WO2017135126A1 - ユーザ装置及び送信方法 - Google Patents

ユーザ装置及び送信方法 Download PDF

Info

Publication number
WO2017135126A1
WO2017135126A1 PCT/JP2017/002586 JP2017002586W WO2017135126A1 WO 2017135126 A1 WO2017135126 A1 WO 2017135126A1 JP 2017002586 W JP2017002586 W JP 2017002586W WO 2017135126 A1 WO2017135126 A1 WO 2017135126A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
data
sci
control information
subframe
Prior art date
Application number
PCT/JP2017/002586
Other languages
English (en)
French (fr)
Inventor
真平 安川
聡 永田
チュン ジョウ
ホイリン ジャン
リュー リュー
アンシン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201780008782.5A priority Critical patent/CN108605326A/zh
Priority to JP2017565501A priority patent/JPWO2017135126A1/ja
Priority to US16/074,152 priority patent/US20210127361A1/en
Publication of WO2017135126A1 publication Critical patent/WO2017135126A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links

Definitions

  • the present invention relates to a user device and a transmission method.
  • LTE Long Termination Evolution
  • LTE-A Long Termination Evolution Advanced
  • 4G Long Radio Access
  • FRA Full Radio Access
  • user devices communicate directly with each other without a radio base station.
  • D2D (Device-to-Device) technology to be performed has been studied (for example, Non-Patent Document 1).
  • D2D reduces the traffic between the user apparatus and the base station, and enables communication between user apparatuses even when the base station becomes unable to communicate during a disaster or the like.
  • D2D includes D2D discovery (D2D discovery, also called D2D discovery) for finding other user devices that can communicate, and D2D communication (D2D direct communication, D2D communication, direct communication between terminals) for direct communication between user devices And so on).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, D2D communication, direct communication between terminals
  • D2D signal A signal transmitted and received in D2D is referred to as a D2D signal.
  • V2X is a part of ITS (Intelligent Transport Systems) and, as shown in FIG. 1, V2V (Vehicle Transport Vehicle) means a communication mode performed between automobiles, and is installed on the side of the road with the automobile.
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to
  • V2P Vehicle to Pedestrian
  • a resource pool of PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Cell Control Channel
  • SCI Sidelink Control Information
  • the resource pool of (Physical Sildelink Control Channel) is time-multiplexed and set periodically.
  • the period is called an SC period (Sidelink Control period), and is defined to be a period of 40 ms or more.
  • the user apparatus on the transmission side transmits control information (SCI) using the radio resource selected from the PSCCH resource pool, and transmits data using the radio resource selected from the PSSCH resource pool.
  • the control information includes information indicating the position and the like of the radio resource selected from the PSSCH resource pool. Therefore, the timing at which the user apparatus on the transmission side can transmit new data is affected by the length of the SC period and the resource pool configuration of the PSCCH / PSSCH.
  • V2X various resource pool configurations are being studied in order to flexibly control the timing at which control information and data can be transmitted.
  • a resource pool configuration in which a resource pool for transmitting control information and a resource pool for transmitting data are frequency-multiplexed has been studied.
  • 2 and 3 are diagrams for explaining the problem.
  • 2 and 3 are a resource pool for transmitting control information (hereinafter referred to as “SCI resource pool”) and a resource pool for transmitting data (hereinafter referred to as “data resource pool”).
  • SCI resource pool a resource pool for transmitting control information
  • data resource pool a resource pool for transmitting data
  • 2 shows a case where the SCI resource pool period and the data resource pool period are the same
  • FIG. 3 shows a case where the data resource pool period is longer than the SCI resource pool period.
  • the user apparatus when a user apparatus selects a radio resource that transmits data corresponding to SCI, the user apparatus needs to select a radio resource in a data resource pool within the same SC period as the SCI resource pool.
  • the data resource pool is 20 ms
  • the user apparatus cannot select radio resources for data transmission for four times at 10 ms intervals with one SCI. Therefore, as shown in FIG. 3, it is possible to adopt a resource pool configuration in which the period of the data resource pool is longer than that of the SCI resource pool.
  • two data resource pools overlap in a part of the period, so that radio resources of data transmitted from a plurality of user apparatuses overlap and cause a collision. There is a problem that there is a possibility.
  • D2D communication is a half-duplex communication method in which transmission and reception of D2D signals are performed using the same carrier
  • the user apparatus can simultaneously transmit and receive D2D signals in the same subframe. Can not. That is, as shown in FIGS. 2 and 3, the subframe in which control information (SCI) is transmitted from UE1 (user apparatus 1) and the subframe in which data is transmitted from UE2 (user apparatus 2) are the same. In some cases, there is a problem that UE1 cannot receive data transmitted from UE2. Further, when V2X is considered as a kind of D2D, the above-described problem can occur in all D2D.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a technology capable of performing more flexible D2D communication.
  • a user apparatus is a user apparatus in a wireless communication system that supports D2D communication, in which a resource pool for control information and a resource pool for data transmission are continuously set without restriction in the time direction.
  • select a first control information resource for transmitting control information from the control information resource pool and select a first data resource for transmitting data from the data transmission resource pool.
  • a selecting unit to select, and a transmitting unit that transmits control information including information specifying the first data resource using the first control information resource, and transmits data using the first data resource. And having.
  • a technology capable of performing more flexible D2D communication is provided.
  • V2X It is a figure for demonstrating a subject. It is a figure for demonstrating a subject. It is a figure for demonstrating D2D. It is a figure for demonstrating D2D. It is a figure for demonstrating MAC PDU used for D2D communication. It is a figure for demonstrating the format of SL-SCH subheader. It is a figure which shows the structural example of the radio
  • LTE corresponds to not only a communication method corresponding to Release 8 or 9 of 3GPP but also Release 10, 11, 12, 13, or Release 14 or later of 3GPP. It is used in a broad sense including the fifth generation communication system.
  • the present embodiment is mainly intended for V2X
  • the technology according to the present embodiment is not limited to V2X and can be widely applied to D2D in general.
  • D2D includes V2X as its meaning.
  • D2D is not only a process procedure for transmitting and receiving D2D signals between user apparatuses UE, but also a process procedure for receiving (monitoring) a D2D signal by a base station, and a connection with a base station eNB in the case of RRC idle
  • the user apparatus UE is used in a broad sense including a processing procedure for transmitting an uplink signal to the base station eNB.
  • control information used for D2D communication is referred to as “SCI”, but it is not intended to be limited to this.
  • the present embodiment also includes control information called “SA (Scheduling Assignment)” used in conventional D2D. Further, even if other terms are newly defined in V2X, they are included in the present embodiment as long as they mean control information used for D2D communication.
  • D2D is broadly divided into “D2D discovery” and “D2D communication”.
  • D2D discovery as shown in FIG. 4A, a resource pool for a Discovery message is secured for each Discovery period, and the UE transmits a Discovery message in the resource pool. More specifically, there are Type 1 and Type 2b.
  • Type 1 the UE autonomously selects a transmission resource from the resource pool.
  • Type 2b a quasi-static resource is allocated by higher layer signaling (for example, RRC signal).
  • D2D communication a resource pool for SCI / data transmission is periodically secured as shown in FIG. 4B. This period is called an SC period (SC period).
  • SC period SC period
  • the UE on the transmission side notifies the reception side of the data transmission resource or the like by SCI using the resource selected from the Control resource pool (SCI transmission resource pool), and transmits data using the data transmission resource.
  • “D2D communication” includes Mode1 and Mode2. In Mode 1, resources are dynamically allocated by (E) PDCCH sent from the eNB to the UE. In Mode 2, the UE autonomously selects transmission resources from the resource pool. The resource pool is notified by SIB or a predefined one is used.
  • PSDCH PhysicalPhysSidelink Discovery Channel
  • PSCCH Physical Sidelink Control Channel
  • PSSCH PhysicalPhysSidelink Shared Channel
  • a MAC (Medium Access Control) PDU (Protocol Data Unit) used for D2D communication includes at least a MAC header, a MAC control element, a MAC SDU (Service Data Unit), and padding.
  • the MAC PDU may contain other information.
  • the MAC header is composed of one SL-SCH (Sidelink Shared Channel) subheader and one or more MAC PDU subheaders.
  • the SL-SCH subheader is composed of MAC PDU format version (V), transmission source information (SRC), transmission destination information (DST), Reserved bit (R), and the like.
  • V indicates the MAC PDU format version that is assigned to the head of the SL-SCH subheader and used by the UE.
  • Information relating to the transmission source is set in the transmission source information.
  • An identifier related to the ProSe UE ID may be set in the transmission source information.
  • Information regarding the transmission destination is set in the transmission destination information. In the transmission destination information, information regarding the transmission destination ProSe Layer-2 Group ID may be set.
  • FIG. 7 is a diagram illustrating a configuration example of a wireless communication system according to the embodiment.
  • the radio communication system according to the present embodiment includes a base station eNB, a user apparatus UE1, and a user apparatus UE2.
  • the user apparatus UE1 is intended for the transmission side
  • the user apparatus UE2 is intended for the reception side, but both the user apparatus UE1 and the user apparatus UE2 have both a transmission function and a reception function.
  • the user apparatus UE1 and the user apparatus UE2 are not particularly distinguished, they are simply described as “user apparatus UE”.
  • the user apparatus UE1 and the user apparatus UE2 illustrated in FIG. 7 each have a function of cellular communication as the user apparatus UE in LTE, and a D2D function including signal transmission / reception on the above-described channel. Moreover, user apparatus UE1 and user apparatus UE2 have a function which performs the operation
  • Each user apparatus UE may be any apparatus having a D2D function.
  • each user apparatus UE may be a vehicle, a terminal held by a pedestrian, an RSU (UE type RSU having a UE function). Etc.
  • the base station eNB for the base station eNB, a cellular communication function as a base station eNB in LTE, and a function for enabling communication of the user apparatus UE in the present embodiment (resource allocation function, setting information notification function, etc. )have. Further, the base station eNB includes an RSU (eNB type RSU having an eNB function).
  • RSU eNB type RSU having an eNB function
  • the SCI / data resource pool is periodically set in units of SC periods.
  • the concept of the SC period is eliminated, and the SCI resource pool and the data resource pool are not restricted in the time direction (that is, the SC period). (Continuously without setting a time interval in the time direction).
  • FIG. 8 is a diagram illustrating a configuration example (physical) of the SCI resource pool and the data resource pool.
  • the SCI resource pool and the data resource pool are set continuously in an unlimited manner in the time direction.
  • the SCI resource pool is set in the upper and lower bands of the band in which the data resource pool is set.
  • the setting of the SCI resource pool and the data resource pool may be notified from the base station eNB to the user apparatus UE by broadcast information (SIB) or RRC signaling, or the user apparatus via a SIM (Subscriber Identity Module) or a core network
  • SIM Subscriber Identity Module
  • the UE may be pre-configured (Pre-Configured).
  • the same SCI / data is repeatedly transmitted (hopping transmission) in the SCI / data resource pool in the SC period.
  • the concept of the SC period is defined. Therefore, a new SCI / data repetitive transmission method is defined.
  • the user apparatus UE repeatedly transmits the same SCI while performing frequency hopping between the upper SCI resource pool and the lower SCI resource pool shown in FIG.
  • the user apparatus UE operates to repeatedly transmit the same data (MAC PDU) at a predetermined subframe interval.
  • MAC PDU same data
  • the SCI resource transmitted first (first) and the SCI resource transmitted second are different from each other in the SCI resource pool (upper SCI resource pool and lower SCI resource pool shown in FIG. 8).
  • the SCI is frequency hopped so that it belongs to the SCI resource pool.
  • D2D communication is a half-duplex communication method in which D2D signals are transmitted and received using the same carrier
  • user apparatus UE transmits and receives D2D signals in the same subframe. Cannot be performed at the same time. That is, when a plurality of user apparatuses UE transmit SCI repeatedly in the same subframe when the plurality of user apparatuses UE transmit SCI repeatedly in the same subframe, the plurality of user apparatuses UE will mutually communicate with each other. Will not be able to receive. Therefore, in the SCI repetitive transmission method (part 1), the SCI time direction resource (subframe) transmitted for the first time (first) and the SCI frequency direction resource (subframe) transmitted for the second time. Is determined based on resources in the frequency direction of the SCI transmitted for the first time.
  • 9A and 9B are diagrams for explaining the SCI repetitive transmission method (part 1).
  • 9A-B logically illustrate the SCI resource pool.
  • one block shown in FIGS. 9A-B (also in FIG. 8) means a resource block pair used for SCI transmission.
  • the SCI resource pool is composed of four resource blocks in the frequency direction, but it is an example, and may be composed of five or more resource blocks.
  • nt means the position of a subframe
  • nf means the position of a resource block in the frequency direction. Note that “nt” is not intended to be a specific subframe number, but is a variable indicating a relative subframe position. Similarly, “nf” is a variable indicating the position of the resource block in the relative frequency direction.
  • the user apparatus UE selects a resource (nt1, nf1) at an arbitrary position from among the resources in the upper half of FIGS.
  • the position (nt2, nf2) of the SCI resource to be transmitted for the second time is determined using Equation 1 or Equation 2 below.
  • FIG. 9A shows an example of the resource positions of the first and second SCIs when Expression 1 is used.
  • FIG. 9B shows an example of the first and second SCI resource positions when Expression 2 is used.
  • Equation 1 or Equation 2 two SCIs transmitted in the same subframe and with different frequency resources are transmitted in different subframes at the first transmission and the second transmission. It will be. Also, two SCIs transmitted with resources of different subframes and the same frequency are transmitted at the same subframe interval between the first transmission and the second transmission. In other words, the subframe position of the SCI transmitted for the second time is determined based on the resource position in the frequency direction of the SCI transmitted for the first time.
  • transmission is performed with resources that are shifted by the same offset (offset of two resources) in the frequency direction between the first transmission and the second transmission.
  • the offset in the frequency direction is further dispersed.
  • the user apparatus UE may repeat the resource determination method described in “(when SCI is repeatedly transmitted twice)” “K / 2” times. For example, when the SCI is repeatedly transmitted six times, the user apparatus UE may perform the resource determination method described in “(when the SCI is repeatedly transmitted twice)” three times.
  • Equation 3 the values of nt (1) and nf (1) correspond to the resource positions at the first SCI transmission. (Formula 3)
  • the position (hopping pattern) of the resource at which the SCI is repeatedly transmitted is uniquely (fixedly) determined regardless of the user apparatus UE. Therefore, the receiving-side user apparatus UE transmits a plurality of times. All the SCI resource positions to be processed can be grasped in advance. That is, the receiving-side user apparatus UE can obtain a combined gain by combining a plurality of SCI resources.
  • SA_ID is an ID (SA ID: Sidelink group destination identity) assigned to the user apparatus UE of a predetermined group.
  • the position (hopping pattern) of the resource where the SCI is repeatedly transmitted changes for each user apparatus UE having a different group. That is, when Equation 4 is used, even when a plurality of user apparatuses UEs in different groups have selected the same resource as the resource for transmitting the SCI for the first time, the SCI is transmitted for the third and subsequent times. Resource locations are distributed, and SCI collision can be avoided.
  • the user apparatus UE determines the position of the resource for transmitting the SCI in the same manner as in the above-described “when K is an even number”, and additionally transmits the SCI once. Also good. For example, when the SCI is repeatedly transmitted seven times, the user apparatus UE determines the resource position of the SCI transmitted for the first to sixth times by the resource determination method described in the above-mentioned “when K is an even number”, and Further, the SCI may be additionally transmitted once.
  • the resource position of the SCI that is additionally transmitted once is the resource position of the last odd number of resource positions determined using the same method as the resource determination method described in “when K is an even number”. You may do it. For example, when the SCI is repeatedly transmitted seven times, the user apparatus UE determines the resource position of the SCI transmitted for the first to eighth times by the resource determination method described in the above “when K is an even number”, and adds The SCI resource position transmitted once in the above may be the SCI resource position transmitted in the seventh time.
  • the user apparatus UE adds a resource position determined using the same method as the resource determination method described in “when K is an even number” as the resource position of the SCI that is additionally transmitted once. Any one of them may be used. For example, when the SCI is repeatedly transmitted seven times, the user apparatus UE determines the resource position of the SCI transmitted for the first to eighth times by the resource determination method described in the above “when K is an even number”, and adds The resource location of the SCI that is transmitted once in the above may be either the seventh or eighth resource location. Further, the user apparatus UE may determine which resource position to select using the SA ID.
  • the user apparatus UE selects the resource position of the last odd number of times, and when the last bit of the SA ID is “1”, the last even number of times The resource position may be selected.
  • the resource location of the SCI that is additionally transmitted once is distributed for each user apparatus UE.
  • SCI repetitive transmission method (1) it is possible to disperse subframes in which SCI is transmitted for each of a plurality of user apparatuses UE, so that two user apparatuses UE can perform SCI in the same subframe. It is possible to control so that the problem (half-duplex problem) that the SCI transmitted by the other user apparatus UE cannot be received is prevented as much as possible.
  • Part 2 ⁇ Regarding SCI Repeated Transmission Method (Part 2)> Next, an SCI repetitive transmission method (part 2) will be described.
  • the case where the number of times the user apparatus UE repeatedly transmits the SCI is two times and three or more times will be described.
  • the number of times that the user apparatus UE repeatedly transmits the SCI may be notified from the base station eNB to the user apparatus UE by broadcast information (SIB) or RRC signaling, or to the user apparatus UE via the SIM or the core network. It may be pre-configured.
  • SIB broadcast information
  • RRC Radio Resource Control
  • the SCI resource pool is divided into two regions that repeatedly appear at the same interval.
  • the first area corresponds to the resource pool for transmitting the first SCI (resource pool for the first SCI transmission in FIG. 10), and the second area transmits the second SCI. This corresponds to the resource pool for this purpose (the resource pool for the second SCI transmission in FIG. 10).
  • the user apparatus UE selects a resource from the resource pool for the first SCI transmission, and when transmitting the second SCI, the resource pool for the second SCI transmission Select a resource from and send it.
  • FIG. 10 also logically illustrates the SCI resource pool, as in FIGS. 9A-B.
  • the resources in the “nf” direction in FIG. 10 correspond to the four resources existing in the upper and lower SCI resource pools in FIG. 8 in order.
  • “Nt” means the position of the subframe
  • “nf” means the position of the resource block in the frequency direction. Note that “nt” is not intended to be a specific subframe number, but is a variable indicating a relative subframe position. Similarly, “nf” is a variable indicating the position of the resource block in the relative frequency direction.
  • the resource position of the resource transmitted for the second time may be determined according to Equation 5 below.
  • Nt means the number of subframes existing in the resource pool for the first SCI transmission and the resource pool for the second SCI transmission.
  • the interval between the resource pool for the first SCI transmission and the resource pool for the second SCI transmission is determined from the base station eNB to the user apparatus UE by broadcast information (SIB) or RRC signaling. Or may be pre-configured (pre-configured) in the user apparatus UE via the SIM or the core network.
  • SIB broadcast information
  • RRC Radio Resource Control
  • the SCI resource pool is divided into K areas that repeatedly appear at the same interval, and the user apparatus UE performs the first to K-th SCI. May be transmitted by selecting a resource from the resource pool for the first to Kth SCI transmissions. Further, the user apparatus UE may determine the resource to be selected using Equation 5 described above.
