WO2017135379A1 - 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法 - Google Patents

芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法 Download PDF

Info

Publication number
WO2017135379A1
WO2017135379A1 PCT/JP2017/003821 JP2017003821W WO2017135379A1 WO 2017135379 A1 WO2017135379 A1 WO 2017135379A1 JP 2017003821 W JP2017003821 W JP 2017003821W WO 2017135379 A1 WO2017135379 A1 WO 2017135379A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polysulfone
molecular weight
average molecular
formula
prepreg
Prior art date
Application number
PCT/JP2017/003821
Other languages
English (en)
French (fr)
Inventor
新治 大友
松原 政信
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016180849A external-priority patent/JP6884535B2/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187022109A priority Critical patent/KR102686529B1/ko
Priority to US16/074,826 priority patent/US10851207B2/en
Priority to EP17747530.8A priority patent/EP3412703A4/en
Priority to CN201780008754.3A priority patent/CN108602948B/zh
Publication of WO2017135379A1 publication Critical patent/WO2017135379A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Definitions

  • the present invention relates to an aromatic polysulfone, a prepreg, and a method for producing a prepreg.
  • Aromatic polysulfone is not only excellent in heat resistance, chemical resistance, creep resistance, etc., but also has good adhesion to materials such as metal, glass, ceramic, etc., and is therefore used as various coating materials.
  • a method of forming a fluororesin coating film on the surface of a substrate by applying an aromatic polysulfone solution containing a fluororesin to a metal substrate and then performing heat treatment is known. ing.
  • the aromatic polysulfone In order for the aromatic polysulfone to have heat resistance suitable for such use, it is important that its molecular weight and molecular weight distribution are in an appropriate range.
  • the number average molecular weight (Mn) is 11,000 to 25000
  • An aromatic polysulfone having a polydispersity (Mw / Mn) of 3.0 or less is known (see Patent Document 1).
  • Aromatic polysulfone has a high glass transition temperature (Tg) and is therefore used in many fields including the electronic materials field as a material having excellent heat resistance. However, these aromatic polysulfones are desired to have further improved heat resistance, and there is still room for improvement in order to develop a high glass transition temperature (Tg).
  • Tg glass transition temperature
  • the components of the electronic device may be exposed to high temperatures as in a reflow process, for example. In order to suppress the deformation of parts, it is required to develop a high glass transition temperature (Tg). Moreover, the same problem may arise about the member exposed not only to an electronic device but to high temperature conditions.
  • the present invention has been made in view of such circumstances, and provides a novel aromatic polysulfone that can exhibit a high glass transition temperature (Tg), a prepreg using the aromatic polysulfone, and a method for producing the prepreg. This is the issue.
  • a first aspect of the present invention is a polymerization of a dihalogeno compound (A) represented by the formula (A) and a dihydric phenol (B) represented by the formula (B).
  • a thermoplastic aromatic polysulfone obtained by the process, wherein the ratio of the number average molecular weight (Mn) to the weight average molecular weight (Mw) (Mw / Mn) is 1.80 or more and less than 1.90, and the number average molecular weight An aromatic polysulfone having (Mn) of 6000 or more and less than 14,000 is provided.
  • X and X ′ each independently represent a halogen atom.
  • R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • n 1 , n 2 , n 3 and n 4 each independently represents an integer of 0 to 4.
  • n 1, n 2, n 3 or n 4 is an integer of 2 to 4
  • a plurality of R 1, R 2, R 3 or R 4 may each also being the same or different.
  • the second aspect of the present invention is a prepreg using the aromatic polysulfone of the first aspect of the present invention, a liquid epoxy resin, a curing agent, and reinforcing fibers.
  • a third aspect of the present invention is a method for producing a prepreg, comprising a step of impregnating a reinforcing fiber into a mixture obtained by mixing the aromatic polysulfone according to the first aspect of the present invention, a liquid epoxy resin, and a curing agent. Is the method.
  • thermoplastic aromatic polysulfone obtained by polymerizing a dihalogeno compound (A) represented by the formula (A) and a dihydric phenol (B) represented by the formula (B), Mw / Mn which is the value of the ratio of Mn which is the number average molecular weight and Mw which is the weight average molecular weight is 1.80 or more and less than 1.90, and Mn which is the number average molecular weight is 6000 or more and less than 14,000, Aromatic polysulfone.
  • X and X ′ each independently represent a halogen atom
  • R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • n 1 , n 2 , n 3 and n 4 each independently represent an integer of 0 to 4
  • n 1 , n 2 , n 3 or n 4 is an integer of 2 to 4
  • a plurality of R 1 , R 2 , R 3 or R 4 may be the same as or different from each other.
  • the present invention it is possible to provide a novel aromatic polysulfone that can exhibit a high glass transition temperature (Tg), a prepreg using the aromatic polysulfone, and a method for producing the prepreg.
  • Tg glass transition temperature
  • the aromatic polysulfone of the present invention is a thermoplastic obtained by polymerizing a dihalogeno compound (A) represented by the following formula (A) and a dihydric phenol (B) represented by the following formula (B).
  • Aromatic polysulfone having a ratio of number average molecular weight (Mn) to weight average molecular weight (Mw) (Mw / Mn, that is, polydispersity) of 1.80 or more and less than 1.90, and number average molecular weight (Mn) is an aromatic polysulfone having a molecular weight of 6000 or more and less than 14,000.
  • a dihalogeno compound (A) represented by the following formula (A) and a dihydric phenol (B) represented by the following formula (B) are polymerized.
  • the Mw / Mn which is the value of the ratio between the number average molecular weight Mn and the weight average molecular weight Mw, is 1.80 or more and less than 1.90, and the number average molecular weight Mn is 6000 or more and less than 14,000. It is a thermoplastic aromatic polysulfone.
  • Still another aspect of the aromatic polysulfone of the present invention is derived from a structural unit derived from a dihalogeno compound (A) represented by the following formula (A) and a dihydric phenol (B) represented by the following formula (B).
  • A dihalogeno compound
  • B dihydric phenol
  • Mw / Mn which is a value of the ratio of Mn which is a number average molecular weight and Mw which is a weight average molecular weight is 1.80 or more and less than 1.90
  • Mn which is a number average molecular weight is It is a thermoplastic aromatic polysulfone having a molecular weight of 6000 or more and less than 14,000.
  • derived means that the chemical structure changes because the dihalogeno compound (A) and the dihydric phenol (B) are polymerized.
  • the dihalogeno compound (A) represented by the formula (A) may be simply referred to as “dihalogeno compound (A)”.
  • the dihydric phenol (B) represented by the formula (B) may be simply referred to as “dihydric phenol (B)”.
  • the aromatic polysulfone of the present invention has a dihalogeno compound (A) and a dihydric phenol (B) as monomers, and Mw / Mn and Mn satisfy the above conditions, so that a high glass transition temperature can be expressed, and is excellent. Heat resistance.
  • X and X ′ each independently represent a halogen atom
  • R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms
  • n 1 , n 2 , n 3 and n 4 each independently represent an integer of 0 to 4; when n 1 , n 2 , n 3 or n 4 is an integer of 2 to 4, a plurality of R 1 , R 2 , R 3 or R 4 may be the same as or different from each other.
  • the dihalogeno compound (A) is a compound represented by the formula (A).
  • X and X ′ each independently represent a halogen atom.
  • the halogen atom include a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • X and X ′ are any of 2-position, 3-position and 4-position of the benzene ring skeleton, where the position number of the carbon atom to which the sulfonyl group (—SO 2 —) of the benzene ring skeleton is bonded is the 1-position.
  • the dihalogeno compound (A) is preferably bis (4-chlorophenyl) sulfone to which one or both of R 3 and R 4 may be bonded in place of a hydrogen atom.
  • R 3 and R 4 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • the alkyl group in R 3 and R 4 may be linear, branched or cyclic, but is preferably linear or branched. Examples thereof include a methyl group and an ethyl group. , N-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • the alkoxy group in R 3 and R 4 may be linear, branched or cyclic, but is preferably linear or branched. Examples thereof include a methoxy group and an ethoxy group. N-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, and tert-butoxy group.
  • n 3 is the number of bonds of R 3
  • n 4 is the number of bonds of R 4
  • the corresponding bonding position of R 3 or R 4 is not particularly limited.
  • R 3 or R 4 is any of the 2nd, 3rd, 4th, 5th and 6th positions of the benzene ring skeleton. It may be bonded to any carbon atom.
  • R 3 or R 4 is preferably bonded to a carbon atom other than the 4-position, and more preferably bonded to a carbon atom at the 3-position or 5-position, or the 3-position and 5-position.
  • n 3 or n 4 is an integer of 2 to 4
  • a plurality of R 3 or R 4 may be the same as or different from each other.
  • n 3 is an integer of 2 to 4
  • all n 3 R 3 s may be the same or different, and when n 3 is 3 or 4, Only a part may be the same.
  • the number of n 4 R 4 is the same as that of n 3 R 3 .
  • n 3 and n 4 are preferably each independently an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1.
  • An example of a preferred dihalogeno compound (A) is bis (4-chlorophenyl) sulfone.
  • Bis (4-chlorophenyl) sulfone is also referred to as 4,4'-dichlorodiphenylsulfone.
  • the dihydric phenol (B) is a compound represented by the formula (B).
  • the two hydroxy groups (—OH) each represent the 2-position of the benzene ring skeleton, when the position number of the carbon atom to which the sulfonyl group of the benzene ring skeleton is bonded is the 1-position.
