WO2017135082A1 - ギアド圧縮機 - Google Patents

ギアド圧縮機 Download PDF

Info

Publication number
WO2017135082A1
WO2017135082A1 PCT/JP2017/002099 JP2017002099W WO2017135082A1 WO 2017135082 A1 WO2017135082 A1 WO 2017135082A1 JP 2017002099 W JP2017002099 W JP 2017002099W WO 2017135082 A1 WO2017135082 A1 WO 2017135082A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
gear
geared compressor
pad
pivot
Prior art date
Application number
PCT/JP2017/002099
Other languages
English (en)
French (fr)
Inventor
佐藤 隆
祐一郎 澤田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2017135082A1 publication Critical patent/WO2017135082A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/03Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings

Definitions

  • the present invention relates to a geared compressor that can realize stable operation.
  • a geared compressor that uses a gear to increase the driving force of the main shaft and transmits it to the driven shaft
  • load is applied in the direction of the gear pressure angle when the driven shaft with the impeller that compresses the working fluid is rotated. Is generated.
  • this load is referred to as a gear tangential force.
  • the bearing that supports the driven shaft must bear the resultant force of the load due to the weight of the driven shaft and the gear tangential force.
  • the magnitude of the gear tangential force changes. Since the direction of the weight of the driven shaft is constant along the vertical direction, the direction and magnitude of the resultant force acting on the bearing changes according to the change in the gear tangential force and does not become constant.
  • a tilting pad bearing is mainly used as a bearing for supporting a driven shaft.
  • This bearing has a plurality of bearing pads supported by a pivot, and the bearing rigidity, damping, and the like vary depending on the relationship between the pad support point by the pivot and the resultant force direction.
  • the resultant force of the bearing that supports the driven shaft changes, the operation pattern that is expected to operate most in design, typically the rated operation state At the same time, the position of the support point of the bearing pad by the pivot is determined. Therefore, at other operating points, unexpected vibrations occur due to changes in bearing performance such as bearing rigidity and damping ratio.
  • Patent Document 1 discloses an axial turbine including a tilting pad bearing that can prevent unstable vibration.
  • Patent Document 1 is premised on unstable vibration due to a change in the load direction acting on the tilting pad bearing due to the influence of the working fluid, and the driven shaft instability of the geared compressor based on the change in the gear tangential force. Does not give any suggestion to vibration.
  • an object of the present invention is to provide a geared compressor that can reduce unstable vibration of a driven shaft.
  • the geared compressor of the present invention meshes with the main drive shaft that is rotationally driven by the drive source, the main drive gear that is rotationally driven integrally with the main drive shaft, and is rotated at an increased speed as the main drive shaft rotates.
  • a driven gear, a driven shaft that is rotationally driven integrally with the driven gear, a tilting pad bearing that rotatably supports the driven shaft, a speed increasing gear mechanism, and an impeller fixed to the driven shaft, Prepare.
  • the tilting pad bearing according to the present invention has a plurality of bearing pads provided in the circumferential direction and a pivot that supports each of the plurality of bearing pads, and a load F1 due to the weight of the driven shaft received by the tilting pad bearing.
  • the positional relationship between the action line of the resultant force F of the gear tangential force F2 due to the contact between the main driving gear and the driven gear and the support point of the bearing pad by the pivot is constant.
  • the driven shaft is unstable. Vibration can be reduced.
  • the geared compressor according to the present invention includes two forms as means for making the positional relationship with the support point of the bearing pad by the pivot constant.
  • the first form is to move the support point of the bearing pad by the pivot in accordance with the change of the gear tangential force F2, so that the positional relationship between the acting line of the resultant force F and the support point of the bearing pad by the pivot is obtained. It is said to be constant.
  • the direction of the gear tangential force F2 is made constant downward in the vertical direction, so that the positional relationship between the acting line of the gear tangential force F2 and the support point of the bearing pad by the pivot is made constant. Is.
  • the constant positional relationship in the present invention means that the positional relationship between the action line and the support point is kept constant while the geared compressor is operating. As this fixed positional relationship, it is most preferable that the line of action of the resultant force F passes through the support point of the bearing pad by the pivot.
  • the first form can be realized by rotating the tilting pad bearing. Specifically, a bearing rotating portion that rotates the tilting pad bearing that is rotatably supported, and a gear tangential force F2 generated between the main driving gear and the driven gear are obtained, and according to the obtained gear tangential force F2. And a control unit that rotates the tilting pad bearing through the bearing rotating unit. In this case, the control unit preferably calculates and identifies the gear tangential force F2 based on the torque value T generated on the main drive shaft. This is because the gear tangential force F2 can be easily calculated by using the torque value T. Moreover, it is preferable that a bearing rotation part rotates a tilting pad bearing by rotation of a gear. This is because the tilting pad bearing can be reliably rotated with high accuracy.
  • the positional relationship between the acting line of the resultant force F and the support point of the bearing pad by the pivot is made constant by making the direction of the gear tangential force F2 constant downward in the vertical direction. Since this form does not need to have a drive mechanism unlike the first form, the configuration of the geared compressor can be simplified and the production cost can be reduced.
