WO2017135561A1 - 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법 - Google Patents

내화학성 및 방수성이 우수한 맥반석 판재의 제조방법 Download PDF

Info

Publication number
WO2017135561A1
WO2017135561A1 PCT/KR2016/014496 KR2016014496W WO2017135561A1 WO 2017135561 A1 WO2017135561 A1 WO 2017135561A1 KR 2016014496 W KR2016014496 W KR 2016014496W WO 2017135561 A1 WO2017135561 A1 WO 2017135561A1
Authority
WO
WIPO (PCT)
Prior art keywords
glaze
elvan
weight
plate
parts
Prior art date
Application number
PCT/KR2016/014496
Other languages
English (en)
French (fr)
Inventor
김숙자
Original Assignee
세진산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세진산업 주식회사 filed Critical 세진산업 주식회사
Publication of WO2017135561A1 publication Critical patent/WO2017135561A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres

Definitions

  • the present invention relates to a method for producing a bar stone plate material excellent in chemical resistance and water resistance.
  • Elvanite is a rock belonging to the rock, and it is known as a rock that can be used as a toxic metal remover because it is made of porous and has strong adsorption, and contains about 25,000 kinds of inorganic salts and exchanges ions with heavy metals. have.
  • Patent Document 1 discloses an interior and exterior building material and a method for manufacturing the same using elvan, which classify the elvan and classify it into biotite, white mica and brown mica, and the biotite, white mica and brown mica classified in the step.
  • the desired mica is crushed to classify the particles into more than 0.6mm for white mica, 0.6mm or less for biotite, and 3 to 6mm for brown mica, 0.6mm or more of white mica and 0.6mm or less classified in the above steps.
  • Patent Document 2 discloses a method for manufacturing a building finishing material using elvan, ocher and salt, which is mixed with elvan, ocher and salt to suppress the far-infrared radiation caused by elvan and ocher and the propagation of microorganisms by the components of salt. It can be composed of bricks and plastering materials with excellent humidity control and antimicrobial effect by its ability to finish. If you finish the inner wall of grain warehouse or use it as flooring material, you can use 25 ⁇ 50% freshness of food such as grains. It is to improve the.
  • one aspect of the present invention is to provide a method for producing an elbow plate for building interior and exterior materials excellent in chemical resistance and water resistance.
  • Method for producing a ganban stone plate according to an embodiment of the present invention for achieving the above point is the first drying step of drying the ganban stone plate at 50 to 80 °C for 1 to 3 hours; 15-20 parts by weight of methyl-triethoxysilane (MTEOS) or 3-glycidyloxylpropyl trimethoxysilane (GPTMS) on the surface of the first dried elvan plate 12-15 parts by weight of ⁇ -Aminopropyl Triethoxysilane, 7-10 parts by weight of isopropanol, 23-28 parts by weight of zeolite, 15-20 parts by weight of silica sol
  • the zeolite is clinoptilolite (clinoptilolite), analsim (analcime), chebazite (morbaite), mordenite (mordenite), Erio
  • clinoptilolite clinoptilolite
  • analsim analcime
  • chebazite chebazite
  • mordenite mordenite
  • Erio One or more may be selected from the group consisting of erionite, heulandite, phillipsite, and ferrienrite.
  • the colored metal ion pigment is iron chloride (FeCl2), zirconium chloride (ZrCl 2 ), manganese chloride (MnCl 2 ), chromium chloride (CrCl 2 ), And cobalt chloride (CoCl 2 ).
  • the method of manufacturing the elvan plate according to another embodiment of the present invention may further include a second drying step of drying the elvan plate at 50 to 80 ° C. for 1 to 3 hours after the third coating step.
  • the method for manufacturing the elvan plate according to another embodiment of the present invention may further include a firing step of heating the elvan plate to a temperature of 650 to 1,150 ° C. after the second drying step.
  • the manufacturing method of the elvan plate can be improved by maintaining the intrinsic properties of the elvan plate and improving its chemical resistance and water resistance by glazing the surface of the elvan plate at a relatively low temperature. It has a very good advantage to give color.
  • FIG. 1 is a process diagram schematically showing a manufacturing step of the elvan plate material according to the present invention.
  • the present invention relates to a manufacturing method of elvan plate which can improve the chemical resistance and water resistance of the elvan plate used in a variety of architectural and interior interior and exterior materials and impart a uniform color to the surface of the elvan plate. It is characterized by using a permeable low temperature glaze that can be treated on the surface of the elvan plate at room temperature conditions of 30 °C.
  • Elvan has been used in a variety of interior and exterior materials for construction and interior due to its various effects.
  • it is a board material due to air pollution due to acid rain, wind, yellow dust, ultraviolet rays, and environmental destruction.
  • the surface had a disadvantage such as being easily corroded.
  • the ganban stone plate as a built-in finishing material, such as a public sauna facilities, due to the characteristics of ganban stone weak to moisture, mold and the like easily grow inside the ganban stone has a problem that the stain on the surface of the ganban plate.
  • the present inventors have developed a novel method for processing the elvan plate, which can solve the above-mentioned problems with the conventional elvan plate plate.
  • the elvan plate has been processed using the method for producing the elvan plate.
  • the bar stone plate contains a certain amount of water
  • the method for producing bar stone plate to be used in the present invention first undergoes a process of first drying the natural bar stone plate.
  • the step of cutting the bar stone plate to a predetermined size may be additionally roughened, and the cutting area of the bar plate stone plate may be varied according to the purpose of use of the plate.
  • the thickness of the plate may be variously formed to suit the purpose of use of the plate in the range of 0.5 to 5 cm.
  • the scope of the present invention is not limited to the area and thickness of the elvan plate.
  • the reason for the first drying step is to allow the glaze to effectively penetrate into the gangue plate through the first to second coating steps using various glazes as described below.
  • the first drying step may be typically performed for 1 to 3 hours at a temperature of 50 to 80 °C. If the primary drying temperature is too low, the drying time is relatively long and sufficient moisture is not removed. Therefore, the glaze coating step described below cannot be efficiently performed. If the primary drying temperature is too high, the surface of the elvan is damaged. There is concern.
  • the elvan plate is ready to effectively penetrate by applying a variety of permeable low-temperature glaze to be described later, the permeable low-temperature glaze is carried out through three steps to be described later depending on the type.
  • the first coating step of applying the first glaze can be performed at room temperature conditions. Therefore, there is an advantage that the application of glaze is very easy.
