WO2017138331A1 - 物体検知装置 - Google Patents
物体検知装置 Download PDFInfo
- Publication number
- WO2017138331A1 WO2017138331A1 PCT/JP2017/001988 JP2017001988W WO2017138331A1 WO 2017138331 A1 WO2017138331 A1 WO 2017138331A1 JP 2017001988 W JP2017001988 W JP 2017001988W WO 2017138331 A1 WO2017138331 A1 WO 2017138331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- width
- image
- vehicle
- maximum value
- value
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 55
- 238000003384 imaging method Methods 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- 230000008859 change Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20048—Transform domain processing
- G06T2207/20061—Hough transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
Definitions
- the present disclosure relates to an object detection device that detects an object existing around based on a captured image obtained by an imaging unit.
- a camera is mounted on a vehicle to detect an object (obstacle) such as another vehicle or a ground structure around the vehicle, and to improve the traveling safety of the vehicle based on the detection result of the object. It has been proposed to perform various controls, for example, operation of a brake device, warning to a driver, and the like.
- a vehicle is provided with a ranging radar and a camera, and the lateral width of the outside object is calculated as the radar width from the search result of the ranging radar, and the lateral width of the outside object is calculated from the imaging result of the camera. Calculated as the image width.
- the smaller one of the radar width and the image width is recognized as the lateral width of the object outside the vehicle, the possibility of collision is determined based on the recognized lateral width, and an alarm is issued.
- the smaller one of the radar width and the image width is recognized as the lateral width of the object outside the vehicle, the object outside the vehicle is mistakenly recognized as being excessively wide, and an alarm is unnecessary due to this. Inconveniences such as being implemented are suppressed.
- the object image and dictionary information are collated using dictionary information for object identification prepared in advance. Then, based on the collation result, the type and size of the object are recognized. For example, when detecting a forward vehicle traveling ahead of the host vehicle, the dictionary information defining the rear pattern of the vehicle is used, and the width of the forward vehicle is determined based on the rear image of the front vehicle and the dictionary information of the rear of the vehicle. Is required.
- the width of the object is erroneously determined too small.
- the width of the vehicle is erroneously undercalculated. In this case, it is determined that the possibility of collision with the object is low, and there is a concern that the operation of alarms, automatic brakes, or the like may be delayed or inoperative.
- the present disclosure has been made in view of the above circumstances, and a main purpose thereof is to provide an object detection device that can appropriately recognize the width of an object.
- the present disclosure is an object detection apparatus that detects an object existing around based on an image captured by an imaging unit. Then, based on the image and dictionary information for object identification prepared in advance, a width calculation unit that calculates the size of the object in the horizontal direction with respect to the imaging axis direction of the imaging unit as an image width, and the width calculation A maximum value determination unit that determines whether or not the current value of the image width calculated by the unit is a maximum value in comparison with the calculation history of the image width, and the image that is the maximum value in the calculation history A lateral width updating unit that updates the lateral width as an object width that is the lateral width of the object.
- the width of an object is erroneously underestimated depending on the shape, pattern, or attachment of the outer surface of the object. It is possible.
- the image width is calculated based on the captured image and the dictionary information, whether or not the current value of the image width is the maximum value in comparison with the image width calculation history Is determined, and the maximum value in the image width calculation history is updated as the object width.
- the maximum value is updated as the object width in the calculation history of the image width, so that the calculated value is recognized as the object width as it is even if the image width of the object is erroneously underestimated. It is suppressed. As a result, the width of the object can be properly recognized.
- FIG. 1 is a diagram showing a schematic configuration of a PCS system.
- FIG. 2 is a diagram illustrating an example of a case in which the width of the preceding vehicle is erroneously calculated.
- FIG. 3 is a flowchart showing a processing procedure for determining the width of an object.
- FIG. 4 is a diagram illustrating the calculation of the guard value.
- FIG. 5 is a flowchart showing a processing procedure for determining the width of an object in another example.
- the object detection ECU according to the present embodiment is mounted on the own vehicle, detects an object such as a vehicle existing in front of the own vehicle, and performs various controls to avoid or reduce collision with the object (PreS -crash (safety system)
- PreS -crash safety system
- the PCS system includes an ECU 10, an imaging device 21, a radar sensor 22, a yaw rate sensor 23, a vehicle speed sensor 24, an alarm device 31, a brake device 32, a seat belt device 33, and the like.
- the imaging device 21 is configured using, for example, a CCD camera, a CMOS image sensor, a near-infrared camera, or the like.
- the imaging device 21 is attached at a predetermined height in the center in the vehicle width direction of the host vehicle, and thereby images a region that extends in a predetermined angle range toward the front of the host vehicle from an overhead viewpoint.
- the imaging device 21 extracts feature points indicating the presence of an object based on the captured image. Specifically, edge points are extracted based on the luminance information of the captured image, and Hough transform is performed on the extracted edge points.
- the imaging device 21 performs imaging and feature point extraction at predetermined intervals, and transmits the feature point extraction result to the ECU 10.
- the imaging device 21 may be a monocular camera or a stereo camera.
- the radar sensor 22 detects an object in front of the own vehicle using a directional electromagnetic wave such as a millimeter wave or a laser, and is attached so that the optical axis thereof faces the front of the vehicle at the front of the own vehicle. ing.
- the radar sensor 22 scans a region extending in a predetermined range toward the front of the vehicle with a radar signal every predetermined time, and receives an electromagnetic wave reflected on the surface of the front object, thereby receiving a distance from the front object, Is obtained as object information.
- the acquired object information is input to the ECU 10.
- the yaw rate sensor 23 detects the turning angular velocity (yaw rate) of the vehicle.
- the vehicle speed sensor 24 detects the traveling speed of the host vehicle based on the rotational speed of the wheels. The detection results by these sensors 23 and 24 are input to the ECU 10.
- the alarm device 31, the brake device 32, and the seat belt device 33 function as a safety device that is driven by a control command from the ECU 10.
- the alarm device 31 is a speaker or a display installed in the cabin of the host vehicle.
- the warning device 31 outputs a warning sound or a warning message to notify the driver of the danger of a collision when the possibility of a collision with a front object increases.
