WO2017138285A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2017138285A1 WO2017138285A1 PCT/JP2017/000702 JP2017000702W WO2017138285A1 WO 2017138285 A1 WO2017138285 A1 WO 2017138285A1 JP 2017000702 W JP2017000702 W JP 2017000702W WO 2017138285 A1 WO2017138285 A1 WO 2017138285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- analysis
- sample
- reaction
- reagent
- time
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/025—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/0092—Scheduling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00564—Handling or washing solid phase elements, e.g. beads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N2035/0097—Control arrangements for automatic analysers monitoring reactions as a function of time
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0441—Rotary sample carriers, i.e. carousels for samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0443—Rotary sample carriers, i.e. carousels for reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1065—Multiple transfer devices
- G01N2035/1076—Multiple transfer devices plurality or independently movable heads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1081—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
- G01N35/1083—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with one horizontal degree of freedom
- G01N2035/1086—Cylindrical, e.g. variable angle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/4905—Determining clotting time of blood
Definitions
- the present invention relates to a technology relating to an automatic analyzer that automatically analyzes components such as blood.
- the automatic analyzer is a device for biochemical analysis that performs quantitative and qualitative analysis of target components in biological samples in the field of biochemical tests and hematology tests, etc., and measures the coagulation ability of the blood sample.
- the measurement schedule can be set according to this reaction time.
- the reaction time since the reaction time is not fixed, it is necessary to determine whether or not the blood coagulation reaction has been completed from the measured light quantity. Therefore, depending on the state of the sample or reagent and the measurement conditions, the actual measurement time may be completed earlier than the expected reaction time. In this way, in blood coagulation analysis, the reaction end time fluctuates irregularly, so the time required to complete the analysis of all requested test items is wasted and the analysis cannot be performed efficiently There is.
- Patent Document 1 for the purpose of shortening the analysis processing time of a sample for analyzing a plurality of items, the processing time is maximized when an instruction to measure a plurality of analysis items is given to one sample.
- the method of assigning to reaction containers sequentially from the item of is described.
- a sample container that holds a sample
- a reagent container that holds a reagent
- a sample dispensing mechanism that dispenses a sample from the sample container
- a reagent that is dispensed from the reagent container A reagent dispensing mechanism, a sample dispensed from the sample dispensing mechanism, a reaction container holding a mixed solution of the reagent dispensed from the reagent dispensing mechanism, and a plurality of the reaction containers installed
- a light source that irradiates light to each reaction container that has the reaction liquid, and that is installed in each of the plurality of reaction container placement parts, and that holds the liquid mixture, and receives light emitted from the light source
- a light receiving section an operation section to which information related to the sample is input, and a control section that controls the analysis section based on the input information.
- An apparatus determines an analysis order as described above, and controls the analysis unit based on the determined analysis order, and a method using the apparatus.
- FIG. 1 shows a basic configuration of an automatic analyzer according to the present embodiment.
- an example of an apparatus that performs blood coagulation analysis will be described as one aspect of the automatic analyzer.
- the automatic analyzer 100 mainly includes a sample container 101, a sample disk 102, a reagent container 103, a reagent disk 104, a sample dispensing mechanism 105, a sample dispensing position 106, a reaction container 107, and a reaction container.
- the interface 118 is configured.
- the sample container 101 holds a sample or a quality control sample.
- the sample disk 102 holds a plurality of sample containers 101 and rotates clockwise or counterclockwise to transport the target sample container 101 to a position where the sample dispensing mechanism 105 sucks the sample in the sample container 101.
- the reagent container 103 holds a reagent.
- the reagent disk 104 holds a plurality of reagent containers 103 and rotates the clockwise or counterclockwise direction to convey the target reagent container 103 to a position where the reagent dispensing mechanism 112 sucks the reagent in the reagent container 103.
- the sample dispensing mechanism 105 sucks the sample in the sample container 101 held on the sample disk 102 and discharges it to the reaction container 107 by the operation of a sample syringe (not shown) controlled by the control unit 116.