  • the first glaze is 15 to 20 parts by weight of methyl-triethoxysilane (MTEOS) or 3-glycidyloxylpropyl trimethoxysilane (GPTMS), ⁇ -aminopropyl tri 12 to 15 parts by weight of ⁇ -Aminopropyl Triethoxysilane, 7 to 10 parts by weight of isopropanol, 23 to 28 parts by weight of zeolite, 15 to 20 parts by weight of silica sol, and frit ) 8 to 12 parts by weight.
  • MTEOS methyl-triethoxysilane
  • GPSTMS 3-glycidyloxylpropyl trimethoxysilane
  • ⁇ -aminopropyl tri 12 to 15 parts by weight of ⁇ -Aminopropyl Triethoxysilane 7 to 10 parts by weight of isopropanol, 23 to 28 parts by weight of zeolite, 15 to 20 parts by weight of silica sol, and frit ) 8 to 12 parts
  • the first glaze serves to impart chemical resistance and water resistance to the elvan plate.
  • the first glaze is first mixed with 15 to 20 parts by weight of methyl-triethoxysilane or 3-glycidyloxypropyltrimethoxysilane and 12 to 15 parts by weight of ⁇ -aminopropyltriethoxysilane evenly, After the addition of 7 to 10 parts by weight of isopropanol and 23 to 28 parts by weight of pulverized zeolite were added to the silane mixture thus mixed, followed by stirring while heating to a temperature of 50 to 70 °C, 15 to 20 parts by weight of silica sol and frit 8 It is possible to prepare by dropping to 12 parts by weight to perform further stirring.
  • the pulverized zeolites are clinoptilolite, analsimime, chabazite, mordenite, erionite, helandite, philipsite It is possible to select one or more from the group consisting of phillipsite, and ferrienrite.
  • the first glaze penetrates deeply and evenly into the interior of the elvan plate having undergone the first coating process at room temperature using the first glaze.
  • the first coating step using the first glaze may be performed by applying 5 to 8 m 2 of the elvan plate material per 1 L of the first glaze.
  • the first coating step using the first glaze may be performed by spray spraying using a spray gun that is typically used for applying the glaze, but may also use various coating methods commonly used in the related art. It is possible, and the scope of the present invention is not limited to such an application method.
  • the second coating step using the second glaze is performed to give various colors to the elvan, and at the same time provide additional waterproofing and chemical resistance.
  • the second glaze may include 4 to 7 parts by weight of silica sol, titania, or alumina sol and 5 to 10 parts by weight of the colored metal ion pigment.
  • the colored metal ion pigment may be selected from the group consisting of iron chloride (FeCl 2), zirconium chloride (ZrCl 2 ), manganese chloride (MnCl 2 ), chromium chloride (CrCl 2 ), and cobalt chloride (CoCl 2 ). Do.
  • the second coating step of applying the second glaze may also be performed at room temperature. Therefore, the application of the second glaze is also very easy advantage.
  • the second coating step using the second glaze can be performed by applying 8 to 10.5 m 2 of elvan plate material per 1 L of the second glaze.
  • the second coating step using the second glaze may be performed by spray spraying using a spray gun that is typically used for applying the glaze, but may also use various coating methods commonly used in the related art. It is possible, and the scope of the present invention is not limited to such an application method.
  • the elvan plate is subjected to a third coating step of applying a third glaze including 3 to 5 parts by weight of water-soluble potassium methylsilicone.
  • the third glaze used in the third coating step serves to give particularly excellent waterproofing and chemical resistance to the elvan plate.
  • the third coating step using the third glaze can be carried out by applying 16 to 18 m 2 of the barbed rock plate per 1 L of the third glaze.
  • the elvan plate having undergone the first to third coating steps has a surface water repellency of about 100 by the spray method.
  • the drying and baking steps may be further performed.
  • the second drying step performed after the third coating step may be performed through a process of drying the glaze rock plate for which glaze coating is completed at 50 to 80 ° C. for 1 to 3 hours, and undergoing the second drying step.
  • the glaze penetrates evenly into the elvan plate to penetrate deeper into the elvan rock particles, thereby helping to stably position the elvan.
  • this secondary drying step serves to further stabilize the permeability low-temperature glaze color by drying the low-temperature glaze penetrated into the outer surface and the inside of the ganban stone processed stone completed the coloring process through the first to third coating step. Done.
  • the first glaze, the second glaze, and the third glaze are stably infiltrated in the interior of the elvan, which is roughly subjected to the second drying step, so that the infiltrated glaze component can stably exhibit chemical resistance and water resistance.
  • the following firing steps In order to undergo the following firing steps.
  • the firing step may be performed after the secondary drying step, it may be carried out by heating the elvan plate to a temperature of 650 to 1,150 °C.
  • Table 1 shows the physicochemical change stages of various compounds used in the preparation method of elvan according to the present invention for each temperature.
  • the silane mixture thus mixed Isopropanol and finely ground zeolite were further added to the mixture and stirred while heating to a temperature of about 60 ° C., and silica sol and frit were added dropwise thereto to prepare a first glaze, and silica sol, titania, or alumina sol and colored metal ion pigments.
  • a second glaze by mixing, using a water-soluble potassium methyl silicon to prepare a third glaze.
  • Eight ganban stone plates having a width ⁇ length ⁇ thickness of 1m ⁇ 1m ⁇ 3cm were prepared and dried at a temperature of about 60 ° C. for about 1 hour and 30 minutes.
  • 200 ml of the first glaze, 100 ml of the second glaze, and 60 ml of the third glaze prepared according to the present invention were sprayed sequentially, and then dried at a temperature of about 60 ° C. for about 1 hour and 30 minutes, and then at a temperature of about 800 ° C. It was calcined for about 30 minutes to prepare an elvan plate according to Comparative Examples 1 to 8.
  • Color uniformity was tested using the ganban stone plates prepared according to Examples 1 to 8 and Comparative Examples 1 to 8, and the results are shown in Table 6 below. Color uniformity was defined by nine circular spots each 5cm in diameter placed on one eleven plate at equal intervals, and nine colors were visually compared to evaluate the uniformity of the color. The evaluation was divided into grades 5 to 5 (Grade 1: no non-uniformly visible spots, 2nd grade: 1 non-uniformly visible spots, 3rd grade: 2 non-uniformly visible spots) , Level 4: three non-uniform points clearly visible to the naked eye, Level 5: Four or more non-uniform points visible to the naked eye).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Finishing Walls (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법에 관한 것으로, 본 발명에 따른 제조방법은 건조된 맥반석 판재의 표면에 메틸-트리에톡시실란 또는 3-글리시딜옥시프로필트리메톡시실란, γ-아미노프로필트리에톡시실란, 이소프로판올, 제올라이트, 실리카 졸, 프리트를 포함하는 제1유약, 실리카 졸, 티타니아, 또는 알루미나졸, 및 착색금속이온 안료를 포함하는 제2유약, 및 수용성 포타슘 메틸실리콘을 포함하는 제3유약을 도포한 후 건조 및 소성시키는 단계를 포함하며, 이는 내화학성 및 방수성이 우수한 건축 내외장재용 맥반석 판재를 제조할 수 있는 장점을 갖는다.