- Brake device 32 is a braking device that brakes the host vehicle.
- the brake device 32 is activated when the possibility of collision with a front object increases. Specifically, the braking force with respect to the brake operation by the driver is increased (brake assist function), or automatic braking is performed if the driver does not perform the brake operation (automatic brake function).
- the seat belt device 33 is a pretensioner that pulls in a seat belt provided in each seat of the host vehicle.
- the seat belt device 33 performs a preliminary operation for retracting the seat belt when the possibility of colliding with a front object increases. If the collision cannot be avoided, the seat belt is retracted to remove the slack, thereby fixing the passenger such as the driver to the seat and protecting the passenger.
- ECU10 is comprised as a vehicle-mounted electronic control unit which has a known microcomputer provided with memory, and performs PCS control with reference to the arithmetic program and control data in memory.
- the ECU 10 detects a front object based on a captured image of the imaging device 21 and, based on the detection result, avoids a collision with at least one of the alarm device 31, the brake device 32, and the seat belt device 33 as a control target. Implement control.
- the ECU 10 acquires image data from the imaging device 21, and determines the type of an object in front of the host vehicle based on the image data and dictionary information for object identification prepared in advance.
- the dictionary information for object identification is prepared individually according to the type of object such as a car, a two-wheeled vehicle, and a pedestrian, and stored in the memory in advance.
- the automobile dictionary information at least dictionary information of a front pattern and a rear pattern is preferably prepared. Two-wheeled vehicles should be distinguished from bicycles and motorcycles.
- ECU10 collates image data and dictionary information, and determines the kind of object by performing pattern matching.
- the dictionary information may include fixed object dictionary information such as guardrails, utility poles, road signs, and the like in addition to the dictionary information of the moving object.
- the ECU 10 calculates the size of the object in the horizontal direction with respect to the imaging axis direction of the imaging device 21 (the vehicle front direction in the present embodiment) as the image horizontal width based on the image data and the dictionary information. Then, based on the width of the object obtained from the image width, collision avoidance control for the object is performed. In this case, the ECU 10 calculates a lap rate, which is a ratio in which the lateral width of the object and the lateral width of the host vehicle overlap in the lateral direction orthogonal to the traveling direction of the host vehicle, and the object according to the lap rate. Based on the possibility of collision, collision avoidance control by the safety device is performed.
- the horizontal width of an object when the horizontal width of an object is calculated based on the image captured by the imaging device 21 and dictionary information, the horizontal width of the object may be erroneously underestimated depending on the shape, pattern, attachment, etc. of the outer surface of the object. Conceivable. For example, when a forward vehicle traveling in front of the host vehicle is to be detected, uneven shapes and lamp devices that are different for each vehicle type are provided at the rear of the forward vehicle, and the width is calculated when calculating the width. It may occur that the recognition is narrower than the actual width.
- the actual lateral width W0 which is the actual lateral width
- W0 is from the end point a1 to the end point a2 at the rear of the vehicle.
- a tail lamp or the like is provided at the rear part of the front vehicle, and it is conceivable that dictionary information is assigned to the shape or pattern of the tail lamp or the like.
- the horizontal width W1 between the change points b1 and b2, the horizontal width W2 between the change point b1 and the end point a2, and the like are calculated as the horizontal width calculated from the image, so that the horizontal width is recognized as being too small.
- illustration description is abbreviate
- the collision avoidance control may not be properly performed even in a situation where the possibility of collision with the object is high. Therefore, in this embodiment, whether or not the current value of the image width calculated based on the captured image and the dictionary information is the maximum value in comparison with the image width calculation history in order to increase the recognition accuracy of the object width.
- the image width that is the maximum value in the calculation history is updated as the object width that is the width of the object.
- the calculation history is image width history information stored in the memory for the same object when the image width is calculated in a predetermined cycle.
- step S ⁇ b> 11 it is determined based on the image ahead of the host vehicle imaged by the imaging device 21 whether or not an object exists. If step S11 is YES, it will progress to step S12 and will determine the kind of object. At this time, it is determined whether the object is an automobile, a two-wheeled vehicle, a pedestrian, or the like using dictionary information for object identification.
- step S13 the image width of the object is calculated based on the image captured by the image capturing device 21 and the dictionary information.
- the dictionary information for each type of object is used, the feature points of the object are assigned to the dictionary information, the end points at both ends of the object are obtained, and the horizontal width of the image is calculated from the end points.
- step S14 it is determined whether or not the object is larger than the actual width, that is, whether or not there is a possibility of overdetermination. Specifically, it is determined that the object is in a situation where it is assumed that the object is larger than the actual lateral width under any of the following situations.
- the object is an automobile and the rear lamp (for example, a brake lamp) of the automobile is lit.
- the traveling road is a curved road.
- the object is farther than a predetermined distance from the vehicle.
- the object is imaged at a wide angle by the imaging device 21. (5) Image data cannot be acquired temporarily, and image extrapolation processing is performed.
- step S14 is YES, this processing is terminated without performing each step after step S15 in FIG. If step S14 is NO, the process proceeds to step S15.
- step S15 it is determined whether or not the current value of the image width is the maximum value in comparison with the image width calculation history. If the current value of the image width is not the maximum value, the process proceeds to step S19, and the current value of the image width is stored in the memory as a calculation history. In the calculation history, all the horizontal widths of images after the object is detected are stored in time series. As the calculation history, an average width value obtained by averaging the image widths up to the present time, and a maximum value of the image widths up to the present time may be stored.
- a guard value for updating the object width is set based on the calculation history.
- This guard value is defined as a condition for updating the width of the object.
- the average value of the horizontal width of the image up to the present time is used as the calculation history, and a value obtained by adding a predetermined value ⁇ to the average value is set as the guard value.
- the predetermined value ⁇ may be variably set according to the average value of the image horizontal width. For example, the larger the average value of the image horizontal width, the smaller the predetermined value ⁇ .
- a guard value may be set based on the type of object.
