電圧Vthが高く、ゲート電圧Vgの上昇速度が遅い場合(すなわち、直線L2の場合)、比較的遅い時刻t12において点火用スイッチング素子2がオンする。本形態では、定電流でコンデンサ3を充電するため、ゲート電圧Vgは一次関数的に上昇する。そのため、点火用スイッチング素子2の閾値がVth1~Vth2の間でばらついても、その閾値におけるゲート電圧Vgの時間変化率dVg/dtはばらつかない。そのため、一次電流i1の時間変化率di1/dtもばらつかず、電流変化に応じて発生する一次電圧V1のばらつきを抑制することができる。そのため、二次電圧V2のばらつきも抑制でき、点火装置1の回路設計を容易に行うことが可能になる。 On the other hand, when the ON constant current circuit 4 ON is used as in this embodiment, the variation in the secondary voltage V 2 can be reduced even if the threshold voltage V th of the ignition switching element 2 varies. it can. That is, as shown in FIG. 14, when the ON constant current circuit 4 ON is used, the rising speed of the gate voltage V g varies due to manufacturing variations of the capacitor 3. The straight line L1 is when the rising speed is the fastest, and the straight line L2 is when the rising speed is the slowest. Therefore, the threshold voltage V th is low, if the rising speed of the gate voltage V g is high (i.e., when the straight line L1), the switching element 2 is turned on ignition at a relatively earlier time t11. Further, the threshold voltage V th is high, if the rising speed of the gate voltage V g is low (i.e., when the straight line L2), the switching element 2 is turned on ignition at a relatively slow time t12. In this embodiment, in order to charge the capacitor 3 at a constant current, the gate voltage V g increases a linear function manner. Therefore, even if the threshold value of the ignition switching element 2 varies between V th 1 and V th 2, the time change rate dV g / dt of the gate voltage V g at the threshold value does not vary. Therefore, the temporal change rate di 1 / dt of the primary current i 1 does not vary, and variations in the primary voltage V 1 generated according to the current change can be suppressed. Therefore, variations in the secondary voltage V 2 can be suppressed, and the circuit design of the ignition device 1 can be easily performed.
 また、本形態の点火装置1は、図10に示すごとく、オン用定電流回路4ONとオフ用定電流回路4OFFとを両方とも備える。そのため、ソフトオン動作とソフトオフ動作とを両方とも行うことができる。 Further, as shown in FIG. 10, the ignition device 1 of the present embodiment includes both an on-state constant current circuit 4 ON and an off-state constant current circuit 4 OFF . Therefore, both the soft-on operation and the soft-off operation can be performed.
 また、図10に示すごとく、本形態のオン用定電流回路4ONとオフ用定電流回路4OFFとは、電流Iの通電と非通電とを切り替えるための切替用トランジスタ40(40p,40n)をそれぞれ備える。これら2個の切替用トランジスタ40の制御端子(すなわち、ゲート403)は共通の信号線49に接続している。また、2個の切替用トランジスタ40は、一方がオンのとき他方がオフになる相補型である。
 そのため、信号線49を一本にしつつ、2つの定電流回路4ON,4OFFのうちオン用定電流回路4ONのみに電流を流す場合(図10参照)と、オフ用定電流回路4OFFのみに電流を流す場合(図12参照)とを切り替えることが可能になる。したがって、点火装置1の回路構成を簡素にすることができる。
 その他、実施形態1と同様の構成および作用効果を備える。
Further, as shown in FIG. 10, the on-state constant current circuit 4 ON and the off-state constant current circuit 4 OFF of this embodiment are switching transistors 40 (40p, 40n) for switching between energization and non-energization of the current I. Each is provided. The control terminals (that is, the gates 403) of these two switching transistors 40 are connected to a common signal line 49. The two switching transistors 40 are of a complementary type in which one is on and the other is off.
Therefore, in the case where a current is passed only to the ON constant current circuit 4 ON out of the two constant current circuits 4 ON and 4 OFF while the signal line 49 is single (see FIG. 10), the OFF constant current circuit 4 OFF It is possible to switch between the case where the current flows only in the case (see FIG. 12). Therefore, the circuit configuration of the ignition device 1 can be simplified.
In addition, the same configuration and operational effects as those of the first embodiment are provided.
(実施形態3)
 本形態は、点火装置1の回路構成を変更した例である。図15に示すごとく、本形態の点火装置1は、点火コイル10の一次巻線11に接続した点火用スイッチング素子2と、コンデンサ3と、プリドライブ用スイッチング素子5と、オン用定電流回路4ONとを備える。本形態では、オフ用定電流回路4OFFを設けていない。
(Embodiment 3)
In this embodiment, the circuit configuration of the ignition device 1 is changed. As shown in FIG. 15, the ignition device 1 of the present embodiment includes an ignition switching element 2 connected to the primary winding 11 of the ignition coil 10, a capacitor 3, a predrive switching element 5, and an ON constant current circuit 4. With ON . In this embodiment, the off constant current circuit 4 OFF is not provided.