Description

내화학성 및 방수성이 우수한 맥반석 판재의 제조방법
본 발명은 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법에 관한 것이다.
맥반석은 반암에 속하는 암석으로 석영과 장석이 섞여있으며, 다공으로 이루어져 흡착성이 강하고, 약 25,000 여종의 무기염류를 함유하고 중금속과 이온을 교환하는 작용을 하기 때문에 유해금속 제거제로도 사용 가능한 암석으로 알려져 있다.
이러한 맥반석을 이용하여 건축용 내외장재를 구현한 기술은 종래에도 소개된 바 있다. 특히, 하기 특허문헌 1에는 맥반석을 이용한 건축용 내외장재 및 이의 제조방법이 개시되어 있으며, 이는 맥반석을 분쇄하여 흑운모, 백운모 및 갈색운모 등으로 분류하는 단계와, 상기 단계에서 분류된 흑운모, 백운모 및 갈색운모 중 원하는 운모를 분쇄하여 입자를 백운모의 경우 0.6mm이상으로, 흑운모의 경우 0.6mm 이하로, 갈색운모의 경우 3 내지 6mm로 분류하는 단계와, 상기 단계에서 분류된 0.6mm 이상의 백운모, 0.6mm 이하의 흑운모 및 3 내지 6mm의 갈색운모 중 원하는 운모를 선택하는 단계와, 상기 단계에서 선택된 운모 85 내지 94중량%에 접착제 1 내지 10중량%를 첨가한 뒤 중화제 5 내지 15중량%를 첨가하여 혼합물을 제조하는 단계와, 상기 단계의 혼합물을 밀스크린하여 혼합물을 균일하게 하는 단계와, 상기 단계의 밀스크린한 혼합물을 적어도 750 내지 1200Kgf/㎠의 압력 및 140 내지 200℃의 온도에서 프레스하여 겔화하는 단계와, 상기 단계의 겔화된 혼합물을 원하는 모양으로 성형한 후 탈형하는 단계와, 상기 탈형이 종료된 혼합물을 냉각시키며 판제교정하는 단계와, 상기 판제교정된 혼합물을 1 내지 6회에 걸쳐 연마하는 단계와, 상기 연마가 종료된 후 건조시키는 단계를 포함한다.
또한 하기 특허문헌 2에는 맥반석, 황토 및 소금을 이용한 건축마감재의 제조방법이 개시되어 있으며, 이는 맥반석, 황토 및 소금을 혼합하여 맥반석과 황토에 의한 원적외선 방사와 소금의 성분에 의한 미생물의 번식을 억제하는 능력에 의해 습도조절 작용과 항균작용이 탁월한 내벽용 벽돌 및 미장재 등으로 구성할 수 있고 이를 이용하여 곡물창고의 내벽을 마감하거나 또는 바닥재로 사용하면 곡물 등의 식품을 25~50%의 신선도를 향상시킬 수 있게 한 것이다.
그러나 이러한 방법에 의하여 생산된 맥반석 판재를 건물의 외장재로 사용하는 경우 장기간 외부노출로 인하여 표면부식이 빨리 진행되고, 맥반석 판재 내부에 곰팡이 균이 번식하여 얼룩이 생기는 등 미관상 문제점을 나타내었으며, 특히 맥반석 판재의 색상이 선명하지 않은 문제점이 있었다.
따라서, 장기간 외부노출시에도 맥반석 판재의 표면특성이 변함없이 유지되도록 내화학성을 향상시키고, 특히 우수한 방수성을 통하여 외부의 수분이 내부로 침투하지 못하는 건축 내외장재용 맥반석 판재의 개발이 절실히 요구되는 실정이다.
이에 본 발명에서는 상기 문제점을 해결하고자 1차 건조된 맥반석 판재의 표면에 메틸-트리에톡시실란 또는 3-글리시딜옥시프로필트리메톡시실란, γ-아미노프로필트리에톡시실란, 이소프로판올, 제올라이트, 실리카 졸, 프리트를 포함하는 제1유약, 실리카 졸 (silica sol), 티타니아 (titania), 또는 알루미나졸 (alumina sol), 및 착색금속이온 안료를 포함하는 제2유약, 및 수용성 포타슘 메틸실리콘을 포함하는 제3유약을 도포한 후 건조 및 소성시키는 방법을 통하여 내화학성 및 방수성이 우수한 건축 내외장재용 맥반석 판재를 제조할 수 있음을 발견하였고, 본 발명은 이에 기초하여 완성되었다.
따라서, 본 발명의 하나의 관점은 내화학성 및 방수성이 우수한 건축 내외장재용 맥반석 판재의 제조방법을 제공하는 데 있다.
상기 관점을 달성하기 위한 본 발명의 일 구현 예에 따른 맥반석 판재의 제조방법은 맥반석 판재를 50 내지 80℃로 1 내지 3시간 동안 건조시키는 1차 건조단계; 1차 건조된 상기 맥반석 판재의 표면에 메틸-트리에톡시실란 (methyl-triethoxysilane, MTEOS) 또는 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxylpropyl trimethoxysilane, GPTMS) 15 내지 20 중량부, γ-아미노프로필트리에톡시실란 (γ-Aminopropyl Triethoxysilane) 12 내지 15 중량부, 이소프로판올 (isopropanol) 7 내지 10 중량부, 제올라이트 (zeolite) 23 내지 28 중량부, 실리카 졸 (silica sol) 15 내지 20 중량부, 프리트 (frit) 8 내지 12 중량부를 포함하는 제1유약을 도포하는 제1도포단계; 상기 제1유약이 도포된 맥반석 판재의 표면에 실리카 졸 (silica sol), 티타니아 (titania), 또는 알루미나졸 (alumina sol) 4 내지 7 중량부, 및 착색금속이온 안료 5 내지 10 중량부를 포함하는 제2유약을 도포하는 제2도포단계; 및 상기 제2유약이 도포된 맥반석 판재의 표면에 수용성 포타슘 메틸실리콘 (potassium methylsilicone) 3 내지 5 중량부를 포함하는 제3유약을 도포하는 제3도포단계;를 포함할 수 있다.
본 발명의 다른 구현 예에 따른 맥반석 판재의 제조방법에 있어서, 상기 제올라이트 (zeolite)는 클리놉틸로라이트 (clinoptilolite), 아날심 (analcime), 체바자이트 (chabazite), 모오데나이트 (mordenite), 에리오나이트 (erionite), 휼란다이트 (heulandite), 필립사이트 (phillipsite), 및 페리언라이트 (ferrienrite)로 이루어진 군에서 하나 이상 선택될 수 있다.
본 발명의 또 다른 구현 예에 따른 맥반석 판재의 제조방법에 있어서, 상기 착색금속이온 안료는 염화철 (FeCl2), 염화지르코늄 (ZrCl2), 염화망가니즈 (MnCl2), 염화크롬 (CrCl2), 및 염화코발트 (CoCl2)로 이루어진 군에서 하나 이상 선택될 수 있다.
본 발명의 또 다른 구현 예에 따른 맥반석 판재의 제조방법은 상기 제3도포단계 이후에, 맥반석 판재를 50 내지 80℃로 1 내지 3시간 동안 건조시키는 2차 건조단계를 더욱 포함할 수 있다.
본 발명의 또 다른 구현 예에 따른 맥반석 판재의 제조방법은 상기 2차 건조단계 이후에, 맥반석 판재를 650 내지 1,150℃의 온도로 가열하는 소성단계를 더욱 포함할 수 있다.
본 발명에 따른 맥반석 판재의 제조방법은 상대적으로 낮은 온도에서 맥반석 판재의 표면에 유약처리를 함으로써 맥반석 판재의 고유 특성을 유지함과 동시에 내화학성 및 방수성을 향상시킬 수 있으며, 맥반석 판재의 표면에 균일한 색상을 부여하는 것이 가능한 매우 우수한 장점을 갖는다.