  • the user apparatus UE may repeat a resource selection method determined according to a predetermined resource determination method “K / 2” times. Further, when the number of K is an odd number, the user apparatus UE may additionally determine the resource position of the SCI to be transmitted once using the SA ID or randomly. For example, when the last bit of the SA ID is “0”, the user apparatus UE selects the first resource position among the resource positions determined by a predetermined resource determination method, and the last bit of the SA ID is “ In the case of “1”, the second resource position may be selected from the resource positions determined by a predetermined resource determination method. As a result, the resource location of the SCI that is additionally transmitted once is distributed for each user apparatus UE.
  • SCI repetitive transmission method (2) This completes the description of “SCI repetitive transmission method (2)”.
  • SCI repetitive transmission method (part 2) it is possible to disperse subframes in which SCI is transmitted for each of a plurality of user apparatuses UE, so that two user apparatuses UE can perform SCI in the same subframe. It is possible to control so that the problem (half-duplex problem) that the SCI transmitted by the other user apparatus UE cannot be received is prevented as much as possible.
  • the user apparatus UE when the user apparatus UE repeatedly transmits data, a method for determining the position of a resource that transmits each data will be described.
  • the user apparatus UE since D2D employs a half-duplex communication method, the user apparatus UE cannot simultaneously transmit and receive D2D signals in the same subframe. Therefore, in the present embodiment, the user apparatus UE sets the data resource pool so that the subframe interval between repeatedly transmitted data is longer than the maximum value of the subframe interval between repeatedly transmitted SCIs. Data transmission is performed by selecting a resource for data transmission from among them.
  • the number of times data is repeatedly transmitted may be fixedly defined in advance by standard specifications or the like, or dynamically changed by including the number of times data is repeatedly transmitted in the SCI setting value. It may be possible.
  • FIG. 12 is a diagram for explaining a data repetitive transmission method.
  • a predetermined offset value indicating the interval between the subframe in which the SCI is finally transmitted and the subframe in which the data corresponding to the SCI is transmitted first is defined as “offset_ini”.
  • “Offset_ini” is an arbitrary value between “1 to T_SAmax”, and is arbitrarily determined by the user apparatus UE on the transmission side.
  • T-SAmax number of subframes in resource pool for transmitting first SCI + resource pool for transmitting second SCI” It is calculated by “the number of subframes”.
  • offset_ini may be a time offset value with respect to the subframe in which the SCI is transmitted first. Further, by setting 0 as “offset_ini”, it is possible to set the same subframe transmission of SCI and data.
  • the user device UE on the receiving side may be able to recognize that the SCI and the data are transmitted in the same subframe with the flag in the SCI or the format of the SCI.
  • the switching of the transmission method of SCI and data in the same subframe or different subframes may be selected autonomously by the user apparatus UE on the transmission side, or transmission that can be selected according to the capability of the user apparatus UE The method may be limited.
  • the capability of the user apparatus UE may be reported to the base station eNB so that the base station eNB can instruct an appropriate transmission method when allocating resources. Further, as described below, the user apparatus UE may switch the transmission method according to the transmission power.
  • transmission power of SCI and data when transmitting SCI and data in different subframes, set transmission power (for example, total transmission power, transmission power density, target reception power and propagation loss compensation term in fractional TPC, etc.) ), And different transmission power settings may be performed when transmitting in the same subframe (including a case where part of the subframes overlap). For example, if the transmission power of SCI and data is set to 23 dBm, data cannot be transmitted if priority is given to SCI transmission by simultaneous transmission, while the quality of SCI may not be sufficiently secured if power density is equally distributed. . Such a problem can be avoided by performing independent power setting.
  • the user apparatus UE may adjust the transmission power so as to satisfy the maximum transmission power using any of the following or a combination thereof, or
  • the SCI and data may be transmitted in different subframes without performing simultaneous transmission.
  • a transmission power offset between SCI and data is set.
  • the transmission power is controlled so that the transmission power (density) of SCI is 3 dB higher than that of data.
  • the minimum transmission power (density) of SCI / data is set (it may be set only for SCI). (3) Set the maximum data transmission bandwidth.
  • Offset_re a predetermined offset value used to calculate the interval between subframes when data is repeatedly transmitted.
  • Offset_re is an arbitrary number between “0 and T_SAmax ⁇ 1”.
  • Offset_re is arbitrarily determined by the user apparatus UE on the transmission side.
  • the user apparatus UE transmits the first data in a subframe after “offset_ini” from the subframe in which the SCI was last transmitted. Thereafter, the data is repeatedly transmitted so that the subframe interval between the data becomes “T_SAmax + offset_re”.
  • the user apparatus UE selects an arbitrary value from 1 to 6 as the value of “offset_ini”, and selects an arbitrary value from 0 to 5 as the value of “offset_re”.
  • “2” is selected as the values of “offset_ini” and “offset_re”, respectively.
  • the frequency direction resource (resource block) in which data is transmitted may be selected in any way.
  • the resource in the frequency direction of each data to be repeatedly transmitted may be arbitrarily determined by the user apparatus UE, or may be instructed from the base station eNB to the user apparatus UE.
  • only the resource in the frequency direction when data is transmitted for the first time is arbitrarily determined by the user apparatus UE (or instructed from the base station eNB to the user apparatus UE), Thereafter, data that is repeatedly transmitted may be transmitted using resources in the frequency direction determined based on a predetermined hopping pattern.
  • the predetermined hopping pattern may be any pattern. For example, as in the case of PSSCH in conventional LTE, a plurality of resource positions in the frequency direction in which data is transmitted are defined in the data resource pool. It may be a hopping pattern set so as to be distributed in subbands.
  • the subframe interval at which SCI is repeatedly transmitted differs from the subframe interval at which data is repeatedly transmitted.
  • the user apparatus UE that transmits SCI and the user apparatus UE that transmits data transmit the D2D signal in the same subframe, and cannot receive the D2D signal transmitted by the other user apparatus UE. It is possible to control so that the problem (half-duplex problem) does not occur as much as possible.
  • the SCI stores values of “offset_ini” and “offset_re” that are parameters for calculating a subframe position when data corresponding to the SCI is repeatedly transmitted.
  • the value of “T_SAmax” may or may not be stored in the SCI. Since “T_SAmax” can be calculated by the user apparatus UE by using the value of “Nf” determined based on the setting of the SCI resource pool, it can be omitted.
  • the SCI includes information indicating the resource position in the frequency direction when each data is transmitted.
  • the information indicating the resource position in the frequency direction when each data is transmitted may include all the resource positions in the frequency direction for the number of repetitions, or the frequency at which the data is transmitted for the first time.
  • Directional resources and information specifying a predetermined hopping pattern may be stored.
  • the values of “offset_ini” and “offset_re” may be stored in an area for storing T-RPT pattern bits in the SCI format in the conventional D2D.
  • the value of “offset_re” may be set to the last 3 or 4 bits of the SA ID stored in the SCI.
  • offset_re may not be stored in the SCI by making it possible to calculate “offset_re” according to a predetermined formula.
  • nf means a resource block position in the frequency direction in the data resource pool to which each data is transmitted. That is, when the resource in the frequency direction in which each data is transmitted changes, control is performed so that the data transmission interval is changed by using the formula.
  • Max_offset_re may be notified from the base station eNB to the user apparatus UE by broadcast information (SIB) or RRC signaling, or is pre-configured (Pre-Configured) in the user apparatus UE via the SIM or the core network. May be. As a result, the amount of SCI data can be reduced.
  • SIB broadcast information
  • Pre-Configured pre-configured
  • the SCI may include information specifying MCS (Modulation and Coding Scheme) or TA (Timing Alignment).
  • MCS Modulation and Coding Scheme
  • TA Timing Alignment
  • a new SCI may be defined for this embodiment.
  • the SCI may include the number of times data is repeatedly transmitted.
  • the SCI stores the predetermined offset value “offset_ini” indicating the interval between the subframe in which the SCI is last transmitted and the subframe in which the data corresponding to the SCI is first transmitted.
  • offset_ini the predetermined offset value indicating the interval between the subframe in which the SCI is last transmitted and the subframe in which the data corresponding to the SCI is first transmitted.
  • the user apparatus UE on the receiving side cannot always receive the SCI that is transmitted last among the SCIs that are repeatedly transmitted. In that case, there is a possibility that the receiving-side user apparatus UE cannot correctly recognize the resource position to which data corresponding to the received SCI is first transmitted.
  • the receiving-side user apparatus UE receives only the SCI transmitted for the first time
  • the receiving-side user apparatus UE receives the SCI subframe received for the first time. May be used to specify the position of a subframe in which data is transmitted.
  • the user apparatus UE on the receiving side is based on the received resource position in the frequency direction of the SCI (that is, on the upper side of FIG. 8). Determine whether the received SCI is the first transmitted SCI or the second transmitted SCI (based on whether it is a resource in the SCI resource pool or a resource in the lower SCI resource pool) You may do it. Thereby, when it is determined that the received SCI is the SCI transmitted for the first time, the receiving-side user apparatus UE uses the above-described Equation 1 or Equation 2 to transmit the SCI subframe position for the second time. , And the position of the subframe where data is transmitted can be specified with the estimated subframe position as a reference.
  • the resources in the frequency direction in the SCI resource pool are divided by the number of times the SCI is repeatedly transmitted, and each SCI is repeatedly transmitted.
  • transmission may be performed using the divided frequency resources.
  • the frequency direction resource (the number of “Nf”) in the SCI resource pool is the number of times that the SCI is repeatedly transmitted, the frequency resource can be equally divided by the number of times that the SCI is repeatedly transmitted. It is possible to secure an equal number of transmission resource candidates for each repeated transmission.
  • the resource interval in the time direction between repeatedly transmitted SCIs may be fixed semi-statically in advance.
  • a resource in which frequency direction the SCI is transmitted is shared in advance between the user apparatus UE on the transmission side and the user apparatus UE on the reception side.
  • the user apparatus UE on the receiving side can determine how many times the received SCI is transmitted based on the received resource position in the frequency direction of the SCI.
  • the user apparatus UE can estimate the position of the SCI subframe transmitted last based on the determination result, and can specify the position of the subframe in which data is transmitted based on the estimated subframe position become.
  • the SCI that is repeatedly transmitted and the resource in the frequency direction for example, the SCI that is transmitted for the first time is transmitted with the resource at the top in FIG. SCI is transmitted with the resource at the bottom of FIG. 8 and SCI transmitted at the third time is transmitted with the resource at the bottom of FIG. 8 and transmitted at the fourth time.
  • the SCI to be transmitted may be transmitted using the resource one level above the lowest level in FIG.
  • the SCI transmission resource pool for each transmission count (in the example of FIG. 11, each of the first to Kth SCI transmission resource pools).
  • Information (calculation formula, etc.) for specifying the absolute position (for example, DFN and subframe) of each time resource at the start point and end point of) is previously received from the base station eNB by broadcast information (SIB) or RRC signaling. You may make it notify to the apparatus UE, and you may make it pre-configure (Pre-Configured) to the user apparatus UE via SIM or a core network.
  • the receiving-side user apparatus UE specifies how many times the received SCI DFN and subframe number correspond to the resource pool for the SCI transmission, and the received SCI is transmitted at what time. It is possible to determine whether the SCI has been changed. Further, for example, the user apparatus UE estimates the subframe position of the last transmitted SCI using Equation 5 described above, and specifies the position of the subframe in which data is transmitted based on the estimated subframe position. It becomes possible.
  • the transmission-side user apparatus UE may include information indicating the number of transmissions in the SCI. Thereby, the user apparatus UE on the receiving side can easily specify the number of times the received SCI is transmitted.
  • the value of “offset_ini” may be set to indicate an interval between a subframe in which the SCI is actually transmitted and a subframe in which data corresponding to the SCI is first transmitted. . That is, the value of “offset_ini” may be changed according to the number of SCI transmissions. Thereby, the user apparatus UE on the receiving side can grasp the subframe in which data is first transmitted without specifying how many times the received SCI is.
  • the value of “offset_ini” may be the absolute position (DFN and subframe number) of the time resource at which data is first transmitted.
  • V2X a scenario is assumed in which a large number of user apparatuses UE transmit D2D signals in the same resource pool. Therefore, a plurality of user apparatuses UE may select the same resource and transmit SCI / data, which may cause SCI / data collision.
  • V2X for example, an operation mode in which a V2X packet is transmitted every 100 ms is assumed. Therefore, it is assumed that the user apparatus UE can predict data to be transmitted in the future to some extent. Is done.
  • the user apparatus UE sets the position of a resource scheduled to transmit new SCI / data in the SCI. By including the identifier to indicate, it is possible to notify another user apparatus UE that new SCI / data is scheduled to be transmitted (reserving the resource) with the resource.
  • FIG. 13 is a diagram for explaining a method for reserving resources for SCI transmission.
  • the user apparatus UE plans to transmit a new SCI to transmit data (V2X packet) after a predetermined time (after a predetermined subframe), after a predetermined time (after a predetermined subframe)
  • An identifier indicating that a resource for transmitting a new SCI is reserved (hereinafter referred to as “SCI reservation identifier”) is included in the SCI and transmitted.
  • a transmission interval (for example, 100 ms) between an SCI scheduled to be transmitted most recently (SCI including the SCI reservation identifier) and a new SCI scheduled to be transmitted after a predetermined time is specifically set.
  • a bit value for example, a 2-bit value
  • expressing the transmission interval in a predetermined unit number for example, 100 ms per unit
  • “00” means that no resource is reserved
  • “01” means that the transmission interval is one unit (eg, 100 ms)
  • “10” is the transmission interval. May mean 2 units (eg, 200 ms)
  • “11” may mean that the transmission interval is 4 units (eg, 400 ms).
  • the transmission interval which a predetermined 1 unit means may be notified to the user apparatus UE from the base station eNB by broadcast information (SIB) or RRC signaling, or in advance to the user apparatus UE via a SIM or a core network or the like. It may be set (Pre-Configured).
  • SIB broadcast information
  • RRC Radio Resource Control
  • the example of FIG. 13 shows a case where a resource after 100 ms is reserved as a resource scheduled to transmit a new SCI.
  • the same SCI is repeatedly transmitted a plurality of times. Therefore, the user apparatus UE that has received the SCI including the SCI reservation identifier repeats a new SCI at the resource specified in the SCI reservation identifier at the same transmission interval and frequency direction resource position as the SCI including the SCI reservation identifier. Operates to recognize when it is sent. That is, as illustrated in the example of FIG. 13, when the SCI including the SCI reservation identifier is repeatedly transmitted twice, the user apparatus UE transmits a new SCI similar to the SCI including the SCI reservation identifier after 100 ms. It operates to recognize that it is repeatedly transmitted twice at the resource position in the interval and frequency direction.
  • FIG. 14 is a diagram for explaining a data transmission resource reservation method.
  • the new data is transmitted after the predetermined time (after a predetermined subframe).
  • An identifier hereinafter referred to as “data reservation identifier” indicating reservation of a resource for transmitting is included in the SCI and transmitted.
  • the data reservation identifier stores information indicating whether or not a resource for transmitting new data is reserved after a predetermined time indicated by the SCI reservation identifier. That is, when reserving a resource for transmitting data, the user apparatus UE needs to include both the SCI reservation identifier and the data reservation identifier in the SCI.
  • the information may be expressed by 1 bit, for example. More specifically, “0” means that the resource is not reserved, and “1” means that the resource is reserved after a predetermined time indicated by the SCI reservation identifier. Also good.
  • the example of FIG. 14 shows a case where a resource after 100 ms is reserved as a resource scheduled to transmit new data.
  • the same data is repeatedly transmitted a plurality of times.
  • the user apparatus UE that has received the SCI including the data reservation identifier uses the same transmission interval and frequency direction resource as the data corresponding to the SCI in the resource after a predetermined time indicated by the SCI reservation identifier. Operates to recognize that is repeatedly transmitted. That is, as shown in the example of FIG. 14, when data corresponding to the SCI including the data reservation identifier (the data on the left side of FIG. 14) is repeatedly transmitted four times, the user apparatus UE transmits new data after 100 ms. (The data on the right side of FIG. 14) is also recognized to be repeatedly transmitted four times at the same transmission interval and resource position in the frequency direction as the data corresponding to the SCI including the data reservation identifier (the data on the left side of FIG. 14). To work.
  • FIG. 15 is a diagram illustrating a specific example (part 1) of a resource reservation method for transmitting SA and data.
  • FIG. 15 shows a state in which the user apparatus UE transmits a 190-byte or 300-byte V2X packet at an interval of 100 ms. More specifically, each time one V2X packet is transmitted, An operation of repeatedly transmitting a plurality of identical SCIs and a plurality of identical data (MAC PDU storing one V2X packet) is performed. In other words, the transmission of one V2X packet shown in FIG. 15 corresponds to the series of SCI / data transmissions shown in FIG. 12 being performed once.
  • the user apparatus UE plans to transmit 190-byte or 300-byte V2X packets at 100 ms intervals.
  • the user apparatus UE transmits both the SCI reservation identifier and the data reservation identifier included in the most recently scheduled SCI.
  • the user apparatus UE sets a bit value indicating 100 ms to the SCI reservation identifier, and sets the data reservation identifier to the data reservation identifier. It is shown that the SCI is transmitted by setting a bit (“1”) indicating that data reservation is performed.
  • the user apparatus UE when the data size scheduled to be transmitted most recently differs from the data size scheduled to be transmitted in 100 ms, the user apparatus UE includes only the SCI reservation identifier in the SCI scheduled to be transmitted. Also, the user apparatus UE allocates data transmission resources using the SCI transmitted in 100 ms (that is, allocates resources at the time of transmitting data without reserving the data transmission resources).
  • the reserved data transmission resource is a resource having the same size (for example, the same number of resource block pairs) as the data scheduled to be transmitted most recently, and therefore the data size scheduled to be transmitted after 100 ms is different. This is because there is a possibility that data scheduled to be transmitted cannot be stored with the reserved resource size. In the example of FIG.
  • the user apparatus UE sets the SCI reservation identifier to It is shown that the SCI is transmitted by storing a bit value indicating 100 ms and a bit ("0") indicating that data reservation is not performed in the data reservation identifier.
  • the physical layer of the user apparatus UE determines whether the size of the V2X packet scheduled to be transmitted at the next timing is the same as the size of the V2X packet scheduled to be transmitted most recently (for example, You may make it grasp
  • the physical layer of the user apparatus UE determines the value to be set for the SCI reservation identifier and the value to be set for the data reservation identifier based on the notification from the upper layer in the process of generating the SCI to be transmitted most recently. It becomes possible to do.
  • both time direction resources and frequency direction resources are reserved or time direction resources (that is, , Information (for example, 2 bits) indicating whether only the subframe is reserved may be set. For example, “00” means that no resource is reserved, “01” means that resources in both the time direction and the frequency direction are reserved, and “10” is a resource in the time direction. May be reserved only.
  • FIG. 16 is a diagram showing a specific example (part 2) of a resource reservation method for transmitting SA and data. Note that points not particularly mentioned may be the same as those in FIG.
