WO2017140109A1 - 压力检测方法和装置 - Google Patents

压力检测方法和装置 Download PDF

Info

Publication number
WO2017140109A1
WO2017140109A1 PCT/CN2016/101023 CN2016101023W WO2017140109A1 WO 2017140109 A1 WO2017140109 A1 WO 2017140109A1 CN 2016101023 W CN2016101023 W CN 2016101023W WO 2017140109 A1 WO2017140109 A1 WO 2017140109A1
Authority
WO
WIPO (PCT)
Prior art keywords
sweat
frame
fingerprint image
change trend
fingerprint
Prior art date
Application number
PCT/CN2016/101023
Other languages
English (en)
French (fr)
Inventor
杨坤
江忠胜
纪传舜
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020177031221A priority Critical patent/KR20170132833A/ko
Priority to RU2017111209A priority patent/RU2683979C2/ru
Priority to JP2016570071A priority patent/JP6392900B2/ja
Publication of WO2017140109A1 publication Critical patent/WO2017140109A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/98Detection or correction of errors, e.g. by rescanning the pattern or by human intervention; Evaluation of the quality of the acquired patterns
    • G06V10/993Evaluation of the quality of the acquired pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • G06V40/1353Extracting features related to minutiae or pores

Definitions

  • the present disclosure relates to the field of terminal technologies, and in particular, to a pressure detecting method and apparatus.
  • Terminal devices such as mobile phones and tablets are electronic devices commonly used in people's daily lives.
  • the touch pressure acting on the pressure sensing module is detected by setting a special pressure sensing module in the terminal device.
  • the pressure sensing mode is composed of two different types of resistive and capacitive.
  • a pressure detecting method comprising:
  • N-frame fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer;
  • the feature of the sweat hole includes the number of sweat holes
  • Determining, according to a change trend of the characteristics of the sweat hole in the n-frame fingerprint image, a change trend of a pressure acting on the fingerprint recognition sensor including:
  • the acquiring the characteristics of the sweat hole in each frame of the fingerprint image separately includes:
  • the number of the sweat holes in the central area of each frame of the fingerprint image is obtained separately.
  • the feature of the sweat hole includes a size of the target sweat hole
  • Determining, according to a change trend of the characteristics of the sweat hole in the n-frame fingerprint image, a change trend of a pressure acting on the fingerprint recognition sensor including:
  • the acquiring the characteristics of the sweat hole in each frame of the fingerprint image separately includes:
  • At least one of the target sweat holes is selected from the sweat holes included in the fingerprint image;
  • the identifying the sweat holes from each frame of the fingerprint image respectively includes:
  • the image element in the fingerprint image that satisfies the preset condition of the pixel feature is recognized as the sweat hole;
  • the preset condition includes that the gray level is greater than a preset gray level threshold and the size is smaller than a preset size threshold.
  • a pressure detecting device comprising:
  • the image acquisition module is configured to sequentially collect n frames of fingerprint images by using a fingerprint recognition sensor, where n ⁇ 2 and n is an integer;
  • a sweat hole recognition module configured to respectively identify a sweat hole from each frame of the fingerprint image
  • a feature acquisition module configured to respectively acquire features of the sweat hole in each frame of the fingerprint image
  • the pressure determining module is configured to determine a change trend of the pressure acting on the fingerprint recognition sensor according to a change trend of the characteristics of the sweat hole in the n-frame fingerprint image.
  • the feature of the sweat hole includes the number of sweat holes
  • the pressure determining module is configured to:
  • the feature acquiring module is configured to respectively acquire the number of the sweat holes in a central region of each frame of the fingerprint image.
  • the feature of the sweat hole includes a size of the target sweat hole
  • the pressure determining module is configured to:
  • the feature acquiring module is configured to:
  • At least one of the target sweat holes is selected from the sweat holes included in the fingerprint image;
  • the sweat hole identification module is configured to, for each frame fingerprint image, identify an image element in the fingerprint image that the pixel feature meets a preset condition as the sweat hole;
  • the preset condition includes that the gray level is greater than a preset gray level threshold and the size is smaller than a preset size threshold.
  • a pressure detecting device comprising:
  • a memory for storing executable instructions of the processor
  • processor is configured to:
  • N-frame fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer;
  • the special pressure sensing module can realize the pressure detection function, which leads to the problem that the terminal equipment is bulky, not light enough, and costly; the pressure sensing module is omitted, which helps the structural design of the terminal equipment to be lighter and lowers the cost.
  • FIG. 1 exemplarily shows a schematic diagram of a fingerprint image
  • FIG. 2 is a flow chart showing a pressure detecting method according to an exemplary embodiment
  • FIG. 3 is a flowchart of a pressure detecting method according to another exemplary embodiment
  • FIG. 4 is a flowchart of a pressure detecting method according to another exemplary embodiment
  • FIG. 5 is a block diagram of a pressure detecting device according to an exemplary embodiment
  • FIG. 6 is a block diagram of an apparatus, according to an exemplary embodiment.
  • the fingerprint recognition sensor includes an optical fingerprint recognition sensor, a capacitive fingerprint recognition sensor, an ultrasonic fingerprint recognition sensor, and the like.
  • the principle is basically the same, which is to scan the uneven surface of the skin to obtain a fingerprint image.
  • FIG. 1 it exemplarily shows a schematic diagram of a fingerprint image in which a ridge line 11 (ie, a black line in the figure) and a valley line 12 (ie, a black line in the figure) are recorded in the fingerprint image.
  • a ridge line 11 ie, a black line in the figure
  • a valley line 12 ie, a black line in the figure
  • the detailed feature points of the fingerprint are identified from the fingerprint image, and the fingerprint matching result is obtained by comparing the detailed feature points of the different fingerprints.
  • the detailed feature points of the fingerprint include the endpoints of the ridges, the bifurcation points, the joint points, and the breakpoints.
  • the "fingerprint” referred to herein generally refers to the texture of the user's finger, but is not limited to the texture of other body parts of the user, such as the palm of the hand.
  • the technical solution provided by the present disclosure detects the touch pressure according to the fingerprint image collected by the fingerprint recognition sensor.
  • the technical solutions provided by the present disclosure will be described and illustrated by several embodiments.
  • FIG. 2 is a flow chart showing a pressure detecting method according to an exemplary embodiment.
  • the pressure detecting method can be applied to a terminal device configured with a fingerprint recognition sensor.
  • the terminal device may be a mobile phone, a tablet, a wearable device, or the like.
  • the pressure detecting method can include the following steps.
  • n fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer.
  • step 204 sweat holes are identified from each frame of the fingerprint image, respectively.
  • step 206 features of the sweat holes in each frame of the fingerprint image are acquired, respectively.
  • step 208 the trend of the pressure acting on the fingerprint recognition sensor is determined based on the trend of the characteristics of the sweat hole in the n-frame fingerprint image.
  • the pressure detecting method determines the pressure acting on the fingerprint recognition sensor by acquiring the characteristics of the sweat hole in the fingerprint image and according to the change trend of the characteristics of the sweat hole in the multi-frame fingerprint image.
  • the trend of change solves the need in the related art to set up a special pressure sensing module in the terminal device to realize the pressure detecting function, resulting in the problem that the terminal device has a large volume, is not light enough, and has high cost; the pressure sensing module is omitted. It helps to make the structural design of the terminal equipment lighter and reduce the cost.
  • FIG. 3 is a flow chart showing a pressure detecting method according to another exemplary embodiment.
  • the pressure detecting method can be applied to a terminal device configured with a fingerprint recognition sensor.
  • the terminal device may be a mobile phone, a tablet, a wearable device, or the like.
  • the pressure detecting method can include the following steps.
  • n fingerprint fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer.
  • the terminal device sequentially collects n frames of fingerprint images through the fingerprint recognition sensor.
  • a large amount of sweat holes are distributed on the skin surface of a body part such as a finger, and the positions of the sweat holes are randomly arranged on the skin surface. Therefore, in addition to the texture of the skin surface recorded in the fingerprint image, sweat holes can also be recorded.