  • the dihydric phenol (B) is preferably bis (4-hydroxyphenyl) sulfone to which one or both of R 1 and R 2 may be bonded in place of a hydrogen atom.
  • Bis (4-hydroxyphenyl) sulfone is also referred to as 4,4′-dihydroxydiphenylsulfone.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms in R 1 and R 2 include the same groups as those described in the description of R 3 and R 4 .
  • N 1 is the number of bonds of R 1
  • n 2 is the number of bonds of R 2
  • the bonding position of the corresponding R 1 or R 2 is not particularly limited.
  • R 1 or R 2 is any of the 2nd, 3rd, 4th, 5th and 6th positions of the benzene ring skeleton. It may be bonded to a carbon atom. However, as a bonding position of R 1 or R 2 , a carbon atom to which a hydroxy group is bonded is excluded. R 1 or R 2 is preferably bonded to a carbon atom other than the 4-position, and preferably bonded to the 3-position or 5-position, or the 3-position and 5-position carbon atoms.
  • n 1 or n 2 is an integer of 2 to 4
  • a plurality of R 1 or R 2 may be the same as or different from each other.
  • n 1 is an integer of 2 to 4
  • all n 1 R 1 s may be the same or different
  • R 1 may be partially identical.
  • the n 2 R 2 is the same as the case of n 1 R 1 .
  • n 1 and n 2 are preferably each independently an integer of 0 to 3, more preferably an integer of 0 to 2, and even more preferably 0 or 1.
  • the dihydric phenol (B) is preferably bis (4-hydroxyphenyl) sulfone or bis (4-hydroxy-3,5-dimethylphenyl) sulfone.
  • the reduced viscosity of the aromatic polysulfone of the present invention is preferably 0.18 dL / g or more, more preferably 0.22 to 0.28 dL / g.
  • Aromatic polysulfone tends to improve heat resistance, strength, and rigidity as its reduced viscosity increases.
  • the aromatic polysulfone has a reduced viscosity that is too high (that is, if it exceeds the upper limit), the melting temperature or the viscosity tends to be high, and the fluidity tends to be low.
  • the reduced viscosity of the aromatic polysulfone of the present invention is within the above range, the heat resistance, strength and rigidity are easily improved, the melting temperature and the melt viscosity are not excessively increased, and the fluidity is hardly decreased.
  • the reduced viscosity (dL / g) of aromatic polysulfone indicates a value determined by the following method. First, about 1 g of an aromatic polysulfone resin is precisely weighed and dissolved in N, N-dimethylformamide to make its capacity 1 dL. Subsequently, the viscosity ( ⁇ ) of this solution and the viscosity ( ⁇ 0) of N, N-dimethylformamide as a solvent are measured at 25 ° C. using an Ostwald type viscosity tube. Next, the reduced viscosity of the aromatic polysulfone is determined by dividing the specific viscosity (( ⁇ 0) / ⁇ 0) determined from the measured value by the concentration of the solution (about 1 g / dL).
  • the number average molecular weight (Mn) of the aromatic polysulfone of the present invention is 6000 or more, preferably 6500 or more, more preferably 7000 or more, and further preferably 7500 or more.
  • Aromatic polysulfone is remarkably excellent in heat resistance because Mn is not less than the lower limit.
  • the number average molecular weight (Mn) of the aromatic polysulfone of the present invention is less than 14000, preferably 13500 or less, more preferably 13000 or less, further preferably 12500 or less, still more preferably 12000 or less, and particularly preferably 11500 or less. It is. When Mn is not more than the above upper limit value, the aromatic polysulfone is remarkably excellent in heat resistance.
  • the upper limit value and lower limit value of Mn can be arbitrarily combined.
  • the number average molecular weight (Mn) of the aromatic polysulfone of the present invention is, for example, 6000 or more and less than 14000, preferably 7000 or more and 13000 or less, more preferably 7500 or more and 12000 or less, further preferably 7500 or more and 11500 or less, and 8000 to 11000. It is particularly preferred that
  • the value of Mw / Mn which is the ratio of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the aromatic polysulfone, indicates the polydispersity of the aromatic polysulfone.
  • the value of Mw / Mn is 1.80 or more and less than 1.90, preferably 1.81 or more, more preferably 1.82 or more, preferably 1.89 or less. More preferably, it is 1.88 or less, More preferably, it is 1.87 or less.
  • Aromatic polysulfone can express a high glass transition temperature because the value of Mw / Mn is not less than the lower limit.
  • the upper limit value and the lower limit value of Mw / Mn can be arbitrarily combined.
  • the value of Mw / Mn is particularly preferably from 1.82 to 1.87, for example.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of an aromatic polysulfone are values obtained by averaging measured values measured twice by gel permeation chromatography (GPC) analysis, for example. is there.
  • the molecular weight in terms of standard polystyrene is obtained based on a calibration curve obtained by measuring the molecular weight of standard polystyrene.
  • Mw / Mn can be calculated from the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained as an average value as described above.
  • the aromatic polysulfone of the present invention can exhibit a high glass transition temperature.
  • the glass transition temperature (° C.) in the aromatic polysulfone of the present invention is preferably 215 ° C. or higher, more preferably 216 ° C. or higher.
  • the glass transition temperature (degreeC) serves as an index for judging the degree of heat resistance of the aromatic polysulfone. Generally, it can be said that the higher the temperature, the more excellent the heat resistance of the aromatic polysulfone.
  • polymerization The step of reacting the dihalogeno compound (A) with the dihydric phenol (B) in a solvent (hereinafter referred to as “polymerization”) will be described.
  • Polymerization of the dihalogeno compound (A) and the dihydric phenol (B) (hereinafter sometimes referred to as polycondensation) is carried out using an alkali metal carbonate as a base, or in an organic solvent which is a polymerization solvent. It is preferably carried out, more preferably using an alkali metal carbonate of carbonic acid as a base and in an organic solvent.
  • the alkali metal carbonate may be an alkali carbonate that is a normal salt, that is, an alkali metal carbonate, or an alkali bicarbonate that is an acidic salt, that is, an alkali bicarbonate or an alkali metal bicarbonate. It may be a mixture of these alkali carbonates and bicarbonates.
  • Preferred examples of the alkali carbonate include sodium carbonate and potassium carbonate.
  • Preferred examples of the alkali bicarbonate include sodium bicarbonate (also referred to as sodium bicarbonate), potassium bicarbonate (also referred to as potassium bicarbonate), and the like.
  • the organic solvent is preferably an organic polar solvent.
  • the organic polar solvent include dimethyl sulfoxide, 1-methyl-2-pyrrolidone, sulfolane (also referred to as 1,1-dioxothiolane), 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2 -Imidazolidinone, dimethyl sulfone, diethyl sulfone, diisopropyl sulfone, diphenyl sulfone and the like.
  • the amount of dihalogeno compound (A) used in the polymerization is preferably 90 to 105 mol%, and preferably 93 to 100 mol%, based on the amount (mole number) of dihydric phenol (B). More preferably, it is 95 to 100 mol%, further preferably 97 to 99 mol%.
  • the target reaction (polymerization) is dehydrohalogenated polycondensation of the dihalogeno compound (A) and the dihydric phenol (B). If no side reaction occurs, the molar ratio of both is close to 1: 1.
  • the reduced viscosity tends to increase, Mn increases, and Mw / Mn tends to decrease.
  • side reactions such as substitution reaction of halogen atoms to hydroxy groups and depolymerization occur due to by-produced alkali hydroxide and the like, and this side reaction reduces the degree of polymerization of the aromatic polysulfone obtained. Therefore, in consideration of the degree of this side reaction, it is necessary to adjust the amount of the dihalogeno compound (A) so that an aromatic polysulfone having a predetermined reduced viscosity, Mn and Mw / Mn can be obtained.
  • the amount of alkali metal carbonate used is preferably 90 to 110 mol%, and preferably 95 to 105 mol%, as an alkali metal, relative to the number of moles of the hydroxy group of the dihydric phenol (B). More preferably, it is 95 to 100 mol%, further preferably 97 to 99 mol%. If no side reaction occurs, the greater the amount of alkali metal carbonate used, the faster the target polycondensation will proceed, and the degree of polymerization of the resulting aromatic polysulfone will increase, resulting in the aromatic polysulfone. Tends to increase the reduced viscosity, increase Mn, and decrease Mw / Mn.
  • the dihalogeno compound (A) and the dihydric phenol (B) were dissolved in an organic polar solvent as the first step, and the second step was obtained in the first step.
  • the alkali metal salt of carbonic acid is added to the solution to polycondense the dihalogeno compound (A) and the dihydric phenol (B), and as a third stage, unreacted from the reaction mixture obtained in the second stage.
  • An alkali polysulfone is obtained by removing the alkali metal salt of carbonic acid, the by-produced alkali halide, and the organic polar solvent.
  • the melting temperature in the first stage is preferably 40 to 180 ° C.
  • the polycondensation temperature in the second stage is preferably 180 to 400 ° C., more preferably 300 to 400 ° C., and further preferably more than 300 ° C. and 360 ° C. or less. If no side reaction occurs, the higher the polycondensation temperature, the faster the target polycondensation proceeds, and the higher the degree of polymerization of the resulting aromatic polysulfone. As a result, the aromatic polysulfone tends to have a reduced viscosity, Mn increases, and Mw / Mn decreases.
  • the temperature is gradually raised while removing by-product water, and after reaching the reflux temperature of the organic polar solvent, further preferably 1 to 50 hours, more preferably 2 It is preferably carried out by keeping the temperature for 30 hours. If no side reaction occurs, the longer the polycondensation time, the more the target polycondensation proceeds, and the higher the degree of polymerization of the aromatic polysulfone obtained. As a result, the aromatic polysulfone tends to have a reduced viscosity, Mn increases, and Mw / Mn decreases.