  • the user apparatus UE sets a data reservation identifier indicating that both resources in the time direction and the frequency direction are reserved. It is included in the SCI scheduled to be transmitted.
  • the user apparatus UE sets a bit value indicating 100 ms in the SCI reservation identifier and a time direction in the data reservation identifier. And storing a bit ("01") indicating that both resources in the frequency direction are reserved and transmitting the SCI.
  • the user apparatus UE receives the SCI reservation identifier and the data reservation identifier indicating that only resources in the time direction are reserved. May be included in the SCI scheduled to be transmitted at the same time, and resources in the frequency direction for data transmission may be allocated using the SCI transmitted at 100 ms. In the example of FIG.
  • the user apparatus UE sets the SCI reservation identifier to It is shown that the bit value indicating 100 ms and the bit (“10”) indicating that only the resource in the time direction is reserved are stored in the data reservation identifier and the SCI is transmitted.
  • the user apparatus UE uses the D2D signal in any frequency resource of the subframe after a predetermined time. It is possible to notify other user apparatuses UE that the transmission is scheduled to be performed.
  • the user apparatus UE temporarily transmits SCI and monitors whether or not another user apparatus UE transmits SCI in a subframe other than the subframe in which the user apparatus UE transmits SCI.
  • SCI transmission may be stopped thereafter to avoid collision.
  • the user apparatus UE monitors the SCI transmitted by another user apparatus UE in the maximum period that can be specified by the SCI reservation identifier (the period during which the transmission of the SCI may be reserved). Is detected (when SCI including the SCI reservation identifier is detected), the SCI transmission itself is canceled instead of selecting the non-reserved resource and transmitting the SCI. Also good.
  • the user apparatus UE monitors the SCI transmitted by another user apparatus UE in the maximum period that can be specified by the SCI reservation identifier (the period during which the transmission of SCI may be reserved), and as a result, the SCI and data Is detected (when SCI including an SCI reservation identifier and a data reservation identifier is detected), an unreserved resource is selected and an SCI including only the SCI reservation identifier is transmitted.
  • Another user apparatus UE may be notified that the resource has been reserved, and SCI and data may be transmitted using the resource reserved with the SCI reservation identifier. SCI / data collision can be avoided more reliably.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the user apparatus according to the embodiment.
  • the user apparatus UE includes a signal transmission unit 101, a signal reception unit 102, and a selection unit 103.
  • FIG. 17 shows only functional units that are particularly related to the embodiment of the present invention in the user apparatus UE, and has at least a function (not shown) for performing an operation based on LTE.
  • the functional configuration illustrated in FIG. 17 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 101 includes a function of generating and wirelessly transmitting various physical layer signals from higher layer signals to be transmitted from the user apparatus UE.
  • the signal transmission unit 101 has a D2D signal transmission function and a cellular communication transmission function.
  • the signal transmission unit 101 has a function of transmitting the D2D signal using the resource selected by the selection unit 103.
  • the signal transmission unit 101 may transmit the SCI including the SCI reservation identifier (or the SCI reservation identifier and the data reservation identifier).
  • the signal receiving unit 102 includes a function of wirelessly receiving various signals from other user apparatuses UE or the base station eNB, and acquiring higher layer signals from the received physical layer signals.
  • the signal receiving unit 102 has a D2D signal reception function and a cellular communication reception function.
  • the selection unit 103 selects a first control information resource for transmitting control information (SCI) from the SCI resource pool, and selects a first data resource for transmitting data from the data resource pool.
  • the selection unit 103 transmits the control information (SCI) from the SCI resource pool in a radio resource in which the SCI resource pool and the data resource pool are set continuously without restriction in the time direction. It has a function of selecting one control information resource and selecting a first data resource for transmitting data from the data resource pool.
  • the selection unit 103 also includes a first SCI resource pool (the upper SCI resource pool in FIG. 7) in which the SCI resource pool is set to a frequency band higher than the frequency band of the data resource pool, and the data resource pool When divided into a second SCI resource pool (a lower SCI resource pool in FIG. 7) set in a frequency band lower than the frequency band, the first control information resource is designated as the first SCI resource.
  • the subframe after the subframe of the first control information resource is selected from the second SCI resource pool, and the first control information resource is selected as the second SC. If you choose from the resource pool, the sub-frame after the sub-frame resources for the first control information may be from the first SCI resource pool to select the second control information for the resource.
  • the selection unit 103 may determine the subframe in which the second control information resource is selected based on the resource position in the frequency direction of the first control information resource. In addition, the selection unit 103 repeats the setting of the second control information resource in the first SCI resource pool and the second SCI resource pool (the resource pool for the first SCI transmission in FIG. The second SCI transmission resource pool) may be included in a time region different from the time region in which the first control information resource is included.
  • the selection unit 103 may select the second data resource from the data resource pool in a subframe after the first data resource subframe. In addition, the selection unit 103 determines that the interval between the subframe in which the first data resource is selected and the subframe in which the second data resource is selected is the subframe in which the resource for the first control information is selected. The second data resource may be selected so as to be wider than the subframe interval between the frame and the subframe in which the second control information resource is selected.
  • FIG. 18 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • the base station eNB includes a signal transmission unit 201, a signal reception unit 202, and a notification unit 203.
  • FIG. 18 shows only functional units that are particularly related to the embodiment of the present invention in the base station eNB, and has at least a function (not shown) for performing an operation based on LTE. Further, the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the function unit may be anything.
  • the signal transmission unit 201 includes a function of generating various physical layer signals from a higher layer signal to be transmitted from the base station eNB and wirelessly transmitting the signals.
  • the signal receiving unit 202 includes a function of wirelessly receiving various signals from the user apparatus UE and acquiring a higher layer signal from the received physical layer signal.
  • the notification unit 203 includes various types of information (SCI resource pool and data resource pool settings, the number of times the user apparatus UE repeatedly transmits SCI, and the SCI repetitive transmission method) used by the user apparatus UE to perform operations according to the present embodiment.
  • the broadcast information (SIB) indicates the interval between the resource pool for the first SCI transmission and the resource pool for the second SCI transmission, “max_offset_re”, a transmission interval that a predetermined unit means, and the like.
  • the user apparatus UE is notified using RRC signaling.
  • the functional configurations of the base station eNB and the user apparatus UE described above may be realized entirely by hardware circuits (for example, one or a plurality of IC chips), or may be partially configured by hardware circuits. This part may be realized by a CPU and a program.
  • FIG. 19 is a diagram illustrating an example of a hardware configuration of the user apparatus according to the embodiment.
  • FIG. 19 shows a configuration closer to the mounting example than FIG.
  • the user apparatus UE performs processing such as an RF (Radio Frequency) module 301 that performs processing related to a radio signal, a BB (Base Band) processing module 302 that performs baseband signal processing, and a higher layer.
  • RF Radio Frequency
  • BB Base Band
  • the RF module 301 should transmit from the antenna by performing D / A (Digital-to-Analog) conversion, modulation, frequency conversion, power amplification, etc. on the digital baseband signal received from the BB processing module 302 Generate a radio signal.
  • a digital baseband signal is generated by performing frequency conversion, A / D (Analog-to-Digital) conversion, demodulation, and the like on the received radio signal, and passes it to the BB processing module 302.
  • the RF module 301 includes, for example, part of the signal transmission unit 101 and the signal reception unit 102 of FIG.
  • the BB processing module 302 performs processing for mutually converting an IP packet and a digital baseband signal.
  • a DSP (Digital Signal Processor) 312 is a processor that performs signal processing in the BB processing module 302.
  • the memory 322 is used as a work area for the DSP 312.
  • the RF module 301 includes, for example, a part of the signal transmission unit 101, a part of the signal reception unit 102, and the selection unit 103 in FIG.
  • the UE control module 303 performs IP layer protocol processing, various application processing, and the like.
  • the processor 313 is a processor that performs processing performed by the UE control module 303.
  • the memory 323 is used as a work area for the processor 313.
  • FIG. 20 is a diagram illustrating an example of a hardware configuration of the base station according to the embodiment.
  • FIG. 20 shows a configuration closer to the mounting example than FIG.
  • the base station eNB includes an RF module 401 that performs processing related to a radio signal, a BB processing module 402 that performs baseband signal processing, a device control module 403 that performs processing such as an upper layer, a network, And a communication IF 404 which is an interface for connection.
  • the RF module 401 generates a radio signal to be transmitted from the antenna by performing D / A conversion, modulation, frequency conversion, power amplification, and the like on the digital baseband signal received from the BB processing module 402.
  • a digital baseband signal is generated by performing frequency conversion, A / D conversion, demodulation, and the like on the received radio signal, and passed to the BB processing module 402.
  • the RF module 401 includes, for example, part of the signal transmission unit 201 and the signal reception unit 202 illustrated in FIG.
  • the BB processing module 402 performs processing for mutually converting an IP packet and a digital baseband signal.
  • the DSP 412 is a processor that performs signal processing in the BB processing module 402.
  • the memory 422 is used as a work area for the DSP 412.
  • the BB processing module 402 includes, for example, a part of the signal transmission unit 201, a part of the signal reception unit 202, and a part of the notification unit 203 illustrated in FIG.
  • the device control module 403 performs IP layer protocol processing, OAM (Operation and Maintenance) processing, and the like.
  • the processor 413 is a processor that performs processing performed by the device control module 403.
  • the memory 423 is used as a work area for the processor 413.
  • the auxiliary storage device 433 is, for example, an HDD or the like, and stores various setting information for operating the base station eNB itself.
  • the device control module 403 includes, for example, a part of the notification unit 203 illustrated in FIG.
  • a user apparatus in a wireless communication system supporting D2D communication in which a resource pool for control information and a resource pool for data transmission are continuously set without restriction in the time direction.
  • a radio resource a first data resource for selecting a first control information resource for transmitting control information from the control information resource pool and transmitting data from the data transmission resource pool
  • a transmission unit that transmits control information including the information for specifying the first data resource and the first control information resource, and transmits data using the first data resource.
  • a user device having a unit. This user apparatus UE provides a technology capable of performing more flexible D2D communication.
  • control information resource pool includes a first resource pool set in a frequency band higher than a frequency band of the data transmission resource pool, and a frequency band of the data transmission resource pool. Divided into a second resource pool set in a lower frequency band, and the selection unit selects the first control information resource from the first resource pool or the second resource pool. When the first control information resource is selected from the first resource pool, a second subframe after the first control information resource is subtracted from the second resource pool. When a control information resource is selected and the first control information resource is selected from the second resource pool, the first control information resource In a subframe subsequent to the source subframe, a second control information resource is selected from the first resource pool, and the transmission unit includes control information including information specifying the first data resource.
  • the first control information resource and the second control information resource may be transmitted.
  • SCI frequency hopping can be realized using SCI resource pools set above and below the bandwidth of the data resource pool, and the propagation quality at a specific frequency (subcarrier, etc.) has deteriorated. However, it is possible to improve SCI reception quality.
  • the subframe in which the second control information resource is selected may be determined based on the resource position in the frequency direction of the first control information resource. Thereby, control is performed so that the problem (half-duplex problem) that the two user apparatuses UE transmit SCI in the same subframe and cannot receive the SCI transmitted by the other user apparatus UE is minimized. Is possible.
  • the second control information resource is a time region in which the first control information resource is included among time regions that are repeatedly set in the first resource pool and the second resource pool. It may be included in different time regions. This makes it possible to realize SCI repetitive transmission based on the resource pool configuration.
  • the selection unit selects a second data resource from the data transmission resource pool in a subframe subsequent to the first data resource subframe, and the transmission unit selects the first data resource.
  • Data may be transmitted using the data resource and the second data resource. As a result, the same data can be transmitted repeatedly, and the reception quality of the data (MAC PDU) can be improved.
  • the selection unit selects the first control information resource based on an interval between a subframe in which the first data resource is selected and a subframe in which the second data resource is selected.
  • the second data resource may be selected so as to be wider than the subframe interval between the subframe and the subframe in which the second control information resource is selected.
  • control information is a control frame different from the control information in a subframe after a predetermined subframe from a subframe in which the first control information resource is selected in the control information resource pool.
  • Reservation information indicating that a resource for transmitting control information for transmitting information is reserved may be included.
  • the user apparatus UE can notify the other user apparatus UE that the SCI is scheduled to be transmitted at a predetermined timing, and is transmitted from the SCI transmitted by itself and the other user apparatus UE. Collisions with the SCI can be avoided.
  • the control information includes other data different from the data in a subframe after the predetermined subframe from the subframe in which the first data resource is selected in the data transmission resource pool. Reservation information indicating that a resource for data transmission for transmission is reserved may be included. Thereby, the user apparatus UE can notify the other user apparatus UE that data is scheduled to be transmitted at a predetermined timing, and is transmitted from the data transmitted by itself and the other user apparatus UE. Collisions with data can be avoided.
  • the transmission method is executed by a user apparatus in a wireless communication system supporting D2D communication, and the resource pool for control information and the resource pool for data transmission are continuous without restriction in the time direction.
  • a first control information resource for transmitting control information from the control information resource pool is selected in the radio resource set as described above, and data is transmitted from the data transmission resource pool. Selecting one data resource, and transmitting control information including information specifying the first data resource by the first control information resource, and using the first data resource to transmit data.
  • a method for transmitting the data is provided. By this transmission method, a technique capable of performing more flexible D2D communication is provided.
  • the PSCCH may be another control channel as long as it is a control channel for transmitting control information (SCI or the like) used for D2D communication.
  • the PSSCH may be another data channel as long as it is a data channel for transmitting data (MAC PDU or the like) used for D2D communication of D2D communication.
  • the PSDCH may be another data channel as long as it is a data channel for transmitting data (discovery message or the like) used for D2D communication of D2D discovery.
  • each device user device UE / base station eNB
  • the configuration of each device is realized by executing the program by the CPU (processor) in the device including the CPU and the memory. It may be a configuration, may be a configuration realized by hardware such as a hardware circuit provided with processing logic described in the present embodiment, or may be a mixture of programs and hardware Good.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the order of the sequences and flowcharts described in the embodiments may be changed as long as there is no contradiction.
  • the user apparatus UE / base station eNB has been described using a functional block diagram, but such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor of the user apparatus UE according to the embodiment of the present invention and the software operated by the processor of the base station eNB according to the embodiment of the present invention are random access memory (RAM), flash memory, and read-only, respectively. It may be stored in any appropriate storage medium such as a memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or the like.
  • the SCI resource pool is an example of a “resource pool for control information”.
  • the data resource pool is an example of a “resource transmission resource pool”.
  • SCI is an example of control information.
  • the upper SCI resource pool in FIG. 7 is an example of a first resource pool.
  • the SCI resource pool on the lower side of FIG. 7 is an example of a second resource pool.
  • the SCI reservation identifier is an example of “reservation information indicating that a resource for transmitting control information is reserved”.
  • the data reservation identifier is an example of “reservation information indicating that a resource for data transmission is reserved”.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC signaling, MAC signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC message may be referred to as RRC signaling.
  • the RRC message may be, for example, an RRC connection setup (RRCRRConnection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 5G
  • FRA Full Radio Access
  • W-CDMA Wideband
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB User Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 UWB (Ultra-WideBand
  • the present invention may be applied to a Bluetooth (registered trademark), a system using another appropriate system, and / or a next generation system extended based on the system.
  • the determination or determination may be performed by a value represented by 1 bit (0 or 1), may be performed by a true value (Boolean: true or false), or may be performed by comparing numerical values (for example, (Comparison with a predetermined value).
  • the channel and / or symbol may be a signal.
  • the signal may be a message.
  • UE is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal by those skilled in the art , Remote terminal, handset, user agent, mobile client, client, or some other appropriate terminology.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, notification of the predetermined information is not performed). Also good.
  • determining may encompass a wide variety of actions.
  • “Judgment”, “decision” can be, for example, calculating, computing, processing, deriving, investigating, looking up (eg, table, database or another (Searching in the data structure), and confirming (ascertaining) what has been confirmed may be considered as “determining” or “determining”.
  • “determination” and “determination” include receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (accessing) (e.g., accessing data in a memory) may be considered as “determined” or "determined”.
  • determination and “decision” means that “resolving”, “selecting”, “choosing”, “establishing”, and “comparing” are regarded as “determining” and “deciding”. May be included. In other words, “determination” and “determination” may include considering some operation as “determination” and “determination”.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • the input / output information or the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Input / output information and the like can be overwritten, updated, or additionally written. The output information or the like may be deleted. The input information or the like may be transmitted to another device.
  • the notification of the predetermined information is not limited to explicitly performed, and may be performed implicitly (for example, notification of the predetermined information is not performed). .
  • UE user apparatus eNB base station 101 signal transmission unit 102 signal reception unit 103 selection unit 201 signal transmission unit 202 signal reception unit 203 notification unit 301 RF module 302 BB processing module 303 UE control module 304 communication IF 401 RF module 402 BB processing module 403 Device control module