도 1은 본 발명에 따른 맥반석 판재의 제조단계를 개략적으로 나타내는 공정도이다.
본 발명을 좀 더 구체적으로 설명하기 전에, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니되며, 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예의 구성은 본 발명의 바람직한 하나의 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록, 본 발명의 바람직한 실시 예들을 상세히 설명한다.
본 발명은 건축 및 인테리어 내장재 및 외장재로 다양하게 사용되는 맥반석 판재의 내화학성 및 방수성을 개선하고 맥반석 판재의 표면에 균일한 색상을 부여할 수 있는 맥반석 판재의 제조방법에 관한 것이며, 기본적으로 15 내지 30℃의 실온조건에서 맥반석 판재의 표면에 처리가능한 침투성 저온유약을 이용하는 것을 특징으로 한다.
맥반석은 다양한 효능으로 인하여 종래부터 건축 및 인테리어용 내장재 및 외장재로 다양하게 이용되어 왔으나, 건물 외부의 마감재 등으로 사용되는 경우는 산성비, 바람, 황사, 자외선 및 환경파괴로 인한 대기오염 등으로 인하여 판재의 표면이 쉽게 부식되는 등의 단점을 지니고 있었다. 또한, 맥반석 판재를 대중 사우나 시설 등의 내장 마감재로 사용하는 경우는 습기에 약한 맥반석의 특성으로 인하여 맥반석 내부에 쉽게 곰팡이 등이 번식하여 맥반석 판재 표면에 얼룩이 발생하는 문제가 있었다.
이에 본 발명자는 종래의 맥반석 판재가 지니고 있었던 상기 문제점을 획기적으로 해결할 수 있는 신규한 맥반석 판재의 가공방법을 개발하게 되었으며, 이와 같이 본 발명자가 개발한 맥반석 판재의 제조방법을 이용하여 가공된 맥반석 판재는 건축 외장재 및 습도가 높은 환경에서의 건축 내장재로서 높을 내구성을 유지하면서 장기간 사용가능한 장점이 있다.
일반적으로 맥반석 판재는 일정량의 수분을 함유하고 있는바, 본 발명에 사용되는 맥반석 판재의 제조방법은 우선, 천연 맥반석 판재를 1차로 건조시키는 과정을 거친다.
상기 1차 건조단계를 거치기 전에 맥반석 판재를 소정의 크기로 절단하는 단계를 추가적으로 거칠 수도 있으며, 맥판석 판재의 절단 면적은 판재의 사용 목적에 부합하게 다양화할 수 있다. 판재의 두께는 통상적으로 0.5 내지 5㎝ 등의 범위로 판재의 사용목적에 부합하도록 다양하게 형성할 수 있다. 본 발명의 권리범위가 맥반석 판재의 상기 면적 및 두께에 한정되는 것은 아니다.
상기 1차 건조단계를 거치는 이유는 후술하는 바와 같이 다양한 유약을 이용하여 맥반석 판재의 표면을 제1 내지 제2도포단계를 통하여 유약이 효율적으로 맥판석 판재 내부로 침투되도록 하기 위함이다.
상기 1차 건조단계는 통상적으로 50 내지 80℃의 온도에서 1 내지 3시간 동안 수행될 수 있다. 1차 건조온도를 너무 낮추게 되면 상대적으로 건조시간이 길어지며 충분한 수분제거가 이루어지지 않아 후술하는 유약도포단계가 효율적으로 진행될 수 없는 문제가 있으며, 1차 건조온도를 너무 높이게 되면 맥반석 표면이 손상될 우려가 있다.
한편, 상기 1차 건조단계를 거친 맥반석 판재는 후술하는 다양한 침투성 저온 유약을 효율적으로 도포하여 침투시킬 수 있는 준비가 된 것이며, 침투성 저온 유약은 그 종류에 따라 후술하는 3단계를 거쳐 수행된다.
우선, 제1유약을 도포하는 제1도포단계는 실온조건에서 수행되는 것이 가능하다. 따라서 유약의 도포가 매우 용이한 장점이 있다.
상기 제1유약은 메틸-트리에톡시실란 (methyl-triethoxysilane, MTEOS) 또는 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxylpropyl trimethoxysilane, GPTMS) 15 내지 20 중량부, γ-아미노프로필트리에톡시실란 (γ-Aminopropyl Triethoxysilane) 12 내지 15 중량부, 이소프로판올 (isopropanol) 7 내지 10 중량부, 제올라이트 (zeolite) 23 내지 28 중량부, 실리카 졸 (silica sol) 15 내지 20 중량부, 및 프리트 (frit) 8 내지 12 중량부를 포함한다.
상기 제1유약은 맥반석 판재에 내화학성 및 방수성을 부여하는 역할을 수행한다.
한편, 상기 제1유약은 우선 메틸-트리에톡시실란 또는 3-글리시딜옥시프로필트리메톡시실란 15 내지 20 중량부와 γ-아미노프로필트리에톡시실란 12 내지 15 중량부를 고르게 혼합하고, 그 후 이와 같이 혼합된 실란 혼합물에 이소프로판올 7 내지 10 중량부 및 미분쇄 제올라이트 23 내지 28 중량부를 추가적으로 첨가하여 50 내지 70℃의 온도로 가열하면서 교반하고, 여기에 실리카 졸 15 내지 20 중량부 및 프리트 8 내지 12 중량부를 적하시켜서 추가적인 교반을 수행함으로써 제조하는 것이 가능하다.
상기 미분쇄 제올라이트 (zeolite)는 클리놉틸로라이트 (clinoptilolite), 아날심 (analcime), 체바자이트 (chabazite), 모오데나이트 (mordenite), 에리오나이트 (erionite), 휼란다이트 (heulandite), 필립사이트 (phillipsite), 및 페리언라이트 (ferrienrite)로 이루어진 군에서 하나 이상 선택되는 것이 가능하다.
이와 같이 제1유약을 이용하여 실온에서 제1도포과정을 거친 맥반석 판재의 내부에는 제1유약이 매우 고르게 깊숙이 침투된다.
상기 제1유약을 이용한 제1도포단계는 제1유약 1ℓ당 맥반석 판재 5 내지 8㎡를 도포하는 것으로 수행하는 것이 가능하다.
상기 제1유약을 이용한 제1도포단계는 통상적으로 유약의 도포에 사용되는 스프레이건을 이용하여 스프레이 분사하는 방식으로 수행될 수 있으나, 기타 관련 기술분야에서 통상적으로 사용되는 다양한 도포방식을 사용하는 것도 가능하며, 이와 같은 도포 방식에 본 발명의 권리범위가 한정되는 것은 아니다.
다음으로, 제2유약을 맥반석 판재의 표면에 도포하는 제2도포단계를 수행한다.
제2유약을 이용한 제2도포단계는 맥반석 판재에 다양한 색상을 부여함과 동시에 추가적인 방수성 및 내화학성을 부여하기 위하여 수행된다.
제2유약은 실리카 졸 (silica sol), 티타니아 (titania), 또는 알루미나졸 (alumina sol) 4 내지 7 중량부 및 착색금속이온 안료 5 내지 10 중량부를 포함할 수 있다.
상기 착색금속이온 안료는 염화철 (FeCl2), 염화지르코늄 (ZrCl2), 염화망가니즈 (MnCl2), 염화크롬 (CrCl2), 및 염화코발트 (CoCl2)로 이루어진 군에서 하나 이상 선택되는 것이 가능하다.
상기 제2유약을 도포하는 제2도포단계 또한 실온조건에서 수행되는 것이 가능하다. 따라서 제2유약의 도포 또한 매우 용이한 장점이 있다.
상기 제2유약을 이용한 제2도포단계는 제2유약 1ℓ당 맥반석 판재 8 내지 10.5㎡를 도포하는 것으로 수행하는 것이 가능하다.