  • a sweat hole is a sweat gland opening on the surface of the skin.
  • step 302 sweat holes are identified from each frame of the fingerprint image, respectively.
  • the terminal device recognizes the sweat hole from each frame of the fingerprint image.
  • the fingerprint image can be represented by a gray scale image, and the gray scale is negatively correlated with the distance of the skin surface from the fingerprint recognition sensor. That is, the position where the gray level is larger in the fingerprint image, the smaller the distance of the skin surface corresponding to the position from the fingerprint recognition sensor is smaller; otherwise, the position of the gray image in the fingerprint image is smaller, and the skin surface corresponding to the position is the fingerprint recognition sensor. The greater the distance.
  • the sweat hole appears as a dot with a certain gray scale in the fingerprint image.
  • the terminal device identifies the image element in the fingerprint image that the pixel feature meets the preset condition as a sweat hole.
  • the preset condition includes that the gray level is greater than the preset gray level threshold and the size is smaller than the preset size threshold.
  • step 303 the number of sweat holes in each frame of the fingerprint image is obtained separately.
  • the terminal device acquires the number of sweat holes in each frame of the fingerprint image, respectively.
  • the change trend of the touch pressure is detected according to the change trend of the number of sweat holes in the multi-frame fingerprint image.
  • the concave position of the skin surface ie, the valley line
  • the sweat hole located at the concave position is captured and recorded in the fingerprint image, so that with the touch pressure
  • the number of sweat holes recorded in the fingerprint image is gradually increased.
  • the touch pressure is reduced, the number of sweat holes recorded in the fingerprint image is gradually reduced.
  • the terminal device separately acquires the number of sweat holes in the central area of each frame of the fingerprint image. Since the image signal collected in the central region of the fingerprint recognition sensor is clearer than the peripheral edge region, by counting the number of sweat holes in the central region of the fingerprint image, the accuracy of the statistical result is improved. Further, in the present embodiment, the size and shape of the center area are not limited, and may be set in advance according to actual needs.
  • step 304 a change trend of the pressure acting on the fingerprint recognition sensor is determined according to the change trend of the number of sweat holes in the n-frame fingerprint image.
  • the terminal device determines a change trend of the pressure acting on the fingerprint recognition sensor according to the change trend of the number of sweat holes in the n-frame fingerprint image. If the change trend of the number of sweat holes in the n-frame fingerprint image is gradually increased, the terminal device determines that the change trend of the pressure acting on the fingerprint recognition sensor is gradually increasing; otherwise, if the number of sweat holes is in the n-frame fingerprint image The trend of change is gradually decreasing, and the terminal device determines that the change trend of the pressure acting on the fingerprint recognition sensor is gradually decreasing.
  • the terminal device can make corresponding control operations according to the changing trend of the pressure. For example, the terminal device adjusts the volume or screen brightness according to the trend of the pressure. For example, when the pressure is gradually increased, the control volume is gradually increased; conversely, when the pressure is gradually decreased, the control volume is gradually decreased.
  • the pressure detecting method determines the pressure acting on the fingerprint recognition sensor by acquiring the characteristics of the sweat hole in the fingerprint image and according to the change trend of the characteristics of the sweat hole in the multi-frame fingerprint image. Change trend; solve the need in the related art to set up a special pressure sensing module in the terminal equipment to achieve pressure detection work
  • the problem is that the terminal device has a large volume, is not lightweight, and has high cost; the pressure sensing module is omitted, which helps the structural design of the terminal device to be lighter and lowers the cost.
  • the pressure detecting method provided by the embodiment further determines the change trend of the pressure acting on the fingerprint recognition sensor by acquiring the number of sweat holes in the fingerprint image and according to the change trend of the number of sweat holes in the multi-frame fingerprint image. The detection of the change in the size of the touch pressure is performed based on the change in the number of sweat holes.
  • FIG. 4 is a flow chart showing a pressure detecting method according to another exemplary embodiment.
  • the pressure detecting method can be applied to a terminal device configured with a fingerprint recognition sensor.
  • the terminal device may be a mobile phone, a tablet, a wearable device, or the like.
  • the pressure detecting method can include the following steps.
  • n fingerprint fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer.
  • step 402 sweat holes are identified from each frame of the fingerprint image, respectively.
  • steps 401 and 402 are the same as steps 301 and 302 in the embodiment shown in FIG. 3, and are not described here.
  • step 403 the size of the sweat hole in each frame of the fingerprint image is acquired.
  • the terminal device acquires the size of the sweat hole in each frame of the fingerprint image.
  • the size of the sweat hole is the area of the sweat hole.
  • the change trend of the touch pressure is detected according to the change trend of the size of the sweat hole in the multi-frame fingerprint image.
  • the sweat hole contacts the fingerprint recognition sensor and is pressed, and the size of the sweat hole recorded in the fingerprint image gradually increases, and vice versa, as the touch pressure decreases, the sweat recorded in the fingerprint image
  • the size of the hole is gradually reduced.
  • the sweat hole gradually precipitates sweat, and the sweat appears as a white spot at the center of the sweat hole in the fingerprint image. Therefore, based on the size of the sweat hole, it can be combined to determine whether the sweat hole is combined.
  • the sweat is separated and the pressure-reducing tendency is detected.
  • the terminal device selects at least one target sweat hole from the sweat holes included in the fingerprint image, and acquires the size of the target sweat hole.
  • the target sweat hole is a sweat hole that displays a higher definition in the fingerprint image, and the above-described manner is used to more clearly and accurately detect the dimensional change trend of the sweat hole.
  • a change trend of the pressure acting on the fingerprint recognition sensor is determined according to the change trend of the size of the sweat hole in the n-frame fingerprint image.
  • the terminal device determines a change trend of the pressure acting on the fingerprint recognition sensor according to the change trend of the size of the sweat hole in the n-frame fingerprint image. If the change trend of the target sweat hole size in the n-frame fingerprint image is gradually increased, the terminal device determines that the change trend of the pressure acting on the fingerprint recognition sensor is gradually increasing; otherwise, if the target sweat hole size is n frames The change trend in the fingerprint image is gradually reduced, and the terminal device determines that the change trend of the pressure acting on the fingerprint recognition sensor is gradually decreasing.
  • the pressure detecting method determines the pressure acting on the fingerprint recognition sensor by acquiring the characteristics of the sweat hole in the fingerprint image and according to the change trend of the characteristics of the sweat hole in the multi-frame fingerprint image.
  • the trend of change solves the need in the related art to set up a special pressure sensing module in the terminal device to realize the pressure detecting function, resulting in the problem that the terminal device has a large volume, is not light enough, and has high cost; the pressure sensing module is omitted.
  • the structural design of the terminal device is lighter and reduces the cost.
  • the pressure detecting method provided by the embodiment further determines the change trend of the pressure acting on the fingerprint recognition sensor by acquiring the size of the sweat hole in the fingerprint image and according to the change trend of the size of the sweat hole in the multi-frame fingerprint image. The detection of the change in the size of the touch pressure is performed based on the change in the size of the sweat hole.
  • pressure detection can be implemented by one of the methods alone, or pressure detection can be implemented in combination with two methods.
  • the terminal device can acquire the pressure level corresponding to the feature of the sweat hole according to the predetermined correspondence relationship after acquiring the feature of the sweat hole.