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

D2D通信をサポートする無線通信システムにおけるユーザ装置であって、制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択する選択部と、前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信する送信部と、を有するユーザ装置を提供する。

Description

ユーザ装置及び送信方法
 本発明は、ユーザ装置及び送信方法に関する。
 LTE(Long Term Evolution)やLTEの後継システム(例えば、LTE-A(LTE Advanced)、4G、FRA(Future Radio Access)などともいう)では、ユーザ装置同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている(例えば、非特許文献1)。
 D2Dは、ユーザ装置と基地局との間のトラヒックを軽減したり、災害時などに基地局が通信不能になった場合でもユーザ装置間の通信を可能とする。
 D2Dは、通信可能な他のユーザ装置を見つけ出すためのD2Dディスカバリ(D2D discovery、D2D発見ともいう)と、ユーザ装置間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信などともいう)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリなどを特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。
 また、3GPP(3rd Generation Partnership Project)では、D2D機能を拡張することでV2Xを実現することが検討されている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
"Key drivers for LTE success:Services Evolution"、2011年9月、3GPP、インターネットURL:http://www.3gpp.org/ftp/Information/presentations/presentations_2011/2011_09_LTE_Asia/2011_LTE-Asia_3GPP_Service_evolution.pdf 3GPP TS36.300 V13.2.0(2015-12)
 従来のD2Dでは、データを送信するための無線リソースの範囲であるPSSCH(Physical Sidelink Shared Channel)のリソースプールと、制御情報(SCI:Sidelink Control Information)を送信するための無線リソースの範囲であるPSCCH(Physical Sildelink Control Channel)のリソースプールとが時間多重されて周期的に設定されている。当該周期は、SC期間(Sidelink Control period)と呼ばれ、40ms以上の周期であることが規定されている。
 また、送信側のユーザ装置は、PSCCHのリソースプールから選択された無線リソースで制御情報(SCI)を送信し、PSSCHのリソースプールから選択された無線リソースでデータを送信する。制御情報には、PSSCHのリソースプールから選択された無線リソースの位置等を示す情報が含まれる。従って、送信側のユーザ装置が、新たなデータを送信可能なタイミングは、SC期間の長さや、PSCCH/PSSCHのリソースプール構成の影響を受けることになる。
 ここで、V2Xでは、制御情報及びデータを送信可能なタイミングを柔軟に制御可能にするため、様々なリソースプール構成が検討されている。一例として、制御情報を送信するためのリソースプールと、データを送信するためのリソースプールとを周波数多重させたリソースプール構成が検討されている。
 図2及び図3は課題を説明するための図である。図2及び図3は、制御情報を送信するためのリソースプール(以下、「SCIリソースプール」と呼ぶ)、と、データを送信するためのリソースプール(以下、「データリソースプール」と呼ぶ)とを、SC期間内で時間多重及び周波数多重させたリソースプール構成である。また、図2は、SCIリソースプールの期間とデータリソースプールの期間が同一である場合、図3は、SCIリソースプールの期間よりもデータリソースプールの期間が長い場合を示している。
 例えば、図2に示すリソースプール構成では、ユーザ装置は、SCIに対応するデータを送信する無線リソースを選択する際、SCIリソースプールと同一のSC期間内のデータリソースプールで無線リソースを選択する必要があるという制約を受けることになる。例えば、データリソースプールが20msであると仮定した場合、ユーザ装置は、1つのSCIで、10ms間隔で4回分のデータ送信用の無線リソースを選択することはできない。そこで、図3に示すように、データリソースプールの期間がSCIリソースプールよりも長くなるようなリソースプール構成を採用することも考えられる。しかしながら、図3に示すリソースプール構成では、2つのデータリソースプールが一部の期間で重複することになるため、複数のユーザ装置から送信されたデータの無線リソースが重複してしまい、衝突を引き起こす可能性があるという問題がある。
 また、D2D通信は、同一のキャリアを使用してD2D信号の送受信が行われるハーフデュプレックス(Half Duplex)通信方式であるため、ユーザ装置は、同一サブフレームにおいて、D2D信号の送受信を同時に行うことができない。つまり、図2及び図3に示すように、UE1(ユーザ装置1)から制御情報(SCI)が送信されるサブフレームと、UE2(ユーザ装置2)からデータが送信されるサブフレームとが同一である場合、UE1は、UE2から送信されるデータを受信することができないという問題がある。また、V2XはD2Dの一種であると考えると、上述の問題はD2D全般に発生し得る。
 開示の技術は上記に鑑みてなされたものであって、より柔軟なD2D通信を行うことが可能な技術を提供することを目的とする。
 開示の技術のユーザ装置は、D2D通信をサポートする無線通信システムにおけるユーザ装置であって、制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択する選択部と、前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信する送信部と、を有する。
 開示の技術によれば、より柔軟なD2D通信を行うことが可能な技術が提供される。
V2Xを説明するための図である。 課題を説明するための図である。 課題を説明するための図である。 D2Dを説明するための図である。 D2Dを説明するための図である。 D2D通信に用いられるMAC PDUを説明するための図である。 SL-SCH subheaderのフォーマットを説明するための図である。 実施の形態に係る無線通信システムの構成例を示す図である。 SCIリソースプール及びデータリソースプールの構成例(物理)を示す図である。 SCIの繰り返し送信方法(その1)を説明するための図である。 SCIの繰り返し送信方法(その1)を説明するための図である。 SCIの繰り返し送信方法(その2)を説明するための図である。 SCIの繰り返し送信方法(その2)を説明するための図である。 データの繰り返し送信方法を説明するための図である。 SCI送信用リソースの予約方法を説明するための図である。 データ送信用リソースの予約方法を説明するための図である。 SCI及びデータを送信するためのリソースの予約方法の具体例(その1)を示す図である。 SCI及びデータを送信するためのリソースの予約方法の具体例(その2)を示す図である。 実施の形態に係るユーザ装置の機能構成の一例を示す図である。 実施の形態に係る基地局の機能構成の一例を示す図である。 実施の形態に係るユーザ装置のハードウェア構成の一例を示す図である。 実施の形態に係る基地局のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、12、13、又はリリース14以降に対応する第5世代の通信方式も含む広い意味で使用する。
 また、本実施の形態は、主にV2Xを対象としているが、本実施の形態に係る技術は、V2Xに限らず、広くD2D全般に適用可能である。また、「D2D」はその意味としてV2Xを含むものである。
 また、「D2D」は、ユーザ装置UE間でD2D信号を送受信する処理手順のみならず、D2D信号を基地局が受信(モニタ)する処理手順、及び、RRC idleの場合若しくは基地局eNBとコネクションを確立していない場合に、ユーザ装置UEが基地局eNBに上り信号を送信する処理手順を含む広い意味で使用する。
 以下の説明では、D2D通信に用いられる制御情報を"SCI"と呼ぶが、これに限定されることを意図しているのではない。本実施の形態には、従来のD2Dで用いられていた"SA(Scheduling Assignment)"の名称で呼ばれる制御情報も含まれる。また、仮にV2Xにて他の用語が新たに規定されたとしてもD2D通信に用いられる制御情報を意味するのであれば本実施の形態に含まれる。
 <<D2Dの概要>>
 まず、LTEで規定されているD2Dの概要について説明する。なお、V2Xにおいても、ここで説明するD2Dの技術を使用することは可能であり、本発明の実施の形態におけるUEは、当該技術によるD2D信号の送受信を行うことができる。
 既に説明したように、D2Dには、大きく分けて「D2Dディスカバリ」と「D2Dコミュニケーション」がある。「D2Dディスカバリ」については、図4Aに示すように、Discovery period毎に、Discoveryメッセージ用のリソースプールが確保され、UEはそのリソースプール内でDiscoveryメッセージを送信する。より詳細にはType1、Type2bがある。Type1では、UEが自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。
 「D2Dコミュニケーション」についても、図4Bに示すように、SCI/データ送信用のリソースプールが周期的に確保される。当該周期は、SC期間(SC period)と呼ばれる。送信側のUEはControlリソースプール(SCI送信用リソースプール)から選択されたリソースでSCIによりデータ送信用リソース等を受信側に通知し、当該データ送信用リソースでデータを送信する。「D2Dコミュニケーション」について、より詳細には、Mode1とMode2がある。Mode1では、eNBからUEに送られる(E)PDCCHによりダイナミックにリソースが割り当てられる。Mode2では、UEはリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIBで通知されたり、予め定義されたものが使用される。
 LTEにおいて、「D2Dディスカバリ」に用いられるチャネルはPSDCH(Physical Sidelink Discovery Channel)と称され、「D2Dコミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCH(Physical Sidelink Control Channel)と称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される(非特許文献2)。
 D2D通信に用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、図5に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。
 図6に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、UEが用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。
 <<システム構成>>
 図7は、実施の形態に係る無線通信システムの構成例を示す図である。図7に示すように、本実施の形態に係る無線通信システムは、基地局eNB、ユーザ装置UE1、ユーザ装置UE2を有する。図7において、ユーザ装置UE1は送信側、ユーザ装置UE2は受信側を意図しているが、ユーザ装置UE1とユーザ装置UE2はいずれも送信機能と受信機能の両方を備える。以下、ユーザ装置UE1とユーザ装置UE2を特に区別しない場合、単に「ユーザ装置UE」と記述する。
 図7に示すユーザ装置UE1、ユーザ装置UE2は、それぞれ、LTEにおけるユーザ装置UEとしてのセルラ通信の機能、及び、上述したチャネルでの信号送受信を含むD2D機能を有している。また、ユーザ装置UE1、ユーザ装置UE2は、本実施の形態で説明する動作を実行する機能を有している。なお、セルラ通信の機能及び既存のD2Dの機能については、一部の機能(本実施の形態で説明する動作を実行できる範囲)のみを有していてもよいし、全ての機能を有していてもよい。
 また、各ユーザ装置UEは、D2Dの機能を有するいかなる装置であってもよいが、例えば、各ユーザ装置UEは、車両、歩行者が保持する端末、RSU(UEの機能を有するUEタイプRSU)等である。
 また、基地局eNBについては、LTEにおける基地局eNBとしてのセルラ通信の機能、及び、本実施の形態におけるユーザ装置UEの通信を可能ならしめるための機能(リソース割当ての機能、設定情報通知機能等)を有している。また、基地局eNBはRSU(eNBの機能を有するeNBタイプRSU)を含む。
 <<概要>>
 図4Bを用いて前述したように、従来のD2Dでは、SCI/データリソースプールがSC期間の単位で周期的に設定されていた。一方、本実施の形態では、D2D信号を送信するリソースを柔軟に制御可能にするため、SC期間の概念を排除し、SCIリソースプールとデータリソースプールとを時間方向に制約なく(つまり、SC期間のように、時間方向に時間的な区切りを設けずに)連続して設定する。
 図8は、SCIリソースプール及びデータリソースプールの構成例(物理)を示す図である。図8に示すように、本実施の形態では、SCIリソースプールとデータリソースプールとが時間方向に無制限に連続して設定される。また、データリソースプールが設定される帯域の上下の帯域にSCIリソースプールが設定される。SCIリソースプール及びデータリソースプールの設定は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM(Subscriber Identity Module)又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。
 また、従来のD2Dでは、SC期間内のSCI/データリソースプール内で同一のSCI/データが繰り返し送信(ホッピング送信)されるように規定されていたが、本実施の形態では、SC期間の概念を排除するため、新たなSCI/データの繰り返し送信方法を規定する。
 具体的には後述するが、ユーザ装置UEは、同一のSCIを、図8に示す上側のSCIリソースプールと下側のSCIリソースプールとの間で、周波数ホッピングさせながら繰り返し送信する。
 また、本実施の形態では、ユーザ装置UEは、同一のデータ(MAC PDU)を、所定のサブフレーム間隔で繰り返し送信するように動作する。所定のサブフレーム間隔の具体的な決定方法については後述する。
 <<処理手順>>
 <SCIの繰り返し送信方法(その1)について>
 次に、ユーザ装置UEがSCIを繰り返し送信する際に、各SCIを送信するリソースの位置を決定する方法について説明する。以下、ユーザ装置UEがSCIを繰り返し送信する回数が2回の場合及び3回以上の場合に分けて説明する。なお、ユーザ装置UEがSCIを繰り返し送信する回数は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。また、ユーザ装置UE毎に異なる回数が指定されてもよいし、セル毎又はSCIリソースプール毎に異なる回数が指定されるようにしてもよい。
 (SCIが2回繰り返し送信される場合)
 まず、SCIが2回以上繰り返し送信される場合のリソース決定方法について説明する。ユーザ装置UEは、1回目(最初)に送信されるSCIのリソースと、2回目に送信されるSCIのリソースとが、それぞれ異なるSCIリソースプール(図8に示す上側のSCIリソースプール及び下側のSCIリソースプール)に属するようにSCIが周波数ホッピングされて送信されるようにする。
 また、前述の通り、D2D通信は、同一のキャリアを使用してD2D信号の送受信が行われるハーフデュプレックス(Half Duplex)通信方式であるため、ユーザ装置UEは、同一サブフレームにおいて、D2D信号の送受信を同時に行うことができない。つまり、複数のユーザ装置UEが同一のサブフレームでSCIを送信する際、複数のユーザ装置UEが同一のサブフレームで繰り返しSCIを送信してしまうと、当該複数のユーザ装置UEは、お互いのSCIを受信することができなくなってしまう。そこで、SCIの繰り返し送信方法(その1)では、1回目(最初)に送信されるSCIの時間方向のリソース(サブフレーム)と、2回目に送信されるSCIの周波数方向のリソース(サブフレーム)との間隔が、1回目に送信されるSCIの周波数方向のリソースに基づいて決定されるようにする。
 図9A-BはSCIの繰り返し送信方法(その1)を説明するための図である。図9A-Bは、SCIリソースプールを論理的に図示している。つまり、物理的な表現に置き換えると、図9A-Bの4つのリソース(「nf」=0、1、2、3で示されるリソース)は、順に、図8の上側及び下側のSCIリソースプールに存在する4つのリソースに対応する。なお、図9A-Bの「nf=0」のリソースが、図8の周波数方向の一番上のリソース(図8の最上段のリソース)に対応していてもよいし、逆に、図8の周波数方向の一番下のリソース(図8の最下段のリソース)に対応していてもよい。なお、図9A-B(図8も同様)に示される1つのブロックは、SCIの送信に用いられるリソースブロックペアを意味している。なお、図8及び図9A-Bでは、SCIリソースプールは周波数方向に4つのリソースブロックで構成されているが、一例であり、5つ以上のリソースブロックから構成されていてもよい。
 図9A-Bにおいて、「nt」はサブフレームの位置を意味しており、「nf」は周波数方向のリソースブロックの位置を意味している。なお、「nt」は具体的なサブフレーム番号を意図しているのではなく、相対的なサブフレーム位置を示す変数である。同様に、「nf」も、相対的な周波数方向のリソースブロックの位置を示す変数である。
 繰返し送信方法(その1)では、ユーザ装置UEは、1回目に送信するSCIのリソースを、図9A-Bの上半分のリソースの中から任意の位置のリソース(nt1、nf1)を選択すると共に、2回目に送信するSCIのリソースの位置(nt2、nf2)を、以下に示す数式1又は数式2を用いて決定する。なお、「Nf」は、SCIリソースプール全体に含まれる周波数方向のリソースブロック数を意味している(以降に示す数式3、数式4、数式5も同様)。図9A-Bの例では、「Nf=4」である。
(数式1)
Figure JPOXMLDOC01-appb-M000001