  • Examples of the poor solvent for aromatic polysulfone include methanol, ethanol, 2-propanol, hexane, heptane, and water, and methanol is preferable because it can be easily removed.
  • Aromatic polysulfone may be obtained by extracting and removing impurities such as a solvent. Specifically, the reaction mixture may be cooled and solidified, then pulverized, and the resulting powder may be washed to extract and remove impurities to obtain aromatic polysulfone.
  • the washing first, unreacted alkali metal salt of carbonic acid and by-produced alkali halide are extracted from the powder with water, the aromatic polysulfone is not dissolved, and the organic polar solvent is dissolved (uniformly).
  • the organic polar solvent may be extracted and removed with the solvent to be mixed.
  • the water used for extraction of the unreacted alkali metal salt of carbonic acid and the by-produced alkali halide is preferably warm water.
  • the temperature of the hot water used for extraction is preferably 40 to 80 ° C.
  • the volume average particle size of the powder is preferably 200 to 2000 ⁇ m, more preferably 250 to 1500 ⁇ m, and further preferably 300 to 1000 ⁇ m from the viewpoint of extraction efficiency and workability during extraction.
  • the volume average particle diameter of the powder is equal to or more than the lower limit, solidification during extraction and clogging during filtration and drying after extraction are highly suppressed. Moreover, extraction efficiency becomes higher because the volume average particle diameter of the said powder is below the said upper limit.
  • the “volume average particle diameter” can be measured by a laser diffraction method.
  • the extraction solvent examples include, for example, a mixed solvent of acetone and methanol when diphenyl sulfone is used as a polymerization solvent.
  • the mixing ratio of acetone and methanol is usually determined from the viewpoint of extraction efficiency and stickiness of the aromatic polysulfone powder.
  • dihydric phenol (B) and an alkali metal carbonate are reacted in an organic polar solvent to remove by-product water.
  • the dihalogeno compound (A) is added to the reaction mixture obtained in the first stage to perform polycondensation
  • the third stage as in the case of the method described above, Unreacted alkali metal salt of carbonic acid, by-produced alkali halide and organic polar solvent are removed from the reaction mixture obtained in two steps to obtain aromatic polysulfone.
  • azeotropic dehydration may be performed by adding an organic solvent azeotropic with water in order to remove by-product water in the first stage.
  • organic solvent azeotropic with water include benzene, chlorobenzene, toluene, methyl isobutyl ketone, hexane, cyclohexane and the like.
  • the temperature for azeotropic dehydration is preferably 70 to 200 ° C.
  • the reaction temperature in the second stage polycondensation is usually 180 to 400 ° C., preferably 300 to 400 ° C., more preferably more than 300 ° C. and 360 ° C. or less.
  • the polycondensation temperature is set so that an aromatic polysulfone having a predetermined reduced viscosity, Mn and Mw / Mn is obtained in consideration of the degree of side reaction. It is necessary to adjust the polycondensation time.
  • the aromatic polysulfone of the present invention has a number average molecular weight (Mn) and a weight average molecular weight (Mw) ratio value (Mw / Mn) of 1.80 or more and less than 1.90, and the number average molecular weight.
  • Mn is 6000 or more and less than 14,000, a high glass transition temperature can be expressed.
  • Mn and Mw / Mn of aromatic polysulfone as described above, the ratio of the amount of dihalogeno compound (A) used during polymerization and the amount of dihydric phenol (B) used, the amount of alkali metal carbonate used, It can be adjusted by controlling the reaction conditions of the second stage polycondensation temperature and the second stage polymerization time.
  • reaction conditions are independently controlled for the purpose of adjusting Mn and Mw / Mn of the aromatic polysulfone, and can be arbitrarily combined.
  • the aromatic polysulfone obtained by the above method has a number average molecular weight (Mn) and a weight average molecular weight (Mw) ratio value (Mw / Mn) of 1.80 or more and less than 1.90, It can be purified or adjusted by a known method so that the molecular weight (Mn) is 6000 or more and less than 14,000.
  • the aromatic polysulfone of the present invention Since the aromatic polysulfone of the present invention has a high glass transition temperature and excellent heat resistance, its function is sufficiently exhibited even under severe heat treatment conditions.
  • the aromatic polysulfone of the present invention also has good adhesion to materials such as metal, glass and ceramic. Therefore, the aromatic polysulfone of the present invention is suitable as a coating material for members such as metal, glass or ceramic.
  • a resin composition hereinafter, also referred to as a resin solution
  • the resin coating film can be formed on the surface of the member.
  • the aromatic polysulfone of the present invention is suitable for use in fields such as automobiles and aircraft.
  • a second aspect of the present invention is a prepreg formed from the aromatic polysulfone according to the first aspect of the present invention, a liquid epoxy resin, a curing agent, and reinforcing fibers.
  • Epoxy resin is not particularly limited as long as it is a liquid epoxy resin, and for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and the like can be used as appropriate.
  • liquid as used herein means a liquid state at 0 to 40 ° C.
  • the curing agent is not particularly limited as long as it can react with the epoxy resin, but an amine curing agent is preferably used.
  • examples of the curing agent include tetramethylguanidine, imidazole or derivatives thereof, carboxylic acid hydrazides, tertiary amines, aromatic amines, aliphatic amines, dicyandiamide or derivatives thereof.
  • the reinforcing fiber is preferably at least one selected from the group consisting of carbon fiber, glass fiber, and aramid fiber from the viewpoint of strength, and more preferably carbon fiber. These reinforcing fibers may be woven fabric or non-woven fabric. Moreover, the use of the aromatic polysulfone resin of the present invention is not limited to this, and can also be used as a coating material for a member such as metal, glass or ceramic.
  • a third aspect of the present invention is a method for producing a prepreg, comprising the step of impregnating a reinforcing fiber into a mixture obtained by mixing the aromatic polysulfone according to the first aspect of the present invention, a liquid epoxy resin, and a curing agent. Is the method.
  • the method for producing the prepreg is not particularly limited.
  • the mixture may be impregnated with reinforcing fibers.
  • the solvent to be used include methyl ethyl ketone, methanol, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylacetamide and the like.
  • Examples of methods for impregnating the mixture with reinforcing fibers include a wet method and a hot melt method (also referred to as a dry method).
  • the wet method is a method of impregnating the aromatic fibers with aromatic polysulfone by immersing the reinforcing fibers in the mixture, then pulling up the reinforcing fibers and evaporating the solvent from the reinforcing fibers using an oven or the like.
  • the hot melt method is a method of impregnating a reinforcing fiber directly with the mixture whose viscosity has been reduced by heating, or a film in which the mixture is coated on a release paper or the like, and then from both sides or one side of the reinforcing fiber. In this method, the reinforcing fibers are impregnated with a resin by overlapping the films and heating and pressing.
  • the prepreg is manufactured by, for example, heating to 120 to 140 ° C. and semi-curing the impregnated epoxy resin. be able to.
  • “semi-cured” means a state in which the viscosity or hardness of the epoxy resin has increased until a certain shape can be maintained, and the viscosity or hardness has increased from the above state to a state in which the viscosity or hardness can be further increased. It refers to a state that can be increased.
  • the glass transition temperature was calculated by a method according to JIS-K7121 using a differential scanning calorimeter (DSC-50 manufactured by Shimadzu Corporation). About 10 mg of the sample was weighed and raised to 340 ° C. at a heating rate of 10 ° C./min, then cooled to 40 ° C., and again raised to 340 ° C. at a heating rate of 10 ° C./min. From the DSC chart obtained by the second temperature increase, the glass transition temperature was calculated by a method according to JIS-K7121.
  • Example 2 Into a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, bis (4-hydroxyphenyl) sulfone (300.3 g), bis (4-chlorophenyl) sulfone (334. 3 g) and diphenyl sulfone (563.3 g) as a polymerization solvent were charged, and the temperature was raised to 180 ° C. while nitrogen gas was circulated in the system. After adding potassium carbonate (161.4 g) to the obtained solution, the temperature was gradually raised to 300 ° C., and the mixture was further reacted at 300 ° C. for 3 hours.
  • the obtained reaction solution was cooled to room temperature, solidified, finely pulverized, then washed several times with warm water and with a mixed solvent of acetone and methanol, and the powder impregnated with the solvent obtained by filtration at 150 ° C. Heat drying was performed to obtain aromatic polysulfone as a powder.
  • Table 1 shows the Mw / Mn and glass transition temperature of the obtained aromatic polysulfone.
  • the obtained reaction solution is cooled to room temperature, solidified, finely pulverized, then washed several times with warm water and with a mixed solvent of acetone and methanol, and a powder impregnated with the solvent obtained by decantation and filtration is obtained. Heating and drying at 150 ° C. gave an aromatic polysulfone as a powder.
  • Table 1 shows the Mw / Mn and glass transition temperature of the obtained aromatic polysulfone.
  • the present invention is extremely useful industrially because it can be used in the field of materials that require high heat resistance, such as coating materials for materials such as metals, glass, and ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