  • the predetermined correspondence relationship includes a correspondence between characteristics of at least one set of sweat holes and pressure levels. Taking the number of sweat holes as an example, after the terminal device obtains the number of sweat holes included in the fingerprint image, the predetermined correspondence relationship is queried, and the pressure level corresponding to the number of the sweat holes is determined, thereby realizing the leveling of the touch pressure. , estimate the magnitude of the pressure.
  • the predetermined correspondence may be set and stored in advance to the terminal device according to a large amount of experimental data, or may be customized by the user.
  • FIG. 5 is a block diagram of a pressure detecting device that can be implemented as part or all of a terminal device by software, hardware, or a combination of both, according to an exemplary embodiment.
  • the pressure detecting device may include an image capturing module 510, a sweat hole identifying module 520, a feature acquiring module 530, and a pressure determining module 540.
  • the image acquisition module 510 is configured to sequentially collect n frames of fingerprint images by using a fingerprint recognition sensor, where n ⁇ 2 and n is an integer.
  • the sweat hole recognition module 520 is configured to recognize sweat holes from each frame of the fingerprint image, respectively.
  • the feature acquisition module 530 is configured to acquire features of the sweat holes in each frame of the fingerprint image, respectively.
  • the pressure determining module 540 is configured to determine a change trend of the pressure acting on the fingerprint recognition sensor according to a change trend of the characteristics of the sweat hole in the n-frame fingerprint image.
  • the pressure detecting device obtaineds the characteristics of the sweat hole in the fingerprint image, and determines the pressure acting on the fingerprint recognition sensor according to the change trend of the characteristics of the sweat hole in the multi-frame fingerprint image.
  • the trend of change solves the need in the related art to set up a special pressure sensing module in the terminal device to realize the pressure detecting function, resulting in the problem that the terminal device has a large volume, is not light enough, and has high cost; the pressure sensing module is omitted. It helps to make the structural design of the terminal equipment lighter and reduce the cost.
  • the features of the perforation include the number of perforations
  • the pressure determining module 540 is configured to: when the number of sweat holes changes gradually in the n-frame fingerprint image, determine that the change trend of the pressure acting on the fingerprint recognition sensor is gradually increasing; when the number of sweat holes is When the change trend in the n-frame fingerprint image is gradually decreasing, it is determined that the change tendency of the pressure acting on the fingerprint recognition sensor is gradually decreased.
  • the feature acquisition module 530 is configured to acquire the number of sweat holes in the central region of each frame of the fingerprint image, respectively.
  • the features of the perforation include the size of the target perspiration
  • the pressure determining module 540 is configured to: when the change trend of the size of the target sweat hole in the n-frame fingerprint image is gradually increasing, determine that the change trend of the pressure acting on the fingerprint recognition sensor is gradually increasing; when the target sweat hole When the change trend of the size in the n-frame fingerprint image is gradually decreasing, it is determined that the change tendency of the pressure acting on the fingerprint recognition sensor is gradually decreased.
  • the feature obtaining module 530 is configured to: select, for each frame of the fingerprint image, at least one target sweat hole from the sweat holes included in the fingerprint image; and acquire a size of the target sweat hole.
  • the sweat hole recognition module 520 is configured to recognize, for each frame fingerprint image, an image element in the fingerprint image that satisfies a preset condition in the pixel image as sweat. hole.
  • the preset condition includes that the gray level is greater than the preset gray level threshold and the size is smaller than the preset size threshold.
  • An exemplary embodiment of the present disclosure also provides a pressure detecting device capable of implementing the pressure detecting method provided by the present disclosure.
  • the apparatus includes a processor and a memory for storing executable instructions of the processor. Wherein the processor is configured to:
  • N-frame fingerprint images are sequentially acquired by the fingerprint recognition sensor, n ⁇ 2 and n is an integer;
  • the feature of the sweat hole includes the number of sweat holes
  • the processor is configured to:
  • the processor is configured to:
  • the number of the sweat holes in the central area of each frame of the fingerprint image is obtained separately.
  • the feature of the sweat hole includes a size of the target sweat hole
  • the processor is configured to:
  • the processor is configured to:
  • At least one of the target sweat holes is selected from the sweat holes included in the fingerprint image;
  • the processor is configured to:
  • the image element in the fingerprint image that satisfies the preset condition of the pixel feature is recognized as the sweat hole;
  • the preset condition includes that the gray level is greater than a preset gray level threshold and the size is smaller than a preset size threshold.
  • FIG. 6 is a block diagram of an apparatus 600, according to an exemplary embodiment.
  • device 600 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 600 can include one or more of the following components: processing component 602, memory 604, power component 606, multimedia component 608, audio component 610, input/output (I/O) interface 612, sensor component 614, and Communication component 616.
  • Processing component 602 typically controls the overall operation of device 600, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 602 can include one or more processors 620 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 602 can include one or more modules to facilitate interaction between component 602 and other components.
  • processing component 602 can include a multimedia module to facilitate interaction between multimedia component 608 and processing component 602.
  • Memory 604 is configured to store various types of data to support operation at device 600. Examples of such data include instructions for any application or method operating on device 600, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 604 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 606 provides power to various components of device 600.
  • Power component 606 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 600.
  • the multimedia component 608 includes a screen between the device 600 and the user that provides an output interface.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 608 includes a front camera and/or a rear camera. When the device 600 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 610 is configured to output and/or input an audio signal.
  • audio component 610 includes a microphone (MIC) that is configured to receive an external audio signal when device 600 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 604 or transmitted via communication component 616.
  • audio component 610 also includes a speaker for outputting an audio signal.
  • the I/O interface 612 provides an interface between the processing component 602 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 614 includes one or more sensors for providing device 600 with a status assessment of various aspects.
  • Sensor component 614 includes at least a fingerprint recognition sensor.
  • a fingerprint recognition sensor For example, an optical fingerprint recognition sensor, a capacitive fingerprint recognition sensor, an ultrasonic fingerprint recognition sensor, or the like.
  • sensor assembly 614 can detect an open/closed state of device 600, relative positioning of components, such as the display and keypad of device 600, and sensor component 614 can also detect device 600 or a component of device 600. The position changes, the presence or absence of contact of the user with the device 600, the orientation or acceleration/deceleration of the device 600, and the temperature change of the device 600.
  • Sensor assembly 614 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 614 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 614 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 616 is configured to facilitate wired or wireless communication between device 600 and other devices.
  • the device 600 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • communication component 616 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 616 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 600 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above methods.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 604 comprising instructions executable by processor 620 of apparatus 600 to perform the above method.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium when instructions in the storage medium are executed by a processor of apparatus 600, to enable apparatus 600 to perform the above method.
  • a plurality as referred to herein means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Input (AREA)
  • Collating Specific Patterns (AREA)