- the guard value is set on the assumption that depending on the type of the object, it is difficult to recognize the width. For example, when the object is a bicycle and the moving speed in the lateral direction orthogonal to the traveling direction of the vehicle is relatively high (when the lateral speed is greater than or equal to a predetermined value), the guard value is set to be strict. Set to a smaller value.
- step S17 it is determined whether or not the current value of the image width is equal to or less than the guard value. If step S17 is YES, the process proceeds to step S18, and the current value of the image width is updated as the width of the object. In short, according to steps S15 to S18, when the current value of the image width is the maximum value in comparison with the calculation history and is equal to or less than the guard value, the current value is updated as the width of the object. For example, in FIG. 4, the horizontal width is not updated in the distribution X exceeding the guard value.
- step S19 the current value of the image width is stored in the memory as a calculation history.
- steps S15 and S17 are NO, the horizontal width of the object is not updated, but the calculation history is stored (updated).
- the image width is calculated based on the image captured by the imaging device 21 and the dictionary information, it is determined whether or not the current value of the image width is the maximum value in comparison with the image width calculation history;
- the maximum value in the image width calculation history is updated as the object width.
- the maximum value is updated as the object width in the calculation history of the image width, so that the calculated value is recognized as the object width as it is even if the image width of the object is erroneously underestimated. It is suppressed. As a result, the width of the object can be properly recognized.
- the wrap rate of the front object with respect to the host vehicle can be obtained correctly, and accordingly, collision avoidance control can be appropriately performed.
- the accuracy of the movement trajectory is improved and the collision avoidance control for the detection target object is highly accurate. Can be implemented.
- the edge portion in the captured image expands and the image width may be recognized excessively.
- the image width at that time is not included in the calculation history when the rear lamp of the front vehicle is lit, it is possible to suppress a decrease in the calculation accuracy of the vehicle width.
- the vehicle width will be recognized as being excessive due to the lighting of the rear lamp. It is better not to include it in the calculation history.
- the traveling road is a curved road
- the object when the object is farther than a predetermined distance from the own vehicle, when the object is being shot at a wide angle by the imaging device 21, or when an image extrapolation process is performed,
- the image width at that time is not included in the calculation history. Thereby, the fall of the calculation accuracy of the width of the object can also be suppressed.
- a guard value is set based on the calculation history of the image width, and if the current value of the image width is the maximum value compared with the calculation history of the image width and is equal to or less than the guard value, the current value is set as the object width.
- the configuration is to be updated. In this case, the tendency of the image width is grasped from the calculation history, and the maximum value is updated as the width in consideration of the tendency. For this reason, it can suppress that the abnormal value different from the tendency of calculation history is updated as a width.
- the objects detected from the captured image include motorcycles and pedestrians in addition to automobiles, and depending on the type of the object, it may be difficult to recognize the width.
- the guard value is set based on the type of the object, it is possible to suppress the inconvenience that the recognition accuracy of the lateral width is lowered by updating the maximum value.
- the vehicle rear portion of the front vehicle is provided with different uneven shapes and lamp devices for each vehicle type, and when the lateral width is calculated, the lateral width may be recognized to be narrower than the actual lateral width. In this regard, according to the above configuration, it is possible to properly recognize the lateral width of the rear portion of the vehicle.
- a predetermined width reduction process is performed to reduce the image width calculated at that time, and the image width after the reduction is calculated as the calculation history. It may be configured to. Specifically, the ECU 10 performs a lateral width determination process shown in FIG. This process is a modification of part of FIG. 3, and the description of the process with the same step number as in FIG. 3 is omitted.
- step S21 the width reduction process is performed on the image horizontal width calculated in step S13.
- the reduced width process is a process for reducing and correcting the excess width under the condition that the object is larger than the actual width.
- the corrected image width is calculated by subtracting a predetermined correction value from the image width. To do.
- the image width may be multiplied by a reduction correction coefficient.
- a configuration in which a correction value or a correction coefficient is set in accordance with an excessive determination factor (factors (1) to (5) above) may be used.
- step S15 and subsequent steps a maximum value determination process, a width update process, and the like are performed.
- the image width after the width reduction process is stored in the memory as a calculation history.
- the image width when the object is larger than the actual width, the image width can be obtained in consideration of the situation, and as a result, the decrease in the calculation accuracy of the object width is suppressed. it can.
- step S16 in FIG. 3 it is determined whether or not the object is in a situation where the object is smaller than the actual width, and if it is determined that the object is in a situation where the object is less than the actual width, it is not in the situation
- the guard value may be increased as compared with the case where it is determined that.
- the width of the object is easily calculated too small.
- the maximum value can be easily updated by increasing the guard value, so that the horizontal width of the object can be properly recognized.
- the condition for updating the width of the object with the maximum image width may be made stricter than when the object is determined to be a car.
- the width update condition becomes stricter, that is, the width is less likely to be updated than when the object is a car.
- the guard value smaller.
- the difference (predetermined value ⁇ ) between the average value of the image widths up to the present time and the guard value is preferably smaller in the case of a two-wheeled vehicle than in the case of a vehicle.
- the detection target is a two-wheeled vehicle and the case where it is an automobile
- the condition for updating the object width by the image width that is the maximum value is made stricter than when the object is determined to be a car. Can be prevented from being erroneously updated to the enlargement side.
- the lateral width of the oncoming vehicle may be calculated.
- the ECU 10 calculates the image width based on the front vehicle front pattern, and calculates the width of the oncoming vehicle based on the image width.
- the image width may be corrected based on the distance between the vehicle and the front object.
- the horizontal width of the image may be corrected based on the distance between the front object acquired by the radar sensor 22 and the host vehicle.
- the maximum value, average value, and instantaneous value of the horizontal width of the image may be calculated in parallel, and may be blended according to the scene to calculate the horizontal width of the object.
- the average value may be used while the number of acquisitions of the image width is small, and the maximum value may be weighted after the number of acquisitions is increased.