式(A)で表されるジハロゲノ化合物(A)と、式(B)で表される二価フェノール(B)と、を重合して得られる熱可塑性の芳香族ポリスルホンであって、 数平均分子量であるMnと重量平均分子量であるMwとの比の値であるMw/Mnが1.80以上1.90未満であり、数平均分子量(Mn)が6000以上14000未満である、芳香族ポリスルホン。[式(A)及び(B)中、X及びX'は、互いに独立に、ハロゲン原子を表し;R、R、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し;n、n、n及びnは、互いに独立に、0~4の整数を表し;n、n、n又はnが2~4の整数である場合、複数個のR、R、R又はRは、それぞれ互いに同一でも異なっていてもよい。]

Description

芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
 本発明は、芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法に関する。
 本願は、2016年2月5日に、日本に出願された特願2016-021123号、及び2016年9月15日に、日本に出願された特願2016-180849号に基づき優先権を主張し、その内容をここに援用する。
 芳香族ポリスルホンは、耐熱性、耐薬品性、耐クリープ性等に優れるだけでなく、金属、ガラス、セラミック等の素材との密着性が良好であることから、各種コーティング材として利用されている。このような利用法の一例としては、フッ素樹脂を含む芳香族ポリスルホン溶液を金属製基材に塗布した後、加熱処理することにより、基材表面にフッ素樹脂のコーティング膜を形成する方法が知られている。
 芳香族ポリスルホンがこのような用途に適した耐熱性を有するためには、その分子量及び分子量分布が適切な範囲にあることが重要であり、例えば、数平均分子量(Mn)が11000~25000で、多分散度(Mw/Mn)が3.0以下である芳香族ポリスルホンが知られている(特許文献1参照)。
特開2002-172675号公報
 芳香族ポリスルホンは、ガラス転移温度(Tg)が高いため、耐熱性に優れる材料として、電子材料分野をはじめ多くの分野で用いられている。
 しかし、これら芳香族ポリスルホンにはさらなる耐熱性の向上が望まれ、高いガラス転移温度(Tg)を発現させるためには未だ改良の余地がある。
 電子機器を製造する際には電子機器の構成部品は、例えば、リフロー工程のように部品を高温に曝すことがある。部品の変形を抑制するためには、高いガラス転移温度(Tg)の発現が求められる。また、電子機器に限らず、高温条件下に曝される部材については、同様の問題が生じうる。
 本発明はこのような事情に鑑みてなされたものであり、高いガラス転移温度(Tg)を発現できる、新規の芳香族ポリスルホン、前記芳香族ポリスルホンを用いたプリプレグ及び前記プリプレグの製造方法を提供することを課題とする。
 上記課題を解決するため、本発明の第1の態様は、式(A)で表されるジハロゲノ化合物(A)と、式(B)で表される二価フェノール(B)と、を重合して得られる熱可塑性の芳香族ポリスルホンであって、数平均分子量(Mn)と重量平均分子量(Mw)の比の値(Mw/Mn)が1.80以上1.90未満であり、数平均分子量(Mn)が6000以上14000未満である、芳香族ポリスルホンを提供する。
Figure JPOXMLDOC01-appb-C000002
[式(A)及び(B)中、X及びX’は、互いに独立に、ハロゲン原子を表す。
、R、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表す。n、n、n及びnは、互いに独立に、0~4の整数を表す。n、n、n又はnが2~4の整数である場合、複数個のR、R、R又はRは、それぞれ互いに同一であっても異なっていてもよい。]
 本発明の第2の態様は、前記本発明の第1の態様の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤と、強化繊維とを用いたプリプレグである。
 本発明の第3の態様は、前記本発明の第1の態様の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤とを混合した混合物に、強化繊維を含浸させる工程を有する、プリプレグの製造方法である。
 すなわち、本発明は、以下の態様を含む。
[1]式(A)で表されるジハロゲノ化合物(A)と、式(B)で表される二価フェノール(B)と、を重合して得られる熱可塑性の芳香族ポリスルホンであって、
 数平均分子量であるMnと重量平均分子量であるMwとの比の値であるMw/Mnが、1.80以上1.90未満であり、数平均分子量であるMnが6000以上14000未満である、芳香族ポリスルホン。
Figure JPOXMLDOC01-appb-C000003
[式(A)及び(B)中、X及びX’は、互いに独立に、ハロゲン原子を表し;
、R、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し;
、n、n及びnは、互いに独立に、0~4の整数を表し;n、n、n又はnが2~4の整数である場合、複数個のR、R、R又はRは、それぞれ互いに同一でも異なっていてもよい。]
[2]前記式(A)において、X及びX’が塩素原子である、[1]記載の芳香族ポリスルホン。
[3]前記式(A)又は前記式(B)において、n、n、n及びnが0である[1]又は[2]に記載の芳香族ポリスルホン。
[4][1]~[3]のいずれか1つに記載の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤と、強化繊維とから形成されたプリプレグ。
[5][1]~[3]のいずれか1つに記載の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤とを混合した混合物に、強化繊維を含浸させる工程を含む、プリプレグの製造方法。
 本発明によれば、高いガラス転移温度(Tg)を発現できる、新規の芳香族ポリスルホン、前記芳香族ポリスルホンを用いたプリプレグ及び前記プリプレグの製造方法を提供することができる。
<芳香族ポリスルホン>
 本発明の芳香族ポリスルホンは、下記式(A)で表されるジハロゲノ化合物(A)と、下記式(B)で表される二価フェノール(B)と、を重合して得られる熱可塑性の芳香族ポリスルホンであって、数平均分子量(Mn)と重量平均分子量(Mw)の比の値(Mw/Mn、すなわち、多分散度)が1.80以上1.90未満であり、数平均分子量(Mn)が6000以上14000未満の芳香族ポリスルホンである。
本発明の芳香族ポリスルホンの別の側面は、下記式(A)で表されるジハロゲノ化合物(A)と、下記式(B)で表される二価フェノール(B)と、が重合しており、数平均分子量であるMnと重量平均分子量であるMwとの比の値であるMw/Mnが、1.80以上1.90未満であり、数平均分子量であるMnが6000以上14000未満である、熱可塑性の芳香族ポリスルホンである。
本発明の芳香族ポリスルホンのさらに別の側面は、下記式(A)で表されるジハロゲノ化合物(A)由来の構成単位と、下記式(B)で表される二価フェノール(B)由来の構成単位と、を含み、数平均分子量であるMnと重量平均分子量であるMwとの比の値であるMw/Mnが、1.80以上1.90未満であり、数平均分子量であるMnが6000以上14000未満である、熱可塑性の芳香族ポリスルホンである。
 ここで、「由来」とは、ジハロゲノ化合物(A)と二価フェノール(B)とが重合するために、化学構造が変化することを意味する。 本明細書においては、式(A)で表されるジハロゲノ化合物(A)を、単に「ジハロゲノ化合物(A)」ということがある。また、式(B)で表される二価フェノール(B)を、単に「二価フェノール(B)」ということがある。
 本発明の芳香族ポリスルホンは、ジハロゲノ化合物(A)及び二価フェノール(B)をモノマーとし、Mw/Mn及びMnが、上記の条件を満たしていることで、高いガラス転移温度を発現でき、優れた耐熱性を示す。
Figure JPOXMLDOC01-appb-C000004
[式(A)及び(B)中、X及びX’は、互いに独立に、ハロゲン原子を表し;
、R、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し;
、n、n及びnは、互いに独立に、0~4の整数を表し;n、n、n又はnが2~4の整数である場合、複数個のR、R、R又はRは、それぞれ互いに同一であっても異なっていてもよい。]
[ジハロゲノ化合物(A)]
 ジハロゲノ化合物(A)は、式(A)で表される化合物である。
 式(A)中、X及びX’は、互いに独立に、ハロゲン原子を表す。前記ハロゲン原子の例としては、塩素原子、臭素原子、及びヨウ素原子が挙げられるが、塩素原子であることが好ましい。
 X及びX’は、それぞれベンゼン環骨格のスルホニル基(-SO-)が結合している炭素原子の位置番号を1位としたとき、ベンゼン環骨格の2位、3位及び4位のいずれの炭素原子に結合していてもよいが、4位の炭素原子に結合していることが好ましい。すなわち、ジハロゲノ化合物(A)は、水素原子に代わってR及びRのいずれか一方又は両方が結合していてもよいビス(4-クロロフェニル)スルホンであることが好ましい。