상기 제2유약을 이용한 제2도포단계는 통상적으로 유약의 도포에 사용되는 스프레이건을 이용하여 스프레이 분사하는 방식으로 수행될 수 있으나, 기타 관련 기술분야에서 통상적으로 사용되는 다양한 도포방식을 사용하는 것도 가능하며, 이와 같은 도포 방식에 본 발명의 권리범위가 한정되는 것은 아니다.
상기 제2도포단계를 거친 맥반석 판재는 다음으로 수용성 포타슘 메틸실리콘 (potassium methylsilicone) 3 내지 5 중량부를 포함하는 제3유약을 도포하는 제3도포단계를 거치게 된다.
이와 같은 제3도포단계에 사용되는 제3유약은 맥반석 판재에 특히 우수한 방수성 및 내화학성을 부여하는 역할을 수행한다.
상기 제3유약을 이용한 제3도포단계는 제3유약 1ℓ당 맥반석 판재 16 내지 18㎡를 도포하는 것으로 수행하는 것이 가능하다.
이와 같이 제1 내지 제3도포단계를 거친 맥반석 판재는 스프레이법에 의한 표면발수도가 약 100인 특징을 갖는다.
이와 같이 제1도포단계 내지 제3도포단계를 거친 후, 추가적인 건조단계 및 소성단계를 거칠 수 있다.
상기 제3도포단계 이후에 수행되는 2차 건조단계는 유약 도포처리가 완료된 맥반석 판재를 50 내지 80℃로 1 내지 3시간 동안 건조시키는 과정을 통하여 수행될 수 있으며, 이와 같은 2차 건조단계를 거침으로써 맥반석 판재에 고르게 침투된 유약이 맥반석 입자 내부로 더욱 깊게 침투되어 맥반석 내부에 안정적으로 위치되도록 돕는 역할을 수행한다.
특히, 이와 같은 2차 건조단계는 상기 제1 내지 제3도포단계를 통한 착색공정이 완료된 맥반석 가공 석재의 겉면과 내부에 침투된 저온 유약을 건조시켜 주어 침투성 저온 유약 착색을 더욱 안정화시키는 역할을 수행하게 된다.
이와 같이 2차 건조단계까지 거친 맥반석 판재 내부에는 상기 제1유약, 제2유약, 및 제3유약이 안정적으로 침투되어 있는 상태이며, 이와 같이 침투된 유약성분이 내화학성 및 방수성을 안정적으로 발휘하도록 하기 위하여 다음과 같은 소성단계를 거치게 된다.
상기 소성단계는 상기 2차 건조단계 이후에 수행될 수 있으며, 맥반석 판재를 650 내지 1,150℃의 온도로 가열하여 수행할 수 있다.
하기 표 1은 본 발명에 따른 맥반석 판재의 제조방법에 사용되는 다양한 화합물의 물리 화학적 변화단계를 온도별로 나타낸다.
온도 범위 (℃) 화학반응
100 내지 200 가열건조, 수분분리(물리처리)
250 산화, 석재 내 세포수분 분해, 분해개시
340 메틸-트리에톡시실란 (methyl-triethoxysilane, MTEOS), 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxylpropyl trimethoxysilane, GPTMS), γ-아미노프로필트리에톡시실란 (γ-aminopropyl triethoxysilane), 이소프로판올 (isopropanol) 분해개시
380 수용성 포타슘 메틸실리콘 (potassium methylsilicone) 탄화 (탄소부화)
400 염화철(FeCl2), 염화지르코늄(ZrCl2), 염화망가니즈(MnCl2), 염화크롬(CrCl2), 염화코발트(CoCl2)등 금속산화물로 변환
400 내지 600 실리카 졸(silica sol), 티타니아 (titania), 알루미나졸(alumina sol)역청성분의 중질유 또는 타르로의 전환
600 내지 800 프리트(frit) 유기질 형성
800 내지 860 제올라이트 (zeolite)인 클리놉틸로라이트 (clinoptilolite), 아날심 (analcime), 체바자이트 (chabazite), 모오데나이트 (mordenite), 에리오나이트 (erionite), 휼란다이트 (heulandite), 필립사이트 (phillipsite), 페리언라이트 (ferrienrite)의 물질변환
이하 실시 예 및 비교 예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.
제조예 1 내지 8
하기 표 2에 나타난 바와 같은 성분 비율로, 메틸-트리에톡시실란 또는 3-글리시딜옥시프로필트리메톡시실란과 γ-아미노프로필트리에톡시실란을 고르게 혼합한 후, 이와 같이 혼합된 실란 혼합물에 이소프로판올 및 미분쇄 제올라이트를 추가적으로 첨가하여 약 60℃의 온도로 가열하면서 교반하고, 여기에 실리카 졸 및 프리트를 적하시켜서 제1유약을 제조하였고, 실리카 졸, 티타니아, 또는 알루미나졸과 착색금속이온 안료를 혼합하여 제2유약을 제조하였으며, 수용성 포타슘 메틸실리콘을 이용하여 제3유약을 제조하였다.
성분 제조예 1 제조예 2 제조예 3 제조예 4 제조예 5 제조예 6 제조예 7 제조예 8
A 1,500 1,500 2,000 2,000 - - - -
B - - - 1,500 1,500 2,000 2,000
C 1,200 1,500 1,200 1,500 1,200 1,500 1,200 1,500
D 700 1,000 700 1,000 700 1,000 700 1,000
E 2,300 - - - - - - -
F - 2,800 - - - - - -
G - - 2,300 - - - - -
H - - - 2,800 - - - -
I - - - - 2,300 - - -
J - - - - - 2,800 - -
K - - - - - - 2,300 -
L - - - - - - - 2,800
M 1,500 2,000 1,500 2,000 1,500 2,000 1,500 2,000
N 800 800 1,200 1,200 800 800 1,200 1,200
O 400 - - 500 - - 700 -
P - 400 - - 500 - - 700
Q - - 400 - - 500 - -
R 500 - - - - 1,000 - -
S - 700 - - - - 700 -
T - - 1,000 - - - - -
U - - - 500 - - - 1,000
V - - - - 700 - - -
W 300 400 500 300 400 500 300 400
(단위: g) (A: 메틸-트리에톡시실란, B: 3-글리시딜옥시프로필트리메톡시실란/ C: γ-아미노프로필트리에톡시실란/ D: 이소프로판올/ E: 클리놉틸로라이트, F: 아날심, G: 체바자이트, H: 모오데나이트, I: 에리오나이트, J: 휼란다이트, K: 필립사이트, L: 페리언라이트/ M: 실리카 졸/ N: 프리트/ O: 나노 실리카 졸, P: 티타니아, Q: 알루미나졸/ R: 염화철, S: 염화지르코늄, T: 염화망가니즈, U: 염화크롬, V: 염화코발트/ W: 포타슘 메틸실리콘)
제조예 9 내지 16
한편, 본 발명의 효과를 비교하기 위한 비교 예를 위하여 하기 표 3과 같은 비율로 상기 제조예 1 내지 8과 대응되도록 동일한 방법으로 유약을 제조하였다.
성분 제조예 9 제조예 10 제조예 11 제조예 12 제조예 13 제조예 14 제조예 15 제조예 16