- -It is also possible to comprise an object detection apparatus by ECU10 and the imaging device 21 (especially the control part of the imaging device 21).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Multimedia (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Image Analysis (AREA)
Abstract
ECU10は、撮像装置21により撮像された画像に基づいて、周囲に存在する物体を検知する。ECU10は特に、前記画像と予め用意された物体識別用の辞書情報とに基づいて、撮像装置21の撮像軸方向に対する横方向の前記物体の大きさを画像横幅として算出する横幅算出部と、前記横幅算出部により算出された前記画像横幅の今回値が、前記画像横幅の算出履歴との対比において最大値であるか否かを判定する最大値判定部と、前記算出履歴において最大値とされる前記画像横幅を、前記物体の横幅である物体幅として更新する横幅更新部と、を備える。
Description
本出願は、2016年2月11日に出願された日本出願番号2016-024225号に基づくもので、ここにその記載内容を援用する。
本開示は、撮像手段による撮像画像に基づいて、周囲に存在する物体を検知する物体検知装置に関するものである。
従来、カメラを車両に搭載し、車両周辺に存在する他車両や地上構造物等の物体(障害物)を検知するとともに、その物体の検知結果に基づいて車両の走行安全性を向上させるための各種制御、例えば、ブレーキ装置の作動や、運転者への警報等を行うことが提案されている。
例えば特許文献1に記載のものでは、車両に測距レーダとカメラを設けて、測距レーダの探査結果から車外物体の横幅をレーダ幅として算出するとともに、カメラの撮像結果から車外物体の横幅を画像幅として算出する。そして、レーダ幅と画像幅とのうち小さい方を車外物体の横幅として認識し、その認識された横幅に基づいて衝突可能性を判断し、警報を行うようにしている。上記のようにレーダ幅と画像幅とのうち小さい方を車外物体の横幅として認識する構成によれば、車外物体を過剰に幅広のものと誤って認識してしまい、それに起因して不要に警報等が実施されるといった不都合が抑制される。
ところで、カメラ画像に基づいて物体を検知する場合には、予め用意した物体識別用の辞書情報を用い、物体画像と辞書情報とが照合される。そして、その照合結果に基づいて、物体の種別や大きさ等が認識される。例えば、自車の前方を走行する前方車を検知する場合には、車両の後部パターンを定義した辞書情報を用い、前方車の後部画像と車両後部の辞書情報とに基づいて、前方車の横幅が求められる。
しかしながら、カメラ画像と辞書情報とを用いて物体検知を行う場合には、物体の横幅を誤って過小に求めてしまうことがあると考えられる。例えば前方車の後部を認識する場合には、車両後部に実際に存在する凹凸等の各種形状やランプパターン等に起因して、実際には車両後部の端部でないのに端部であると誤認識され、車両の横幅が誤って過小に算出されることが考えられる。この場合、物体に対する衝突可能性が低いものと判断されてしまい、警報や自動ブレーキ等の作動が遅れたり、不作動が生じたりすることが懸念される。
本開示は上記事情を鑑みてなされたものであり、その主たる目的は、物体の横幅を適正に認識することができる物体検知装置を提供することにある。
本開示は、撮像手段により撮像された画像に基づいて、周囲に存在する物体を検知する物体検知装置である。そして、前記画像と予め用意された物体識別用の辞書情報とに基づいて、前記撮像手段の撮像軸方向に対する横方向の前記物体の大きさを画像横幅として算出する横幅算出部と、前記横幅算出部により算出された前記画像横幅の今回値が、前記画像横幅の算出履歴との対比において最大値であるか否かを判定する最大値判定部と、前記算出履歴において最大値とされる前記画像横幅を、前記物体の横幅である物体幅として更新する横幅更新部と、を備える。
カメラ等の撮像手段により撮像された画像と辞書情報とに基づいて物体の横幅を算出する場合、物体の外面の形状や模様、装着物等によっては、物体の横幅が誤って過小に算出されることが考えられる。この点、上記構成によれば、撮像画像と辞書情報とに基づいて画像横幅が算出された場合に、その画像横幅の今回値が、画像横幅の算出履歴との対比において最大値であるか否かが判定され、画像横幅の算出履歴における最大値が物体幅として更新される。この場合、画像横幅の算出履歴において最大値が物体幅として更新されることで、物体の画像横幅が誤って過小に算出されることがあっても、その算出値がそのまま物体幅として認識されることが抑制される。その結果、物体の横幅を適正に認識することができる。
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、PCSシステムの概略構成を示す図であり、
図2は、前方車の横幅が誤って算出される場合の一例を示す図であり、
図3は、物体の横幅を決定する処理手順を示すフローチャートであり、
図4は、ガード値の算出について示す図であり、
図5は、別例において、物体の横幅を決定する処理手順を示すフローチャートである。
以下、実施形態を図面に基づいて説明する。本実施形態に係る物体検知用ECUは、自車に搭載され、自車前方に存在する車両等の物体を検出し、その物体との衝突を回避又は軽減すべく各種制御を行うPCSシステム(Pre-crash safety system)として機能する。
図1において、PCSシステムは、ECU10、撮像装置21、レーダセンサ22、ヨーレートセンサ23、車速センサ24、警報装置31、ブレーキ装置32、シートベルト装置33等を備えている。
撮像装置21は、例えばCCDカメラ、CMOSイメージセンサ、近赤外線カメラ等を用いて構成されている。この場合、撮像装置21は、自車両の車幅方向中央の所定高さに取り付けられることで、自車両前方へ向けて所定角度範囲で広がる領域を俯瞰視点から撮像する。撮像装置21は、撮像した画像に基づいて、物体の存在を示す特徴点を抽出する。具体的には、撮像画像の輝度情報に基づきエッジ点を抽出し、抽出したエッジ点に対してハフ変換を行う。ハフ変換では、例えば、エッジ点が複数個連続して並ぶ直線上の点や、直線どうしが直交する点が特徴点として抽出される。撮像装置21は、所定周期毎に、撮像及び特徴点の抽出を行い、特徴点の抽出結果をECU10に送信する。なお、撮像装置21は、単眼カメラであってもよく、ステレオカメラであってもよい。
レーダセンサ22は、ミリ波やレーザ等の指向性のある電磁波を利用して自車前方の物体を検出するものであり、自車の前部においてその光軸が車両前方を向くように取り付けられている。レーダセンサ22は、所定時間ごとに車両前方に向かって所定範囲で広がる領域をレーダ信号で走査するとともに、前方物体の表面で反射された電磁波を受信することで前方物体との距離、前方物体との相対速度等を物体情報として取得する。取得された物体情報は、ECU10に入力される。