  • the geared compressor of the present invention since the positional relationship between the direction of the resultant force F of the load F1 and the gear tangential force F2 and the support point of the bearing pad by the pivot is constant, unstable vibration of the driven shaft is prevented. Can be reduced.
  • the geared compressor 1 is a centrifugal compressor in which a speed increasing gear mechanism 2 is built.
  • the support point P of the bearing pad 21 by the pivot 25 is moved in accordance with the change of the gear tangential force F2, so that the action line of the resultant force F and the support point P of the bearing pad 21 by the pivot 25 are changed.
  • the positional relationship with is made constant.
  • the constant positional relationship means that the positional relationship does not change during operation of the geared compressor 1.
  • the speed increasing gear mechanism 2 meshes with a driving source (not shown), for example, a main driving shaft 3 that is rotationally driven by a rotating electrical machine, a main driving gear 4 that is rotationally driven integrally with the main driving shaft 3, and the main driving gear 4.
  • a casing 10 is provided with a driven gear 6 that is rotated at an increased speed as the main driving gear 4 rotates, and a driven shaft 5 that is rotated together with the driven gear 6.
  • the driven gear 6 is a sufficiently smaller gear than the main driving gear 4 and is a so-called pinion.
  • the driven gear 6 is fixed to a substantially central portion in the longitudinal direction of the driven shaft 5 that is rotatably supported by the bearing 20.
  • the bearing 20 in this embodiment is composed of a tilting pad bearing, is rotatably supported by the casing 10, and can be rotated forward and backward depending on the direction of the gear tangential force. The bearing 20 will be further described later.
  • the driven shaft 5 in this embodiment has an impeller 8 and an impeller 9 attached to both ends in the axial direction.
  • the impeller 8 and the impeller 9 have a cantilever structure with respect to the bearing 20.
  • the impeller 8 and the impeller 9 compress and flow the gas supplied from the upstream flow path by utilizing the centrifugal force generated by the rotation of the driven shaft 5.
  • the casing 10 is formed with a suction passage 12 through which gas flows in from an upstream flow path and a discharge passage 13 through which gas flows out to the outside.
  • the bearing 20 includes a plurality of bearing pads 21 in the circumferential direction on the outer periphery of the driven shaft 5.
  • five bearing pads 21 are accommodated in the bearing housing 23. Yes.
  • Each bearing pad 21 has a back surface supported by a pivot 25, and each bearing pad 21 can swing in the circumferential direction around a support point P by the pivot 25, and the outer peripheral surface of the driven shaft 5.
  • Lubrication is ensured by forming an oil film between the bearing pad 21 and the lubrication surface. Therefore, the bearing pad 21 can move freely with respect to the movement of the journal, that is, the driven shaft 5, and the bearing 20 which is a journal bearing provided with the bearing pad 21 has a self-aligning function. Therefore, the bearing 20 is applied to a high-speed rotating machine.
  • the bearing 20 has a plurality of bearing side teeth 24 formed on the outer periphery of the bearing housing 23, and the bearing housing 23 constitutes a gear.
  • the bearing 20 includes a bearing rotating gear 26 serving as a bearing rotating portion in which a driving side tooth 27 that meshes with the bearing side teeth 24 of the bearing housing 23 is formed on the outer periphery, and a rotating electrical machine 29 that rotationally drives the bearing rotating gear 26.
  • a bearing rotating gear 26 serving as a bearing rotating portion in which a driving side tooth 27 that meshes with the bearing side teeth 24 of the bearing housing 23 is formed on the outer periphery
  • a rotating electrical machine 29 that rotationally drives the bearing rotating gear 26.
  • the rotating electrical machine 29 performs a rotating operation in accordance with instructions from the control unit 30 described below. By this rotation operation, the bearing 20 can arbitrarily move the position of the support point P that supports the bearing pad 21 by the pivot 25.
  • the geared compressor 1 includes a control unit 30 that controls the operation of the bearing rotation gear 26 via the rotating electrical machine 29.
  • the control unit 30 is affixed to the surface of the main shaft 3 and controls the rotation of the bearing rotating gear 26 based on the strain gauge 31 that detects the strain ⁇ of the surface and the strain ⁇ detected by the strain gauge 31.
  • an arithmetic unit 33 configured to control.
  • the strain gauge 31 and the computing unit 33 are electrically connected by a signal line 32, and the computing unit 33 and the rotating electrical machine 29 are electrically connected by a signal line 34. Note that, here, the signal line 32 and the signal line 34 are used to transmit the signal by wire, but the signal can also be transmitted wirelessly.
  • the calculation unit 33 calculates and obtains the torque value T applied to the main drive shaft 3 based on the strain ⁇ detected by the strain gauge 31 and the gear tangential force of the driven shaft 5 based on the obtained torque value T. It is configured to calculate and obtain F2. Note that the strain ⁇ is proportional to the torque value T applied to the main drive shaft 3. Further, the calculation unit 33 holds information related to the load F1 applied to the bearing 20 due to the weight of the driven shaft 5, and is configured to calculate the resultant force F of the calculated gear tangential force F2 and the load F1. This resultant force F includes a size and a direction. The series of calculation of the gear tangential force F ⁇ b> 2 and the resultant force F is continuously performed during operation of the geared compressor 1.
  • the calculation unit 33 rotates the bearing rotation gear 26 so that the action line of the resultant force F (substitute with F) passes through the support point P by the pivot 25 of the predetermined bearing pad 21 according to the calculated direction of the resultant force F. It is configured to be driven.
  • the action line is replaced with the resultant force F indicating the magnitude of the force, but as is well known, the action line is a straight line passing through the action point and drawn in the direction of the force (the resultant force F).
