WO2017136976A1 - 以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法 - Google Patents
以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法 Download PDFInfo
- Publication number
- WO2017136976A1 WO2017136976A1 PCT/CN2016/080181 CN2016080181W WO2017136976A1 WO 2017136976 A1 WO2017136976 A1 WO 2017136976A1 CN 2016080181 W CN2016080181 W CN 2016080181W WO 2017136976 A1 WO2017136976 A1 WO 2017136976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ionic liquid
- carboxylate
- anion
- fullerene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
- C07C51/412—Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/08—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C215/00—Compounds containing amino and hydroxy groups bound to the same carbon skeleton
- C07C215/02—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C215/40—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/06—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having the hydroxy groups esterified by carboxylic acids having the esterifying carboxyl groups bound to hydrogen atoms or to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C219/00—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C219/02—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C219/04—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C219/14—Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C61/00—Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C61/16—Unsaturated compounds
- C07C61/28—Unsaturated compounds polycyclic
- C07C61/29—Unsaturated compounds polycyclic having a carboxyl group bound to a condensed ring system
Definitions
- the present invention relates to the field of novel chemical materials and preparation techniques, and in particular to an ionic liquid having methylene fullerene carboxylic acid as an anion and a preparation method thereof.
- Fullerenes are hollow molecules composed of carbon elements, generally spherical (also known as soccer olefins), or cylindrical or tubular, and are currently used in a wide range of materials, electronics, and nanotechnology. The most common, the easiest to prepare and the most inexpensive is the fullerene spherical C60 molecule. Numerous studies to date have shown that fullerene such as C60 is safe for humans [1][2][3][4]. In recent years, fullerenes have been used as pharmaceutical carriers in the field of medicine [5] [6], as well as reports on their anti-AIDS [7] and neuroprotective effects [8].
- fullerenes are also used in the functional ingredients of cosmetics [9].
- spherical fullerene such as C60 has no polarity, cannot be dissolved in common solvents such as water and ethanol, and can only be dissolved in toluene, chlorobenzene and other toxic chemical solvents, which severely limits the practical application of fullerenes.
- the ways to improve the solubility of fullerenes in water are: 1. physical method of adding cosolvent [10], hydrophilic additive [11] [12] or liposome [13]; 2. introduction of fullerene surface A chemical method in which a hydroxyl group [14] or a carboxyl group [15] [16] forms a fullerene hydrophilic derivative.
- a hydroxyl group [14] or a carboxyl group [15] [16] forms a fullerene hydrophilic derivative.
- the physical methods there is no chemical bond between fullerenes and other molecules, and the essence is still a suspension, which is easily changed by the external environment, resulting in precipitation or flocculation.
- the de-radical effect of the fullerol formed after the introduction of the hydroxyl group is reduced; the fullerene derivative obtained by introducing the carboxyl group is an organic acid solid, and the solubility in water is still not high.
- ionic liquid is a kind of salt substance composed of anion and cation. It can maintain stable liquid state at room temperature, non-toxic and odorless, non-flammable and non-volatile, and has polar and non-polar reagents. Good solubility is a famous green chemical reagent. In particular, depending on the design combination of different cations and anions, ionic liquids can exhibit distinct physicochemical properties that can be applied to different fields. Most ionic liquids on the market today are less biocompatible.
- a quaternary ammonium salt ionic liquid (choline ionic liquid) having a cation of choline or a choline derivative is a well-known ionic liquid with good biocompatibility, and choline is a kind of B vitamin. Its derivative ions are also widely present in humans or foods, have a high degree of biocompatibility, and have potential in replacing traditional toxic and difficult to degrade ionic liquids, and are used as good surfactants and bactericidal agents [17].
- the anions of the currently common choline ionic liquids are usually inorganic acid radicals and the like, and the melting point is high, and most of them are difficult to maintain a liquid state at room temperature, thereby restricting the application of choline ionic liquids in the fields of daily chemicals and medicine. Therefore, the selection of anions has always been the research direction of the development of new ionic liquids with low toxicity and high efficiency.