ヨーレートセンサ23は、車両の旋回角速度(ヨーレート)を検出する。車速センサ24は、車輪の回転速度に基づき自車の走行速度を検出する。これらの各センサ23,24による検出結果は、ECU10に入力される。
警報装置31、ブレーキ装置32、及びシートベルト装置33は、ECU10からの制御指令により駆動する安全装置として機能する。このうち警報装置31は、自車の車室内に設置されたスピーカやディスプレイである。警報装置31は、前方物体に衝突する可能性が高まった場合に、警報音や警報メッセージ等を出力して運転者に衝突の危険を報知する。
ブレーキ装置32は、自車を制動する制動装置である。ブレーキ装置32は、前方物体に衝突する可能性が高まった場合に作動する。具体的には、運転者によるブレーキ操作に対する制動力をより強くしたり(ブレーキアシスト機能)、運転者によりブレーキ操作が行われてなければ自動制動を行ったりする(自動ブレーキ機能)。
シートベルト装置33は、自車の各座席に設けられたシートベルトを引き込むプリテンショナである。シートベルト装置33は、前方物体に衝突する可能性が高まった場合に、シートベルトの引き込みの予備動作を行う。また衝突を回避できない場合には、シートベルトを引き込んで弛みを除くことにより、運転者等の乗員を座席に固定し、乗員の保護を行う。
ECU10は、メモリを備える周知のマイクロコンピュータを有する車載電子制御ユニットとして構成されており、メモリ内の演算プログラムや制御データを参照して、PCS制御を行う。この場合、ECU10は、撮像装置21の撮像画像に基づいて前方物体を検知し、その検知結果に基づいて、警報装置31、ブレーキ装置32及びシートベルト装置33の少なくともいずれかを制御対象として衝突回避制御を実施する。
具体的には、ECU10は、撮像装置21から画像データを取得し、その画像データと予め用意された物体識別用の辞書情報とに基づいて、自車前方にある物体の種類を判定する。このとき、物体識別用の辞書情報は、例えば自動車、二輪車、歩行者といった物体の種類に応じて個別に用意され、メモリに予め記憶されている。自動車の辞書情報としては、少なくとも前部パターンと後部パターンとの辞書情報が用意されているとよい。二輪車は、自転車とオートバイとの区別がなされているとよい。ECU10は、画像データと辞書情報とを照合し、パターンマッチングを行うことで、物体の種類を判定する。なお、辞書情報には、移動体の辞書情報以外に、ガードレールや電柱、道路標識等の固定物の辞書情報が含まれていてもよい。
また、ECU10は、画像データと辞書情報とに基づいて、撮像装置21の撮像軸方向(本実施形態では車両正面方向)に対する横方向の物体の大きさを画像横幅として算出する。そして、その画像横幅から求められる物体の横幅に基づいて、当該物体に対する衝突回避制御を実施する。この場合、ECU10は、自車の進行方向に対して直交する横方向において、物体の横幅と自車の横幅とが重複する割合であるラップ率を算出し、そのラップ率に応じた物体との衝突可能性に基づいて、上記安全装置による衝突回避制御を実施する。
ところで、撮像装置21による撮像画像と辞書情報とに基づいて物体の横幅を算出する場合、物体の外面の形状や模様、装着物等によっては、物体の横幅が誤って過小に算出されることが考えられる。例えば、自車の前方を走行する前方車を検知対象とする場合、前方車の車両後部には、車種ごとに異なる凹凸形状やランプ装置が設けられており、横幅を算出する際に、横幅を実横幅よりも狭く認識してしまうことが生じ得る。
より具体的には、図2(a)、(b)に示す車両において、実際の横幅である実横幅W0は車両後部の端点a1から端点a2までである。ただし、前方車の後部にはテールランプ等が設けられており、そのテールランプ等の形状や模様に対して辞書情報があてがわれることが考えられる。つまり、車両後部には、例えばテールランプにより、端点a1,a2以外に外観の変化点b1,b2が存在しており、その変化点b1,b2が車体後部の端部として認識されることがある。この場合、変化点b1,b2間の横幅W1や、変化点b1と端点a2との間の横幅W2等が画像から算出される横幅として算出されることで、横幅が過小に認識される。なお、図示による説明は省略するが、車両以外の物体であっても、やはり同様に横幅が過小に認識されることが生じると考えられる。
上記のように物体の横幅が過小に認識されると、物体に対する衝突可能性が高い状況にあっても、衝突回避制御が適正に実施されないおそれがある。そこで本実施形態では、物体の横幅の認識精度を高めるべく、撮像画像と辞書情報とに基づいて算出された画像横幅の今回値が、画像横幅の算出履歴との対比において最大値であるか否かを判定し、算出履歴において最大値とされる画像横幅を、物体の横幅である物体幅として更新することとしている。なお、算出履歴は、所定周期で画像横幅が算出される場合において同一物体についてメモリに保存される画像横幅の履歴情報である。
次に、ECU10により実施される横幅の決定処理について、図3のフローチャートを用いて説明する。本処理は、ECU10により所定周期で繰り返し実施される。
まず、ステップS11では、撮像装置21により撮像された自車前方の画像に基づいて、物体が存在しているか否かを判定する。ステップS11がYESであればステップS12に進み、物体の種類を判定する。このとき、物体識別用の辞書情報を用いて、物体が自動車、二輪車、歩行者等のいずれであるかが判定される。
その後、ステップS13では、撮像装置21による撮像画像と辞書情報とに基づいて、物体の画像横幅を算出する。このとき、物体の種別ごとの辞書情報を用い、物体の特徴点を辞書情報にあてがうことで、物体の両端の端点を求め、その端点により画像横幅を算出する。
その後、ステップS14では、物体が実横幅より大きいとされる状況下、すなわち過大判定の可能性のある状況下であるか否かを判定する。具体的には、下記いずれかの状況下であれば、物体が実横幅より大きいとされる状況下であると判定する。
(1)物体が自動車であり、かつその自動車の後部ランプ(例えばブレーキランプ)が点灯している。
(2)走行路がカーブ路である。
(3)自車に対して物体が所定以上遠方にある。
(4)撮像装置21により物体が広角撮影されている。
(5)一時的に画像データが取得できず、画像外挿処理が行われている。
(1)物体が自動車であり、かつその自動車の後部ランプ(例えばブレーキランプ)が点灯している。
(2)走行路がカーブ路である。
(3)自車に対して物体が所定以上遠方にある。
(4)撮像装置21により物体が広角撮影されている。
(5)一時的に画像データが取得できず、画像外挿処理が行われている。
ステップS14がYESであれば、図3においてステップS15以降の各ステップを実施することなく、本処理を終了する。また、ステップS14がNOであればステップS15に進む。