(数式2)
Figure JPOXMLDOC01-appb-M000002

 数式1を用いた場合における、1回目及び2回目のSCIのリソース位置の例を図9Aに示す。図9Aに示すように、例えば、1回目のSCIが(nt、nf)=(0、0)のリソースで送信される場合、2回目のSCIは(nt、nf)=(1、2)のリソースで送信されることになる。同様に、例えば、1回目のSCIが(nt、nf)=(0、1)のリソースで送信される場合、2回目のSCIは(nt、nf)=(2、3)のリソースで送信されることになる。
 また、数式2を用いた場合における、1回目及び2回目のSCIのリソース位置の例を図9Bに示す。図9Bに示すように、例えば、1回目のSCIが(nt、nf)=(0、0)のリソースで送信される場合、2回目のSCIは(nt、nf)=(1、2)のリソースで送信されることになる。同様に、例えば、1回目のSCIが(nt、nf)=(0、1)のリソースで送信される場合、2回目のSCIは(nt、nf)=(2、2)のリソースで送信されることになる。
 つまり、数式1又は数式2を用いることで、同一のサブフレームかつ異なる周波数のリソースで送信される2つのSCIは、1回目の送信時と2回目の送信時とでは異なるサブフレームで送信されることになる。また、異なるサブフレームかつ同一の周波数のリソースで送信される2つのSCIは、1回目の送信時と2回目の送信時とでは同一のサブフレーム間隔で送信されることになる。言い換えると、2回目に送信されるSCIのサブフレーム位置は、1回目に送信されるSCIの周波数方向のリソース位置に基づき決定されることになる。
 また、数式1では、1回目の送信時と2回目の送信時とでは、周波数方向で同一のオフセット(2リソース分のオフセット)ずれたリソースで送信されることになるが、数式2では、1回目の送信時と2回目の送信時とでは、更に、周波数方向のオフセットが分散されることになる。例えば、図9Bにおいて、1回目のSCIが(nt、nf)=(0、0)のリソースで送信される場合、2回目のSCIは(nt、nf)=(1、2)のリソースで送信されることになる。つまり、周波数方向のオフセットは2リソース分である。一方、1回目のSCIが(nt、nf)=(0、1)のリソースで送信される場合、2回目のSCIは(nt、nf)=(2、2)のリソースで送信されることになる。つまり、周波数方向のオフセットは1リソース分である。つまり、数式2を用いることで、1回目に送信されるSCIと2回目に送信されるSCIとで、周波数方向のリソースが分散されることになる。
 (SCIが3回以上繰り返し送信される場合)
 続いて、SCIが3回以上繰り返し送信される場合のリソース決定方法について説明する。以下の説明では、SCIが繰り返し送信される回数を「K(K≧3)」と定義する。
 [Kが偶数の場合]
 Kが偶数の場合、ユーザ装置UEは、前述した「(SCIが2回繰り返し送信される場合)」で説明したリソース決定方法を、「K/2」回繰り返すようにしてもよい。例えば、SCIを6回繰り返し送信する場合、ユーザ装置UEは、前述した「(SCIが2回繰り返し送信される場合)」で説明したリソース決定方法を3回行うようにしてもよい。
 ここで、前述した「(SCIが2回繰り返し送信される場合)」では、1回目に送信するSCIのリソースは、ユーザ装置UEが任意に選択するようにした。そこで、SCIが3回以上繰り返し送信される場合で、Kが偶数の場合、「2i+1」回目(i=1、2、3・・)で送信されるSCIのリソースの位置(例えば、K=6の場合、3回目及び5回目に送信されるSCIのリソースの位置)は、以下の数式3に従って決定されるようにしてもよい。なお、数式3において、nt(1)及びnf(1)の値は、それぞれ1回目のSCI送信時のリソース位置に該当する。
(数式3)
Figure JPOXMLDOC01-appb-M000003

 数式3を用いる場合、SCIが繰り返し送信されるリソースの位置(ホッピングパターン)は、ユーザ装置UEに関わらず一意に(固定的に)決定されるため、受信側のユーザ装置UEは、複数回送信されるSCIのリソース位置を全て事前に把握することができる。つまり、受信側のユーザ装置UEは、複数のSCIのリソースを合成することで合成ゲインを得ることが可能になる。
 また、「2i+1」回目(i=1、2、3・・)で送信されるSCIのリソースの位置を、以下に示す数式4を用いて決定するようにしてもよい。なお、数式4の「SA_ID」は、所定のグループのユーザ装置UEに割当てられるID(SA ID:Sidelink group destination identity)である。
(数式4)
Figure JPOXMLDOC01-appb-M000004

 数式4を用いる場合、SCIが繰り返し送信されるリソースの位置(ホッピングパターン)は、グループが異なるユーザ装置UE毎に変化することになる。つまり、数式4が用いられる場合、グループが異なる複数のユーザ装置UEが1回目にSCIを送信するリソースとして同一のリソースを選択してしまった場合であっても、3回目以降にSCIが送信されるリソースの位置が分散されることになり、SCIの衝突を回避することが可能になる。
 [Kが奇数の場合]
 Kが奇数の場合、ユーザ装置UEは、前述した「Kが偶数の場合」と同様の方法でSCIを送信するリソースの位置を決定すると共に、更に、追加で1回SCIを送信するようにしてもよい。例えば、SCIを7回繰り返し送信する場合、ユーザ装置UEは、前述した「Kが偶数の場合」で説明したリソース決定方法により、1~6回目に送信されるSCIのリソース位置を決定すると共に、更に、追加でSCIを1回送信するようにしてもよい。
 追加で1回送信されるSCIのリソース位置は、「Kが偶数の場合」で説明したリソース決定方法と同様の方法を用いて決定されるリソース位置のうち最後の奇数回目のリソース位置が用いられるようにしてもよい。例えば、SCIを7回繰り返し送信する場合、ユーザ装置UEは、前述した「Kが偶数の場合」で説明したリソース決定方法により、1~8回目に送信されるSCIのリソース位置を決定し、追加で1回送信されるSCIのリソース位置は、7回目で送信されるSCIのリソース位置とするようにしてもよい。
 また、他の方法として、ユーザ装置UEは、追加で1回送信されるSCIのリソース位置として「Kが偶数の場合」で説明したリソース決定方法と同様の方法を用いて決定されるリソース位置のうち、いずれか一方を用いるようにしてもよい。例えば、SCIを7回繰り返し送信する場合、ユーザ装置UEは、前述した「Kが偶数の場合」で説明したリソース決定方法により、1~8回目に送信されるSCIのリソース位置を決定し、追加で1回送信されるSCIのリソース位置は、7回目又は8回目のいずれかのリソース位置とするようにしてもよい。また、ユーザ装置UEは、どちらのリソース位置を選択するのかを、SA IDを用いて決定するようにしてもよい。例えば、ユーザ装置UEは、SA IDの最後のビットが「0」である場合、最後の奇数回目のリソース位置を選択し、SA IDの最後のビットが「1」である場合、最後の偶数回目のリソース位置を選択するようにしてもよい。これにより、追加で1回送信されるSCIのリソース位置は、ユーザ装置UE毎に分散されることになる。
 以上、「SCIの繰り返し送信方法(その1)」について説明した。「SCIの繰り返し送信方法(その1)」によれば、複数のユーザ装置UE毎にSCIが送信されるサブフレームを分散させることができるため、2つのユーザ装置UEが同一のサブフレームでSCIを送信してしまい、他方のユーザ装置UEが送信するSCIを受信できなくなるという問題(ハーフデュプレックス問題)が極力発生しないように制御することが可能になる。
 <SCIの繰り返し送信方法(その2)について>
 次に、SCIの繰り返し送信方法(その2)について説明する。以下、ユーザ装置UEがSCIを繰り返し送信する回数が2回の場合及び3回以上の場合に分けて説明する。なお、ユーザ装置UEがSCIを繰り返し送信する回数は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。また、ユーザ装置UE毎に異なる回数が指定されてもよいし、セル毎又はSCIリソースプール毎に異なる回数が指定されるようにしてもよい。
 (SCIが2回繰り返し送信される場合)
 SCIの繰り返し送信方法(その2)では、図10に示すように、SCIリソースプールは、同一の間隔で繰り返し現れる2つの領域に分割される。1つ目の領域は、1回目のSCIを送信するためのリソースプール(図10の1回目のSCI送信用のリソースプール)に該当し、2つ目の領域は、2回目のSCIを送信するためのリソースプール(図10の2回目のSCI送信用のリソースプール)に該当する。ユーザ装置UEは、1回目のSCIを送信する場合、1回目のSCI送信用のリソースプールからリソースを選択して送信し、2回目のSCIを送信する場合、2回目のSCI送信用のリソースプールからリソースを選択して送信する。
 なお、図10も図9A-Bと同様に、SCIリソースプールを論理的に図示している。つまり、物理的な表現に置き換えると、図10の「nf」方向のリソースは、順に、図8の上側及び下側のSCIリソースプールに存在する4つのリソースに対応する。なお、図10の「nf=0」のリソースが、図8の周波数方向の一番上のリソース(図8の最上段のリソース)に対応していてもよいし、逆に、図10の周波数方向の一番下のリソース(図8の最下段のリソース)に対応していてもよい。また、「nt」はサブフレームの位置を意味しており、「nf」は周波数方向のリソースブロックの位置を意味している。なお、「nt」は具体的なサブフレーム番号を意図しているのではなく、相対的なサブフレーム位置を示す変数である。同様に、「nf」も、相対的な周波数方向のリソースブロックの位置を示す変数である。
 SCIの繰り返し送信方法(その2)では、2回目に送信されるリソースのリソース位置は、以下の数式5に従って決定されてもよい。なお、「Nt」は、1回目のSCI送信用のリソースプール及び2回目のSCI送信用のリソースプール内に存在するサブフレーム数を意味している。
(数式5)
Figure JPOXMLDOC01-appb-M000005