 式(A)中、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表す。
 R及びRにおける前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分枝鎖状であることが好ましく、その例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、及びtert-ブチル基が挙げられる。
 R及びRにおける前記アルコキシ基は、直鎖状、分岐鎖状及び環状のいずれでもよいが、直鎖状又は分枝鎖状であることが好ましく、その例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、及びtert-ブトキシ基が挙げられる。
 式(A)中、nはRの結合数であり、nはRの結合数であり、互いに独立に、0~4の整数を表す。
 n及びnが、0以外である場合、対応するR又はRの結合位置は特に限定されない。ベンゼン環骨格のスルホニル基が結合している炭素原子の位置番号を1位としたとき、R又はRは、ベンゼン環骨格の2位、3位、4位、5位及び6位のいずれの炭素原子に結合していてもよい。ただし、R又はRの結合位置として、X又はX’が結合している炭素原子を除く。R又はRは、4位以外の炭素原子に結合していることが好ましく、3位もしくは5位、又は3位及び5位の炭素原子に結合していることがより好ましい。
 n又はnが2~4の整数である場合、複数個のR又はRは、それぞれ互いに同一であっても異なっていてもよい。例えば、nが2~4の整数である場合、n個のRは、すべて同一であってもよいし、すべて異なっていてもよく、nが3又は4である場合には、一部のみ同一であってもよい。n個のRも、n個のRの場合と同様である。
 n及びnは、互いに独立に、0~3の整数あることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。
 好ましいジハロゲノ化合物(A)の例としては、ビス(4-クロロフェニル)スルホンが挙げられる。ビス(4-クロロフェニル)スルホンは、4,4’-ジクロロジフェニルスルホンとも言う。
[二価フェノール(B)]
 二価フェノール(B)は、式(B)で表される化合物である。
 二価フェノール(B)において、2個のヒドロキシ基(-OH)は、それぞれベンゼン環骨格のスルホニル基が結合している炭素原子の位置番号を1位としたとき、ベンゼン環骨格の2位、3位及び4位のいずれの炭素原子に結合していてもよいが、4位の炭素原子に結合していることが好ましい。すなわち、二価フェノール(B)は、水素原子に代わってR及びRのいずれか一方又は両方が結合していてもよいビス(4-ヒドロキシフェニル)スルホンであることが好ましい。ビス(4-ヒドロキシフェニル)スルホンは、4,4’-ジヒドロキシジフェニルスルホンとも言う。
 式(B)中、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表す。R及びRにおける、炭素数1~4のアルキル基及び炭素数1~4のアルコキシ基としては、R及びRの説明で挙げられた基と同様の基が挙げられる。
 また、nはRの結合数であり、nはRの結合数であり、互いに独立に、0~4の整数を表す。n及びnが、0以外である場合、対応するR又はRの結合位置は特に限定されない。ベンゼン環骨格のスルホニル基が結合している炭素原子の位置番号を1位としたとき、R又はRはベンゼン環骨格の2位、3位、4位、5位及び6位のいずれの炭素原子に結合していてもよい。ただし、R又はRの結合位置として、ヒドロキシ基が結合している炭素原子を除く。R又はRは、4位以外の炭素原子に結合していることが好ましく、3位もしくは5位、又は3位及び5位の炭素原子に結合していることが好ましい。
 n又はnが2~4の整数である場合、複数個のR又はRは、それぞれ互いに同一でも異なっていてもよい。例えば、nが2~4の整数である場合、n個のRは、すべて同一であってもよいし、すべて異なっていてもよく、nが3又は4である場合には,Rは一部のみ同一であってもよい。n個のRも、n個のRの場合と同様である。
 n及びnは、互いに独立に、0~3の整数あることが好ましく、0~2の整数であることがより好ましく、0又は1であることがさらに好ましい。
 別の側面として二価フェノール(B)としては、ビス(4-ヒドロキシフェニル)スルホン、及びビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホンが好ましい。
 本発明の芳香族ポリスルホンの還元粘度は、好ましくは0.18dL/g以上であり、より好ましくは0.22~0.28dL/gである。芳香族ポリスルホンは、還元粘度が高いほど、耐熱性や強度・剛性が向上し易い。一方、芳香族ポリスルホンは、あまりに還元粘度が高いと(すなわち、上記上限値超になると)、溶融温度や溶融粘度が高くなり易く、流動性が低くなり易い。
 すなわち、本発明の芳香族ポリスルホンの還元粘度が上記範囲内であると耐熱性や強度・剛性が向上し易く、かつ溶融温度や溶融粘度が高くなりすぎず、流動性も低くなりにくい。
 本明細書において、芳香族ポリスルホンの還元粘度(dL/g)は、以下の方法で求めた値を指す。まず、芳香族ポリスルホン樹脂約1gを精秤し、N,N-ジメチルホルムアミドに溶解させて、その容量を1dLとする。次いで、この溶液の粘度(η)、及び溶媒であるN,N-ジメチルホルムアミドの粘度(η0)を、オストワルド型粘度管を用いて、25℃で測定する。次いで、測定値から求められる比粘性率((η-η0)/η0)を、前記溶液の濃度(約1g/dL)で割ることにより、芳香族ポリスルホンの還元粘度が求められる。
 本発明の芳香族ポリスルホンの数平均分子量(Mn)は6000以上であり、好ましくは6500以上、より好ましくは7000以上、さらに好ましくは7500以上である。
 Mnが前記下限値以上であることで、芳香族ポリスルホンは耐熱性に顕著に優れる。
 また、本発明の芳香族ポリスルホンの数平均分子量(Mn)は14000未満であり、好ましくは13500以下、より好ましくは13000以下、さらに好ましくは12500以下、よりさらに好ましくは12000以下、特に好ましくは11500以下である。
 Mnが前記上限値以下であることで、芳香族ポリスルホンは耐熱性に顕著に優れる。
 なお、上記Mnの上限値及び下限値は、任意に組み合わせることができる。
 本発明の芳香族ポリスルホンの数平均分子量(Mn)は、例えば、6000以上14000未満であり、7000以上13000以下が好ましく、7500以上12000以下がより好ましく、7500以上11500以下がさらに好ましく、8000~11000であることが特に好ましい。
 本明細書において、芳香族ポリスルホンの重量平均分子量(Mw)と数平均分子量(Mn)の比であるMw/Mnの値は、芳香族ポリスルホンの多分散度を示す。本発明の芳香族ポリスルホンにおいて、Mw/Mnの値は1.80以上1.90未満であり、好ましくは1.81以上であり、より好ましくは1.82以上であり、好ましくは1.89以下であり、より好ましくは1.88以下であり、さらに好ましくは1.87以下である。
 Mw/Mnの値が前記下限値以上であることで、芳香族ポリスルホンは高いガラス転移温度を発現することができる。
 上記Mw/Mnの上限値及び下限値は任意に組み合わせることができる。
 本発明の芳香族ポリスルホンにおいて、Mw/Mnの値は、例えば、1.82以上1.87以下であることがとりわけ好ましい。
 本明細書において、芳香族ポリスルホンの重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、ゲル浸透クロマトグラフィー(GPC)分析により2回測定した測定値を平均することにより得られる値である。各測定においては、標準ポリスチレンの分子量を測定して得られた検量線に基づいて、標準ポリスチレン換算の分子量を求める。
 また、Mw/Mnは、上述のように平均値として得られる重量平均分子量(Mw)と数平均分子量(Mn)とから算出することができる。
 本発明の芳香族ポリスルホンは、高いガラス転移温度を発現することができる。例えばJIS-K7121に準じた方法でガラス転移温度を算出したとき、本発明の芳香族ポリスルホンにおいて、ガラス転移温度(℃)は、好ましくは215℃以上、より好ましくは216℃以上となる。また、ガラス転移温度(℃)の上限値としては235℃以下が好ましい。ガラス転移温度(℃)は、芳香族ポリスルホンの耐熱性の程度を判断する指標となるものであり、通常は、この温度が高いほど、芳香族ポリスルホンは耐熱性に優れているといえる。
[重合]
 ジハロゲノ化合物(A)と二価フェノール(B)とを溶媒中で反応させる工程(以下、「重合」と記載する)について説明する。
 ジハロゲノ化合物(A)と二価フェノール(B)との重合(以下、重縮合ということもある)は、塩基として炭酸のアルカリ金属塩を用いて行われるか、又は重合溶媒である有機溶媒中で行われることが好ましく、塩基として炭酸のアルカリ金属塩を用い、且つ有機溶媒中で行われることがより好ましい。
 炭酸のアルカリ金属塩は、正塩である炭酸アルカリ、すなわちアルカリ金属の炭酸塩であってもよいし、酸性塩である重炭酸アルカリ、すなわち炭酸水素アルカリやアルカリ金属の炭酸水素塩であってもよいし、これら炭酸アルカリ及び重炭酸アルカリの混合物であってもよい。