 本形態では、ソフトオン動作を行う際には、プリドライブ用スイッチング素子5をオフにし、切替用トランジスタ40をオンする。これにより、オン用定電流回路4ONを用いてコンデンサ3を一定の電流Iで充電し、コンデンサ3の電圧、すなわち点火用スイッチング素子2の制御端子21に加わる電圧を一定の傾きで上昇させる。これによって、一次電流i1の時間変化率を一定にし、かつ小さくする。これにより、点火プラグ13の点火を抑制する。 In this embodiment, when the soft-on operation is performed, the pre-drive switching element 5 is turned off and the switching transistor 40 is turned on. Thereby, the capacitor 3 is charged with a constant current I using the ON constant current circuit 4 ON, and the voltage of the capacitor 3, that is, the voltage applied to the control terminal 21 of the ignition switching element 2 is increased with a constant slope. Thereby, the time change rate of the primary current i 1 is made constant and small. Thereby, ignition of the spark plug 13 is suppressed.
 また、点火プラグ13を点火するときには、プリドライブ用スイッチング素子5をオンする。これにより、コンデンサ3に蓄えられた電荷を急速に放電し、点火用スイッチング素子2を高速でオフする。これによって、一次電流i1を速く遮断し、高い二次電圧V2を発生させて、点火プラグ13に点火する。
 その他、実施形態1と同様の構成および作用効果を備える。
Further, when the ignition plug 13 is ignited, the pre-drive switching element 5 is turned on. Thereby, the electric charge stored in the capacitor 3 is rapidly discharged, and the ignition switching element 2 is turned off at high speed. As a result, the primary current i 1 is quickly cut off, a high secondary voltage V 2 is generated, and the spark plug 13 is ignited.
In addition, the same configuration and operational effects as those of the first embodiment are provided.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  点火コイル(10)の二次巻線(12)に接続した点火プラグ(13)を点火するための点火装置(1)であって、
     上記点火コイルの一次巻線(11)に接続される点火用スイッチング素子(2)と、
     該点火用スイッチング素子の制御端子(21)に接続したコンデンサ(3)と、
     該コンデンサに並列接続したプリドライブ用スイッチング素子(5)と、
     上記制御端子と上記コンデンサとの間と、電流源(14)との間に接続したプルアップ抵抗(19)と、
     上記制御端子と上記コンデンサとの間に電気接続し、該コンデンサに蓄えられた電荷を一定の電流で放電するオフ用定電流回路(4OFF)と、を備える点火装置。
    An ignition device (1) for igniting a spark plug (13) connected to a secondary winding (12) of an ignition coil (10),
    An ignition switching element (2) connected to the primary winding (11) of the ignition coil;
    A capacitor (3) connected to the control terminal (21) of the ignition switching element;
    A pre-drive switching element (5) connected in parallel to the capacitor;
    A pull-up resistor (19) connected between the control terminal and the capacitor and between a current source (14);
    An ignition device comprising: an off constant current circuit (4 OFF ) that is electrically connected between the control terminal and the capacitor and discharges the electric charge stored in the capacitor with a constant current.
  2.  点火コイル(10)の二次巻線(12)に接続した点火プラグ(13)を点火するための点火装置であって、
     上記点火コイルの一次巻線(11)に接続される点火用スイッチング素子(2)と、
     該点火用スイッチング素子の制御端子(21)に接続したコンデンサ(3)と、
     該コンデンサに並列接続したプリドライブ用スイッチング素子(5)と、
     上記制御端子と上記コンデンサとの間に電気接続し、該コンデンサを一定の電流で充電するオン用定電流回路(4ON)と、を備える点火装置。
    An ignition device for igniting a spark plug (13) connected to a secondary winding (12) of an ignition coil (10),
    An ignition switching element (2) connected to the primary winding (11) of the ignition coil;
    A capacitor (3) connected to the control terminal (21) of the ignition switching element;
    A pre-drive switching element (5) connected in parallel to the capacitor;
    An ignition device comprising: an ON constant current circuit (4 ON ) electrically connected between the control terminal and the capacitor and charging the capacitor with a constant current.
  3.  上記制御端子と上記コンデンサとの間に電気接続し、該コンデンサに蓄えられた電荷を一定の電流で放電するオフ用定電流回路をさらに備える、請求項2に記載の点火装置。 The ignition device according to claim 2, further comprising an off constant current circuit that is electrically connected between the control terminal and the capacitor and discharges the electric charge stored in the capacitor with a constant current.
  4.  上記オン用定電流回路と上記オフ用定電流回路とは、電流の通電と非通電とを切り替えるための切替用トランジスタ(40)をそれぞれ備え、これら2個の上記切替用トランジスタの制御端子は共通の信号線(49)に接続しており、上記2個の切替用トランジスタは、一方がオンのとき他方がオフになる相補型である、請求項3に記載の点火装置。 The on-state constant current circuit and the off-state constant current circuit each include a switching transistor (40) for switching between energization and de-energization, and the control terminals of these two switching transistors are common. 4. The ignition device according to claim 3, wherein the two switching transistors are of a complementary type in which when one is turned on, the other is turned off.
PCT/JP2017/004789 2016-02-17 2017-02-09 Ignition device WO2017141820A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017000858.1T DE112017000858T5 (en) 2016-02-17 2017-02-09 detonator
BR112018016669-3A BR112018016669B1 (en) 2016-02-17 2017-02-09 IGNITION APPLIANCE
CN201780012000.5A CN108700015B (en) 2016-02-17 2017-02-09 Ignition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-028248 2016-02-17
JP2016028248A JP6631304B2 (en) 2016-02-17 2016-02-17 Ignition device