- the sample dispensing position 106 is a place for storing the sample in the reaction vessel 107.
- the reaction container 107 is transported to the sample dispensing position 106 by the reaction container transport mechanism 109. After the reaction container 107 is transported, the sample is dispensed from the sample container 101 by the sample dispensing mechanism 105. After the sample is discharged, the reaction vessel 107 holding the sample is transferred to the reaction vessel setting unit 108 by the reaction vessel transfer mechanism 109.
- the reaction vessel 107 is a vessel for holding a dispensed sample and reagent mixture.
- the reaction container transport mechanism 109 transports the empty reaction container 107 held in the reaction container stock unit 110 to the reaction container installation unit 108, and further reacts the reaction container 107 after the analysis is completed from the reaction container installation unit 108. It is conveyed to the container disposal unit 114.
- the reaction vessel stock unit 110 holds a plurality of unused reaction vessels 107.
- the reaction port 111 has one or more reaction container installation sections 108 for installing the reaction containers 107 (in this embodiment, six cases are shown as an example).
- the light intensity from the reaction solution contained in the reaction vessel 107 inserted in the above is measured. Therefore, the reaction vessel installation unit 108 includes a light source (not shown) that irradiates the reaction solution with incident light and a detection unit (light sensor) that measures the light intensity. Has inside.
- the light source is installed on the bottom surface of the reaction container installation unit 108, and can irradiate light upward. Light scattered by the reaction solution is detected.
- the detection unit is disposed on the side surface of the reaction vessel installation unit 108, and performs photo / current conversion on the detected light, thereby outputting a photometric signal indicating the light intensity to the A / D converter.
- the light intensity measurement signal A / D converted by the A / D converter is sent to the control unit 116 and the storage unit 117 via the interface 118.
- the arrangement of the light source and the detector is not necessarily limited to the above positional relationship, and may be another arrangement configuration as long as the light intensity from the reaction solution can be detected.
- the reagent dispensing mechanism 112 moves the reagent in the reagent container 103 held on the reagent disk 104 to the reaction container 107 installed in the reaction port 111 by the operation of a reagent syringe (not shown) controlled by the control unit 116. Dispense into.
- the reagent dispensing mechanism 112 has a built-in reagent temperature raising mechanism (not shown) controlled by the control unit 116, and raises the temperature of the aspirated reagent to an appropriate temperature (predetermined temperature).
- the reagent dispensing mechanism cleaning mechanism 113 is a mechanism for washing the reagent dispensing mechanism 112 with water. The timing of water washing is controlled by the control unit 116.
- the reaction container discarding unit 114 discards the reaction container 107.
- the operation unit 115 is a computer having an input terminal such as a keyboard and a mouse as an input means and an operation screen displayed on the display unit.
- the inspection item of the sample to be analyzed is input from the keyboard or operation screen provided in the operation unit 115 and input to the control unit 116.
- the control unit 116 is based on the input from the operation unit 115, the sample disk 102, the reagent disk 104, the sample dispensing mechanism 105, the reaction container transfer mechanism 109, the reaction port 111, the reagent dispensing mechanism 112, and the reagent dispensing mechanism cleaning mechanism 113.
- the measurement signal input from the detection unit 111 via the interface 118 is processed, and the blood coagulation time is calculated and the abnormal part is specified.
- the storage unit 117 stores input information from the operation unit 115, operation information of the sample disk 102 and the like, reagent, sample information, and the like.
- the interface 118 mediates operation information on the sample disk 102 and the like, input information from the operation unit 115, operation information from the control unit 116, and information stored in the storage unit 117.
- control unit 116 is connected to each component unit via the interface 118 and controls the entire automatic analyzer.
- each component unit is configured to have an independent control unit. You can also.
- the analysis of the sample is basically performed in the order of sample dispensing process, reagent dispensing process, photometric process, reaction container 107 disposal process, and data process.
- a plurality of reaction vessels 107 are arranged vertically and horizontally on the reaction vessel stock section 110.