ステップS15では、画像横幅の今回値が、画像横幅の算出履歴との対比において最大値であるか否かを判定する。そして、画像横幅の今回値が最大値でなければステップS19に進み、画像横幅の今回値を算出履歴としてメモリに記憶する。算出履歴は、物体が検知され始めてからの画像横幅を全て時系列で保存したものである。なお、算出履歴として、現時点までの画像横幅を平均化した横幅平均値と、現時点までの画像横幅の最大値とが保存されていてもよい。
また、画像横幅の今回値が最大値であればステップS16に進み、算出履歴に基づいて、物体幅を更新する際のガード値を設定する。このガード値は、物体の横幅の更新条件として規定されるものである。この場合、算出履歴として現時点までの画像横幅の平均値を用い、その平均値に対して所定値αを加算した値をガード値とする。所定値αは、画像横幅の平均値に応じて可変に設定されてもよく、例えば、画像横幅の平均値が大きいほど所定値αを小さくする。
現時点までの画像横幅の分布を用いてガード値を設定してもよい。つまり、図4に示すように、画像横幅の平均値に対して3σ(σ=標準偏差)を加算した値をガード値とする。これ以外に、画像横幅の平均値に対してσを加算した値をガード値とすることも可能である。
さらに、ガード値の設定処理として、物体の種類に基づいてガード値を設定してもよい。この場合、物体の種類によっては横幅を認識しづらい状況が生じることを想定してガード値を設定する。例えば、物体が自転車であり、かつ自車進行方向に直交する横方向の移動速度が比較的大きい場合(横速度が所定以上の場合)には、横幅の更新条件を厳しくすべく、ガード値を小さい値にする。
その後、ステップS17では、画像横幅の今回値がガード値以下であるか否かを判定する。そして、ステップS17がYESであれば、ステップS18に進み、画像横幅の今回値を、物体の横幅として更新する。要するに、ステップS15~S18によれば、画像横幅の今回値が、算出履歴との対比において最大値であり、かつガード値以下である場合に、今回値が物体の横幅として更新される。なお、例えば図4では、ガード値を超える分布Xにおいて横幅の更新は行われない。
その後、ステップS19では、画像横幅の今回値を算出履歴としてメモリに記憶する。なお、ステップS15,S17がNOとなる場合には、物体の横幅は更新されないが、算出履歴の保存(更新)は行われる。
以上詳述した本実施形態によれば、以下の優れた効果が得られる。
撮像装置21による撮像画像と辞書情報とに基づいて画像横幅が算出される場合に、その画像横幅の今回値が、画像横幅の算出履歴との対比において最大値であるか否かを判定し、画像横幅の算出履歴における最大値を物体幅として更新する構成とした。この場合、画像横幅の算出履歴において最大値が物体幅として更新されることで、物体の画像横幅が誤って過小に算出されることがあっても、その算出値がそのまま物体幅として認識されることが抑制される。その結果、物体の横幅を適正に認識することができる。
上記のように物体の横幅が適正に認識できることにより、自車に対する前方物体のラップ率を正しく求めることができ、ひいては衝突回避制御を適切に実施できるようになる。また、物体の横幅を考慮した横位置(左右横位置)に基づいて、物体の移動軌跡を算出する場合には、その移動軌跡の精度が向上し、検知対象の物体に対する衝突回避制御を高精度に実施できるようになる。
撮像画像と辞書情報とを用いて物体の横幅を算出する場合にはその横幅が過小に算出されることが懸念されるが、逆に、物体の横幅が過大に算出される状況も存在する。この場合、画像横幅の算出履歴に過大な横幅が含まれると、物体の横幅の算出精度に悪影響が及ぶ。この点、上記構成によれば、物体が実横幅より大きいとされる状況下にあると判定される場合に、その際に算出された画像横幅が算出履歴に含まれず、また、今回値と最大値との比較も実施されない。そのため、算出履歴における最大値により物体の横幅を算出する構成において、その算出精度の低下を抑制できる。
前方車の後部ランプが点灯する場合には、撮像画像内のエッジ部が膨張し、画像横幅が過大に認識される可能性がある。この点、前方車の後部ランプの点灯時にはその際の画像横幅が算出履歴に含まれないため、車両横幅の算出精度の低下を抑制できる。特に夜間等、暗い環境下においては、後部ランプの点灯により車両横幅が過大と認識される可能性が高いため、暗い環境下にあることを条件に、前方車の後部ランプの点灯時に画像横幅を算出履歴に含ませないようにするとよい。
その他、走行路がカーブ路である場合、自車に対して物体が所定以上遠方にある場合、撮像装置21により物体が広角撮影されている場合、画像外挿処理が行われている場合に、その際の画像横幅を算出履歴に含ませないようにした。これにより、やはり物体の横幅の算出精度の低下を抑制できる。
画像横幅の算出履歴に基づいてガード値を設定し、画像横幅の今回値が、画像横幅の算出履歴との対比において最大値であり、かつガード値以下である場合に、今回値を物体幅として更新する構成とした。この場合、算出履歴から画像横幅の大きさの傾向が把握されるとともに、その傾向を加味して最大値が横幅として更新される。このため、算出履歴の傾向とは異なる異常値が横幅として更新されることを抑制できる。
撮像画像により検知される物体には、自動車の他、二輪車や歩行者が含まれ、その物体の種類によっては、横幅を認識しづらい場合が生じる。この点、物体の種類に基づいてガード値を設定する構成にしたため、最大値の更新により却って横幅の認識精度が低下するといった不都合を抑制できる。
前方車の車両後部には、車種ごとに異なる凹凸形状やランプ装置が設けられており、横幅を算出する際に、横幅を実横幅よりも狭く認識してしまうことが生じ得る。この点、上記構成によれば、車両後部の横幅を適正に認識することが可能となる。
(他実施形態)
上記の実施形態を例えば次のように変更してもよい。
上記の実施形態を例えば次のように変更してもよい。
・物体が実横幅より大きいとされる状況下にあると判定される場合に、その際に算出された画像横幅を縮小する所定の縮幅処理を行い、縮幅後の画像横幅を算出履歴とする構成であってもよい。具体的には、ECU10が図5に示す横幅の決定処理を実施する。なお、本処理は図3の一部を変更したものであり、図3と同じステップ番号の処理については説明を割愛する。
図5において、自車前方に物体が存在していると判定され、かつ物体が実横幅より大きいとされる状況下であると判定された場合(ステップS11,S14が共にYESの場合)には、ステップS21に進む。ステップS21では、ステップS13で算出された画像横幅について縮幅処理を実施する。縮幅処理は、物体が実横幅より大きいとされる状況下において横幅の過大分を縮小補正する処理であり、例えば画像横幅から、予め定めた補正値を減算して補正後の画像横幅を算出する。また、画像横幅に縮小補正係数を乗算する構成でもよい。また、過大判定の要因(上記(1)~(5)の要因)に応じて補正値や補正係数を設定する構成でもよい。
そしてその後は、ステップS15以降において、最大値判定の処理や、横幅更新の処理等を実施する。この場合、図3とは異なり、物体が実横幅より大きいとされる状況下にあっても、縮幅処理後の画像横幅が算出履歴としてメモリに記憶される。