 好ましい前記炭酸アルカリの例としては、炭酸ナトリウム、炭酸カリウム等が挙げられる。
 好ましい前記重炭酸アルカリの例としては、重炭酸ナトリウム(炭酸水素ナトリウムともいう)、重炭酸カリウム(炭酸水素カリウムともいう)等が挙げられる。
 前記有機溶媒は有機極性溶媒であることが好ましい。
 前記有機極性溶媒の例としては、ジメチルスルホキシド、1-メチル-2-ピロリドン、スルホラン(1,1-ジオキソチオランともいう)、1,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン等が挙げられる。 
 重合に用いるジハロゲノ化合物(A)の使用量は、二価フェノール(B)の使用量(モル数)に対して、90~105モル%であることが好ましく、93~100モル%であることがより好ましく、95~100モル%がさらに好ましく、97~99モル%が特に好ましい。目的とする反応(重合)は、ジハロゲノ化合物(A)と二価フェノール(B)との脱ハロゲン化水素重縮合であり、仮に副反応が生じなければ、両者のモル比が1:1に近いほど、すなわちジハロゲノ化合物(A)の使用量が二価フェノール(B)の使用量に対して100モル%に近いほど、得られる芳香族ポリスルホンの重合度が高くなり、その結果、芳香族ポリスルホンは還元粘度が高くなり、Mnが大きくなって、Mw/Mnが小さくなる傾向にある。しかし、実際は、副生する水酸化アルカリ等により、ハロゲン原子のヒドロキシ基への置換反応や解重合等の副反応が生じ、この副反応により、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度、Mn及びMw/Mnを有する芳香族ポリスルホンが得られるように、ジハロゲノ化合物(A)の使用量を調整する必要がある。
 炭酸のアルカリ金属塩の使用量は、二価フェノール(B)のヒドロキシ基のモル数に対して、アルカリ金属として、90~110モル%であることが好ましく、95~105モル%であることがより好ましく、95~100モル%がさらに好ましく、97~99モル%が特に好ましい。仮に副反応が生じなければ、炭酸のアルカリ金属塩の使用量が多いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなり、その結果、芳香族ポリスルホンは還元粘度が高くなり、Mnが大きくなり、Mw/Mnが小さくなる傾向にある。しかし、実際は、炭酸のアルカリ金属塩の使用量が多いほど、上記と同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度、Mn及びMw/Mnを有する芳香族ポリスルホンが得られるように、炭酸のアルカリ金属塩の使用量を調整する必要がある。
 典型的な芳香族ポリスルホンの製造方法では、第1段階として、ジハロゲノ化合物(A)と二価フェノール(B)とを、有機極性溶媒に溶解させ、第2段階として、第1段階で得られた溶液に、炭酸のアルカリ金属塩を添加して、ジハロゲノ化合物(A)と二価フェノール(B)とを重縮合させ、第3段階として、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、副生したハロゲン化アルカリ、及び有機極性溶媒を除去して、芳香族ポリスルホンを得る。
 第1段階の溶解温度は、40~180℃であることが好ましい。また、第2段階の重縮合温度は、180~400℃であることが好ましく、300~400℃であることがより好ましく、300℃超360℃以下であることがさらに好ましい。仮に副反応が生じなければ、重縮合温度が高いほど、目的とする重縮合が速やかに進行するので、得られる芳香族ポリスルホンの重合度が高くなる。その結果、芳香族ポリスルホンは還元粘度が高くなり、Mnが大きくなり、Mw/Mnが小さくなる傾向にある。しかし、実際は、重縮合温度が高いほど、上記と同様の副反応が生じ易くなり、この副反応により、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度、Mn及びMw/Mnを有する芳香族ポリスルホンが得られるように、重縮合温度を調整する必要がある。
 また、第2段階の重縮合は、通常、副生する水を除去しながら徐々に昇温し、有機極性溶媒の還流温度に達した後、さらに、好ましくは1~50時間、より好ましくは2~30時間保温することにより行うことが好ましい。仮に副反応が生じなければ、重縮合時間が長いほど、目的とする重縮合が進むので、得られる芳香族ポリスルホンの重合度が高くなる。その結果、芳香族ポリスルホンは還元粘度が高くなり、Mnが大きくなり、Mw/Mnが小さくなる傾向にある。しかし、実際は、重縮合時間が長いほど、上記と同様の副反応が進行し、この副反応により、得られる芳香族ポリスルホンの重合度が低下する。そのため、この副反応の度合いも考慮して、所定の還元粘度、Mn及びMw/Mnを有する芳香族ポリスルホンが得られるように、重縮合時間を調整する必要がある。
 第3段階では、まず、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリを、濾過、抽出、遠心分離等で除去することにより、芳香族ポリスルホンが有機極性溶媒に溶解してなる溶液が得られる。次いで、この溶液から、有機極性溶媒を除去することにより、芳香族ポリスルホンが得られる。有機極性溶媒の除去は、前記溶液から直接、有機極性溶媒を留去することにより行ってもよいし、前記溶液を芳香族ポリスルホンの貧溶媒と混合して、芳香族ポリスルホンを析出させ、濾過や遠心分離等で分離することにより行ってもよい。
 芳香族ポリスルホンの貧溶媒の例としては、メタノール、エタノール、2-プロパノール、ヘキサン、ヘプタン、水が挙げられ、除去が容易であることから、メタノールが好ましい。
 また、比較的高融点の有機極性溶媒を重合溶媒として用いた場合には、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリ、有機極性溶媒等の夾雑物を抽出除去することで、芳香族ポリスルホンを得てもよい。具体的には、反応混合物を冷却固化させた後、粉砕し、得られた粉体を洗浄することにより夾雑物を抽出除去し、芳香族ポリスルホンを得てもよい。洗浄は、まず上記粉体から、水により、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリを抽出除去すると共に、芳香族ポリスルホンが溶解せず、且つ有機極性溶媒が溶解(均一に混合)する溶媒により、有機極性溶媒を抽出除去するとよい。その際、未反応の炭酸のアルカリ金属塩、及び副生したハロゲン化アルカリの抽出に用いる水は、温水であると好ましい。
ここで、抽出に用いる温水の温度は40~80℃であると好ましい。
 前記粉体の体積平均粒径は、抽出効率及び抽出時の作業性の点から、好ましくは200~2000μmであり、より好ましくは250~1500μmであり、さらに好ましくは300~1000μmである。前記粉体の体積平均粒径が前記下限値以上であることで、抽出の際の固結や、抽出後に濾過や乾燥を行う際の目詰まりが、高度に抑制される。また、前記粉体の体積平均粒径が前記上限値以下であることで、抽出効率がより高くなる。
 本明細書において、「体積平均粒径」は、レーザ回折法により測定することができる。
 前記抽出溶媒の例としては、例えば、重合溶媒としてジフェニルスルホンを用いた場合には、アセトン及びメタノールの混合溶媒等が挙げられる。ここで、アセトン及びメタノールの混合比は、通常、抽出効率と芳香族ポリスルホン粉体の固着性の観点から決定される。
 また、典型的な芳香族ポリスルホンの上記と別の製造方法では、第1段階として、二価フェノール(B)と炭酸のアルカリ金属塩とを有機極性溶媒中で反応させ、副生する水を除去し、第2段階として、第1段階で得られた反応混合物に、ジハロゲノ化合物(A)を添加して、重縮合を行い、第3段階として、先に説明した方法の場合と同様に、第2段階で得られた反応混合物から、未反応の炭酸のアルカリ金属塩、副生したハロゲン化アルカリ、及び有機極性溶媒を除去して、芳香族ポリスルホンを得る。
 なお、この別法では、第1段階において、副生する水を除去するために、水と共沸する有機溶媒を加えて、共沸脱水を行ってもよい。水と共沸する有機溶媒の例としては、ベンゼン、クロロベンゼン、トルエン、メチルイソブチルケトン、ヘキサン、シクロヘキサン等が挙げられる。共沸脱水の温度は、好ましくは70~200℃である。
 また、この別法では、第2段階の重縮合における反応温度は、通常180~400℃であり、300~400℃が好ましく、300℃超360℃以下がより好ましい。この別法においても、先に説明した方法の場合と同様に、副反応の度合いも考慮して、所定の還元粘度、Mn及びMw/Mnを有する芳香族ポリスルホンが得られるように、重縮合温度や重縮合時間を調整する必要がある。
 上述のように、本発明の芳香族ポリスルホンは、数平均分子量(Mn)と重量平均分子量(Mw)の比の値(Mw/Mn)が1.80以上1.90未満であり、数平均分子量(Mn)が6000以上14000未満であることで、高いガラス転移温度を発現することができる。