- Fullerene carboxylate is a large group with less electronegativity, which can effectively reduce the lattice energy of ionic compounds and facilitate the formation of choline ionic liquids. It has great research and application on new choline ionic liquids. help.
- This new type of ionic liquid with methylene fullerene carboxylate as an anion is composed of biocompatible macro-cations and cations. It maintains a stable liquid state at room temperature and can be dissolved in most common solvents.
- the ionic liquid with methylene fullerene carboxylate as an anion is composed of methylene fullerene carboxylate anion and quaternary ammonium cation, specifically (1,2-methylene fullerene C60) a -61 carboxylic acid choline salt or a (1,2-methylene fullerene C60)-61 carboxylate choline derivative salt having the following structure:
- R 1 , R 2 , R 3 , and R 4 are the same or different unsubstituted hydrocarbon group, aryl group, or the same or different substituted hydrocarbon group or aryl group, wherein the substituent may be, but not limited to, a hydroxyl group.
- the present invention provides a method for preparing an ionic liquid having a methylene fullerene carboxylate as an anion, wherein the methylene fullerene carboxylic acid and the quaternary ammonium base are mixed at a molar ratio of 1:1.
- a one-step neutralization reaction is carried out under nitrogen or inert gas protection at room temperature to obtain the cyclopropane fullerene carboxylic acid-based ionic liquid. No third-party reactants, additives or solvents are involved in the reaction.
- the technical scheme adopted by the present invention is: the reaction adopts a solvent-free "one-pot boiling" method, and the methylene fullerene carboxylic acid and the quaternary ammonium base are mixed at a molar ratio of 1:1, protected by dry argon, and at room temperature.
- the magnetic stirring was carried out for 5-10 minutes until no fullerene carboxylic acid powder remained, indicating that the reaction was neutralized completely, and then dried under vacuum to obtain a target ionic liquid having a purity which satisfies the general application requirements.
- the reaction equation is as follows:
- X 1 is selected from one of a hydrogen atom, an acetyl group, a butyryl group, a benzoyl group, a phosphoryl group, and a phosphatidyl group; and X 2 is one selected from the group consisting of a hydrogen atom and a chloromethyl group.
- the present invention provides a novel water-soluble fullerene derivative
- the present invention provides a novel quaternary ammonium salt ionic liquid
- the ionic liquid synthesis method provided by the invention has the advantages of simple mechanism, few steps, no side reaction, high reaction rate and high yield;
- the ionic liquid preparation process provided by the invention has the advantages of simple and safe operation, low equipment requirement, no solvent, mild reaction conditions, and high purity of the obtained target ionic liquid.
- the experimental materials, reagents and the like used in the following examples can be obtained by a commercial route or a known experimental method.
- the experimental device is mainly a three-neck round bottom flask, a magnetic stirrer, and a vacuum drying device. Accurately weigh 7.8mg (0.01mmol) of (1,2-methylene fullerene C60)-61 carboxylic acid powder and choline hydroxide liquid 1.2mg (0.01mmol), at room temperature and dry argon protection The mixture was stirred and stirred for 10 minutes, and the reaction was stopped. The solid solution was detected in the reaction system. If there was any residue, the crude product was filtered through a quartz fiber filter to remove the residual powder, and then transferred to a low temperature vacuum drying for 24 hours to remove water, and it was obtained at room temperature. Dark yellow liquid, yield 96.4%.
- the resulting product was tested by Karl Fischer moisture tester and the moisture was below 0.05 ⁇ .
- the obtained product can be dissolved in water, ethanol, n-propanol, isopropanol, n-butanol and acetic acid in any ratio, and can be dissolved in methanol, toluene, acetone, chloroform, dimethylformamide and acetonitrile in a volume ratio of 1:5.