上記構成によれば、物体が実横幅より大きいとされる状況下において、その状況下であることを加味して画像横幅を求めることができ、結果として、物体の横幅の算出精度の低下を抑制できる。
・図3のステップS16において、物体が実横幅より小さいとされる状況下か否かを判定し、物体が実横幅より小さいとされる状況下にあると判定される場合に、当該状況下でないと判定される場合に比べてガード値を大きくするようにしてもよい。
夜間である場合、特に夜間において物体自体が発光していない状況では、物体の幅方向の端部が認識されにくくなり、物体の横幅が過小に算出されやすくなる。例えば、夜間において自車前方に自転車が走行する場合には、物体の横幅が過小に認識される可能性が大きくなる。この点、物体の横幅が過小に算出されやすい状況下では、ガード値を大きくして最大値を更新しやすくしたため、物体の横幅を適正に認識できる。
・物体が二輪車であると判定される場合に、物体が自動車であると判定される場合に比べて、最大値とされる画像横幅により物体の横幅を更新する条件を厳しいものとしてもよい。具体的には、図3のステップS16において、物体が二輪車(自転車)である場合に、物体が自動車である場合に比べて、横幅の更新条件が厳しくなるように、すなわち横幅が更新されにくくなるようにガード値を小さくする。この場合、現時点までの画像横幅の平均値とガード値との差(所定値α)を、自動車の場合よりも二輪車の場合の方が小さくなるようにするとよい。
検知対象が二輪車である場合と自動車である場合とを比べると、二輪車の方が横幅の認識が困難であり、特に横方向の移動速度が大きい場合には、それが顕著になると考えられる。この点、物体が二輪車であると判定される場合に、物体が自動車であると判定される場合に比べて、最大値とされる画像横幅により物体幅を更新する条件を厳しいものとしたため、二輪車が検知される場合において、その二輪車の横幅が誤って拡大側に更新されることを抑制できる。
・前方車が、自車とは進行方向が逆の対向車である場合に、その対向車の横幅を算出するものであってもよい。この場合、ECU10は、前方車の前部パターンにより画像横幅を算出し、その画像横幅に基づいて対向車の横幅を算出する。
・車両と前方物体との間の距離に基づいて画像横幅を補正する構成としてもよい。レーダセンサ22により取得された前方物体と自車との間の距離に基づいて画像横幅が補正されるよとよい。
・画像横幅の最大値、平均値、瞬時値を並行して算出し、シーンに応じて、それらをブレンドし、物体の横幅を算出してもよい。例えば、画像横幅の取得回数が少ないうちは、平均値を用い、取得回数が増えた後は、最大値に重みを付けるなどを実施するとよい。また、検知対象の物体が大きく移動した場合においては、物体のトラッキングを誤ったり、物体の向きが変わっていたりする可能性があるため、瞬時値に対する重みを大きくするなどを実施するとよい。
・ECU10と撮像装置21(特に撮像装置21の制御部)とにより物体検知装置を構成することも可能である。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Claims (9)
- 撮像手段(21)により撮像された画像に基づいて、周囲に存在する物体を検知する物体検知装置(10)であって、
前記画像と予め用意された物体識別用の辞書情報とに基づいて、前記撮像手段の撮像軸方向に対する横方向の前記物体の大きさを画像横幅として算出する横幅算出部と、
前記横幅算出部により算出された前記画像横幅の今回値が、前記画像横幅の算出履歴との対比において最大値であるか否かを判定する最大値判定部と、
前記算出履歴において最大値とされる前記画像横幅を、前記物体の横幅である物体幅として更新する横幅更新部と、
を備える物体検知装置。 - 前記物体が実際の横幅である実横幅より大きいとされる状況下か否かを判定する過大状況判定部を備え、
前記物体が前記実横幅より大きいとされる状況下にあると判定される場合に、その際に算出された前記画像横幅を前記算出履歴に含ませることをしない請求項1に記載の物体検知装置。 - 前記物体が実際の横幅である実横幅より大きいとされる状況下か否かを判定する過大状況判定部を備え、
前記物体が前記実横幅より大きいとされる状況下にあると判定される場合に、その際に算出された前記画像横幅を縮小する所定の縮幅処理を行い、その処理後の画像横幅を前記算出履歴とする請求項1に記載の物体検知装置。 - 前記過大状況判定部は、前記物体が車両であり、かつその車両の前部又は後部のランプが点灯している場合に、前記物体が前記実横幅より大きいとされる状況下にあると判定する請求項2又は3に記載の物体検知装置。
- 前記算出履歴に基づいて、前記物体幅を更新する際のガード値を設定するガード設定部を備え、
前記横幅更新部は、前記今回値が、前記算出履歴との対比において最大値であり、かつ前記ガード値以下である場合に、前記今回値を前記物体幅として更新する請求項1乃至4のいずれか1項に記載の物体検知装置。 - 前記物体の種類を判定する種別判定部を備え、
前記ガード設定部は、前記物体の種類に基づいて、前記ガード値を設定する請求項5に記載の物体検知装置。 - 前記物体が実際の横幅である実横幅より小さいとされる状況下か否かを判定する過小状況判定部を備え、
前記ガード設定部は、前記物体が前記実横幅より小さいとされる状況下にあると判定される場合に、当該状況下でないと判定される場合に比べて前記ガード値を大きくする請求項5又は6に記載の物体検知装置。 - 前記横幅算出部は、前記撮像手段により前方を走行する前方車の車両前部又は車両後部が撮像される場合に、その前部画像又は後部画像と予め用意された車両パターンの辞書情報とに基づいて、前記車両前部又は前記車両後部の画像横幅を算出し、
前記最大値判定部は、前記車両前部又は前記車両後部の画像横幅の今回値がその画像横幅の算出履歴において最大値であるか否かを判定し、
前記横幅更新部は、前記算出履歴において最大値とされる前記画像横幅を、前記前方車の横幅として更新する請求項1乃至7のいずれか1項に記載の物体検知装置。 - 二輪車と自動車とを含む前記物体の種類を判定する種別判定部を備え、
前記横幅更新部は、前記物体が二輪車であると判定される場合に、前記物体が自動車であると判定される場合に比べて、前記最大値とされる前記画像横幅により前記物体幅を更新する条件を厳しいものとしている請求項1乃至8のいずれか1項に記載の物体検知装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/077,231 US10803327B2 (en) | 2016-02-11 | 2017-01-20 | Object detection apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-024225 | 2016-02-11 | ||