 SCIの繰り返し送信方法(その2)において、1回目のSCI送信用のリソースプールと2回目のSCI送信用のリソースプールの間隔は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。
 (SCIが3回以上繰り返し送信される場合)
 続いて、SCIが3回以上繰り返し送信される場合のリソース決定方法について説明する。SCIが3回以上繰り返し送信される場合、図11に示すように、SCIリソースプールを同一の間隔で繰り返し現れるK個の領域に分割しておき、ユーザ装置UEは、1回目~K回目のSCIを送信する場合、それぞれ、1回目~K回目のSCI送信用のリソースプールからリソースを選択して送信するようにしてもよい。また、ユーザ装置UEは、選択するリソースを、前述の数式5を用いて決定するようにしてもよい。
 また、他の方法として、ユーザ装置UEは、所定のリソース決定方法に従って決定されるリソース選択方法を、「K/2」回繰り返すようにしてもよい。また、Kの数が奇数の場合、ユーザ装置UEは、追加で1回送信するSCIのリソース位置を、SA IDを用いて又はランダムに決定するようにしてもよい。例えば、ユーザ装置UEは、SA IDの最後のビットが「0」である場合、所定のリソース決定方法で決定されるリソース位置のうち最初のリソース位置を選択し、SA IDの最後のビットが「1」である場合、所定のリソース決定方法で決定されるリソース位置のうち2番目のリソース位置を選択するようにしてもよい。これにより、追加で1回送信されるSCIのリソース位置は、ユーザ装置UE毎に分散されることになる。
 以上、「SCIの繰り返し送信方法(その2)」について説明した。「SCIの繰り返し送信方法(その2)」によれば、複数のユーザ装置UE毎にSCIが送信されるサブフレームを分散させることができるため、2つのユーザ装置UEが同一のサブフレームでSCIを送信してしまい、他方のユーザ装置UEが送信するSCIを受信できなくなるという問題(ハーフデュプレックス問題)が極力発生しないように制御することが可能になる。
 <データの繰り返し送信方法について>
 次に、ユーザ装置UEがデータを繰り返し送信する際に、各データを送信するリソースの位置を決定する方法について説明する。前述の通り、D2Dはハーフデュプレックスの通信方式を採用しているため、ユーザ装置UEは、同一サブフレームにおいて、D2D信号の送受信を同時に行うことができない。そこで、本実施の形態では、ユーザ装置UEは、繰り返し送信されるデータ間のサブフレーム間隔が、繰り返し送信されるSCI間のサブフレーム間隔の最大値より長い間隔になるように、データリソースプールの中からデータ送信用のリソースを選択してデータの送信を行う。
 なお、本実施の形態では、データを繰り返し送信する回数は、予め標準仕様等で固定的に規定されていてもよいし、データを繰り返し送信する回数をSCIの設定値に含めることでダイナミックに変更可能にしてもよい。
 図12は、データの繰り返し送信方法を説明するための図である。本実施の形態では、最後にSCIが送信されるサブフレームと、当該SCIに対応するデータが最初に送信されるサブフレームとの間隔を示す所定のオフセット値を、「offset_ini」と定義する。「offset_ini」は、「1~T_SAmax」の間の任意の値であり、送信側のユーザ装置UEにより任意に決定される。ここで、T-SAmaxは、前述の「SCIの繰り返し送信方法(その1)」に従う場合、「T-SAmax=floor(Nf/2)+1」により算出される。また、前述の「SCIの繰り返し送信方法(その2)」に従う場合、「T-SAmax=1回目のSCIを送信するためのリソースプール内のサブフレーム数+2回目のSCIを送信するためのリソースプール内のサブフレーム数」により算出される。
 なお、「offset_ini」は最初にSCIが送信されるサブフレームとの時間オフセット値でもよい。また、「offset_ini」として0を設定可能とすることで、SCIとデータの同一サブフレーム送信を設定可能としてもよい。
 また、「offset_ini」を用いず、SCI内のフラグやSCIのフォーマットで、SCI及びデータが同一サブフレームで送信されていることを受信側のユーザ装置UEが認識できるようにしてもよい。このような同一サブフレーム又は異なるサブフレームでのSCI及びデータの送信方法の切り替えは、送信側のユーザ装置UEが自律的に選択してもよいし、ユーザ装置UEの能力に応じて選択できる送信方法を限定してもよい。基地局eNBがリソースを割り当てる際に適切な送信方法を指示できるようそのユーザ装置UEの能力を基地局eNBに報告してもよい。また、以下に述べるようにユーザ装置UEは、送信電力に応じて送信方法を切り替えてもよい。
 SCIとデータそれぞれの送信電力について、SCIとデータをそれぞれ異なるサブフレームで送信する場合は、設定された送信電力(例えば総送信電力や送信電力密度、Fractional TPCにおける目標受信電力と伝搬ロス補償項など)を用い、同一サブフレーム(サブフレームの一部が重なる場合を含む)で送信する場合は異なる送信電力設定を行なってもよい。例えば、SCIとデータの送信電力が23dBmに設定されていた場合、同時送信でSCI送信を優先するとデータが送信できず、一方で電力密度を等分配するとSCIの品質が十分担保できない可能性がある。独立した電力設定を行うことでこのような問題を回避することができる。
 具体的には、同時送信により最大送信電力を超過する場合には、ユーザ装置UEは次のいずれかまたはその組み合わせを用いて最大送信電力を満たすように送信電力を調整してもよいし、又は、同時送信を行わず異なるサブフレームでSCIとデータを送信するようにしてもよい。(1)SCIとデータの間の送信電力オフセットを設定する。例えばSCIがデータよりも送信電力(密度)が3dB高くなるように送信電力を制御する。(2)SCI・データの最低送信電力(密度)を設定する(SCIのみに設定してもよい)。(3)データの最大送信帯域幅を設定する。
 また、本実施の形態では、データが繰り返し送信される際のサブフレームの間隔を算出するために用いる所定のオフセット値を、「offset_re」と定義する。「offset_re」は、「0~T_SAmax-1」の間の任意の数である。「offset_re」は、送信側のユーザ装置UEにより任意に決定される。
 図12に示すように、ユーザ装置UEは、SCIを最後に送信したサブフレームから「offset_ini」後のサブフレームで最初のデータを送信する。またそれ以後、各データ間のサブフレーム間隔が「T_SAmax+offset_re」になるようにデータを繰り返し送信する。なお、ユーザ装置UEがn回目にデータを送信するサブフレーム位置は、「n回目にデータが送信されるサブフレーム位置=最後にSCIが送信されるサブフレーム位置+(n-1)×(T-SA_max+offset_re)+offset_ini」の式で表現される。
 図12の例では、Nf=6であるため、T-SA_max=4である。この場合、ユーザ装置UEは、「offset_ini」の値として、1~6のうち任意の値を選択し、「offset_re」の値として、0~5のうち任意の値を選択することになる。図12の例では、「offset_ini」及び「offset_re」の値としてそれぞれ「2」が選択された場合を図示している。
 本実施の形態では、データが送信される周波数方向のリソース(リソースブロック)は、どのように選択されてもよい。例えば、繰り返し送信される各データの周波数方向のリソースは、ユーザ装置UEにより任意に決定されるようにしてもよいし、基地局eNBからユーザ装置UEに指示されるようにしてもよい。また、他の例として、例えば、1回目にデータが送信される際の周波数方向のリソースのみ、ユーザ装置UEにより任意に決定(又は基地局eNBからユーザ装置UEに指示)されるようにして、それ以後繰り返し送信されるデータについては、予め定められた所定のホッピングパターンに基づいて決定される周波数方向のリソースで送信されるようにしてもよい。当該所定のホッピングパターンは、どのようなパターンであってもよいが、例えば、従来のLTEにおけるPSSCHと同様、データが送信される周波数方向のリソース位置が、データリソースプール内に定義された複数のサブバンドで分散されるように設定されるホッピングパターンであってもよい。
 以上、データの繰り返し送信方法について説明した。本実施の形態によれば、SCIが繰り返し送信されるサブフレーム間隔と、データが繰り返し送信されるサブフレーム間隔とがそれぞれ異なることになる。これにより、SCIを送信するユーザ装置UEと、データを送信するユーザ装置UEとが、同一のサブフレームでD2D信号を送信してしまい、他方のユーザ装置UEが送信するD2D信号を受信できなくなるという問題(ハーフデュプレックス問題)が極力発生しないように制御することが可能になる。
 <SCIの設定値について>
 続いて、本実施の形態において、SCIに格納される設定値について具体的に説明する。SCIには、SCIに対応するデータが繰り返し送信される際のサブフレーム位置を算出するためのパラメータである「offset_ini」及び「offset_re」の値が格納される。なお、「T_SAmax」の値はSCIに格納されてもよいし格納されなくてもよい。「T_SAmax」は、SCIリソースプールの設定に基づき決定される「Nf」の値を用いることでユーザ装置UEが自ら算出することが可能であるため、省略することができる。
 また、SCIには、各データが送信される際の周波数方向のリソース位置を示す情報を含む。各データが送信される際の周波数方向のリソース位置を示す情報には、繰り返し回数分の全ての周波数方向のリソース位置が含まれていてもよいし、1回目にデータが送信される際の周波数方向のリソースと、所定のホッピングパターンを特定する情報とが格納されていてもよい。
 「offset_ini」及び「offset_re」の値は、従来のD2DにおけるSCIのフォーマットのうち、T-RPTパターンビットを格納するための領域に格納されてもよい。本実施の形態では、従来のD2Dとはデータの送信方法が異なるため、T-RPTパターンビットを格納するための領域を流用することが可能である。また、「offset_re」の値は、SCIに格納されるSA IDの最後の3又は4ビットに設定されるようにしてもよい。
 なお、「offset_re」を所定の式に従って算出可能にすることで、「offset_re」をSCIに格納しないようにしてもよい。例えば、「offset_re」の最大値を「max_offset_re」とし、「offset_re=mod(nf、max_offset_re+1)」の式により算出されるようにしてもよい。ここで、「nf」は、各データが送信される、データリソースプール内における周波数方向のリソースブロック位置を意味する。つまり、各データが送信される周波数方向のリソースが変化する場合、当該式が用いられることでデータの送信間隔が変化するように制御されることになる。「max_offset_re」は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。これにより、SCIのデータ量を削減することができる。
 その他、SCIには、MCS(Modulation and Coding Scheme)やTA(Timing Alignment)を指定する情報が含まれていてもよい。また、本実施の形態のために新たなSCIを規定してもよい。
 基地局eNBからのリソース割り当てが行われる場合には、基地局eNBからユーザ装置UEに送信されるリソース割り当て用のシグナリングに、SCIに格納される設定値及び所定のホッピングパターンを特定する情報などを含めるようにしてもよい。
 また、前述の通り、SCIにはデータが繰り返し送信される回数が含まれていてもよい。
 <データの繰り返し送信方法に関する補足事項>
 前述したように、SCIには、最後にSCIが送信されるサブフレームと、当該SCIに対応するデータが最初に送信されるサブフレームとの間隔を示す所定のオフセット値「offset_ini」が格納される。しかしながら、受信側のユーザ装置UEが、繰り返し送信されるSCIのうち、最後に送信されるSCIを必ず受信できるとは限らない。その場合、受信側のユーザ装置UEは、受信したSCIに対応するデータが最初に送信されるリソース位置を正しく認識できなくなる可能性がある。例えば、SCIが2回繰り返し送信される場合において、受信側のユーザ装置UEが1回目に送信されるSCIのみを受信した場合、受信側のユーザ装置UEは、1回目に受信したSCIのサブフレームを基準として、データが送信されるサブフレームの位置を特定してしまう可能性がある。
 そこで、SCIの繰り返し送信方法(その1)に従ってSCIが2回繰り返し送信される場合、受信側のユーザ装置UEは、受信したSCIの周波数方向のリソース位置に基づいて(つまり、図8の上側のSCIリソースプール内のリソースなのか下側のSCIリソースプール内のリソースなのかに基づいて)、受信したSCIが1回目に送信されたSCIなのか、2回目に送信されたSCIなのかを判断するようにしてもよい。これにより、受信したSCIが1回目に送信されたSCIであると判断した場合、受信側のユーザ装置UEは、前述した数式1又は数式2を用いて2回目に送信されるSCIのサブフレーム位置を推定し、推定したサブフレーム位置を基準としてデータが送信されるサブフレームの位置を特定することが可能になる。
 また、SCIの繰り返し送信方法(その1)に従ってSCIが3回以上繰り返し送信される場合、SCIリソースプール内の周波数方向のリソースを、SCIを繰り返し送信する回数で分割し、繰り返し送信されるSCIごとに、分割された周波数リソースを用いて送信してもよい。例えば、SCIリソースプール内の周波数方向のリソース(「Nf」の数)を、SCIを繰り返し送信する回数とすれば、周波数リソースをSCIを繰り返し送信する回数で等分割することが可能になり、SCIの繰り返し送信ごとに等しい送信リソース候補数を確保することが可能になる。あるいは、繰り返し送信されるSCIの間の時間方向のリソース間隔を予め準静的に固定してもよい。なお、繰り返し送信されるSCIごとに、どの周波数方向のリソースでSCIが送信されるのかを、送信側のユーザ装置UEと受信側のユーザ装置UEとの間で予め共有しておくようにする。これにより、受信側のユーザ装置UEは、受信したSCIの周波数方向のリソース位置に基づいて、受信したSCIが何回目に送信されたSCIなのかを判断することができる。また、ユーザ装置UEは、当該判断結果に基づいて最後に送信されるSCIのサブフレーム位置を推定し、推定したサブフレーム位置を基準としてデータが送信されるサブフレームの位置を特定することが可能になる。
 なお、繰り返し送信されるSCIと、周波数方向のリソースとの対応付けの例として、例えば、1回目に送信されるSCIは図8の最上段のリソースで送信されるようにして、2回目に送信されるSCIは図8の最下段のリソースで送信されるようにして、3回目に送信されるSCIは図8の最上段の1つ下のリソースで送信されるようにして、4回目に送信されるSCIは図8の最下段の1つ上のリソースで送信されるようにしてもよい。
 また、SCIの繰り返し送信方法(その2)に従ってSCIが繰り返し送信される場合、送信回数ごとのSCI送信用のリソースプール(図11の例では、1回目~K回目のSCI送信用リソースプールの各々)の開始地点及び終了地点のそれぞれの時間リソースの絶対位置(例えばDFN及びサブフレーム)を特定するための情報(計算式等)を、予め報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知しておくようにしてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)しておくようにしてもよい。これにより、受信側のユーザ装置UEは、受信したSCIのDFN及びサブフレーム番号が、何回目のSCI送信用のリソースプールに該当するかを特定することで、受信したSCIが何回目に送信されたSCIなのかを判断することができる。また、ユーザ装置UEは、例えば、前述した数式5を用いて最後に送信されるSCIのサブフレーム位置を推定し、推定したサブフレーム位置を基準としてデータが送信されるサブフレームの位置を特定することが可能になる。
 また、他の方法として、送信側のユーザ装置UEは、SCIの中に送信回数を示す情報を含めるようにしてもよい。これにより、受信側のユーザ装置UEは、受信したSCIが何回目に送信されたSCIなのかを容易に特定することができる。
 また、他の方法として、「offset_ini」の値を、実際にSCIが送信されるサブフレームと、当該SCIに対応するデータが最初に送信されるサブフレームとの間隔を示すもようにしてもよい。つまり、「offset_ini」の値をSCIの送信回数に合わせて変化させるようにしてもよい。これにより、受信側のユーザ装置UEは、受信したSCIが何回目なのかを特定せずに、データが最初に送信されるサブフレームを把握することができる。なお、「offset_ini」の値をデータが最初に送信される時間リソースの絶対位置(DFN及びサブフレーム番号)とするようにしてもよい。
 <SCI及びデータの衝突回避について>
 V2Xでは、多数のユーザ装置UEが同一のリソースプール内でD2D信号を送信するシナリオが想定されている。そのため、複数のユーザ装置UEが同一のリソースを選択してSCI/データの送信を行ってしまい、SCI/データの衝突が発生してしまう可能性がある。一方で、V2Xでは、例えば、100ms毎にV2Xパケットを送信するような運用形態が想定されているため、ユーザ装置UEは、将来的に送信予定のデータをある程度予測することが可能であると想定される。
 そこで、本実施の形態では、複数のユーザ装置UEから送信されるSCI/データの衝突を回避するため、ユーザ装置UEは、SCIの中に、新たなSCI/データを送信予定のリソースの位置を示す識別子を含めることで、当該リソースで新たなSCI/データを送信予定である(当該リソースを予約する)ことを他のユーザ装置UEに通知するようにしてもよい。
 <SCI送信用リソースの予約方法について>
 図13は、SCI送信用リソースの予約方法を説明するための図である。ユーザ装置UEは、所定の時間後(所定のサブフレーム後)にデータ(V2Xパケット)を送信するために新たなSCIの送信を予定している場合、所定の時間後(所定のサブフレーム後)に新たなSCIを送信するためのリソースを予約することを示す識別子(以下、「SCI予約識別子」と呼ぶ)をSCIに含めて送信する。
 SCI予約識別子には、直近で送信予定のSCI(SCI予約識別子が含まれるSCI)と、所定の時間後に送信予定の新たなSCIとの間の送信間隔(例えば、100msなど)が具体的に設定されてもよいし、送信間隔を所定の単位数(例えば、1単位あたり100ms)で表現するためのビット値(例えば2ビットの値)が設定されるようにしてもよい。後者の場合、例えば、「00」は、リソースの予約がされていないことを意味し、「01」は送信間隔が1単位(例えば、100ms)であることを意味し、「10」は送信間隔が2単位(例えば、200ms)であることを意味し、「11」は送信間隔が4単位(例えば、400ms)であることを意味するようにしてもよい。また、所定の1単位が意味する送信間隔は、報知情報(SIB)又はRRCシグナリングにより基地局eNBからユーザ装置UEに通知されてもよいし、SIM又はコアネットワーク等を介してユーザ装置UEに事前設定(Pre-Configured)されていてもよい。
 図13の例は、新たなSCIを送信予定のリソースとして、100ms後のリソースが予約された場合を示している。なお、前述の通り、本実施の形態では同一のSCIが複数回繰り返し送信される。そのため、SCI予約識別子が含まれるSCIを受信したユーザ装置UEは、SCI予約識別子により指定されるリソースにおいて、SCI予約識別子を含むSCIと同様の送信間隔及び周波数方向のリソース位置で新たなSCIが繰り返し送信されると認識するように動作する。つまり、図13の例に示すように、SCI予約識別子を含むSCIが2回繰り返し送信される場合、ユーザ装置UEは、100ms後において、新たなSCIも、SCI予約識別子を含むSCIと同様の送信間隔及び周波数方向のリソース位置で2回繰り返し送信されると認識するように動作する。
 <データ送信用リソースの予約方法について>
 図14は、データ送信用リソースの予約方法を説明するための図である。ユーザ装置UEは、所定の時間後(所定のサブフレーム後)に新たなデータ(V2Xパケット)を送信することを予定している場合、所定の時間後(所定のサブフレーム後)に新たなデータを送信するためのリソースを予約することを示す識別子(以下、「データ予約識別子」と呼ぶ)をSCIに含めて送信する。
 データ予約識別子には、SCI予約識別子で示される所定の時間後に、新たなデータを送信するためのリソースの予約がされているのか否かを示す情報が格納される。つまり、ユーザ装置UEは、データを送信するリソースを予約する場合、SCIに、SCI予約識別子及びデータ予約識別子の両方を含める必要がある。当該情報は、例えば1ビットで表現されてもよい。より具体的には、「0」は、リソースの予約がされていないことを意味し、「1」は、SCI予約識別子で示される所定の時間後にリソース予約されていることを意味するようにしてもよい。
 図14の例は、新たなデータを送信予定のリソースとして、100ms後のリソースが予約された場合を示している。なお、前述の通り、本実施の形態では同一のデータが複数回繰り返し送信される。そのため、データ予約識別子を含むSCIを受信したユーザ装置UEは、SCI予約識別子で示される所定の時間後のリソースにおいて、当該SCIに対応するデータと同一の送信間隔及び周波数方向のリソースで新たなデータが繰り返し送信されると認識するように動作する。つまり、図14の例に示すように、データ予約識別子を含むSCIに対応するデータ(図14の左側のデータ)が4回繰り返し送信される場合、ユーザ装置UEは、100ms後において、新たなデータ(図14の右側のデータ)も、データ予約識別子を含むSCIに対応するデータ(図14の左側のデータ)と同様の送信間隔及び周波数方向のリソース位置で4回繰り返し送信されると認識するように動作する。
 <SCI及びデータ送信用リソースの予約を用いた運用例について>
 図15は、SA及びデータを送信するためのリソースの予約方法の具体例(その1)を示す図である。なお、図15には、ユーザ装置UEが190バイト又は300バイトのV2Xパケットを100ms間隔で送信する様子が示されているが、より詳細には、1つのV2Xパケットの送信が行われる度に、複数の同一のSCIと複数の同一のデータ(1つのV2Xパケットが格納されたMAC PDU)が繰り返し送信される動作が行われる。言い換えると、図15に示す1つのV2Xパケットの送信は、より詳細には、図12に示す一連のSCI/データの送信が1回行われることに対応する。
 ここで、ユーザ装置UEは、100ms間隔で、190バイト又は300バイトのV2Xパケットを送信予定であると仮定する。ユーザ装置UEは、直近で送信予定のデータサイズと、100msに送信予定のデータサイズとが同一である場合、SCI予約識別子及びデータ予約識別子の両方を、直近で送信予定のSCIに含めて送信する。図15の例では、直近で送信予定のデータサイズ及び100ms後に送信予定のデータサイズが190バイトである場合、ユーザ装置UEは、SCI予約識別子に100msを示すビット値を設定し、データ予約識別子にデータ予約を行うことを示すビット(「1」)を設定してSCIを送信することが示されている。
 一方、ユーザ装置UEは、直近で送信予定のデータサイズと、100msに送信予定のデータサイズとが異なる場合、SCI予約識別子のみを直近で送信予定のSCIに含めて送信する。また、ユーザ装置UEは、100msに送信するSCIを用いて、データ送信用のリソースを割当てる(つまり、データ送信用のリソースを予約せずに、データを送信する時点でリソースを割当てる)。本実施の形態では、予約されるデータ送信用のリソースは、直近で送信予定のデータと同一サイズ(例えば同一のリソースブロックペア数)のリソースになるため、100ms後に送信予定のデータサイズが異なる場合、予約されたリソースサイズでは送信予定のデータを格納できない可能性があるためである。図15の例では、直近で送信予定のデータサイズ及び100ms後に送信予定のデータサイズがそれぞれ190バイト及び300バイト(若しくは、300バイト及び190バイト)である場合、ユーザ装置UEは、SCI予約識別子に100msを示すビット値と、データ予約識別子にデータ予約を行わないことを示すビット(「0」)を格納してSCIを送信することが示されている。