Abstract

一种压力检测方法,包括:通过指纹识别传感器依次采集n帧指纹图像,n≥2(202);分别从每一帧指纹图像中识别出汗孔(204);分别获取每一帧指纹图像中的汗孔的特征(206);根据汗孔的特征在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势(208)。还提供了一种压力检测装置。解决了现有技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助于终端设备的结构设计更为轻便,降低成本。

Description

压力检测方法和装置
本申请基于申请号为201610088291.3、申请日为2016年02月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及终端技术领域,特别涉及一种压力检测方法和装置。
背景技术
诸如手机、平板电脑之类的终端设备是人们日常生活中常用的电子设备。
为了在终端设备上实现压力检测功能,在相关技术中,通过在终端设备中设置专门的压力感应模组,实现对作用于该压力感应模组的触控压力进行检测。在通常情况下,压力感应模组分电阻式和电容式两种不同类型。
然而,在相关技术中,需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题。
发明内容
为了克服相关技术中存在的问题,本公开实施例提供了一种压力检测方法和装置。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种压力检测方法,所述方法包括:
通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
分别从每一帧指纹图像中识别出汗孔;
分别获取每一帧指纹图像中的所述汗孔的特征;
根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
可选地,所述汗孔的特征包括汗孔的数量;
所述根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势,包括:
若所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐增多,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
若所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐减少,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,所述分别获取每一帧指纹图像中的所述汗孔的特征,包括:
分别获取每一帧指纹图像的中心区域的所述汗孔的数量。
可选地,所述汗孔的特征包括目标汗孔的尺寸;
所述根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势,包括:
若所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐增大,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
若所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐减小,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,所述分别获取每一帧指纹图像中的所述汗孔的特征,包括:
对于每一帧指纹图像,从所述指纹图像所包含的汗孔中选定至少一个所述目标汗孔;
获取所述目标汗孔的尺寸。
可选地,所述分别从每一帧指纹图像中识别出汗孔,包括:
对于每一帧指纹图像,将所述指纹图像中像素特征满足预设条件的图像元素识别为所述汗孔;
其中,所述预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
根据本公开实施例的第二方面,提供了一种压力检测装置,所述装置包括:
图像采集模块,被配置为通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
汗孔识别模块,被配置为分别从每一帧指纹图像中识别出汗孔;
特征获取模块,被配置为分别获取每一帧指纹图像中的所述汗孔的特征;
压力确定模块,被配置为根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
可选地,所述汗孔的特征包括汗孔的数量;
所述压力确定模块,被配置为:
当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐增多时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐减少时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,所述特征获取模块,被配置为分别获取每一帧指纹图像的中心区域的所述汗孔的数量。
可选地,所述汗孔的特征包括目标汗孔的尺寸;
所述压力确定模块,被配置为:
当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐增大时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐减小时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,所述特征获取模块,被配置为:
对于每一帧指纹图像,从所述指纹图像所包含的汗孔中选定至少一个所述目标汗孔;
获取所述目标汗孔的尺寸。
可选地,所述汗孔识别模块,被配置为对于每一帧指纹图像,将所述指纹图像中像素特征满足预设条件的图像元素识别为所述汗孔;
其中,所述预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
根据本公开实施例的第三方面,提供了一种压力检测装置,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
分别从每一帧指纹图像中识别出汗孔;
分别获取每一帧指纹图像中的所述汗孔的特征;
根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
本公开实施例提供的技术方案可以包括以下有益效果:
通过获取指纹图像中的汗孔的特征,并根据汗孔的特征在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势;解决了相关技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助于终端设备的结构设计更为轻便,降低成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示例性地示出了一种指纹图像的示意图;
图2是根据一示例性实施例示出的一种压力检测方法的流程图;
图3是根据另一示例性实施例示出的一种压力检测方法的流程图;
图4是根据另一示例性实施例示出的一种压力检测方法的流程图;
图5是根据一示例性实施例示出的一种压力检测装置的框图;
图6是根据一示例性实施例示出的一种装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
诸如手机、平板电脑之类的终端设备通常都配备有指纹识别传感器,以实现指纹识别功能。指纹识别传感器包括光学指纹识别传感器、电容式指纹识别传感器、超声波指纹识别传感器等类型。无论是何种类型的指纹识别传感器,其原理基本相同,均是扫描皮肤表面凹凸不平的纹路得到指纹图像。如图1所示,其示例性地示出了一种指纹图像的示意图,指纹图像中记录有指纹的脊线11(即图中黑色线条)和谷线12(即图中黑色线条之间的白色区域)。在进行指纹匹配时,从指纹图像中识别出指纹的细节特征点,通过比较不同指纹的细节特征点,得到指纹匹配结果。指纹的细节特征点包括脊线的端点、分叉点、结合点和断点等。
在本文中提及的“指纹”通常是指用户手指的纹路,但并不限定也可以是用户的其它身体部位的纹路,如手掌。
本公开提供的技术方案,依据指纹识别传感器采集的指纹图像,实现对触控压力进行检测。下面,通过几个实施例对本公开提供的技术方案进行介绍和说明。
图2是根据一示例性实施例示出的一种压力检测方法的流程图。该压力检测方法可应用于配置有指纹识别传感器的终端设备中。例如,终端设备可以是手机、平板电脑、可穿戴设备等。该压力检测方法可以包括如下几个步骤。
在步骤202中,通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数。
在步骤204中,分别从每一帧指纹图像中识别出汗孔。
在步骤206中,分别获取每一帧指纹图像中的汗孔的特征。
在步骤208中,根据汗孔的特征在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。
综上所述,本实施例提供的压力检测方法,通过获取指纹图像中的汗孔的特征,并根据汗孔的特征在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势;解决了相关技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助于终端设备的结构设计更为轻便,降低成本。
图3是根据另一示例性实施例示出的一种压力检测方法的流程图。该压力检测方法可应用于配置有指纹识别传感器的终端设备中。例如,终端设备可以是手机、平板电脑、可穿戴设备等。该压力检测方法可以包括如下几个步骤。
在步骤301中,通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数。
终端设备通过指纹识别传感器依次采集n帧指纹图像。诸如手指之类的身体部位的皮肤表面分布着大量汗孔,汗孔的位置在皮肤表面随机排布。因此指纹图像中除记录有皮肤表面的纹路之外,还可记录有汗孔。汗孔是指皮肤表面的汗腺开口。
在步骤302中,分别从每一帧指纹图像中识别出汗孔。
终端设备分别从每一帧指纹图像中识别出汗孔。指纹图像可以灰度图表示,灰度与皮肤表面距指纹识别传感器的距离呈负相关关系。也即,指纹图像中灰度越大的位置,该位置对应的皮肤表面距指纹识别传感器的距离越小;反之,指纹图像中灰度越小的位置,该位置对应的皮肤表面距指纹识别传感器的距离越大。汗孔在指纹图像中表现为一个具有一定灰度的圆点。在一种可能的实施方式中,对于每一帧指纹图像,终端设备将指纹图像中像素特征满足预设条件的图像元素识别为汗孔。其中,预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
在步骤303中,分别获取每一帧指纹图像中的汗孔的数量。