JP2016024225A JP6597359B2 (ja) | 2016-02-11 | 2016-02-11 | 物体検知装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138331A1 true WO2017138331A1 (ja) | 2017-08-17 |
Family
ID=59563109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001988 WO2017138331A1 (ja) | 2016-02-11 | 2017-01-20 | 物体検知装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10803327B2 (ja) |
JP (1) | JP6597359B2 (ja) |
WO (1) | WO2017138331A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102667971B1 (ko) * | 2020-12-24 | 2024-05-22 | 주식회사 에이치엘클레무브 | 객체 크기 추정 장치 및 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175846A (ja) * | 2008-01-22 | 2009-08-06 | Fuji Heavy Ind Ltd | 車両検出装置 |
JP2014197378A (ja) * | 2013-03-06 | 2014-10-16 | 株式会社リコー | 物体検出装置、移動体機器制御システム及び物体検出用プログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4518978B2 (ja) | 2005-03-02 | 2010-08-04 | ダイハツ工業株式会社 | 車両の物体認識装置及び物体認識方法 |
JP6095605B2 (ja) * | 2014-04-24 | 2017-03-15 | 本田技研工業株式会社 | 車両認識装置 |
-
2016
- 2016-02-11 JP JP2016024225A patent/JP6597359B2/ja active Active
-
2017
- 2017-01-20 WO PCT/JP2017/001988 patent/WO2017138331A1/ja active Application Filing
- 2017-01-20 US US16/077,231 patent/US10803327B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009175846A (ja) * | 2008-01-22 | 2009-08-06 | Fuji Heavy Ind Ltd | 車両検出装置 |
JP2014197378A (ja) * | 2013-03-06 | 2014-10-16 | 株式会社リコー | 物体検出装置、移動体機器制御システム及び物体検出用プログラム |
Also Published As
Publication number | Publication date |
---|---|
US10803327B2 (en) | 2020-10-13 |
JP2017142695A (ja) | 2017-08-17 |
JP6597359B2 (ja) | 2019-10-30 |
US20190050650A1 (en) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10854081B2 (en) | Driving assistance device and driving assistance method | |
CN107408345B (zh) | 物标存在判定方法以及装置 | |
US10625735B2 (en) | Vehicle control apparatus and vehicle control method | |
US10672275B2 (en) | Vehicle control device and vehicle control method | |
CN109891262B (zh) | 物体探测装置 | |
US9797734B2 (en) | Object recognition apparatus | |
US10535264B2 (en) | Object detection apparatus and object detection method | |
US10252716B2 (en) | Driving assist apparatus and driving assist method | |
US10793096B2 (en) | Vehicle control device with object detection | |
US10661793B2 (en) | Vehicle control apparatus and vehicle control method | |
US20200023837A1 (en) | Collision detection device | |
US20180174461A1 (en) | Vehicle control device and vehicle control method | |
CN107408346B (zh) | 车辆控制装置以及车辆控制方法 | |
CN108602494B (zh) | 车辆控制装置以及车辆控制方法 | |
US20190061750A1 (en) | Collision mitigation control device | |
JP6669090B2 (ja) | 車両制御装置 | |
US10578714B2 (en) | Vehicle control apparatus and vehicle control method | |
CN108885833B (zh) | 车辆检知装置 | |
JP6432538B2 (ja) | 衝突予測装置 | |
WO2018070335A1 (ja) | 移動検出装置、移動検出方法 | |
US11288961B2 (en) | Vehicle control apparatus and vehicle control method | |
US20140324287A1 (en) | Collision mitigation device | |
JP6597359B2 (ja) | 物体検知装置 | |
JP6493280B2 (ja) | 物体検知装置、物体検知方法 | |
JP2013101040A (ja) | 距離推定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750056 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17750056 Country of ref document: EP Kind code of ref document: A1 |