- benzene and n-hexane insoluble in ether.
- the reaction equation is:
- the resulting product was (1,2-methylene fullerene C60)-61 carboxylic acid choline salt.
- the experimental device is mainly a three-neck round bottom flask, a magnetic stirrer, and a vacuum drying device. Accurately weigh 7.8 mg (0.01 mmol) of (1,2-methylene fullerene C60)-61 carboxylic acid powder and 1.6 mg (0.01 mmol) of acetylcholine hydroxide liquid under the protection of room temperature and dry argon. Mix and stir for 10 minutes, stop the reaction, check whether there is any solid powder remaining in the reaction system. If there is any residue, filter the crude product with quartz fiber filter paper to remove the residual powder, then transfer to a low temperature vacuum drying for 24 hours to remove water, and obtain a shallow at room temperature. Yellow liquid, yield 95.8%.
- the resulting product was tested on a Karl Fischer moisture tester with a moisture content below 0.05 ⁇ .
- the obtained product can be dissolved in water, ethanol, n-propanol, isopropanol, n-butanol and acetic acid in any ratio, and can be dissolved in methanol, toluene, acetone, chloroform, dimethylformamide and acetonitrile in a volume ratio of 1:5.
- benzene and n-hexane insoluble in ether.
- the reaction equation is:
- the experimental device is mainly a three-neck round bottom flask, a magnetic stirrer, and a vacuum drying device. Accurately weigh 7.8 mg (0.01 mmol) of (1,2-methylene fullerene C60)-61 carboxylic acid powder and benzoylcholine hydroxide 2.2 mg (0.01 mmol) at room temperature and dry argon Under the protection, mix and stir for 10 minutes, stop the reaction, check whether there is any solid powder remaining in the reaction system. If there is any residue, filter the crude product with quartz fiber filter paper to remove the residual powder, then transfer to low temperature vacuum drying for 24 hours to remove water, room temperature. A pale yellow liquid was obtained in a yield of 95.4%.
- the resulting product was tested on a Karl Fischer moisture tester with a moisture content below 0.05 ⁇ .
- the obtained product can be dissolved in water, ethanol, n-propanol, isopropanol, n-butanol and acetic acid in any ratio, and can be dissolved in methanol, toluene, acetone, chloroform, dimethylformamide and acetonitrile in a volume ratio of 1:5.
- benzene and n-hexane insoluble in ether.
- the reaction equation is:
- the obtained product was (1,2-methylene fullerene C60)-61 benzoylcholine salt.
- the experimental device is mainly a three-neck round bottom flask, a magnetic stirrer, and a vacuum drying device. Accurately weigh 7.8 mg (0.01 mmol) of (1,2-methylene fullerene C60)-61 carboxylic acid powder with 1.7 mg (0.01 mmol) of methylcholine chloride, at room temperature and dry argon Mix and stir for 10 minutes under the protection of gas, stop the reaction, check whether there is any solid powder remaining in the reaction system. If there is any residue, filter the crude product with quartz fiber filter paper to remove the residual powder, then dry it under vacuum for 24 hours to remove water. A clear viscous liquid was obtained in a yield of 94.0%.
- the resulting product was tested on a Karl Fischer moisture tester with a moisture content below 0.05 ⁇ .
- the obtained product can be dissolved in water, ethanol, n-propanol, isopropanol, n-butanol and acetic acid in any ratio, and can be dissolved in methanol, toluene, acetone, chloroform, dimethylformamide and acetonitrile in a volume ratio of 1:5.
- benzene and n-hexane insoluble in ether.