A - 3,000 2,000 2,000 - - - -
B - - - 1,500 1,500 2,000 2,000
C 2,700 - 1,900 1,500 1,200 1,500 1,200 1,500
D 700 1,000 - 1,000 700 1,000 700 1,000
E 2,300 - - - - - - -
F - 2,800 - - - - - -
G - - 2,300 - - - - -
H - - - - - - - -
I - - - - 2,300 - - -
J - - - - - 2,800 - -
K - - - - - - 2,300 -
L - - - - - - - 2,800
M 1,500 2,000 1,500 2,000 - 2,800 1,500 2,000
N 800 800 1,200 1,200 800 - 1,200 1,200
O 400 - - 500 - - 1,400 -
P - 400 - - 500 - - 700
Q - - 400 - - 500 - -
R 500 - - - - 1,000 - -
S - 700 - - - - - -
T - - 1,000 - - - - -
U - - - 500 - - - 1,400
V - - - - 700 - - -
W 300 400 500 300 400 500 300 -
(단위: g) (A: 메틸-트리에톡시실란, B: 3-글리시딜옥시프로필트리메톡시실란/ C: γ-아미노프로필트리에톡시실란/ D: 이소프로판올/ E: 클리놉틸로라이트, F: 아날심, G: 체바자이트, H: 모오데나이트, I: 에리오나이트, J: 휼란다이트, K: 필립사이트, L: 페리언라이트/ M: 실리카 졸/ N: 프리트/ O: 나노 실리카 졸, P: 티타니아, Q: 알루미나졸/ R: 염화철, S: 염화지르코늄, T: 염화망가니즈, U: 염화크롬, V: 염화코발트/ W: 포타슘 메틸실리콘)
실시 예 1 내지 8
가로×세로×두께가 1m×1m×3㎝인 맥반석 판재 8개를 준비하여 약 60℃의 온도로 약 1시간 30분 동안 건조시켰으며, 이와 같이 건조된 맥반석 판재에 상기 제조예 1 내지 8에 따라 제조된 제1유약 200㎖, 제2유약 100㎖, 제3유약 60㎖를 각각 순차적으로 스프레이 도포하였으며, 이를 약 60℃의 온도로 약 1시간 30분 동안 건조시킨 후, 약 800℃의 온도로 약 30분간 소성시켜 본 발명의 실시 예 1 내지 8에 따른 맥반석 판재를 제조하였다.
비교 예 1 내지 8
가로×세로×두께가 1m×1m×3㎝인 맥반석 판재 8개를 준비하여 약 60℃의 온도로 약 1시간 30분 동안 건조시켰으며, 이와 같이 건조된 맥반석 판재에 상기 제조예 9 내지 16에 따라 제조된 제1유약 200㎖, 제2유약 100㎖, 제3유약 60㎖를 각각 순차적으로 스프레이 도포하였으며, 이를 약 60℃의 온도로 약 1시간 30분 동안 건조시킨 후, 약 800℃의 온도로 약 30분간 소성시켜 비교 예 1 내지 8에 따른 맥반석 판재를 제조하였다.
[내화학성 테스트]
상기 실시 예 1 내지 8 및 비교 예 1 내지 8에 따라 제조된 맥반석 판재를 이용하여 ASTM C 267에 준하여 내화학성 테스트를 수행하였으며, 5% 황산용액을 판재의 표면에 도포하고 7일 후에 판재의 표면을 육안으로 관찰하여 판재 표면의 변색 (항목 A) 및 표층부 탈락여부 (항목 B)를 확인하였으며, 그 결과를 하기 표 4에 나타내었다. 각각 변색 및 탈락 정도에 따라 5등급으로 나누어 평가하였다 (1등급: 변색/탈락 전혀 없음, 2등급: 약간의 변색/탈락이 있으나 아주 미미한 수준임, 3등급: 육안으로 뚜렷하게 관찰되는 변색/탈락 부위가 1㎠ 이상 존재함, 4등급: 육안으로 뚜렷하게 관찰되는 변색/탈락 부위가 10㎠ 이상 존재함, 5등급: 육안으로 뚜렷하게 관찰되는 변색/탈락 부위가 30㎠ 이상 존재함).
구분 항목 A 항목 B
실시 예 1 1 1
실시 예 2 1 1
실시 예 3 1 2
실시 예 4 2 1
실시 예 5 1 1
실시 예 6 1 1
실시 예 7 2 1
실시 예 8 1 2
비교 예 1 4 4
비교 예 2 3 4
비교 예 3 4 3
비교 예 4 4 5
비교 예 5 3 4
비교 예 6 5 4
비교 예 7 4 3
비교 예 8 3 4
상기 표 4의 결과를 살펴보면, 본 발명에 따라 제조된 실시 예 1 내지 8의 맥반석 판재의 경우 변색 및 표층탈락이 거의 존재하지 않음을 확인할 수 있으나, 비교 예 1 내지 8의 경우는 변색 및 표층탈락률이 비교적 높음을 확인할 수 있다.
[방수성 (발수성) 테스트]
상기 실시 예 1 내지 8 및 비교 예 1 내지 8에 따라 제조된 맥반석 판재를 이용하여 각각의 판재 표면에 정제수 50㎖를 분사한 후, 판재 표면에 형성된 물방울이 표면과 접하는 부분의 접선과 판재의 표면이 이루는 각도를 측정하여 방수성 (발수성)을 테스트하였으며, 그 각도를 하기 표 5에 나타내었다.
구분 각도 (°)
실시 예 1 98
실시 예 2 99
실시 예 3 100
실시 예 4 101
실시 예 5 100
실시 예 6 99
실시 예 7 100
실시 예 8 102
비교 예 1 155
비교 예 2 152
비교 예 3 161
비교 예 4 157
비교 예 5 160
비교 예 6 158
비교 예 7 161
비교 예 8 156
상기 표 5의 결과를 살펴보면, 본 발명에 따라 제조된 실시 예 1 내지 8의 맥반석 판재의 경우 방수성 (발수성)이 매우 우수한 것을 확인할 수 있으나, 비교 예 1 내지 8의 경우는 방수성이 매우 낮음을 확인할 수 있다.
[색상 균일성 테스트]
상기 실시 예 1 내지 8 및 비교 예 1 내지 8에 따라 제조된 맥반석 판재를 이용하여 색상 균일성을 테스트하였으며, 그 결과를 하기 표 6에 나타내었다. 색상 균일성은 하나의 맥반석 판재 상에 동일한 간격으로 위치하는 9곳의 각각 지름 5㎝인 원형 지점을 정하고 9곳의 색상을 육안으로 비교하여 색상의 균일한 정도를 평가하였으며, 균일한 정도에 따라 1 내지 5등급으로 나누어 평가하였다 (1등급: 육안으로 뚜렷하게 확인되는 불균일 지점이 없음, 2등급: 육안으로 뚜렷하게 확인되는 불균일 지점이 1곳 있음, 3등급: 육안으로 뚜렷하게 확인되는 불균일 지점이 2곳 있음, 4등급: 육안으로 뚜렷하게 확인되는 불균일 지점이 3곳 있음, 5등급: 육안으로 뚜렷하게 확인되는 불균일 지점이 4곳 이상 있음).
구분 색상 균일성 평가
실시 예 1 1
실시 예 2 1
실시 예 3 1
실시 예 4 2
실시 예 5 1
실시 예 6 1
실시 예 7 1
실시 예 8 1
비교 예 1 4
비교 예 2 4
비교 예 3 5
비교 예 4 4
비교 예 5 4
비교 예 6 3
비교 예 7 4
비교 예 8 5
상기 표 6의 결과를 살펴보면, 본 발명에 따라 제조된 실시 예 1 내지 8의 맥반석 판재의 경우 매우 균일한 색상을 나타냄을 확인할 수 있으나, 비교 예 1 내지 8의 경우는 색상이 비교적 불균일함을 확인할 수 있다.