 芳香族ポリスルホンのMn及びMw/Mnについては、上述のように重合時のジハロゲノ化合物(A)の使用量と二価フェノール(B)の使用量との比率、炭酸のアルカリ金属塩の使用量、第2段階の重縮合温度、第2段階の重合時間の各反応条件を制御することにより調整可能である。これらの反応条件は、芳香族ポリスルホンのMn及びMw/Mnを調整する目的でそれぞれ独立して制御し、任意に組み合わせることができる。 また、上述の方法により得られた芳香族ポリスルホンを、数平均分子量(Mn)と重量平均分子量(Mw)の比の値(Mw/Mn)が1.80以上1.90未満であり、数平均分子量(Mn)が6000以上14000未満となるように、公知の方法により精製又は調整することができる。
 本発明の芳香族ポリスルホンは、ガラス転移温度が高く、耐熱性に優れるため、厳しい加熱処理の条件下でもその機能を十分に発現する。また、本発明の芳香族ポリスルホンは、金属、ガラス、セラミック等の素材との密着性も良好である。したがって、本発明の芳香族ポリスルホンは、例えば、金属、ガラス又はセラミック等の部材のコーティング材として好適である。前記部材のコーティングには、例えば、芳香族ポリスルホンと、これ以外の樹脂とを含有する樹脂組成物(以下、樹脂溶液ともいう)を調製し、これを目的とする部材に塗工し、乾燥させることで、部材表面に前記樹脂のコーティング膜を形成できる。ただし、これは一例に過ぎず、本発明の芳香族ポリスルホンの用途は、これに限定されない。本発明の芳香族ポリスルホンは、例えば、自動車、航空機等の分野での利用に好適である。
<プリプレグ>
 本発明の第2の態様は、前記本発明の第1の態様の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤と、強化繊維とから形成されたプリプレグである。
[エポキシ樹脂]
 エポキシ樹脂としては、特に液状のエポキシ樹脂であれば限定されず、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等を適宜用いることができる。
 ここでいう「液状」とは、0~40℃において液体の状態であることを意味する。
[硬化剤]
 硬化剤としては、前記エポキシ樹脂と反応し得るものであれば特に限定はないが、アミン系硬化剤が好ましく用いられる。かかる硬化剤としては、例えば、テトラメチルグアニジン、イミダゾール又はその誘導体、カルボン酸ヒドラジド類、3級アミン、芳香族アミン、脂肪族アミン、ジシアンジアミド又はその誘導体等が挙げられる。
[強化繊維]
 強化繊維としては、強度の観点から、炭素繊維、ガラス繊維及びアラミド繊維からなる群から選ばれる少なくとも1種であることが好ましく、炭素繊維であることがより好ましい。これらの強化繊維は、織布又は不織布であってもよい。また、本発明の芳香族ポリスルホン樹脂の用途はこれに限定されず、金属、ガラス又はセラミック等の部材のコーティング材等として用いることもできる。
<プリプレグの製造方法>
 本発明の第3の態様は、前記本発明の第1の態様の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤とを混合した混合物に、強化繊維を含浸させる工程を含む、プリプレグの製造方法である。
 プリプレグの製造方法は特に限定されず、前記本発明の第1の態様の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤とを、メチルエチルケトン、メタノール等の溶媒に溶解させた混合物を調整し、前記混合物に強化繊維を含浸させればよい。用いる溶媒としては、メチルエチルケトン、メタノールの他、ジメチルスルホキシド,N,N-ジメチルホルムアミド、N-メチルピロリドン、ジメチルアセトアミド等を挙げることができる。
 前記混合物に強化繊維を含浸させる方法としては、ウェット法とホットメルト法(ドライ法ともいう)等を挙げることができる。
 ウェット法は、前記混合物に強化繊維を浸漬した後、強化繊維を引き上げ、オーブン等を用いて強化繊維から溶媒を蒸発させることにより、芳香族ポリスルホン等を強化繊維に含浸させる方法である。
 ホットメルト法は、加熱により低粘度化した前記混合物を直接強化繊維に含浸させる方法、又は離型紙等の上に前記混合物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側又は片側から前記フィルムを重ね、加熱加圧することにより、強化繊維に樹脂を含浸させる方法である。
 このようにして強化繊維にエポキシ樹脂と本実施形態の芳香族ポリスルホンとを含浸させた後、例えば120~140℃に加熱して、含浸させたエポキシ樹脂を半硬化させることにより、プリプレグを製造することができる。
 本明細書において「半硬化」とは、一定の形状が維持できるまで前記エポキシ樹脂の粘度又は硬度が増加した状態であって、前記状態からさらに粘度又は硬度が増加し得る状態まで粘度又は硬度が増加可能である状態を指す。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
 なお、本実施例においては、芳香族ポリスルホンの評価は、下記方法で物性を測定することにより行った。
<芳香族ポリスルホンのMn及びMwの測定、Mw/Mnの算出>
 下記条件でゲル浸透クロマトグラフィー(GPC)分析を行い、Mn及びMwを測定し、Mw/Mnを算出した。Mn及びMwについてはいずれも2回測定し、その平均値を求めて、それぞれMn及びMwとし、さらに平均値として求めたMn及びMwからMw/Mnの値を求めた。
(測定条件)
 試料:濃度が0.002g/mLである芳香族ポリスルホンのN,N-ジメチルホルムアミド溶液
 試料注入量:100μL
 カラム:東ソー社製「TSKgel GMHHR-H」(7.8mmφ×300mm)を2本直列に連結
 カラム温度:40℃
 溶離液:N,N-ジメチルホルムアミド
 溶離液流量:0.8mL/分
 検出器:示差屈折率計(RI)+光散乱光度計(LS)
 標準試薬:ポリスチレン
<芳香族ポリスルホン樹脂のガラス転移温度の測定>
 示差走査熱量測定装置(島津製作所製DSC-50)を用い、JIS-K7121に準じた方法でガラス転移温度を算出した。サンプル約10mgを秤量し、昇温速度10℃/minで340℃まで上昇させた後、40℃まで冷却し、再び昇温速度10℃/minで340℃まで上昇させた。2回目の昇温で得られたDSCチャートより、JIS-K7121に準じた方法でガラス転移温度を算出した。
<芳香族ポリスルホンの製造及び評価>
[実施例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ビス(4-ヒドロキシフェニル)スルホン(300.3g)、ビス(4-クロロフェニル)スルホン(334.3g)、及び重合溶媒としてジフェニルスルホン(563.3g)を仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム(161.4g)を添加した後、305℃まで徐々に昇温し、305℃でさらに3時間反応させた。得られた反応液を室温まで冷却して固化させ、細かく粉砕した後、温水による洗浄並びにアセトン及びメタノールの混合溶媒による洗浄を数回行い、ろ過により得られた溶媒を含浸する粉末を150℃で加熱乾燥させ、芳香族ポリスルホンを粉末として得た。得られた芳香族ポリスルホンのMw/Mn及びガラス転移温度を表1に示す。
[実施例2]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ビス(4-ヒドロキシフェニル)スルホン(300.3g)、ビス(4-クロロフェニル)スルホン(334.3g)、及び重合溶媒としてジフェニルスルホン(563.3g)を仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム(161.4g)を添加した後、300℃まで徐々に昇温し、300℃でさらに3時間反応させた。得られた反応液を室温まで冷却して固化させ、細かく粉砕した後、温水による洗浄並びにアセトン及びメタノールの混合溶媒による洗浄を数回行い、ろ過により得られた溶媒を含浸する粉末を150℃で加熱乾燥させ、芳香族ポリスルホンを粉末として得た。得られた芳香族ポリスルホンのMw/Mn及びガラス転移温度を表1に示す。
[比較例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽に、ビス(4-ヒドロキシフェニル)スルホン(300.3g)、ビス(4-クロロフェニル)スルホン(331.8g)、及び重合溶媒としてジフェニルスルホン(563.3g)を仕込み、系内に窒素ガスを流通させながら180℃まで昇温した。得られた溶液に、炭酸カリウム(160.5g)を添加した後、290℃まで徐々に昇温し、290℃でさらに3時間反応させた。得られた反応液を室温まで冷却して固化させ、細かく粉砕した後、温水による洗浄並びにアセトン及びメタノールの混合溶媒による洗浄を数回行い、デカンテーション及びろ過により得られた溶媒を含浸する粉末を150℃で加熱乾燥させ、芳香族ポリスルホンを粉末として得た。得られた芳香族ポリスルホンのMw/Mn及びガラス転移温度を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、実施例1~2の芳香族ポリスルホンは、比較例1に比べてガラス転移温度が高く、耐熱性に優れていた。
 本発明は、金属、ガラス、セラミック等の素材に対するコーティング材等、高耐熱性が求められる材料の分野で利用可能であるので、産業上極めて有用である。