- the reaction equation is:
- the resulting product was (1,2-methylene fullerene C60)-61 carboxylic acid methylcholine salt.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
一种以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法,所述离子液体由亚甲基富勒烯羧酸根阴离子和季铵阳离子构成;所述制备方法为:将亚甲基富勒烯羧酸与季铵碱在惰性气体保护下混合进行中和反应,所得产物做干燥去水处理后即制得所述的亚甲基富勒烯羧酸类离子液体;该亚甲基富勒烯羧酸类离子液体不仅具有一般室温离子液体的特性,也具备水溶性富勒烯和季铵类化合物的特性,且制备过程高效快捷,简单清洁,产品纯度高,在生物医药和日化领域都具有广阔的应用前景。
Description
本发明涉及新型化学材料及制备技术领域,具体地说,涉及以亚甲基富勒烯羧酸为阴离子的离子液体及其制备方法。
富勒烯是一种由碳元素所组成的中空分子,一般为球形(也称为足球烯),也有柱形或管形,目前在材料学,电子学和纳米技术方面应用广泛。其中最常见,最容易制备和最廉价的是富勒烯为球形的C60分子。至今为止的大量研究表明,C60等富勒烯对人体是安全的[1][2][3][4]。近年来,富勒烯被作为药物载体运用于医药领域[5][6],也有对其衍生物的抗艾滋[7]和神经保护作用[8]的报道。同时,得益于富勒烯对自由基的亲和能力,富勒烯也被用于化妆品的功能成分[9]。但C60等球形富勒烯并没有极性,不能溶于水和乙醇等常见溶剂,只能溶于甲苯,氯苯等有毒化学溶剂,严重限制了富勒烯的实际运用。
目前,增进富勒烯在水中溶解度的办法有:1.加入助溶剂[10],亲水添加剂[11][12]或脂质体[13]的物理方法;2.在富勒烯表面引入羟基[14]或羧基[15][16]等基团形成富勒烯亲水衍生物的化学方法。其中物理方法中,富勒烯与其他分子之间无化学键连接,本质依然是悬浊液,容易受外在环境变化,导致沉淀或絮凝。而化学方法中,引入的羟基后形成的富勒醇的去自由基效果有所降低;引入羧基所得的富勒烯衍生物为有机酸固体,在水中的溶解度依然不高。
室温离子液体,通常简称为离子液体,是一类由阴阳离子构成的盐类物质,室温下能保持稳定液态存在,无毒无臭,不易燃不挥发,在极性、非极性试剂都有较好的溶解度,是著名的绿色化学试剂。特别地,依据不同阳离子和阴离子的设计组合,离子液体可以显现出迥异的特殊物理化学性质,从而被应用于不同领域。现有市场上的大多数离子液体的生物相容性较差。阳离子为胆碱或胆碱衍生物的季铵盐类离子液体(胆碱类离子液体)是目前公知的少数生物相容性较好的离子液体,其中的胆碱为B族维生素的一种,其衍生物离子也广泛存在于人体或食物中,具有高度的生物相容性,在替代传统有毒难降解离子液体方面具有潜力,被用作良好的表面活性剂和杀菌试剂[17]。然而,目前常见的胆碱类离子液体的阴离子通常为无机酸根等,熔点较高,大多数很难在室温下保持液态,从而制约了胆碱类离子液体在日化和医药领域的应用。因此,对阴离子的选用一直是低毒高效的新型离子液体开发的研究方向。富勒烯羧酸根为具有电负性较小的大型基团,能有效降低离子化合物的晶格能,有利于胆碱离子液体的形成,对新型胆碱类离子液体的研发与应用有很大帮助。
[1]Lalwani,G.,et al.Nano Life 2013,03(03),1342003.
[2]Baati,T.,et al.Biomaterials 2012,33(19),4936-4946.
[3]Gharbi,N.,et al.Nano Lett.2005,5(12),2578-2585.
[4]Moussa,F.,et al.Fuller.Sci.Technol.1996,4(1),21-29.
[5]Labille,J.,et al.Springer Netherlands:Dordrecht,2012;pp 898-911.
[6]Montellano,A.,et al.Nanoscale 2011,3(10),4035.