终端设备分别获取每一帧指纹图像中的汗孔的数量。在本实施例中,依据汗孔的数量在多帧指纹图像中的变化趋势,实现对触控压力的变化趋势进行检测。随着触控压力的增大,皮肤表面的凹陷位置(即谷线)逐渐接近指纹识别传感器,位于凹陷位置处的汗孔随之被捕捉到并记录在指纹图像中,因此随着触控压力的增大,指纹图像中记录的汗孔的数量也逐渐增多,反之随着触控压力的减小,指纹图像中记录的汗孔的数量也逐渐减少。
可选地,终端设备分别获取每一帧指纹图像的中心区域的汗孔的数量。由于指纹识别传感器的中心区域采集的图像信号相较于周侧边缘区域更为清楚,通过上述方式,统计指纹图像的中心区域的汗孔的数量,有助于提高统计结果的准确性。此外,在本实施例中,对中心区域的大小和形状不作限定,其可根据实际需求预先进行设定。
在步骤304中,根据汗孔的数量在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。
终端设备根据汗孔的数量在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。若汗孔的数量在n帧指纹图像中的变化趋势为逐渐增多,则终端设备确定作用于指纹识别传感器的压力的变化趋势为逐渐增大;反之,若汗孔的数量在n帧指纹图像中的变化趋势为逐渐减少,则终端设备确定作用于指纹识别传感器的压力的变化趋势为逐渐减小。
终端设备可根据压力的变化趋势,做出相应的控制操作。例如,终端设备根据压力的变化趋势,调节音量或者屏幕亮度等。比如,当压力逐渐增大时,控制音量逐渐增大;反之,当压力逐渐减小时,控制音量逐渐减小。
综上所述,本实施例提供的压力检测方法,通过获取指纹图像中的汗孔的特征,并根据汗孔的特征在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势;解决了相关技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功 能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助于终端设备的结构设计更为轻便,降低成本。
另外,本实施例提供的压力检测方法,还通过获取指纹图像中的汗孔的数量,并根据汗孔的数量在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势,实现了基于汗孔数量的变化对触控压力的大小变化进行检测。
图4是根据另一示例性实施例示出的一种压力检测方法的流程图。该压力检测方法可应用于配置有指纹识别传感器的终端设备中。例如,终端设备可以是手机、平板电脑、可穿戴设备等。该压力检测方法可以包括如下几个步骤。
在步骤401中,通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数。
在步骤402中,分别从每一帧指纹图像中识别出汗孔。
上述步骤401和步骤402与图3所示实施例中的步骤301和步骤302相同,参见上文介绍和说明,此处不再赘述。
在步骤403中,分别获取每一帧指纹图像中的汗孔的尺寸。
终端设备分别获取每一帧指纹图像中的汗孔的尺寸。汗孔的尺寸即为汗孔的面积。在本实施例中,依据汗孔的尺寸在多帧指纹图像中的变化趋势,实现对触控压力的变化趋势进行检测。随着触控压力的增大,汗孔接触指纹识别传感器并被施压,指纹图像中记录的汗孔的尺寸便逐渐增大,反之随着触控压力的减小,指纹图像中记录的汗孔的尺寸便逐渐减小。另外,随着汗孔被施压,汗孔逐渐析出汗液,汗液在指纹图像中表现为一个位于汗孔中心位置处的白点,因此在汗孔的尺寸的基础上,可结合判断汗孔是否析出汗液,检测压力变压趋势。
可选地,对于每一帧指纹图像,终端设备从指纹图像所包含的汗孔中选定至少一个目标汗孔,并获取该目标汗孔的尺寸。目标汗孔是在指纹图像中显示清晰度较高的汗孔,通过上述方式,以更为清晰、准确地检测汗孔的尺寸变化趋势。
在步骤404中,根据汗孔的尺寸在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。
终端设备根据汗孔的尺寸在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。若目标汗孔的尺寸在n帧指纹图像中的变化趋势为逐渐增大,则终端设备确定作用于指纹识别传感器的压力的变化趋势为逐渐增大;反之,若目标汗孔的尺寸在n帧指纹图像中的变化趋势为逐渐减小,则终端设备确定作用于指纹识别传感器的压力的变化趋势为逐渐减小。
综上所述,本实施例提供的压力检测方法,通过获取指纹图像中的汗孔的特征,并根据汗孔的特征在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势;解决了相关技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助 于终端设备的结构设计更为轻便,降低成本。
另外,本实施例提供的压力检测方法,还通过获取指纹图像中的汗孔的尺寸,并根据汗孔的尺寸在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势,实现了基于汗孔尺寸的变化对触控压力的大小变化进行检测。
上述图3和图4所示实施例,分别提供了两种基于汗孔特征实现压力检测的方式,一种是基于汗孔数量的变化,另一种是基于汗孔尺寸的变化。在实际应用中,可单独采用其中一种方式实现压力检测,也可结合采用两种方式实现压力检测。
需要补充说明的一点是,终端设备在获取汗孔的特征之后,还可根据预定对应关系,获取与汗孔的特征对应的压力等级。其中,预定对应关系包括至少一组汗孔的特征和压力等级之间的对应关系。以汗孔的数量为例,终端设备获取指纹图像中所包含的汗孔的数量之后,查询预定对应关系,确定与该汗孔的数量相对应的压力等级,从而实现对触控压力进行等级量化,估算压力大小。在实际应用中,上述预定对应关系可预先根据大量实验数据进行设定并存储至终端设备,或者也可由用户自定义设定。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图5是根据一示例性实施例示出的一种压力检测装置的框图,该压力检测装置可以通过软件、硬件或者两者的结合实现成为终端设备的部分或者全部。该压力检测装置可以包括:图像采集模块510、汗孔识别模块520、特征获取模块530和压力确定模块540。
图像采集模块510,被配置为通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数。
汗孔识别模块520,被配置为分别从每一帧指纹图像中识别出汗孔。
特征获取模块530,被配置为分别获取每一帧指纹图像中的汗孔的特征。
压力确定模块540,被配置为根据汗孔的特征在n帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势。
综上所述,本实施例提供的压力检测装置,通过获取指纹图像中的汗孔的特征,并根据汗孔的特征在多帧指纹图像中的变化趋势,确定作用于指纹识别传感器的压力的变化趋势;解决了相关技术中需要在终端设备中设置专门的压力感应模组才能实现压力检测功能,导致终端设备存在体积大,不够轻便,且成本高的问题;省去了压力感应模组,有助于终端设备的结构设计更为轻便,降低成本。
在基于图5所示实施例提供的一个可选实施例中,汗孔的特征包括汗孔的数量;
压力确定模块540,被配置为:当汗孔的数量在n帧指纹图像中的变化趋势为逐渐增多时,确定作用于指纹识别传感器的压力的变化趋势为逐渐增大;当汗孔的数量在n帧指纹图像中的变化趋势为逐渐减少时,确定作用于指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,特征获取模块530,被配置为分别获取每一帧指纹图像的中心区域的汗孔的数量。
在基于图5所示实施例提供的另一可选实施例中,汗孔的特征包括目标汗孔的尺寸;
压力确定模块540,被配置为:当目标汗孔的尺寸在n帧指纹图像中的变化趋势为逐渐增大时,确定作用于指纹识别传感器的压力的变化趋势为逐渐增大;当目标汗孔的尺寸在n帧指纹图像中的变化趋势为逐渐减小时,确定作用于指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,特征获取模块530,被配置为:对于每一帧指纹图像,从指纹图像所包含的汗孔中选定至少一个目标汗孔;获取目标汗孔的尺寸。
在基于图5所示实施例提供的另一可选实施例中,汗孔识别模块520,被配置为对于每一帧指纹图像,将指纹图像中像素特征满足预设条件的图像元素识别为汗孔。其中,预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种压力检测装置,能够实现本公开提供的压力检测方法。该装置包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
分别从每一帧指纹图像中识别出汗孔;
分别获取每一帧指纹图像中的所述汗孔的特征;
根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
可选地,所述汗孔的特征包括汗孔的数量;
相应地,处理器被配置为:
当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐增多时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐减少时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,处理器被配置为:
分别获取每一帧指纹图像的中心区域的所述汗孔的数量。
可选地,所述汗孔的特征包括目标汗孔的尺寸;
相应地,处理器被配置为:
当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐增大时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐减小时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
可选地,处理器被配置为:
对于每一帧指纹图像,从所述指纹图像所包含的汗孔中选定至少一个所述目标汗孔;
获取所述目标汗孔的尺寸。
可选地,处理器被配置为:
对于每一帧指纹图像,将所述指纹图像中像素特征满足预设条件的图像元素识别为所述汗孔;
其中,所述预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
图6是根据一示例性实施例示出的一种装置600的框图。例如,装置600可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置600可以包括以下一个或多个组件:处理组件602,存储器604,电源组件606,多媒体组件608,音频组件610,输入/输出(I/O)接口612,传感器组件614,以及通信组件616。