Claims (5)

  1. 맥반석 판재를 50 내지 80℃로 1 내지 3시간 동안 건조시키는 1차 건조단계;
    1차 건조된 상기 맥반석 판재의 표면에 메틸-트리에톡시실란 (methyl-triethoxysilane, MTEOS) 또는 3-글리시딜옥시프로필트리메톡시실란 (3-glycidyloxylpropyl trimethoxysilane, GPTMS) 15 내지 20 중량부, γ-아미노프로필트리에톡시실란 (γ-aminopropyl triethoxysilane) 12 내지 15 중량부, 이소프로판올 (isopropanol) 7 내지 10 중량부, 제올라이트 (zeolite) 23 내지 28 중량부, 실리카 졸 (silica sol) 15 내지 20 중량부, 프리트 (frit) 8 내지 12 중량부를 포함하는 제1유약을 도포하는 제1도포단계;
    상기 제1유약이 도포된 맥반석 판재의 표면에 실리카 졸 (silica sol), 티타니아 (titania), 또는 알루미나졸 (alumina sol) 4 내지 7 중량부, 및 착색금속이온 안료 5 내지 10 중량부를 포함하는 제2유약을 도포하는 제2도포단계; 및
    상기 제2유약이 도포된 맥반석 판재의 표면에 수용성 포타슘 메틸실리콘 (potassium methylsilicone) 3 내지 5 중량부를 포함하는 제3유약을 도포하는 제3도포단계;를 포함하는 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법.
  2. 청구항 1에 있어서,
    상기 제올라이트 (zeolite)는 클리놉틸로라이트 (clinoptilolite), 아날심 (analcime), 체바자이트 (chabazite), 모오데나이트 (mordenite), 에리오나이트 (erionite), 휼란다이트 (heulandite), 필립사이트 (phillipsite), 및 페리언라이트 (ferrienrite)로 이루어진 군에서 하나 이상 선택되는 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법.
  3. 청구항 1에 있어서,
    상기 착색금속이온 안료는 염화철 (FeCl2), 염화지르코늄 (ZrCl2), 염화망가니즈 (MnCl2), 염화크롬 (CrCl2), 및 염화코발트 (CoCl2)로 이루어진 군에서 하나 이상 선택되는 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법.
  4. 청구항 1에 있어서,
    상기 제3도포단계 이후에, 맥반석 판재를 50 내지 80℃로 1 내지 3시간 동안 건조시키는 2차 건조단계를 더욱 포함하는 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법.
  5. 청구항 4에 있어서,
    상기 2차 건조단계 이후에, 맥반석 판재를 650 내지 1,150℃의 온도로 가열하는 소성단계를 더욱 포함하는 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법.
PCT/KR2016/014496 2016-02-04 2016-12-12 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법 WO2017135561A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0015237 2016-02-04
KR1020160015237A KR101640727B1 (ko) 2016-02-04 2016-02-04 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법