[7]Bakry,R.,et al.International Journal of Nanomedicine.2007,pp 639-649.
[8]Yamada,T.,et al.J.Nanosci.Nanotechnol.2008,8(8),3973-3980.
[9]Lens,M.Recent Pat.Biotechnol.2011,5(2),67-73.
[10]Scrivens,W.A.,et al.J.Am.Chem.Soc.1994,116,4517-4518.
[11]Ito,S.,et al.,JP 2005047858 A.
[12]Agnes B.-B.,et al.J.Chem.Soc.Perkin Trans.2001,191-196.
[13]Williams R.M.,et al.Recl.Trav.Chim.Pays-Bas.1996,115,72-76.
[14]Djordjevic,A.,et al.J.Nanomater.2015,2015,1-15.
[15]Tokuyama,et al.J.Am.Chem.Soc.1993,115,7918-7919.
[16]Kuang,C-X,et al.CN 101475520 B.
[17]Weaver,K.D.,et al.Green Chem.2010,12(3),507.
发明内容:
本发明的目的在于提出一类新型的以亚甲基富勒烯羧酸根为阴离子的离子液体,并提供这种离子液体的制备方法。这类新型的以亚甲基富勒烯羧酸根为阴离子的离子液体由生物相容性佳的阴阳离子构成,在室温下保持稳定液态,可以与溶于大多数常用溶剂,极大拓展了富勒烯类衍生物在医药和化学领域的应用空间。
本发明提出的以亚甲基富勒烯羧酸根为阴离子的离子液体,由亚甲基富勒烯羧酸根阴离子和季铵阳离子构成,具体为(1,2-亚甲基富勒烯C60)-61羧酸胆碱盐或(1,2-亚甲基富勒烯C60)-61羧酸胆碱衍生物盐,其具有如下结构:
R1、R2、R3、R4为相同或不同不带取代基的烃基、芳基,或者相同或不同带有取代基的烃基、芳基,其中取代基可以是但不限定于羟基、醛基、卤基、胺基、酰基、酯基、苄基,以及相应基团的衍生物。
作为本发明的一方面,本发明提出的以亚甲基富勒烯羧酸根为阴离子的离子液体的制备方法,其中亚甲基富勒烯羧酸和季铵碱以1∶1的摩尔比混合,在氮气或惰性气体保护和室温下,进行一步中和反应,得到所述环丙烷富勒烯羧酸类离子液体。无第三方反应物、添加剂或溶剂参与反应。
本实发明所采用的技术方案是:反应采用无溶剂“一锅煮”方法,将亚甲基富勒烯羧酸与季铵碱以1∶1摩尔比混合,以干燥的氩气保护,并在室温下磁性搅拌5-10分钟,至无富勒烯羧酸粉末残留,显示反应中和完全,然后真空干燥,得到纯度能够满足一般应用要求的目标离子液体。其反应方程式如下:
X1选自氢原子、乙酰基、丁酰基、苯甲酰基、磷酰基、磷脂酰基中的一种;X2选自氢原子、氯甲基中的一种。
本发明提供的以亚甲基富勒烯羧酸根为阴离子的离子液体及其制备方法,和现有技术相比,具有如下创新与优势:
1.本发明提供一种新型的水溶性富勒烯衍生物;
2.本发明提供一种新型的季铵盐类离子液体;
3.本发明提供的离子液体合成方法机理简单,步骤少,无副反应,反应速率和产率高;
4.本发明提供的离子液体制备工艺操作简便安全,设备要求低,无需溶剂,反应条件温和,所得目标离子液体纯度高。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所使用的实验材料、试剂等均可通过商业途径或已知实验方法获得。
实施例1
实验装置主要是三口圆底烧瓶,磁力搅拌器,真空干燥装置。精确称量7.8mg(0.01mmol)的(1,2-亚甲基富勒烯C60)-61羧酸粉末与氢氧化胆碱液体1.2mg(0.01mmol),在室温条件和干燥氩气的保护下混合并搅拌10分钟,停止反应,检测反应体系中是否有固体粉末残留,若有残留,将粗产品用石英纤维滤纸过滤除去残余粉末,然后移至低温真空干燥24小时去除水分,室温下得到深黄色液体,收率96.4%。在所得产物以卡尔费休水分测试仪检测,水分低于0.05‰。所得产物可以任意比例溶于水、乙醇、正丙醇、异丙醇、正丁醇和乙酸,可以体积比1∶5溶于甲醇、甲苯、丙酮、氯仿、二甲基甲酰胺和乙腈,微溶于苯和正己烷,不溶于乙醚。反应方程式为:
所得产品为(1,2-亚甲基富勒烯C60)-61羧酸胆碱盐。
ESI质谱的m/z=777.14,与亚甲基富勒烯羧酸阴离子(M-)匹配;ESI质谱的m/z=104.13,与胆碱阳离子(M+)匹配。
实施例2
实验装置主要是三口圆底烧瓶,磁力搅拌器,真空干燥装置。精确称量7.8mg(0.01mmol)的(1,2-亚甲基富勒烯C60)-61羧酸粉末与氢氧化乙酰胆碱液体1.6mg(0.01mmol),在室温条件和干燥氩气的保护下混合并搅拌10分钟,停止反应,检测反应体系中是否有固体粉末残留,若有残留,将粗产品用石英纤维滤纸过滤除去残余粉末,然后移至低温真空干燥24小时去除水分,室温下得到浅黄色液体,收率95.8%。所得产物以卡尔费休水分测试仪检测,水分低于0.05‰。所得产物可以任意比例溶于水、乙醇、正丙醇、异丙醇、正丁醇和乙酸,可以体积比1∶5溶于甲醇、甲苯、丙酮、氯仿、二甲基甲酰胺和乙腈,微溶于苯和正己烷,不溶于乙醚。反应方程式为:
所得产品为(1,2-亚甲基富勒烯C60)-61羧酸乙酰胆碱盐。
ESI质谱的m/z=777.14,与亚甲基富勒烯羧酸阴离子(M-)匹配;ESI质谱的m/z=146.15,与乙酰胆碱阳离子(M+)匹配。
实施例3
实验装置主要是三口圆底烧瓶,磁力搅拌器,真空干燥装置。精确称量7.8mg(0.01mmol)的(1,2-亚甲基富勒烯C60)-61羧酸粉末与氢氧化苯甲酰胆碱2.2mg(0.01mmol),在室温条件和干燥氩气的保护下混合并搅拌10分钟,停止反应,检测反应体系中是否有固体粉末残留,若有残留,将粗产品用石英纤维滤纸过滤除去残余粉末,然后移至低温真空干燥24小时去除水分,室温下得到浅黄色液体,收率95.4%。所得产物以卡尔费休水分测试仪检测,水分低于0.05‰。所得产物可以任意比例溶于水、乙醇、正丙醇、异丙醇、正丁醇和乙酸,可以体积比1∶5溶于甲醇、甲苯、丙酮、氯仿、二甲基甲酰胺和乙腈,微溶于苯和正己烷,不溶于乙醚。反应方程式为:
所得产品为(1,2-亚甲基富勒烯C60)-61羧酸苯甲酰胆碱盐。
ESI质谱的m/z=777.14,与亚甲基富勒烯羧酸阴离子(M-)匹配;ESI质谱的m/z=208.14,与苯甲酰胆碱阳离子(M+)匹配。
实施例4
实验装置主要是三口圆底烧瓶,磁力搅拌器,真空干燥装置。精确称量7.8mg(0.01mmol)的(1,2-亚甲基富勒烯C60)-61羧酸粉末与氢氧化氯化甲基胆碱1.7mg(0.01mmol),在室温条件和干燥氩气的保护下混合并搅拌10分钟,停止反应,检测反应体系中是否有固体粉末残留,若有残留,将粗产品用石英纤维滤纸过滤除去残余粉末,然后低温真空干燥24小时去除水分,室温下得到透明粘稠液体,收率94.0%。所得产物以卡尔费休水分测试仪检测,水分低于0.05‰。所得产物可以任意比例溶于水、乙醇、正丙醇、异丙醇、正丁醇和乙酸,可以体积比1∶5溶于甲醇、甲苯、丙酮、氯仿、二甲基甲酰胺和乙腈,微溶于苯和正己烷,不溶于乙醚。反应方程式为:
所得产品为(1,2-亚甲基富勒烯C60)-61羧酸氯化甲基胆碱盐。
ESI质谱的m/z=777.14,与亚甲基富勒烯羧酸阴离子(M-)匹配;ESI质谱的m/z=152.07,与氯化甲基胆碱阳离子(M+)匹配。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均包括在本发明的保护范围和公开范围之内。
Claims (7)
- 根据权利要求2所述的离子液体,其特征在于,所述的取代基包括羟基、酰基、醛基,卤基、胺基、酯基、苄基、杂环基,以及相应基团的衍生物。
- 以亚甲基富勒烯羧酸根为阴离子的离子液体的制备方法,包括如下步骤:(1)将亚甲基富勒烯羧酸和季铵碱以1∶1摩尔比在氮气或惰性气体保护和室温下反应;(2)将经由步骤(1)所得的液体以气体吹干或真空干燥的方式做去水处理,得到以亚甲基富勒烯羧酸根为阴离子的离子液体。
- 根据权利要求5所述的制备方法,其特征在于,所述的取代基包括羟基、酰基、醛基,卤基、胺基、酯基、苄基、杂环基,以及相应基团的衍生物。
- 根据权利要求4所述的制备方法,其特征在于,所述的气体包括干燥的氮气和干燥的惰性气体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610084767.6 | 2016-02-14 | ||
CN201610084767.6A CN105646186B (zh) | 2016-02-14 | 2016-02-14 | 以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017136976A1 true WO2017136976A1 (zh) | 2017-08-17 |
Family
ID=56488414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/080181 WO2017136976A1 (zh) | 2016-02-14 | 2016-04-25 | 以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105646186B (zh) |
WO (1) | WO2017136976A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107789208B (zh) * | 2016-08-30 | 2020-10-09 | 北京福纳康生物技术有限公司 | 头皮头发养护剂 |
US11261395B2 (en) * | 2018-06-12 | 2022-03-01 | Showa Denko K.K. | Fullerene compound, lubricant for magnetic recording medium, and magnetic recording medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010270071A (ja) * | 2009-05-22 | 2010-12-02 | Maeda Kazumi | イオン液体用カチオン原料及びその製造方法 |