- the reaction container transport mechanism 109 transports the reaction container 107 from the reaction container stock unit 110 to the reaction container installation unit 108 in a predetermined order.
- a plurality of sample containers 101 are arranged on the circumference of the sample disk 102 and rotated clockwise or counterclockwise according to the order of the samples to be analyzed, and conveyed to the bottom of the sample dispensing mechanism 105. To do.
- a sample in the sample container 101 is sucked into a predetermined amount by a sample syringe (not shown) connected to the sample dispensing mechanism 105 and dispensed into the reaction container 107.
- a plurality of reagent containers 103 are arranged side by side on the circumference.
- the target reagent container 103 is set according to the test item. It is rotated clockwise or counterclockwise to the bottom of the reagent dispensing mechanism 112 and conveyed.
- the reagent in the reagent container 103 is sucked into a predetermined amount by a reagent syringe (not shown) connected to the reagent dispensing mechanism 112 and dispensed into the reaction container 107.
- the blood coagulation reaction proceeds by mixing the sample with the reagent in the reaction vessel 107 holding the contents (mixed solution).
- a light beam is received from a light source (not shown) with respect to the mixed solution, the light beam is scattered by a solid material generated by a blood coagulation reaction in the mixed solution.
- the light intensity scattered by the liquid mixture is detected by the detection unit and detected by the reaction port 111.
- Analysis information such as detected light intensity, light intensity, used reaction port number, used sample type and installation position on the sample disk 102, used reagent type and installed position on the reagent disk 104 is stored in the storage unit 117.
- the control unit 116 determines whether or not the blood coagulation reaction is completed at regular intervals using the detected measurement data. When the reaction is completed, the control unit 116 calculates the blood coagulation time, stores the result file in the storage unit 117, and outputs it to an output device such as a display included in the operation unit 115. When the reaction is not completed, the measurement is stopped when the measurement time set by the operation unit 115 is reached. Thereafter, the control unit 116 calculates the blood coagulation time, stores the result file in the storage unit 117, and outputs it to an output device such as a display included in the operation unit 115.
- FIG. 2 is a flowchart for explaining the operation control for determining the measurement order of the inspection items according to the present embodiment.
- the flowchart shown in this figure is after the user inputs analysis parameters necessary for registration of test items to the automatic analyzer 100 via the operation unit 115 in advance, and starts the analysis operation after setting the sample and reagent. It is the flow of the process in the analyzer until analysis of a sample.
- the automatic analyzer 100 When receiving the analysis start instruction from the user, the automatic analyzer 100 reads the information (analysis item) given to each sample (step S201).
- Information on items to be analyzed for the sample is given to the barcode given to the sample, and the information is read by a barcode reader (not shown).
- the control unit 116 transmits information (inspection item) read by the bar code reader to the operation unit 115.
- the operation unit 115 compares the inspection item information sent from the control unit 116 with the information registered by the user, and transmits information on matching inspection items (information necessary for performing an analysis operation such as analysis parameters) to the control unit 116. To do. Thereby, the control unit 116 can read the analysis parameter of the analysis item of the sample to be inspected.
- an expected measurement time (hereinafter simply referred to as an expected time), which is one of the analysis parameters of the read inspection item, is read out, and the inspection items are sorted in the descending order of the expected time (step S202).
- the automatic analyzer 100 dispenses samples and reagents in the order sorted in step S202, and performs analysis (step S203).
- the analysis is performed according to the operation of each component by the automatic analyzer 100 described in FIG.
- each mechanism can be used to use the reaction port for the analysis of the next sample without waiting for this expected time.
- the operation of each mechanism is performed by using the unused reaction container 107 by the reagent dispensing mechanism 112 at the sample dispensing position 106 for the sample to be analyzed next. It means dispensing and waiting.
- the reaction container 107 holding the sample that has been analyzed is discarded, and the reaction container 107 for the next analysis is transferred to the reaction port 111 and analysis is started.