Publications (1)

Publication Number Publication Date
WO2017141820A1 true WO2017141820A1 (en) 2017-08-24

Family

ID=59625030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004789 WO2017141820A1 (en) 2016-02-17 2017-02-09 Ignition device

Country Status (4)

Country Link
JP (1) JP6631304B2 (en)
CN (1) CN108700015B (en)
DE (1) DE112017000858T5 (en)
WO (1) WO2017141820A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643263A (en) * 1987-06-25 1989-01-09 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2008291728A (en) * 2007-05-24 2008-12-04 Denso Corp Igniter for internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2338564A1 (en) * 1973-07-30 1975-02-20 Bosch Gmbh Robert IGNITION DEVICE FOR COMBUSTION MACHINERY
FR2276729A1 (en) * 1974-06-27 1976-01-23 Ducellier & Cie ELECTRONIC IGNITION DEVICE EQUIPPED WITH AN ANTI-PARASIS SUPPRESSION NETWORK, FOR INTERNAL COMBUSTION ENGINES
JPS5186897A (en) 1975-01-29 1976-07-29 Makita Electric Works Ltd KEITAIYODENDOKOGU
JPS5510024A (en) * 1978-07-05 1980-01-24 Nippon Soken Inc Ignition coil driver for internal combustion engine
US4893605A (en) * 1987-06-25 1990-01-16 Mitsubishi Denki Kabushiki Kaisha Ignition device for internal combustion engine
JPH09209892A (en) * 1996-01-30 1997-08-12 Hitachi Ltd Ignition device for internal combustion engine
JP4243786B2 (en) * 1999-02-19 2009-03-25 追浜工業株式会社 Non-contact ignition device for internal combustion engine
TWI473140B (en) 2008-04-11 2015-02-11 Ebara Corp Sample observation method and apparatus, and inspection method and apparatus using the same
JP5517686B2 (en) * 2010-03-19 2014-06-11 株式会社ケーヒン Ignition device for internal combustion engine
JP5031081B2 (en) * 2010-10-12 2012-09-19 三菱電機株式会社 Electronic control device for internal combustion engine
JP5765689B2 (en) * 2012-12-14 2015-08-19 日立オートモティブシステムズ阪神株式会社 Ignition device for internal combustion engine
JP6273988B2 (en) * 2014-04-10 2018-02-07 株式会社デンソー Ignition device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643263A (en) * 1987-06-25 1989-01-09 Mitsubishi Electric Corp Ignition device for internal combustion engine
JP2008291728A (en) * 2007-05-24 2008-12-04 Denso Corp Igniter for internal combustion engine

Also Published As

Publication number Publication date
CN108700015B (en) 2021-05-11
DE112017000858T5 (en) 2018-10-31
JP2017145765A (en) 2017-08-24
CN108700015A (en) 2018-10-23
BR112018016669A2 (en) 2018-12-26
JP6631304B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
KR100748570B1 (en) Semiconductor device
JP5776216B2 (en) Semiconductor device with current control function and self-cutoff function
JP6291929B2 (en) Semiconductor device
US20160265501A1 (en) Semiconductor device
JP6442889B2 (en) Ignition control device for internal combustion engine
US10008835B2 (en) Semiconductor apparatus
JP2017125484A (en) Switch gear
CN107612361B (en) Semiconductor device with a plurality of semiconductor chips
JP7020498B2 (en) Semiconductor device
JP2018025167A (en) Semiconductor apparatus
JP7293736B2 (en) semiconductor integrated circuit
WO2017141820A1 (en) Ignition device
US10400736B2 (en) Semiconductor device
JP2014037778A (en) Ignition device for internal combustion engine
JP7338363B2 (en) Ignition device for internal combustion engine
JP2014238024A (en) Switch control circuit, igniter, engine ignition device, and vehicle
JP2013011181A (en) Ignition control device for internal combustion engine
JP7250181B2 (en) power semiconductor equipment
JP2008021612A (en) Load drive circuit
JP2016092534A (en) Ignitor, vehicle, and control method for ignition coil
JP2018082420A (en) Semiconductor device
JP5998837B2 (en) Ignition device
JP2017145765A5 (en)
JP2001193615A (en) Ignition device for internal combustion engine
JP2007247608A (en) Ignition device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000858

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018016669

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018016669

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180815

122 Ep: pct application non-entry in european phase

Ref document number: 17753078

Country of ref document: EP

Kind code of ref document: A1