  • the line segment obtained by extending the resultant force F in the direction of the arrow also corresponds to the action line.
  • the direction of the resultant force F changes from the direction shown in FIG. 2A to the direction shown in FIG. 2B, and conversely, from the direction shown in FIG. ),
  • the bearing rotation gear 26 is rotated so that the action line (F) of the resultant force F passes through the support point P by the pivot 25 of the specific bearing pad 21 located at the lowermost position. Drive.
  • the resultant force F is obtained by the following procedure. 5A, the distance L from the axis of the main drive shaft 3 to the pitch point of the driven gear 6 of the driven shaft 5, and the pressure angle ⁇ between the main drive gear 4 and the driven gear 6 (shown in the figure). (Omitted) is known.
  • the gear tangential force F2 is calculated by the following equation (1).
  • gear tangential force F2 torque value T / distance L (1)
  • the resultant force F is calculated by the following equation (2), and the direction (angle ⁇ ) is obtained by the following equation (3).
  • the calculation part 33 calculates
  • the geared compressor 1 has the above-described configuration.
  • the driven shaft 5 rotates through the speed increasing gear mechanism 2
  • the gas flowing into the suction passage 12 is compressed by the impeller 8 and the impeller 9, and then the impeller 8 and the impeller 9 are discharged to the outside of the casing 10 through the discharge passage 13 on the outer side in the radial direction.
  • the strain ⁇ of the main shaft 3 detected by the strain gauge 31 is continuously detected, and the detected strain ⁇ is sent to the calculation unit 33 via the signal line 32.
  • the calculation unit 33 that has acquired the strain ⁇ can maintain a state in which the action line (F) indicating the direction of the resultant force F calculated by the above-described procedure passes through the support point P of the bearing pad 21 by the specific pivot 25.
  • the rotary electric machine 29 is configured to operate.
  • the action line (F) is supported as the most preferable form in which the positional relationship between the action line (F) of the resultant force F and the support point P of the bearing pad 21 by the pivot 25 is constant.
  • An example is shown in which the state passing through the point P is constant and does not change.
  • the present invention does not necessarily require that the action line (F) passes through the support point P, and the action line (F) deviates from the support point P within a range in which the bearing 20 can exhibit the desired bearing performance. Allow that. Even in this case, if the positional relationship between the shifted action line (F) and the support point P can be maintained, generation of unstable vibration can be prevented.
  • the bearing rotating gear 26 is used to rotate the bearing 20, but any means may be used as long as the bearing 20 can be rotated to a desired position.
  • the bearing 20 can be directly rotated by the rotating electrical machine 29 without using the bearing rotating gear 26, and the rotational driving force of the rotating electrical machine 29 can be transmitted to the bearing 20 by the timing belt and rotated. it can.
  • the geared compressor 100 which concerns on 2nd Embodiment of this invention is demonstrated with reference to FIG.3 and FIG.4 (a), (b).
  • the geared compressor 100 according to the second embodiment makes the direction of the resultant force F of the load F1 and the gear tangential force F2 constant as shown in FIG. More specifically, since the direction of the load F1 is constant downward in the vertical direction, the direction of the resultant force F is also downward in the vertical direction by aligning the gear tangential force F2 in the downward direction in the vertical direction similarly to the load F1. It is to make it constant.
  • the gear tangential force F2 works in the direction of the common normal N between the tooth surface of the main driving gear 4 of the main driving shaft 3 and the tooth surface of the driven gear 6 of the driven shaft 5, so that the common normal N is downward in the vertical direction.
  • the contact angle ⁇ is considered.
  • the contact angle ⁇ is an angle formed by a line segment M connecting the central axis of the main driving shaft 3 and the central axis of the driven shaft 5 and a horizontal line H passing through the central axis of the main driving shaft 3.
  • the gear tangential force F2 can be always downward in the vertical direction by adjusting the contact angle ⁇ . By doing so, the resultant force F can always be downward in the vertical direction, so if the support point P of the bearing pad 21 by the pivot 25 is arranged at a position corresponding to this, the performance of the bearing 20 such as the bearing rigidity and damping ratio is stabilized. Can be obtained.
  • the line of action F (F) passes through the support point P of the bearing pad 21 by the pivot 25, whereby the bearing performance represented by the bearing rigidity and damping ratio can be maximized.
  • FIG. 4A shows on the two-dimensional coordinates how the direction and magnitude of the resultant force F change as the magnitude of the gear tangential force F2 changes.
  • the gear tangential force F2 is downward in the vertical direction, and this is maintained, so the resultant force F remains downward in the vertical direction. is there. Therefore, as long as the support point P of the bearing pad 21 by the pivot 25 is arranged at a position corresponding to the resultant force F, the positional relationship between the action line (F) and the support point P regardless of the change in the gear tangential force F2. Can be made constant.
  • the action line (F) passes through the support point P.
  • the action line (F) is within a range where the bearing 20 can exhibit the desired bearing performance.
  • the deviation from the support point P is allowed. For example, this deviation is sufficiently allowed in the range of ⁇ 10 ° with the support point P as the center.
  • the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
  • the configuration of the geared compressor 1 including the speed increasing gear mechanism 2 described above is merely an example, and, for example, a single example of the driven shaft 5 is shown, but a plurality of driven shafts may be provided. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