- the reaction port 111 can be used efficiently and analyzed continuously.
- monitoring means that the automatic analyzer 100 periodically communicates with the operation unit 115.
- the operation unit 115 transmits the content of the analysis request to the automatic analyzer 110 during the regular communication.
- step S205 the inspection item to be analyzed by the interruption is read (step S205).
- step S206 the inspection items read in step S205 and the inspection items read in step S201 and sorted in step S202 are sorted again in descending order of measurement time (step S206). Thereafter, the process returns to step S203, and analysis is started in the order sorted again in step S206. If no interruption has occurred, every time the measurement of the inspection item is completed, it is determined whether the analysis of all requested inspection items has been completed (step S207). If all requested items are not completed, the process returns to step S203, and the remaining items are analyzed in the sorted order. If it is determined in step S207 that analysis of all requested items has been completed, the analysis operation is completed.
- all inspection items requested before the analysis operation are rearranged in the order of long measurement time regardless of the type of sample.
- the analysis can be performed sequentially from the item with the long measurement time, and all the requested analysis items of all the samples can be analyzed most efficiently. Even if the blood clotting reaction of a sample is completed in a shorter time than the measurement time, the next test item with the longest measurement time is analyzed to prevent unnecessary time and efficiently. Analysis can continue.
- the automatic analyzer when the blood coagulation reaction of the sample being analyzed is completed earlier than the reaction time expected in advance, the next time without waiting until the expected time elapses.
- Each mechanism operates to use the reaction port for sample analysis.
- the blood coagulation analysis can be carried out continuously with less time loss during the period of no analysis, and the reaction vessel can be used efficiently.
- FIG. 3 is a schematic diagram comparing the relationship between the measurement time in the measurement order determined by the conventional method and the case where the present embodiment is applied.
- 301 A
- 301 B
- 301 C
- Reference numeral 302 denotes an operation during analysis of each sample and a display condition during operation preparation.
- 303 is a timing chart in the measurement order determined according to the conventional example (1), and shows the time until the analysis is completed when the measurement is performed in the requested order.
- 304 is a timing chart in the measurement order determined by the conventional example (2), and shows the time until the analysis is completed when the analysis is performed in order of the long reaction time for each sample.
- 305 is a timing chart in the case where the measurement order is determined according to the present embodiment, and shows the time taken to complete the analysis in consideration of the reaction time for all the inspection items for a plurality of samples exceeding the type.
- Reference numerals 303, 304, and 305 represent the usage statuses of the first to sixth ports of the reaction port 108, respectively.
- the case of analyzing in the measurement order according to the present embodiment was determined by the methods of the conventional example (1) and the conventional example (2). Compared to the case where analysis is performed in the measurement order, it is possible to shorten the time required to complete the analysis required for all inspection items for all samples requested beyond the type of sample.
- the timing chart 304 in the measurement order determined by the technique of the conventional example (2) and the measurement order according to the present embodiment When comparing with the timing chart 305, it was found that the analysis can be completed approximately 60 seconds earlier when the measurement sequence according to this embodiment is applied.
- FIG. 4 is a flowchart for explaining the operation control for determining the measurement order of the inspection items in the automatic analyzer according to the present embodiment (second embodiment).
- a configuration provided with a reaction port that preferentially analyzes a specified inspection item will be described.
- a mechanism for determining a priority port of an inspection item with a short measurement time will be described.
- the present embodiment is not limited to this example, and can be applied to other specified conditions.
- step S401 an item to be measured at the priority port is designated (step S401). This is performed by the user via the operation unit 115 shown in FIG.
- the item measured at the priority port is an inspection item with a measurement time of 1 minute.
- the user can arbitrarily determine under what conditions the measurement is performed at the priority port. it can.
- the measurement time of all items for all samples (here, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes can be set) is sorted in the long order, and then the short measurement time (here In step S402, it is checked whether or not there is an item for which 1 minute is set.
- the number of reaction ports to be preferentially analyzed is assigned to the inspection item with a measurement time of 1 minute (step S404).