处理组件602通常控制装置600的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件602可以包括一个或多个处理器620来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件602可以包括一个或多个模块,便于处理组件602和其他组件之间的交互。例如,处理组件602可以包括多媒体模块,以方便多媒体组件608和处理组件602之间的交互。
存储器604被配置为存储各种类型的数据以支持在装置600的操作。这些数据的示例包括用于在装置600上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器604可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件606为装置600的各种组件提供电力。电源组件606可以包括电源管理系统,一个或多个电源,及其他与为装置600生成、管理和分配电力相关联的组件。
多媒体组件608包括在所述装置600和用户之间的提供一个输出接口的屏幕。在一些 实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件608包括一个前置摄像头和/或后置摄像头。当装置600处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件610被配置为输出和/或输入音频信号。例如,音频组件610包括一个麦克风(MIC),当装置600处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器604或经由通信组件616发送。在一些实施例中,音频组件610还包括一个扬声器,用于输出音频信号。
I/O接口612为处理组件602和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件614包括一个或多个传感器,用于为装置600提供各个方面的状态评估。传感器组件614至少包括指纹识别传感器。例如,光学指纹识别传感器、电容式指纹识别传感器、超声波指纹识别传感器等任意类型。可选地,传感器组件614可以检测到装置600的打开/关闭状态,组件的相对定位,例如所述组件为装置600的显示器和小键盘,传感器组件614还可以检测装置600或装置600一个组件的位置改变,用户与装置600接触的存在或不存在,装置600方位或加速/减速和装置600的温度变化。传感器组件614可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件614还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件614还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件616被配置为便于装置600和其他设备之间有线或无线方式的通信。装置600可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件616经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置600可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器604,上述指令可由装置600的处理器620执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由装置600的处理器执行时,使得装置600能够执行上述方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种压力检测方法,其特征在于,所述方法包括:
    通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
    分别从每一帧指纹图像中识别出汗孔;
    分别获取每一帧指纹图像中的所述汗孔的特征;
    根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
  2. 根据权利要求1所述的方法,其特征在于,所述汗孔的特征包括汗孔的数量;
    所述根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势,包括:
    若所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐增多,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
    若所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐减少,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
  3. 根据权利要求2所述的方法,其特征在于,所述分别获取每一帧指纹图像中的所述汗孔的特征,包括:
    分别获取每一帧指纹图像的中心区域的所述汗孔的数量。
  4. 根据权利要求1所述的方法,其特征在于,所述汗孔的特征包括目标汗孔的尺寸;
    所述根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势,包括:
    若所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐增大,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
    若所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐减小,则确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
  5. 根据权利要求4所述的方法,其特征在于,所述分别获取每一帧指纹图像中的所述汗孔的特征,包括:
    对于每一帧指纹图像,从所述指纹图像所包含的汗孔中选定至少一个所述目标汗孔;
    获取所述目标汗孔的尺寸。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述分别从每一帧指纹图像中识别出汗孔,包括:
    对于每一帧指纹图像,将所述指纹图像中像素特征满足预设条件的图像元素识别为所述汗孔;
    其中,所述预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
  7. 一种压力检测装置,其特征在于,所述装置包括:
    图像采集模块,被配置为通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
    汗孔识别模块,被配置为分别从每一帧指纹图像中识别出汗孔;
    特征获取模块,被配置为分别获取每一帧指纹图像中的所述汗孔的特征;
    压力确定模块,被配置为根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
  8. 根据权利要求7所述的装置,其特征在于,所述汗孔的特征包括汗孔的数量;
    所述压力确定模块,被配置为:
    当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐增多时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
    当所述汗孔的数量在所述n帧指纹图像中的变化趋势为逐渐减少时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
  9. 根据权利要求8所述的装置,其特征在于,
    所述特征获取模块,被配置为分别获取每一帧指纹图像的中心区域的所述汗孔的数量。
  10. 根据权利要求7所述的装置,其特征在于,所述汗孔的特征包括目标汗孔的尺寸;
    所述压力确定模块,被配置为:
    当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐增大时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐增大;
    当所述目标汗孔的尺寸在所述n帧指纹图像中的变化趋势为逐渐减小时,确定作用于所述指纹识别传感器的压力的变化趋势为逐渐减小。
  11. 根据权利要求10所述的装置,其特征在于,所述特征获取模块,被配置为:
    对于每一帧指纹图像,从所述指纹图像所包含的汗孔中选定至少一个所述目标汗孔;
    获取所述目标汗孔的尺寸。
  12. 根据权利要求7至11任一项所述的装置,其特征在于,
    所述汗孔识别模块,被配置为对于每一帧指纹图像,将所述指纹图像中像素特征满足预设条件的图像元素识别为所述汗孔;
    其中,所述预设条件包括灰度大于预设灰度阈值且尺寸小于预设尺寸阈值。
  13. 一种压力检测装置,其特征在于,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    通过指纹识别传感器依次采集n帧指纹图像,n≥2且n为整数;
    分别从每一帧指纹图像中识别出汗孔;
    分别获取每一帧指纹图像中的所述汗孔的特征;
    根据所述汗孔的特征在所述n帧指纹图像中的变化趋势,确定作用于所述指纹识别传感器的压力的变化趋势。
PCT/CN2016/101023 2016-02-17 2016-09-30 压力检测方法和装置 WO2017140109A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177031221A KR20170132833A (ko) 2016-02-17 2016-09-30 압력 검출 방법, 장치, 프로그램 및 기록 매체
RU2017111209A RU2683979C2 (ru) 2016-02-17 2016-09-30 Способ и устройство для обнаружения давления
JP2016570071A JP6392900B2 (ja) 2016-02-17 2016-09-30 圧力検出方法、装置、プログラム、及び記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610088291.3A CN107091704B (zh) 2016-02-17 2016-02-17 压力检测方法和装置
CN201610088291.3 2016-02-17