 なお、ユーザ装置UEの物理レイヤは、次のタイミングで送信予定のV2Xパケットのサイズが、直近で送信予定のV2Xパケットのサイズと同一であるか否かを、ユーザ装置UEの上位レイヤ(例えば、レイヤ2、アプリケーションレイヤ等)からの通知により把握するようにしてもよい。同様に、ユーザ装置UEの物理レイヤは、直近で送信予定のV2Xパケットと次のタイミングで送信予定のV2Xパケットとの間の送信間隔を、ユーザ装置UEの上位レイヤ(例えば、レイヤ2、アプリケーションレイヤ等)からの通知により把握するようにしてもよい。これにより、ユーザ装置UEの物理レイヤは、直近で送信するSCIを生成する処理において、SCI予約識別子に設定すべき値及びデータ予約識別子に設定すべき値を、上位レイヤからの通知に基づいて決定することが可能になる。
 <データ送信用リソースの予約方法及び運用例の変形例について>
 データ送信用リソースの予約方法の変形例として、データ予約識別子には、リソースの予約がされているのかに加えて、時間方向及び周波数方向の両方のリソースを予約するのか又は時間方向のリソース(つまり、サブフレーム)のみを予約するのかを示す情報(例えば2ビット)が設定されるようにしてもよい。例えば、「00」は、リソースの予約がされていないことを意味し、「01」は、時間方向及び周波数方向の両方のリソースを予約することを意味し、「10」は、時間方向のリソースのみを予約することを意味するようにしてもよい。
 図16は、SA及びデータを送信するためのリソースの予約方法の具体例(その2)を示す図である。なお、特に言及しない点は図15と同一でよい。
 ユーザ装置UEは、直近で送信予定のデータサイズと、100msに送信予定のデータサイズとが同一である場合、時間方向及び周波数方向の両方のリソースを予約することを示すデータ予約識別子を、直近で送信予定のSCIに含めて送信する。図16の例では、直近で送信予定のデータサイズ及び100ms後に送信予定のデータサイズが190バイトである場合、ユーザ装置UEは、SCI予約識別子に100msを示すビット値と、データ予約識別子に時間方向及び周波数方向の両方のリソースを予約することを示すビット(「01」)を格納してSCIを送信することが示されている。
 一方、ユーザ装置UEは、直近で送信予定のデータサイズと、100msに送信予定のデータサイズとが異なる場合、SCI予約識別子と時間方向のリソースのみを予約することを示すデータ予約識別子とを、直近で送信予定のSCIに含めて送信すると共に、100msに送信するSCIを用いて、データ送信用の周波数方向のリソースを割当てるようにしてもよい。図16の例では、直近で送信予定のデータサイズ及び100ms後に送信予定のデータサイズがそれぞれ190バイト及び300バイト(若しくは、300バイト及び190バイト)である場合、ユーザ装置UEは、SCI予約識別子に100msを示すビット値と、データ予約識別子に時間方向のリソースのみを予約することを示すビット(「10」)を格納してSCIを送信することが示されている。
 これにより、ユーザ装置UEは、直近で送信予定のデータサイズと、その次に送信予定のデータサイズとが異なる場合であっても、所定の時間後のサブフレームのいずれかの周波数リソースでD2D信号の送信を行う予定であることを、他のユーザ装置UEに通知することが可能になる。
 <SCI/データを送信予定のユーザ装置の動作について>
 SCI予約識別子で指定可能な最大の期間が400msである場合、現時点から400ms後までの間は、既に他のユーザ装置UEがSCI(又はSCI及びデータ)を送信するリソースを予約している可能性がある。そこで、ユーザ装置UEは、SCIを送信する前に、SCI予約識別子で指定可能な最大の期間(SCIの送信が予約されている可能性のある期間)の間で他のユーザ装置UEが送信するSCIをモニタし、当該期間後のリソースの中から予約されていないリソースを選択してSCI(又はSCI及びデータ)の送信を開始するようにしてもよい。これにより、ユーザ装置UEが、既に予約されているリソースを用いてSCI(又はSCI及びデータ)を送信してしまうことを回避することができる。
 また、他の方法として、ユーザ装置UEは、一旦SCIを送信しつつ、自身がSCIを送信するサブフレーム以外のサブフレームで他のユーザ装置UEがSCIを送信しているか否かをモニタし、他のユーザ装置UEからのSCIを検出した場合は、衝突を回避するためにそれ以後SCIの送信を中止するようにしてもよい。
 また、ユーザ装置UEは、SCI予約識別子で指定可能な最大の期間(SCIの送信が予約されている可能性のある期間)で他のユーザ装置UEが送信するSCIをモニタした結果、SCIの送信が予約されていることを検出した場合(SCI予約識別子を含むSCIを検出した場合)、予約されていないリソースを選択してSCIを送信するのではなく、SCIの送信自体を中止するようにしてもよい。
 また、ユーザ装置UEは、SCI予約識別子で指定可能な最大の期間(SCIの送信が予約されている可能性のある期間)で他のユーザ装置UEが送信するSCIをモニタした結果、SCI及びデータの送信が予約されていることを検出した場合(SCI予約識別子及びデータ予約識別子を含むSCIを検出した場合)、予約されていないリソースを選択してSCI予約識別子のみを含むSCIを送信することで他のユーザ装置UEにリソースを予約したことを通知し、SCI予約識別子で予約したリソースを用いてSCIを及びデータの送信を行うようにしてもよい。より確実にSCI/データの衝突を回避することが可能になる。
 <<機能構成>>
 以上説明した複数の実施の形態の動作を実行するユーザ装置UE及び基地局eNBの機能構成例を説明する。
 (ユーザ装置)
 図17は、実施の形態に係るユーザ装置の機能構成の一例を示す図である。図17に示すように、ユーザ装置UEは、信号送信部101と、信号受信部102と、選択部103とを有する。なお、図17は、ユーザ装置UEにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図17に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分や機能部の名称はどのようなものでもよい。
 信号送信部101は、ユーザ装置UEから送信されるべき上位のレイヤの信号から、物理レイヤの各種信号を生成し、無線送信する機能を含む。また、信号送信部101は、D2D信号の送信機能とセルラ通信の送信機能を有する。また、信号送信部101は、D2D信号を、選択部103で選択されたリソースを用いて送信する機能を有する。また、信号送信部101は、SCIに、SCI予約識別子(又は、SCI予約識別子とデータ予約識別子)を含めて送信するようにしてもよい。
 信号受信部102は、他のユーザ装置UE又は基地局eNBから各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。また、信号受信部102は、D2D信号の受信機能とセルラ通信の受信機能を有する。
 選択部103は、SCIリソースプールから制御情報(SCI)を送信するための第一の制御情報用リソースを選択し、データリソースプールからデータを送信するための第一のデータ用リソースを選択する機能を有する。より具体的には、選択部103は、SCIリソースプールとデータリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、SCIリソースプールから制御情報(SCI)を送信するための第一の制御情報用リソースを選択し、データリソースプールからデータを送信するための第一のデータ用リソースを選択する機能を有する。
 また、選択部103は、SCIリソースプールが、データリソースプールの周波数帯域よりも上の周波数帯域に設定される第一のSCIリソースプール(図7の上側のSCIリソースプール)と、データリソースプールの周波数帯域よりも下の周波数帯域に設定される第二のSCIリソースプール(図7の下側のSCIリソースプール)とに分けられる場合に、第一の制御情報用リソースを、第一のSCIリソースプール又は第二のデータリソースプールから選択すると共に、第一の制御情報用リソースを第一のSCIリソースプールから選択した場合は、第一の制御情報用のリソースのサブフレームより後のサブフレームで、第二のSCIリソースプールから第二の制御情報用リソースを選択し、第一の制御情報用リソースを第二のSCIリソースプールから選択した場合は、第一の制御情報用のリソースのサブフレームより後のサブフレームで、第一のSCIリソースプールから第二の制御情報用リソースを選択するようにしてもよい。
 また、選択部103は、第二の制御情報用リソースが選択されるサブフレームを、第一の制御情報用リソースの周波数方向のリソース位置に基づき決定されるようにしてもよい。また、選択部103は、第二の制御情報用リソースが、第一のSCIリソースプール及び第二のSCIリソースプールに繰り返し設定される時間領域(図10の1回目のSCI送信用のリソースプール及び2回目のSCI送信用のリソースプール)のうち、第一の制御情報用リソースが含まれる時間領域とは異なる時間領域に含まれるようにしてもよい。
 また、選択部103は、第一のデータ用リソースのサブフレームより後のサブフレームで、データリソースプールから第二のデータ用リソースを選択するようにしてもよい。また、選択部103は、第一のデータ用リソースが選択されるサブフレームと、第二のデータ用リソースが選択されるサブフレームの間隔が、第一の制御情報用のリソースが選択されるサブフレームと、第二の制御情報用のリソースが選択されるサブフレームとの間のサブフレーム間隔よりも広くなるように、第二のデータ用リソースを選択するようにしてもよい。
 (基地局)
 図18は、実施の形態に係る基地局の機能構成の一例を示す図である。図18に示すように、基地局eNBは、信号送信部201と、信号受信部202と、通知部203とを有する。なお、図18は、基地局eNBにおいて本発明の実施の形態に特に関連する機能部のみを示すものであり、少なくともLTEに準拠した動作を行うための図示しない機能も有するものである。また、図18に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分や機能部の名称はどのようなものでもよい。
 信号送信部201は、基地局eNBから送信されるべき上位のレイヤの信号から、物理レイヤの各種信号を生成し、無線送信する機能を含む。信号受信部202は、ユーザ装置UEから各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する機能を含む。
 通知部203は、ユーザ装置UEが本実施の形態に係る動作を行うために用いる各種情報(SCIリソースプール及びデータリソースプールの設定、ユーザ装置UEがSCIを繰り返し送信する回数、SCIの繰り返し送信方法(その2)において、1回目のSCI送信用のリソースプールと2回目のSCI送信用のリソースプールの間隔、「max_offset_re」、所定の1単位が意味する送信間隔など)を、報知情報(SIB)又はRRCシグナリングを用いてユーザ装置UEに通知する。
 以上説明した基地局eNB及びユーザ装置UEの機能構成は、全体をハードウェア回路(例えば、1つ又は複数のICチップ)で実現してもよいし、一部をハードウェア回路で構成し、その他の部分をCPUとプログラムとで実現してもよい。
 (ユーザ装置)
 図19は、実施の形態に係るユーザ装置のハードウェア構成の一例を示す図である。図19は、図17よりも実装例に近い構成を示している。図19に示すように、ユーザ装置UEは、無線信号に関する処理を行うRF(Radio Frequency)モジュール301と、ベースバンド信号処理を行うBB(Base Band)処理モジュール302と、上位レイヤ等の処理を行うUE制御モジュール303とを有する。
 RFモジュール301は、BB処理モジュール302から受信したデジタルベースバンド信号に対して、D/A(Digital-to-Analog)変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、A/D(Analog to Digital)変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール302に渡す。RFモジュール301は、例えば、図17の信号送信部101及び信号受信部102の一部を含む。
 BB処理モジュール302は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP(Digital Signal Processor)312は、BB処理モジュール302における信号処理を行うプロセッサである。メモリ322は、DSP312のワークエリアとして使用される。RFモジュール301は、例えば、図17の信号送信部101の一部、信号受信部102の一部及び選択部103を含む。
 UE制御モジュール303は、IPレイヤのプロトコル処理、各種アプリケーションの処理等を行う。プロセッサ313は、UE制御モジュール303が行う処理を行うプロセッサである。メモリ323は、プロセッサ313のワークエリアとして使用される。
 (基地局)
 図20は、実施の形態に係る基地局のハードウェア構成の一例を示す図である。図20は、図18よりも実装例に近い構成を示している。図20に示すように、基地局eNBは、無線信号に関する処理を行うRFモジュール401と、ベースバンド信号処理を行うBB処理モジュール402と、上位レイヤ等の処理を行う装置制御モジュール403と、ネットワークと接続するためのインタフェースである通信IF404とを有する。
 RFモジュール401は、BB処理モジュール402から受信したデジタルベースバンド信号に対して、D/A変換、変調、周波数変換、及び電力増幅等を行うことでアンテナから送信すべき無線信号を生成する。また、受信した無線信号に対して、周波数変換、A/D変換、復調等を行うことでデジタルベースバンド信号を生成し、BB処理モジュール402に渡す。RFモジュール401は、例えば、図18に示す信号送信部201及び信号受信部202の一部を含む。
 BB処理モジュール402は、IPパケットとデジタルベースバンド信号とを相互に変換する処理を行う。DSP412は、BB処理モジュール402における信号処理を行うプロセッサである。メモリ422は、DSP412のワークエリアとして使用される。BB処理モジュール402は、例えば、図18に示す信号送信部201の一部、信号受信部202の一部及び通知部203の一部を含む。
 装置制御モジュール403は、IPレイヤのプロトコル処理、OAM(Operation and Maintenance)処理等を行う。プロセッサ413は、装置制御モジュール403が行う処理を行うプロセッサである。メモリ423は、プロセッサ413のワークエリアとして使用される。補助記憶装置433は、例えばHDD等であり、基地局eNB自身が動作するための各種設定情報等が格納される。装置制御モジュール403は、例えば、図18に示す通知部203の一部を含む。
 <<まとめ>>
 以上、実施の形態によれば、D2D通信をサポートする無線通信システムにおけるユーザ装置であって、制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択する選択部と、前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信する送信部と、を有するユーザ装置が提供される。このユーザ装置UEにより、より柔軟なD2D通信を行うことが可能な技術が提供される。
 また、前記制御情報用のリソースプールは、前記データ送信用のリソースプールの周波数帯域よりも上の周波数帯域に設定される第一のリソースプールと、前記データ送信用のリソースプールの周波数帯域よりも下の周波数帯域に設定される第二のリソースプールとに分けられ、前記選択部は、前記第一の制御情報用リソースを、前記第一のリソースプール又は前記第二のリソースプールから選択すると共に、前記第一の制御情報用リソースを前記第一のリソースプールから選択した場合は、前記第一の制御情報用リソースのサブフレームより後のサブフレームで、前記第二のリソースプールから第二の制御情報用リソースを選択し、前記第一の制御情報用リソースを前記第二のリソースプールから選択した場合は、前記第一の制御情報用リソースのサブフレームより後のサブフレームで、前記第一のリソースプールから第二の制御情報用リソースを選択し、前記送信部は、前記第一のデータ用リソースを指定する情報を含む制御情報を、前記第一の制御情報用リソースと前記第二の制御情報用リソースとで送信するようにしてもよい。これにより、データリソースプールの帯域の上下に設定されるSCIリソースプールを用いてSCIの周波数ホッピングを実現することが可能になり、特定の周波数(サブキャリア等)における伝搬品質が劣化した場合であっても、SCIの受信品質を向上させることが可能になる。
 また、前記第二の制御情報用リソースが選択されるサブフレームは、前記第一の制御情報用リソースの周波数方向のリソース位置に基づき決定されるようにしてもよい。これにより、2つのユーザ装置UEが同一のサブフレームでSCIを送信してしまい、他方のユーザ装置UEが送信するSCIを受信できなくなるという問題(ハーフデュプレックス問題)が極力発生しないように制御することが可能になる。
 また、前記第二の制御情報用リソースは、前記第一のリソースプール及び前記第二のリソースプールに繰り返し設定される時間領域のうち、前記第一の制御情報用リソースが含まれる時間領域とは異なる時間領域に含まれるようにしてもよい。これにより、リソースプール構成に基づいたSCIの繰り返し送信を実現することが可能になる。
 また、前記選択部は、前記第一のデータ用リソースのサブフレームより後のサブフレームで、前記データ送信用のリソースプールから第二のデータ用リソースを選択し、前記送信部は、前記第一のデータ用リソースと前記第二のデータ用リソースとを用いてデータを送信するようにしてもよい。これにより、同一のデータを繰り返し送信することが可能になり、データ(MAC PDU)の受信品質を向上させることが可能になる。
 また、前記選択部は、前記第一のデータ用リソースが選択されるサブフレームと、前記第二のデータ用リソースが選択されるサブフレームの間隔が、前記第一の制御情報用リソースが選択されるサブフレームと、前記第二の制御情報用リソースが選択されるサブフレームとの間のサブフレーム間隔よりも広くなるように、前記第二のデータ用リソースを選択するようにしてもよい。これにより、SCIを送信するユーザ装置UEと、データを送信するユーザ装置UEとが、同一のサブフレームでD2D信号を送信してしまい、他方のユーザ装置UEが送信するD2D信号を受信できなくなるという問題(ハーフデュプレックス問題)が極力発生しないように制御することが可能になる。
 また、前記制御情報は、前記制御情報用のリソースプールにおいて、前記第一の制御情報用リソースが選択されるサブフレームより所定のサブフレーム後のサブフレームで、前記制御情報とは異なる他の制御情報を送信するための制御情報の送信用のリソースを予約することを示す予約情報を含むようにしてもよい。これにより、ユーザ装置UEは、他のユーザ装置UEに対して、所定のタイミングにSCIを送信予定であることを通知することができ、自身が送信するSCIと他のユーザ装置UEから送信されるSCIとの衝突を回避することができる。
 また、前記制御情報は、前記データ送信用のリソースプールにおいて、前記第一のデータ用リソースが選択されるサブフレームより前記所定のサブフレーム後のサブフレームで、前記データとは異なる他のデータを送信するためのデータ送信用のリソースを予約することを示す予約情報を含むようにしてもよい。これにより、ユーザ装置UEは、他のユーザ装置UEに対して、所定のタイミングにデータを送信予定であることを通知することができ、自身が送信するデータと他のユーザ装置UEから送信されるデータとの衝突を回避することができる。
 また、実施の形態によれば、D2D通信をサポートする無線通信システムにおけるユーザ装置が実行する送信方法であって、制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択するステップと、前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信するステップと、を有する送信方法が提供される。この送信方法により、より柔軟なD2D通信を行うことが可能な技術が提供される。
 <<実施形態の補足>>
 PSCCHは、D2D通信に用いられる制御情報(SCI等)を送信するための制御チャネルであれば他の制御チャネルであってもよい。PSSCHは、D2DコミュニケーションのD2D通信に用いられるデータ(MAC PDU等)を送信するためのデータチャネルであれば他のデータチャネルであってもよい。PSDCHは、D2DディスカバリのD2D通信に用いられるデータ(ディスカバリメッセージ等)を送信するためのデータチャネルであれば他のデータチャネルであってもよい。
 以上、本発明の実施の形態で説明する各装置(ユーザ装置UE/基地局eNB)の構成は、CPUとメモリを備える当該装置において、プログラムがCPU(プロセッサ)により実行されることで実現される構成であってもよいし、本実施の形態で説明する処理のロジックを備えたハードウェア回路等のハードウェアで実現される構成であってもよいし、プログラムとハードウェアが混在していてもよい。
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べたシーケンス及びフローチャートは、矛盾の無い限り順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置UE/基地局eNBは機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置UEが有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局eNBが有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 なお、実施の形態において、SCIリソースプールは、「制御情報用のリソースプール」の一例である。データリソースプールは、「データ送信用のリソースプール」の一例である。SCIは制御情報の一例である。図7の上側のSCIリソースプールは、第一のリソースプールの一例である。図7の下側のSCIリソースプールは、第二のリソースプールの一例である。SCI予約識別子は、「制御情報の送信用のリソースを予約することを示す予約情報」の一例である。データ予約識別子は、「データ送信用のリソースを予約することを示す予約情報」の一例である。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRCシグナリング、MACシグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCメッセージは、RRCシグナリングと呼ばれてもよい。また、RRCメッセージは、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 判定又は判断は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナル)であってもよい。また、信号はメッセージであってもよい。
 UEは、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 また、本明細書で説明した各態様/実施形態の処理手順、シーケンスなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 本特許出願は2016年2月4日に出願した日本国特許出願第2016-020327号に基づきその優先権を主張するものであり、日本国特許出願第2016-020327号の全内容を本願に援用する。
UE ユーザ装置
eNB 基地局
101 信号送信部
102 信号受信部
103 選択部
201 信号送信部
202 信号受信部
203 通知部
301 RFモジュール
302 BB処理モジュール
303 UE制御モジュール
304 通信IF
401 RFモジュール
402 BB処理モジュール
403 装置制御モジュール