- the measurement time is 1 minute when the ratio of inspection items for 1 minute is 15%.
- This priority port preferentially analyzes the test item with the measurement time set to 1 minute as described above, but when there is no test item of 1 minute, or analysis of higher priority items such as emergency samples Can be analyzed using the sixth priority port.
- step S402 If it is determined in step S402 that there is no inspection item with a measurement time of 1 minute, the reaction ports are allocated in the order of longer measurement time as in FIG. 2 (step S406).
- the analysis is performed by re-sorting all the inspection items for all the target samples in order of the measurement time.
- the analysis completion time for all inspection items can be shortened, focusing on the measurement time for each sample, the time until the analysis of one sample is not necessarily shortened. For example, if an inspection item with a measurement time of 1 minute and 5 minutes is requested for one sample, the item with a measurement time of 5 minutes is analyzed at an early stage on the determination mechanism of the analysis order. Inspection items with a measurement time of 1 minute are later analyzed among all analysis items. Therefore, when it is necessary to acquire analysis results for each sample, it may take time from the start of analysis to acquisition.
- PT protothrombin time
- APTT activated partial thromboplastin time
- Fbg fibrinogen
- the measurement time is also different for each inspection item, and although it is an inspection item for the same sample as described above, the analysis timing may be shifted due to the difference in the measurement time of each inspection item. As a result, there arises a problem that the timing at which the results of inspection items requested for the same sample are completed is delayed.
- a priority port for preferentially measuring items with a short measurement time is provided, and control for determining the number of priority ports from the ratio of the number of items with a short measurement time to all inspection items. It has a mechanism. As a result, it is possible to shorten the time required to obtain the results of inspection items having different measurement times requested for the same sample, and to quickly provide the user with the inspection results.
- a priority port is provided for an item (1 minute) whose measurement time is shorter than a predetermined time has been shown.
- the same control mechanism has a long measurement time (for example, 4 minutes and 5 minutes). Etc.) or providing priority ports for specific inspection items.
- FIG. 5 is a schematic diagram comparing the relationship between the measurement time in the measurement order determined by the conventional method and the case where the present embodiment is applied.
- Reference numeral 501 (B) denotes a conventional example (2), which shows a measurement order determined for each sample.
- Reference numeral 501 (C) shows a measurement order determined beyond the type of sample according to this embodiment.
- Reference numeral 503 is a timing chart in the measurement order determined by the conventional example (1), and shows the time until the analysis is completed when measurement is performed in the requested order.
- the measurement order 504 is a timing chart in the measurement order determined by the conventional example (2), and shows the time until the analysis is completed when the analysis is performed in order of the long reaction time for each sample.
- 505 is a timing chart in the case where the measurement order is determined according to the present embodiment, taking into consideration the reaction time for all inspection items for a plurality of samples exceeding the type, and preferentially measuring items with a short measurement time. Indicates the time taken to complete the analysis when the priority port is used.
- Reference numerals 503, 504, and 505 represent the usage statuses of the first to sixth ports of the reaction port 108, respectively.
- the case of analysis in the measurement order according to the present embodiment is more than the case of analysis in the order of request and the measurement order determined by the conventional method.
- the time required to complete the analysis required for all inspection items for all requested samples can be shortened.