CN101948434A (zh) * | 2010-09-29 | 2011-01-19 | 彩虹集团公司 | 一种手性酪氨酸根离子液体 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101985354A (zh) * | 2010-09-21 | 2011-03-16 | 中国科学院长春应用化学研究所 | 一种离子液体功能化的石墨烯材料的制备方法 |
CN102760574B (zh) * | 2011-04-27 | 2015-08-26 | 海洋王照明科技股份有限公司 | 一种双电层电容器电解液以及使用该电解液的双电层电容器 |
-
2016
- 2016-02-14 CN CN201610084767.6A patent/CN105646186B/zh active Active
- 2016-04-25 WO PCT/CN2016/080181 patent/WO2017136976A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010270071A (ja) * | 2009-05-22 | 2010-12-02 | Maeda Kazumi | イオン液体用カチオン原料及びその製造方法 |
CN101948434A (zh) * | 2010-09-29 | 2011-01-19 | 彩虹集团公司 | 一种手性酪氨酸根离子液体 |
Non-Patent Citations (1)
Title |
---|
RAFAEL M. KRICK CALDERON ET AL.: "Enhancing Molecular Recognition in Electron Donor Acceptor Hybrids via Cooperativity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136, no. 32, 11 July 2014 (2014-07-11), pages 11437, XP055405914 * |
Also Published As
Publication number | Publication date |
---|---|
CN105646186A (zh) | 2016-06-08 |
CN105646186B (zh) | 2018-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheng et al. | Multi-targeting exploration of new 2-aminothiazolyl quinolones: Synthesis, antimicrobial evaluation, interaction with DNA, combination with topoisomerase IV and penetrability into cells | |
Díaz-Moscoso et al. | Insights in cellular uptake mechanisms of pDNA–polycationic amphiphilic cyclodextrin nanoparticles (CDplexes) | |
Díaz‐Moscoso et al. | Polycationic amphiphilic cyclodextrins for gene delivery: synthesis and effect of structural modifications on plasmid DNA complex stability, cytotoxicity, and gene expression | |
Kornev et al. | Facile preparation of amine and amino acid adducts of [60] fullerene using chlorofullerene C 60 Cl 6 as a precursor | |
Florio et al. | Comparative evaluation of antimicrobial activity of different types of ionic liquids | |
Cayuela et al. | Fluorescent carbon dot–molecular salt hydrogels | |
Kaur et al. | Metallovesicles as smart nanoreactors for green catalytic synthesis of benzimidazole derivatives in water | |
Iannazzo et al. | β-Cyclodextrin-grafted on multiwalled carbon nanotubes as versatile nanoplatform for entrapment of guanine-based drugs | |