Claims (9)

  1.  D2D通信をサポートする無線通信システムにおけるユーザ装置であって、
     制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択する選択部と、
     前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信する送信部と、
     を有するユーザ装置。
  2.  前記制御情報用のリソースプールは、前記データ送信用のリソースプールの周波数帯域よりも上の周波数帯域に設定される第一のリソースプールと、前記データ送信用のリソースプールの周波数帯域よりも下の周波数帯域に設定される第二のリソースプールとに分けられ、
     前記選択部は、前記第一の制御情報用リソースを、前記第一のリソースプール又は前記第二のリソースプールから選択すると共に、
      前記第一の制御情報用リソースを前記第一のリソースプールから選択した場合は、前記第一の制御情報用リソースのサブフレームより後のサブフレームで、前記第二のリソースプールから第二の制御情報用リソースを選択し、
      前記第一の制御情報用リソースを前記第二のリソースプールから選択した場合は、前記第一の制御情報用リソースのサブフレームより後のサブフレームで、前記第一のリソースプールから第二の制御情報用リソースを選択し、
     前記送信部は、前記第一のデータ用リソースを指定する情報を含む制御情報を、前記第一の制御情報用リソースと前記第二の制御情報用リソースとで送信する、
     請求項1に記載のユーザ装置。
  3.  前記第二の制御情報用リソースが選択されるサブフレームは、前記第一の制御情報用リソースの周波数方向のリソース位置に基づき決定される、
     請求項2に記載のユーザ装置。
  4.  前記第二の制御情報用リソースは、前記第一のリソースプール及び前記第二のリソースプールに繰り返し設定される時間領域のうち、前記第一の制御情報用リソースが含まれる時間領域とは異なる時間領域に含まれる、
     請求項2に記載のユーザ装置。
  5.  前記選択部は、前記第一のデータ用リソースのサブフレームより後のサブフレームで、前記データ送信用のリソースプールから第二のデータ用リソースを選択し、
     前記送信部は、前記第一のデータ用リソースと前記第二のデータ用リソースとを用いてデータを送信する、
     請求項2乃至4のいずれか一項に記載のユーザ装置。
  6.  前記選択部は、前記第一のデータ用リソースが選択されるサブフレームと、前記第二のデータ用リソースが選択されるサブフレームの間隔が、前記第一の制御情報用リソースが選択されるサブフレームと、前記第二の制御情報用リソースが選択されるサブフレームとの間のサブフレーム間隔よりも広くなるように、前記第二のデータ用リソースを選択する、
     請求項5に記載のユーザ装置。
  7.  前記制御情報は、前記制御情報用のリソースプールにおいて、前記第一の制御情報用リソースが選択されるサブフレームより所定のサブフレーム後のサブフレームで、前記制御情報とは異なる他の制御情報を送信するための制御情報の送信用のリソースを予約することを示す予約情報を含む、
     請求項1又は6に記載のユーザ装置。
  8.  前記制御情報は、前記データ送信用のリソースプールにおいて、前記第一のデータ用リソースが選択されるサブフレームより前記所定のサブフレーム後のサブフレームで、前記データとは異なる他のデータを送信するためのデータ送信用のリソースを予約することを示す予約情報を含む、
     請求項7に記載のユーザ装置。
  9.  D2D通信をサポートする無線通信システムにおけるユーザ装置が実行する送信方法であって、
     制御情報用のリソースプールとデータ送信用のリソースプールとが時間方向に制約なく連続して設定される無線リソースにおいて、前記制御情報用のリソースプールから制御情報を送信するための第一の制御情報用リソースを選択し、前記データ送信用のリソースプールからデータを送信するための第一のデータ用リソースを選択するステップと、
     前記第一のデータ用リソースを指定する情報を含む制御情報を前記第一の制御情報用リソースで送信し、前記第一のデータ用リソースを用いてデータを送信するステップと、
     を有する送信方法。
PCT/JP2017/002586 2016-02-04 2017-01-25 ユーザ装置及び送信方法 WO2017135126A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780008782.5A CN108605326A (zh) 2016-02-04 2017-01-25 用户装置以及发送方法
JP2017565501A JPWO2017135126A1 (ja) 2016-02-04 2017-01-25 ユーザ装置及び送信方法
US16/074,152 US20210127361A1 (en) 2016-02-04 2017-01-25 User equipment and transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020327 2016-02-04
JP2016-020327 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135126A1 true WO2017135126A1 (ja) 2017-08-10

Family

ID=59500708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002586 WO2017135126A1 (ja) 2016-02-04 2017-01-25 ユーザ装置及び送信方法

Country Status (4)

Country Link
US (1) US20210127361A1 (ja)
JP (1) JPWO2017135126A1 (ja)
CN (1) CN108605326A (ja)
WO (1) WO2017135126A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112205047A (zh) * 2018-03-30 2021-01-08 株式会社Ntt都科摩 用户终端以及无线基站
WO2022213116A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Resource allocation in uplink and sidelink coexistence
EP4061024A4 (en) * 2019-12-31 2022-12-07 Huawei Technologies Co., Ltd. D2D COMMUNICATION METHOD, APPARATUS AND SYSTEM
JP2023523257A (ja) * 2020-04-24 2023-06-02 華為技術有限公司 通信方法、装置、およびシステム
EP4179815A4 (en) * 2020-07-08 2024-03-27 Qualcomm Incorporated IMPROVING SIDELINK ROBUSTNESS FOR A MULTIPLE TRP UE

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168169A1 (en) * 2017-03-15 2018-09-20 Nec Corporation System and method for providing vehicular communication in an advanced wireless network
EP3614774B1 (en) * 2017-08-10 2021-05-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for device to device communication, and terminal device
WO2019051830A1 (en) * 2017-09-18 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) METHOD AND NETWORK NODE FOR RADIO RESOURCE ALLOCATION
KR20200110672A (ko) * 2018-01-22 2020-09-24 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법 및 장치, 컴퓨터 저장 매체
WO2020060468A1 (en) * 2018-09-19 2020-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing resource selection for directional sidelink communications
US11589336B2 (en) * 2019-05-03 2023-02-21 Qualcomm Incorporated Two-stage physical sidelink control channel resource reservation
EP3962219B1 (en) * 2019-05-14 2024-07-17 LG Electronics Inc. Method and apparatus for scheduling plurality of resources in nr v2x
KR20210010320A (ko) 2019-07-19 2021-01-27 한국전자통신연구원 사이드링크 통신을 위한 자원 할당 및 예약 방법, 및 이를 위한 장치
CN112399373A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种通信方法及装置
US20220338067A1 (en) * 2019-08-28 2022-10-20 Lg Electronics Inc. Method and device for performing resource reservation by terminal in nr v2x
US20220394676A1 (en) * 2019-09-30 2022-12-08 Lenovo (Beijing) Limited Method and device for guarantee high qos service via multiple resource pools for nr v2x
WO2023039783A1 (en) * 2021-09-16 2023-03-23 Qualcomm Incorporated Decoupled mini-slot sidelink control information (sci) for scheduling and resource reservation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026511A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ装置及び信号送信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026511A1 (ja) * 2015-08-13 2017-02-16 株式会社Nttドコモ ユーザ装置及び信号送信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"On enhancements to resource pool configuration for V2V communication", 3GPP TSG-RAN WG1#83, R1-156690, 3GPP, 22 November 2015 (2015-11-22), XP051003075, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1TSGR1_83/Docs/R1-156690.zip>> [retrieved on 20170315] *
CATT: "Physical layer channel design enhancement to support resource allocation in PC5-based V2V", 3GPP TSG-RAN WG1#83, R1-156607, 3GPP, 22 November 2015 (2015-11-22), XP051039891, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/R1-156607.zip>> [retrieved on 20170315] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112205047A (zh) * 2018-03-30 2021-01-08 株式会社Ntt都科摩 用户终端以及无线基站
EP4061024A4 (en) * 2019-12-31 2022-12-07 Huawei Technologies Co., Ltd. D2D COMMUNICATION METHOD, APPARATUS AND SYSTEM
JP2023523257A (ja) * 2020-04-24 2023-06-02 華為技術有限公司 通信方法、装置、およびシステム
EP4179815A4 (en) * 2020-07-08 2024-03-27 Qualcomm Incorporated IMPROVING SIDELINK ROBUSTNESS FOR A MULTIPLE TRP UE
WO2022213116A1 (en) * 2021-03-31 2022-10-06 Qualcomm Incorporated Resource allocation in uplink and sidelink coexistence

Also Published As

Publication number Publication date
US20210127361A1 (en) 2021-04-29
CN108605326A (zh) 2018-09-28
JPWO2017135126A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017135126A1 (ja) ユーザ装置及び送信方法
US11764910B2 (en) Initial and retransmissions of data for V2X transmissions
JP6413021B2 (ja) ユーザ装置、信号送信方法及び信号受信方法
CN108353406B (zh) 用户装置、基站及通知方法
CN113891288B (zh) 终端以及终端的通信方法
WO2017077976A1 (ja) ユーザ装置、基地局、信号送信方法及びリソース割当て方法
JP6510661B2 (ja) ユーザ装置
WO2017170775A1 (ja) ユーザ装置、及びセンシング制御方法
WO2017169835A1 (ja) ユーザ装置及び送信方法
WO2017135428A1 (ja) ユーザ装置及び受信方法
US20220303956A1 (en) Method and device for transmitting and receiving inter-ue coordination information in sidelink communication
WO2017126497A1 (ja) ユーザ装置及び通信方法
JP2019169752A (ja) ユーザ装置、及び通信方法
KR20220130617A (ko) 사이드링크 통신에서 인터-ue 조정 정보의 송수신 방법 및 장치
KR20220059918A (ko) 사이드링크 통신에서 sci의 전송 방법 및 장치
KR20220099913A (ko) 사이드링크 통신에서 모드 2에 기초한 자원 선택을 위한 방법 및 장치
CN116746263A (zh) 在侧链路通信中发送和接收ue间协调信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565501

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747285

Country of ref document: EP

Kind code of ref document: A1