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
(装置の全体構成)
図1は、本実施の形態に係る自動分析装置の基本構成を示す。ここでは、自動分析装置の一態様として血液凝固分析を行う装置の例について説明する。
101・・・試料容器
102・・・試料ディスク
103・・・試薬容器
104・・・試薬ディスク
105・・・試料分注機構
106・・・試料分注位置
107・・・反応容器
108・・・反応容器設置部
109・・・反応容器搬送機構
110・・・反応容器ストック部
111・・・反応ポート
112・・・試薬分注機構
113・・・試薬分注機構洗浄機構
114・・・反応容器廃棄部
115・・・操作部
116・・・制御部
117・・・記憶部
118・・・インターフェイス
301、501・・・分析項目例
302、502・・・各試料の分析中の動作、及び動作準備中の表示条件
Claims (12)
- 試料を保持する試料容器と、
試薬を保持する試薬容器と、
前記試料容器から試料を分注する試料分注機構と、
前記試薬容器から試薬を分注する試薬分注機構と、
該試料分注機構から分注された試料と、該試薬分注機構から分注された試薬との混合液を保持する反応容器と、
前記反応容器を設置する複数の反応容器設置部を有し、当該複数の反応容器設置部の各々に設置された、当該混合液が保持されたそれぞれの反応容器に光を照射する光源と、当該光源から照射された光を受光する受光部と、からなる分析部と、
前記試料に関する情報が入力される操作部と、当該入力された情報に基づいて前記分析部を制御する制御部と、を備え、
前記制御部は、
当該操作部から、複数の試料についての情報が入力されると、当該複数の試料について依頼されている分析項目の各々について、予想される反応時間の長さを比較し、
当該予想される反応時間の長い順に、各々の分析項目の分析が実行されるように分析順序を決定し、
当該決定された分析順序に基づいて、前記分析部を制御することを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置において、
前記制御部は、
当該複数の試料について依頼されている分析項目の各々について、予想される反応時間の長さを比較した結果に基づいて、
全ての分析項目に対して、予想される反応時間が予め定めた条件を満たす分析項目の割合を求め、
当該求めた割合に基づいて、当該分析部における複数の反応容器設置部のうち、前記予想される反応時間が予め定めた条件を満たす分析項目を優先して分析する反応容器設置部の個数を求め、
当該求めた個数の反応容器設置部において、前記予想される反応時間が予め定めた条件を満たす分析項目を優先して分析するように前記分析部を制御することを特徴とする自動分析装置。 - 請求項2に記載された自動分析装置において、
当該予め定めた条件は、前記予想される反応時間が予め定めた所定の時間よりも短い分析項目であることを特徴とする自動分析装置。 - 請求項2に記載された自動分析装置において、
当該予め定めた条件は、前記予想される反応時間が予め定めた所定の時間よりも長い分析項目であることを特徴とする自動分析装置。 - 請求項2に記載された自動分析装置において、
当該予め定めた条件は、特定の分析項目であることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置において、
前記制御部は、
当該分析中に、割込みの試料の分析の依頼があった場合には、
当該決定された分析順序にかかわらず、当該割込みの試料の分析を優先して行うように前記分析部を制御することを特徴とする自動分析装置。 - 試料を保持する試料容器と、
試薬を保持する試薬容器と、
前記試料容器から試料を分注する試料分注機構と、
前記試薬容器から試薬を分注する試薬分注機構と、
該試料分注機構から分注された試料と、該試薬分注機構から分注された試薬との混合液を保持する反応容器と、
前記反応容器を設置する複数の反応容器設置部を有し、当該複数の反応容器設置部の各々に設置された、当該混合液が保持されたそれぞれの反応容器に光を照射する光源と、当該光源から照射された光を受光する受光部と、からなる分析部と、
前記試料に関する情報が入力される操作部と、当該入力された情報に基づいて前記分析部を制御する制御部と、を備えた自動分析装置を用いた分析方法において、
前記制御部は、
当該操作部から、複数の試料についての情報が入力されると、当該複数の試料について依頼されている分析項目の各々について、予想される反応時間の長さを比較し、
当該予想される反応時間の長い順に、各々の分析項目の分析が実行されるように分析順序を決定し、
当該決定された分析順序に基づいて、前記分析部を制御することを特徴とする分析方法。 - 請求項7に記載された分析方法において、
前記制御部は、
当該複数の試料について依頼されている分析項目の各々について、予想される反応時間の長さを比較した結果に基づいて、
全ての分析項目に対して、予想される反応時間が予め定めた条件を満たす分析項目の割合を求め、
当該求めた割合に基づいて、当該分析部における複数の反応容器設置部のうち、前記予想される反応時間が予め定めた条件を満たす分析項目を優先して分析する反応容器設置部の個数を求め、
当該求めた個数の反応容器設置部において、前記予想される反応時間が予め定めた条件を満たす分析項目を優先して分析するように前記分析部を制御することを特徴とする分析方法。 - 請求項8に記載された分析方法において、
当該予め定めた条件は、前記予想される反応時間が予め定めた所定の時間よりも短い分析項目であることを特徴とする分析方法。 - 請求項8に記載された分析方法において、
当該予め定めた条件は、前記予想される反応時間が予め定めた所定の時間よりも長い分析項目であることを特徴とする分析方法。 - 請求項8に記載された分析方法において、