Publications (1)

Publication Number Publication Date
WO2017135561A1 true WO2017135561A1 (ko) 2017-08-10

Family

ID=56679851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014496 WO2017135561A1 (ko) 2016-02-04 2016-12-12 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법

Country Status (2)

Country Link
KR (1) KR101640727B1 (ko)
WO (1) WO2017135561A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772953A (zh) * 2021-09-23 2021-12-10 谢文富 具远红外线、抗菌及抗氧化功能与高硬度、能自洁的陶瓷釉料制备方法和使用方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101792672B1 (ko) 2016-10-25 2017-12-01 (주)스톤칼라텍 석재 착색조성물 및 이를 이용한 석재 착색키트 및 착색방법
KR101740500B1 (ko) * 2016-11-18 2017-06-07 주식회사 드림인테크 내화학성이 우수한 콘크리트 구조물용 보수보강재 및 보수공법
CN108786722B (zh) * 2017-05-02 2021-01-05 中国石油化工股份有限公司 复合吸附材料及其制备方法
CN108786721B (zh) * 2017-05-02 2021-01-05 中国石油化工股份有限公司 一种复合吸附材料及其制备方法
KR102219286B1 (ko) * 2020-07-28 2021-02-23 최진우 염화물을 이용한 현무암 판석 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990078701A (ko) * 1999-07-30 1999-11-05 송지훈 맥반석을 용해시킨 세라믹 조리용기
KR100486455B1 (ko) * 2002-10-08 2005-04-29 만상물산(주) 액체 세라믹 코팅조성물
JP2008507470A (ja) * 2004-07-24 2008-03-13 エボニック デグサ ゲーエムベーハー 自然石の封止法
JP2008543994A (ja) * 2005-06-15 2008-12-04 ナノ−エックス ゲーエムベーハー アルカリ耐性ゾル−ゲルコーティング
KR101254139B1 (ko) * 2011-11-22 2013-04-12 (주)에이엠에스 엔지니어링 콘크리트 구조물용 방수/방식제 및 그 시공방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046304A (ko) 2002-11-27 2004-06-05 이동형 맥반석, 황토 및 소금을 이용한 건축마감재의 제조방법
KR100450716B1 (ko) 2003-01-28 2004-10-01 진웅건설산업(주) 맥반석을 이용한 건축내외장재 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990078701A (ko) * 1999-07-30 1999-11-05 송지훈 맥반석을 용해시킨 세라믹 조리용기
KR100486455B1 (ko) * 2002-10-08 2005-04-29 만상물산(주) 액체 세라믹 코팅조성물
JP2008507470A (ja) * 2004-07-24 2008-03-13 エボニック デグサ ゲーエムベーハー 自然石の封止法
JP2008543994A (ja) * 2005-06-15 2008-12-04 ナノ−エックス ゲーエムベーハー アルカリ耐性ゾル−ゲルコーティング
KR101254139B1 (ko) * 2011-11-22 2013-04-12 (주)에이엠에스 엔지니어링 콘크리트 구조물용 방수/방식제 및 그 시공방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772953A (zh) * 2021-09-23 2021-12-10 谢文富 具远红外线、抗菌及抗氧化功能与高硬度、能自洁的陶瓷釉料制备方法和使用方法

Also Published As

Publication number Publication date
KR101640727B1 (ko) 2016-07-18

Similar Documents

Publication Publication Date Title
WO2017135561A1 (ko) 내화학성 및 방수성이 우수한 맥반석 판재의 제조방법
KR101405322B1 (ko) 상온 경화형 무기질 세라믹 도료 및 이를 이용한 도장 방법
US5382475A (en) Pigmented algae-resistant granular materials and composites sheets including same
WO2014069802A1 (ko) 항균 다공성 세라믹 타일 및 이의 제조방법
CA2380031A1 (en) Roofing granules with a decorative metallic appearance
KR101254579B1 (ko) 천연 수성도료 조성물 및 그 제조방법
US6406535B1 (en) Material for constructional finished wallboard
WO2013002524A2 (ko) 친환경 기능성을 구현한 부조 타일 제조용 조성물 및 이 부조 타일의 제조방법
CN105907294A (zh) 水性无机涂料的制备方法及用水性无机涂料制备无机涂层的方法
CN111057425B (zh) 一种除甲醛水性涂料
US6838152B2 (en) Low pigments costs algae-retardant roofing granule products containing metallic copper
WO2012067299A1 (ko) 천연 광물을 이용한 음이온 방출 도료 조성물
CN108298894A (zh) 一种贝壳粉生态软瓷及其制备方法
JP2011089115A (ja) コーティング材
KR101045699B1 (ko) 적벽돌의 방수 및 오염방지 공법
US6171655B1 (en) Method of preparing constructional finished wallboard
KR100951970B1 (ko) 천연 칼라 몰탈재
KR100516931B1 (ko) 기능성 타일의 제조 방법
KR100685746B1 (ko) 일액형 수용성 무기질 도료, 이의 제조방법 및 시공방법
KR100842942B1 (ko) 숯 타일 제조방법 및 숯 타일 유약
KR20120039934A (ko) 타일 코팅액 조성물 및 이를 이용한 타일
EP1624031B1 (de) Verfahren zur Herstellung von farbigen Granulaten, und nach diesem Verfahren erhaltene farbige Granulate
US2769716A (en) Fungistatic pigment and coating composition
CN107573727A (zh) 一种功能性负离子涂料
RU2165948C1 (ru) Способ получения огнеупорного декоративного покрытия

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889539

Country of ref document: EP

Kind code of ref document: A1