Claims (5)

  1.  式(A)で表されるジハロゲノ化合物(A)と、式(B)で表される二価フェノール(B)と、を重合して得られる熱可塑性の芳香族ポリスルホンであって、
     数平均分子量であるMnと重量平均分子量であるMwとの比の値であるMw/Mnが1.80以上1.90未満であり、
    数平均分子量(Mn)が6000以上14000未満である、
    芳香族ポリスルホン。
    Figure JPOXMLDOC01-appb-C000001
    [式(A)及び(B)中、X及びX’は、互いに独立に、ハロゲン原子を表し;
    、R、R及びRは、互いに独立に、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し;
    、n、n及びnは、互いに独立に、0~4の整数を表し;
    、n、n又はnが2~4の整数である場合、複数個のR、R、R又はRは、それぞれ互いに同一でも異なっていてもよい。]
  2.  式(A)において、X及びX’が塩素原子である、請求項1記載の芳香族ポリスルホン。
  3.  前記式(A)又は前記式(B)において、n、n、n及びnが0である請求項1又は2に記載の芳香族ポリスルホン。
  4.  請求項1~3のいずれか1項に記載の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤と、強化繊維とから形成されたプリプレグ。
  5.  請求項1~3のいずれか1項に記載の芳香族ポリスルホンと、液状のエポキシ樹脂と、硬化剤とを混合した混合物に、強化繊維を含浸させる工程を含む、プリプレグの製造方法。
PCT/JP2017/003821 2016-02-05 2017-02-02 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法 WO2017135379A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187022109A KR102686529B1 (ko) 2016-02-05 2017-02-02 방향족 폴리술폰, 프리프레그 및 프리프레그의 제조 방법
US16/074,826 US10851207B2 (en) 2016-02-05 2017-02-02 Aromatic polysulfone, prepreg, and method for producing prepreg
EP17747530.8A EP3412703A4 (en) 2016-02-05 2017-02-02 AROMATIC POLYSULPHON, PREPREG AND METHOD FOR PREPARING THE PREPREG
CN201780008754.3A CN108602948B (zh) 2016-02-05 2017-02-02 芳香族聚砜、预浸料和预浸料的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-021123 2016-02-05
JP2016021123 2016-02-05
JP2016-180849 2016-09-15
JP2016180849A JP6884535B2 (ja) 2016-02-05 2016-09-15 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法

Publications (1)

Publication Number Publication Date
WO2017135379A1 true WO2017135379A1 (ja) 2017-08-10

Family

ID=59500449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003821 WO2017135379A1 (ja) 2016-02-05 2017-02-02 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法

Country Status (1)

Country Link
WO (1) WO2017135379A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385301A4 (en) * 2015-12-02 2019-07-24 Sumitomo Chemical Company, Limited METHOD FOR PRODUCING A THERMOPLASTIC AROMATIC POLYSULPHONE RESIN, METHOD FOR THE PRODUCTION OF AN EPOXY COMPOSITION AND METHOD FOR THE PRODUCTION OF A CURED EPOXY PRODUCT
US10870755B2 (en) 2015-12-02 2020-12-22 Sumitomo Chemical Company, Limited Method for producing thermoplastic aromatic polysulfone resin, method for producing epoxy composition, and method for producing cured epoxy product
US20220073682A1 (en) * 2018-12-25 2022-03-10 Sumitomo Chemical Company, Limited Aromatic polysulfone resin, epoxy resin composition, prepreg, and molded body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172675A (ja) * 2000-12-08 2002-06-18 Sumitomo Bakelite Co Ltd 高分子シート及び高分子シートの製造方法並びに液晶表示装置
JP2011094111A (ja) * 2009-09-29 2011-05-12 Sumitomo Chemical Co Ltd 芳香族ポリスルホン樹脂及びその膜
JP2012196921A (ja) * 2011-03-23 2012-10-18 Toray Ind Inc 繊維強化複合材料、およびその製造方法
WO2014050896A1 (ja) * 2012-09-26 2014-04-03 東邦テナックス株式会社 プリプレグ及びその製造方法
JP2015078310A (ja) * 2013-10-17 2015-04-23 三菱レイヨン株式会社 プリプレグ
WO2016148133A1 (ja) * 2015-03-17 2016-09-22 住友化学株式会社 芳香族ポリスルホン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172675A (ja) * 2000-12-08 2002-06-18 Sumitomo Bakelite Co Ltd 高分子シート及び高分子シートの製造方法並びに液晶表示装置
JP2011094111A (ja) * 2009-09-29 2011-05-12 Sumitomo Chemical Co Ltd 芳香族ポリスルホン樹脂及びその膜
JP2012196921A (ja) * 2011-03-23 2012-10-18 Toray Ind Inc 繊維強化複合材料、およびその製造方法
WO2014050896A1 (ja) * 2012-09-26 2014-04-03 東邦テナックス株式会社 プリプレグ及びその製造方法
JP2015078310A (ja) * 2013-10-17 2015-04-23 三菱レイヨン株式会社 プリプレグ
WO2016148133A1 (ja) * 2015-03-17 2016-09-22 住友化学株式会社 芳香族ポリスルホン

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3385301A4 (en) * 2015-12-02 2019-07-24 Sumitomo Chemical Company, Limited METHOD FOR PRODUCING A THERMOPLASTIC AROMATIC POLYSULPHONE RESIN, METHOD FOR THE PRODUCTION OF AN EPOXY COMPOSITION AND METHOD FOR THE PRODUCTION OF A CURED EPOXY PRODUCT
US10870755B2 (en) 2015-12-02 2020-12-22 Sumitomo Chemical Company, Limited Method for producing thermoplastic aromatic polysulfone resin, method for producing epoxy composition, and method for producing cured epoxy product
US20220073682A1 (en) * 2018-12-25 2022-03-10 Sumitomo Chemical Company, Limited Aromatic polysulfone resin, epoxy resin composition, prepreg, and molded body
US11932731B2 (en) * 2018-12-25 2024-03-19 Sumitomo Chemical Company, Limited Aromatic polysulfone resin, epoxy resin composition, prepreg, and molded body

Similar Documents

Publication Publication Date Title
WO2016148133A1 (ja) 芳香族ポリスルホン
CN108602949B (zh) 芳香族聚砜、预浸料和预浸料的制造方法
JP6845403B2 (ja) ポリアリーレンスルフィド樹脂及びその製造方法、並びに、ポリ(アリーレンスルホニウム塩)及びその製造方法
US10889689B2 (en) Desalination of polyaryl ethers by means of melt extraction
WO2017135379A1 (ja) 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
WO2017135376A1 (ja) 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
JP6884535B2 (ja) 芳香族ポリスルホン、プリプレグ及びプリプレグの製造方法
WO2018181259A1 (ja) 芳香族ポリスルホン、芳香族ポリスルホン組成物、及び芳香族ポリスルホンの製造方法
US20220056210A1 (en) Poly(arylene ether ketone) resin, method for producing the same, and molded article
WO2017094319A1 (ja) 熱可塑性芳香族ポリスルホン樹脂の製造方法、エポキシ組成物の製造方法、及びエポキシ硬化物の製造方法
JP2019019219A (ja) 芳香族ポリスルホン組成物
JP6118009B1 (ja) 熱可塑性芳香族ポリスルホン樹脂の製造方法、エポキシ組成物の製造方法、及びエポキシ硬化物の製造方法
JP5891555B2 (ja) 芳香族ポリスルホンの製造方法
JP6348932B2 (ja) 芳香族ポリスルホン組成物及び成形品
JPH0269527A (ja) 新規の芳香剤ポリエーテルスルホン、その製造方法およびその使用
JPH0686519B2 (ja) 耐熱性樹脂及びその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187022109

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747530

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747530

Country of ref document: EP

Effective date: 20180905