当該予め定めた条件は、特定の分析項目であることを特徴とする分析方法。 - 請求項7に記載された分析方法において、
前記制御部は、
当該分析中に、割込みの試料の分析の依頼があった場合には、
当該決定された分析順序にかかわらず、当該割込みの試料の分析を優先して行うように前記分析部を制御することを特徴とする分析方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17750010.5A EP3415920B1 (en) | 2016-02-10 | 2017-01-12 | Automatic analysis device |
JP2017566550A JP6550152B2 (ja) | 2016-02-10 | 2017-01-12 | 自動分析装置 |
CN201780006443.3A CN108700602B (zh) | 2016-02-10 | 2017-01-12 | 自动分析装置 |
US16/072,956 US11073526B2 (en) | 2016-02-10 | 2017-01-12 | Automatic analysis device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016023232 | 2016-02-10 | ||
JP2016-023232 | 2016-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138285A1 true WO2017138285A1 (ja) | 2017-08-17 |
Family
ID=59563671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000702 WO2017138285A1 (ja) | 2016-02-10 | 2017-01-12 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11073526B2 (ja) |
EP (1) | EP3415920B1 (ja) |
JP (1) | JP6550152B2 (ja) |
CN (1) | CN108700602B (ja) |
WO (1) | WO2017138285A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019087367A1 (ja) * | 2017-11-02 | 2019-05-09 | 株式会社島津製作所 | 分析方法、検量線の作成方法及び凝固分析装置 |
WO2021070546A1 (ja) | 2019-10-09 | 2021-04-15 | 株式会社日立ハイテク | 自動分析装置 |
JP2021139784A (ja) * | 2020-03-06 | 2021-09-16 | 株式会社日立ハイテク | 自動分析装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020129537A1 (ja) * | 2018-12-19 | 2020-06-25 | 株式会社日立ハイテク | 自動分析装置、及び分析方法 |
JP7395392B2 (ja) * | 2020-03-13 | 2023-12-11 | 株式会社日立ハイテク | 自動分析装置及び分析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052024A (ja) * | 1990-11-28 | 1993-01-08 | Hitachi Ltd | 液体サンプル用分析方法および分析装置 |
JPH09257804A (ja) * | 1996-03-27 | 1997-10-03 | Hitachi Ltd | 多項目自動分析方法およびその装置 |
JP2001174468A (ja) * | 1999-12-15 | 2001-06-29 | Petroleum Energy Center | 自動試験システム |
JP2010181197A (ja) * | 2009-02-03 | 2010-08-19 | Beckman Coulter Inc | 自動分析装置およびラック搬送方法 |
WO2010117045A1 (ja) * | 2009-04-09 | 2010-10-14 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4448769B2 (ja) | 2004-12-15 | 2010-04-14 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP2010217114A (ja) * | 2009-03-18 | 2010-09-30 | Beckman Coulter Inc | 自動分析装置、多ユニット自動分析装置、および予定分析終了時間算出方法 |
CN102378915B (zh) * | 2009-04-09 | 2014-11-26 | 株式会社日立高新技术 | 自动分析装置以及分注装置 |
JP5337727B2 (ja) * | 2010-01-28 | 2013-11-06 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
JP5599219B2 (ja) * | 2010-04-20 | 2014-10-01 | 株式会社日立ハイテクノロジーズ | 自動分析装置及び自動分析方法 |
JP2013122402A (ja) * | 2011-12-09 | 2013-06-20 | Canon Inc | 検体検査用分析装置 |
-
2017
- 2017-01-12 US US16/072,956 patent/US11073526B2/en active Active