Publications (1)

Publication Number Publication Date
WO2017140109A1 true WO2017140109A1 (zh) 2017-08-24

Family

ID=58016589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101023 WO2017140109A1 (zh) 2016-02-17 2016-09-30 压力检测方法和装置

Country Status (7)

Country Link
US (1) US10402619B2 (zh)
EP (1) EP3208742B1 (zh)
JP (1) JP6392900B2 (zh)
KR (1) KR20170132833A (zh)
CN (1) CN107091704B (zh)
RU (1) RU2683979C2 (zh)
WO (1) WO2017140109A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10726241B2 (en) 2015-04-06 2020-07-28 Identification International, Inc. Systems and methods for capturing images using a pressure sensitive membrane
CN105488464B (zh) * 2015-11-26 2019-02-19 小米科技有限责任公司 指纹识别方法及装置
US10740902B2 (en) 2016-10-14 2020-08-11 Identification International, Inc. System and method for identifying features of a friction ridge signature based on information representing a topography of friction ridges
US10032063B2 (en) * 2016-10-14 2018-07-24 Identification International, Inc. System and method for generating a representation of variations in elevation of friction ridges in a friction ridge pattern
EP3455768B1 (en) * 2017-05-17 2021-11-03 Shenzhen Goodix Technology Co., Ltd. Optical fingerprint sensor with non-touch imaging capability
TWI663552B (zh) * 2017-11-30 2019-06-21 大陸商北京集創北方科技股份有限公司 低功耗的全屏指紋檢測方法及利用其之指紋檢測系統
CN113311960A (zh) * 2021-05-27 2021-08-27 维沃移动通信有限公司 压力检测的方法和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408087B1 (en) * 1998-01-13 2002-06-18 Stmicroelectronics, Inc. Capacitive semiconductor user input device
JP2004259173A (ja) * 2003-02-27 2004-09-16 Foundation For Nara Institute Of Science & Technology ポインティングデバイス
US20040237669A1 (en) * 2003-05-29 2004-12-02 Vincent Hayward Method and apparatus to record and reproduce tactile sensations
WO2009024811A1 (en) * 2007-08-17 2009-02-26 Warwick Warp Limited Method and apparatus for identifying and matching fingerprints using sweat pores
US20100303310A1 (en) * 2009-05-28 2010-12-02 Li-Kuo Chiu High-performance fingerprint image-processing method
CN105068731A (zh) * 2015-08-27 2015-11-18 广东欧珀移动通信有限公司 一种图片缩放方法及用户终端
CN105094443A (zh) * 2015-08-21 2015-11-25 深圳市汇顶科技股份有限公司 触摸压力检测装置和方法