EP1894973B1 (en) | Process for producing pvp-fullerene complex and aqueous solution thereof | |
JP2007513977A (ja) | ラジカル・スカベンジャーとして有用な高フラーレン | |
US10100131B2 (en) | Chemical pulping of chitinous biomass for chitin | |
Jindal | Cyclodextrin mediated controlled release of edaravone from pH-responsive sodium alginate and chitosan based nanocomposites | |
WO2017136976A1 (zh) | 以亚甲基富勒烯羧酸根为阴离子的离子液体及制备方法 | |
Rasheed et al. | Synthesis and pharmacological evaluation of mutual prodrugs of aceclofenac with quercetin, vanillin and L-tryptophan as gastrosparing NSAIDS | |
Zhang et al. | Construction of cinnamic acids derived β-cyclodextrins and their emodin-based inclusions with enhanced water solubility, excellent antioxidant and antibacterial activities | |
US8440641B2 (en) | Phthalocyanine salt formulations | |
Das et al. | Physicochemical investigations of amino acid ionic liquid based inclusion complex probed by spectral and molecular docking techniques | |
Mahfouz et al. | Metronidazole twin ester prodrugs: synthesis, physicochemical properties, hydrolysis kinetics and antigiardial activity | |
Guan et al. | Tris‐Stabilized MoS2 Nanosheets with Robust Dispersibility and Facile Surface Functionalization | |
Li et al. | Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors | |
Cabrera-Quiñones et al. | Mono-Dendronized β-Cyclodextrin Derivatives as Multitasking Containers for Curcumin. Impacting Its Solubility, Loading, and Tautomeric Form | |
RU2619934C2 (ru) | Гидрофильный конъюгат производного крахмала и 2,6-диизоборнил-4-метилфенола и способ его получения | |
Shakurova et al. | One-pot synthesis of quaternary pyridinium salts of lupane triterpenoids and their antimicrobial properties | |
Magadla et al. | Enhanced photodynamic antimicrobial activity of surface modified SiNPs doped with zinc (II) phthalocyanines: The effect of antimicrobial ampicillin and extra charges from a sultone | |
WO2014027873A1 (fr) | Préparation de nouveaux bio-composites chitosan - argile modifies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16889704 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16889704 Country of ref document: EP Kind code of ref document: A1 |