- 2017-01-12 WO PCT/JP2017/000702 patent/WO2017138285A1/ja active Application Filing
- 2017-01-12 CN CN201780006443.3A patent/CN108700602B/zh active Active
- 2017-01-12 EP EP17750010.5A patent/EP3415920B1/en active Active
- 2017-01-12 JP JP2017566550A patent/JP6550152B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052024A (ja) * | 1990-11-28 | 1993-01-08 | Hitachi Ltd | 液体サンプル用分析方法および分析装置 |
JPH09257804A (ja) * | 1996-03-27 | 1997-10-03 | Hitachi Ltd | 多項目自動分析方法およびその装置 |
JP2001174468A (ja) * | 1999-12-15 | 2001-06-29 | Petroleum Energy Center | 自動試験システム |
JP2010181197A (ja) * | 2009-02-03 | 2010-08-19 | Beckman Coulter Inc | 自動分析装置およびラック搬送方法 |
WO2010117045A1 (ja) * | 2009-04-09 | 2010-10-14 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3415920A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019087367A1 (ja) * | 2017-11-02 | 2019-05-09 | 株式会社島津製作所 | 分析方法、検量線の作成方法及び凝固分析装置 |
CN111295590A (zh) * | 2017-11-02 | 2020-06-16 | 株式会社岛津制作所 | 分析方法、校准曲线的制作方法以及凝固分析装置 |
JPWO2019087367A1 (ja) * | 2017-11-02 | 2020-11-12 | 株式会社島津製作所 | 分析方法、検量線の作成方法及び凝固分析装置 |
CN111295590B (zh) * | 2017-11-02 | 2023-07-04 | 株式会社岛津制作所 | 分析方法、校准曲线的制作方法以及凝固分析装置 |
WO2021070546A1 (ja) | 2019-10-09 | 2021-04-15 | 株式会社日立ハイテク | 自動分析装置 |
JP2021139784A (ja) * | 2020-03-06 | 2021-09-16 | 株式会社日立ハイテク | 自動分析装置 |
JP7326189B2 (ja) | 2020-03-06 | 2023-08-15 | 株式会社日立ハイテク | 自動分析装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190033332A1 (en) | 2019-01-31 |
EP3415920B1 (en) | 2021-12-15 |
CN108700602A (zh) | 2018-10-23 |
US11073526B2 (en) | 2021-07-27 |
JP6550152B2 (ja) | 2019-07-31 |
JPWO2017138285A1 (ja) | 2018-12-20 |
EP3415920A1 (en) | 2018-12-19 |
EP3415920A4 (en) | 2019-10-23 |
CN108700602B (zh) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7450656B2 (ja) | 自動分析装置 | |
JP7193564B2 (ja) | 自動分析装置及び自動分析方法 | |
JP6550152B2 (ja) | 自動分析装置 | |
JP6698665B2 (ja) | 自動分析装置 | |
US10684298B2 (en) | Automated analyzer | |
WO2009122993A1 (ja) | 血液凝固分析装置、血液凝固分析方法、及びコンピュータプログラム | |
WO2015098473A1 (ja) | 自動分析装置及び分析方法 | |
US11054433B2 (en) | Automated analyzer and control method for same | |
JPWO2017159359A1 (ja) | 自動分析装置 | |
JP6766155B2 (ja) | 自動分析装置 | |
JP5993737B2 (ja) | 自動分析装置 | |
JP2010122124A (ja) | 自動分析装置 | |
JP6737529B2 (ja) | 自動分析装置 | |
CN110730910A (zh) | 自动分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750010 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017566550 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017750010 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017750010 Country of ref document: EP Effective date: 20180910 |