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698453B2 (ja) * 1989-09-28 1998-01-19 富士通株式会社 指紋照合方法
CA2004457A1 (en) * 1988-12-06 1990-06-06 Seigo Igaki Minutia data extraction in fingerprint identification
JPH0628463A (ja) * 1991-02-13 1994-02-04 Fujitsu Ltd 指紋照合装置
JP2873647B2 (ja) * 1992-11-25 1999-03-24 富士通電装株式会社 指紋の特徴点抽出方法及び特徴点抽出装置
GB9308665D0 (en) * 1993-04-27 1993-06-09 Ross William L Sensor
JPH08129644A (ja) * 1993-05-07 1996-05-21 Sharp Corp 指紋画像の画質判定方法
WO1995030793A1 (en) * 1994-05-06 1995-11-16 W.L. Gore & Associates, Inc. Three-dimensional seamless waterproof breathable flexible composite articles
FR2749955B1 (fr) * 1996-06-14 1998-09-11 Thomson Csf Systeme de lecture d'empreintes digitales
US5982914A (en) * 1997-07-29 1999-11-09 Smarttouch, Inc. Identification of individuals from association of finger pores and macrofeatures
JP3489091B2 (ja) * 1997-09-24 2004-01-19 富士通アクセス株式会社 指紋照合処理方法及び指紋照合装置
WO1999050794A1 (fr) * 1998-03-30 1999-10-07 Enix Corporation Appareil d'enregistrement/traitement d'informations et organe de commande d'equipement/systeme equipes d'un capteur d'empreintes digitales
JP3241028B2 (ja) * 1999-12-22 2001-12-25 日本電気株式会社 画像撮像装置及びその画像撮像方法
CA2350055A1 (en) * 2000-06-08 2001-12-08 Dew Engineering And Development Limited Biometric identification using pore prints
US20110090047A1 (en) * 2001-02-20 2011-04-21 Patel Pankaj B Biometric switch and indicating means
DE10123330A1 (de) * 2001-05-14 2002-11-28 Infineon Technologies Ag Verfahren zur Fälschungserkennung bei der Fingerabdruckerkennung unter Verwendung einer Texturklassifikation von Grauwertdifferenzbildern
KR100430054B1 (ko) * 2001-05-25 2004-05-03 주식회사 씨크롭 리니어 지문 검출센서를 이용한 지문획득 방법
JP2004085304A (ja) * 2002-08-26 2004-03-18 Canon Inc 複合機能デバイス及び触覚情報システム
AU2002328437A1 (en) * 2002-09-17 2004-04-08 Fujitsu Limited Biological information acquiring apparatus and authentication apparatus using biological information
JP2004171551A (ja) * 2002-11-06 2004-06-17 Chuo Spring Co Ltd 指紋照合装置及び指紋画像評価方法
JP4262471B2 (ja) * 2002-11-12 2009-05-13 富士通株式会社 生体特徴データ取得装置
US7474772B2 (en) * 2003-06-25 2009-01-06 Atrua Technologies, Inc. System and method for a miniature user input device
US7587072B2 (en) * 2003-08-22 2009-09-08 Authentec, Inc. System for and method of generating rotational inputs
EP1708135B1 (en) * 2004-01-13 2011-05-11 Fujitsu Ltd. Authenticator using organism information
US7280679B2 (en) * 2004-10-08 2007-10-09 Atrua Technologies, Inc. System for and method of determining pressure on a finger sensor
US20080166028A1 (en) * 2007-01-10 2008-07-10 Turek Joseph J Pressure actuated biometric sensor
GB2450479A (en) * 2007-06-22 2008-12-31 Warwick Warp Ltd Fingerprint recognition including preprocessing an image by justification and segmentation before plotting ridge characteristics in feature space
US8027518B2 (en) * 2007-06-25 2011-09-27 Microsoft Corporation Automatic configuration of devices based on biometric data
US8310372B2 (en) * 2008-02-29 2012-11-13 Purdue Research Foundation Fingerprint acquisition system and method using force measurements
US8300902B2 (en) * 2008-10-20 2012-10-30 Union Community Co., Ltd. Apparatus for distinguishing forged fingerprint and method thereof
JP5157969B2 (ja) * 2009-03-09 2013-03-06 ソニー株式会社 情報処理装置、閾値設定方法及びそのプログラム
KR20130043189A (ko) * 2010-07-13 2013-04-29 스콧 맥널티 바이오메트릭 정보를 감지하는 시스템, 방법 및 장치
EP2733636A1 (en) * 2012-11-15 2014-05-21 Sony Mobile Communications AB Secure screen lock with pressure pattern
US9104898B2 (en) * 2012-11-21 2015-08-11 Lenovo (Singapore) Pte. Ltd. Utilizing force information to improve fingerprint reading
US9818020B2 (en) * 2013-04-02 2017-11-14 Precise Biometrics Ab Fingerprint pore analysis for liveness detection
CN103439030B (zh) * 2013-09-17 2015-10-07 东南大学 一种力触觉再现中的纹理力测量方法
TWI607386B (zh) * 2013-12-05 2017-12-01 神盾股份有限公司 指紋辨識方法及其裝置
KR101529033B1 (ko) * 2014-02-14 2015-06-18 크루셜텍 (주) 극소 센싱 영역을 포함하는 전자 장치 및 이의 지문 정보 프로세싱 방법
JP6046088B2 (ja) * 2014-07-30 2016-12-14 京セラドキュメントソリューションズ株式会社 画像処理装置及び画像処理方法
US9633269B2 (en) * 2014-09-05 2017-04-25 Qualcomm Incorporated Image-based liveness detection for ultrasonic fingerprints
JP6493991B2 (ja) * 2014-12-26 2019-04-03 Necソリューションイノベータ株式会社 画像処理装置、画像処理方法及びプログラム
CN105117086B (zh) * 2015-09-11 2018-03-27 小米科技有限责任公司 指纹识别系统、指纹识别的实现方法及装置、电子设备
US20170372049A1 (en) * 2016-06-27 2017-12-28 Synaptics Incorporated Systems and methods for sequential biometric matching

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408087B1 (en) * 1998-01-13 2002-06-18 Stmicroelectronics, Inc. Capacitive semiconductor user input device
JP2004259173A (ja) * 2003-02-27 2004-09-16 Foundation For Nara Institute Of Science & Technology ポインティングデバイス
US20040237669A1 (en) * 2003-05-29 2004-12-02 Vincent Hayward Method and apparatus to record and reproduce tactile sensations
WO2009024811A1 (en) * 2007-08-17 2009-02-26 Warwick Warp Limited Method and apparatus for identifying and matching fingerprints using sweat pores
US20100303310A1 (en) * 2009-05-28 2010-12-02 Li-Kuo Chiu High-performance fingerprint image-processing method
CN105094443A (zh) * 2015-08-21 2015-11-25 深圳市汇顶科技股份有限公司 触摸压力检测装置和方法
CN105068731A (zh) * 2015-08-27 2015-11-18 广东欧珀移动通信有限公司 一种图片缩放方法及用户终端

Also Published As

Publication number Publication date
RU2017111209A3 (zh) 2018-10-04
EP3208742A1 (en) 2017-08-23
CN107091704A (zh) 2017-08-25
US10402619B2 (en) 2019-09-03
RU2683979C2 (ru) 2019-04-03
JP6392900B2 (ja) 2018-09-19
EP3208742B1 (en) 2022-03-30
JP2018508008A (ja) 2018-03-22
US20170235994A1 (en) 2017-08-17
CN107091704B (zh) 2020-10-09
RU2017111209A (ru) 2018-10-04
KR20170132833A (ko) 2017-12-04

Similar Documents

Publication Publication Date Title
CN106951884B (zh) 采集指纹的方法、装置及电子设备
WO2017140109A1 (zh) 压力检测方法和装置
KR101836340B1 (ko) 터치 버튼 및 지문 인식을 실현하기 위한 방법 및 디바이스, 그리고 터미널 디바이스
WO2017059638A1 (zh) 指纹识别方法及装置
WO2017096782A1 (zh) 防止拍照遮挡的方法及装置
WO2016107030A1 (zh) 通知信息显示方法及装置
WO2018000766A1 (zh) 指纹识别装置及方法
WO2017140108A1 (zh) 压力检测方法和装置
WO2018133387A1 (zh) 指纹识别方法及装置
WO2017128767A1 (zh) 指纹模板录入方法及装置
US9924090B2 (en) Method and device for acquiring iris image
CN106934320B (zh) 指纹识别方法及装置
CN106484284B (zh) 切换单手模式的方法和装置
JP6431911B2 (ja) 閾値を設定するための方法及び装置
KR20160095607A (ko) 터치버튼과 지문인식을 실현하는 장치, 방법, 단말기기, 프로그램 및 기록매체
CN111695382A (zh) 指纹采集区域确定方法和指纹采集区域确定装置
CN106126082B (zh) 控制终端的方法、装置及终端
US20190026526A1 (en) Pressure determination method and device and fingerprint recognition method and device
WO2015196715A1 (zh) 图像重定位方法、装置及终端
US10885298B2 (en) Method and device for optical fingerprint recognition, and computer-readable storage medium
CN112437189A (zh) 身份识别方法、装置及介质
US10133911B2 (en) Method and device for verifying fingerprint
CN114418865A (zh) 图像处理方法、装置、设备及存储介质
CN107329604B (zh) 一种移动终端控制方法及装置
CN107091702B (zh) 压力检测方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016570071

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017111209

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031221

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890336

Country of ref document: EP

Kind code of ref document: A1