従動軸の不安定な振動を低減できるギアド圧縮機を提供する。本発明によるギアド圧縮機1は、従動軸5を回転可能に支持する軸受20を有する増速ギア機構2と、従動軸5に固定されるインペラ8,9と、備える。軸受20は、円周方向に設けられる複数の軸受パッド21と、複数の軸受パッド21のそれぞれを支持するピボット25と、を有する。軸受20が受ける従動軸5の自重による荷重F1と、主動ギア4と従動ギア6の接触によるギア接線力F2と、の合力Fの作用線と、ピボット25による軸受パッド21の支持点との位置関係が一定である、ことを特徴とする。

Description

ギアド圧縮機
 本発明は、安定した運転を実現できるギアド圧縮機に関するものである。
 ギアを用いて主動軸の駆動力を増速して従動軸に伝えられるギアド圧縮機においては、作動流体を圧縮するインペラのついた従動軸を回転させる際に、ギアの圧力角の方向に荷重が発生する特徴を有する。以下、この荷重をギア接線力と称する。そのために、従動軸を支持する軸受は、従動軸の自重による荷重とギア接線力の合力を受け持たなければならない。ところが、ギアド圧縮機の運転中に運転条件が変更する、つまり主動軸の駆動力が変更すると、ギア接線力の大きさが変化する。従動軸の自重の向きは鉛直方向に沿って一定であるから、軸受に作用する合力の向き及び大きさはギア接線力の変化にしたがって変化してしまい一定とならない。
 ギアド圧縮機において、従動軸を支持する軸受として主にティルティングパッド軸受が用いられている。この軸受は、ピボットで支持された複数の軸受パッドを有しており、ピボットによるパッドの支持点と合力方向の関係により軸受剛性、減衰等が変動する。
 ところが、前述したように、ギアド圧縮機においては、従動軸を支持する軸受が受け持つ合力が変化するために、設計上で最も運転されることが想定される運転パターン、典型的には定格運転状態に併せてピボットによる軸受パッドの支持点の位置を決定している。したがって、それ以外の運転点では、軸受剛性、減衰比等の軸受性能が変動することにより、想定しない振動が発生する。
 特許文献1は、不安定振動を防止できるティルティングパッド軸受を備えた軸流タービンを開示する。しかし、特許文献1は、作動流体の影響によりティルティングパッド軸受に作用する荷重方向が変化することによる不安定振動を前提としており、ギア接線力の変化に基づくギアド圧縮機の従動軸の不安定振動に示唆を与えない。
特開2015-48707号公報
 以上より、本発明は、従動軸の不安定な振動を低減できるギアド圧縮機を提供することを目的とする。
 本発明のギアド圧縮機は、駆動源により回転駆動される主動軸と、主動軸と一体となって回転駆動される主動ギアと、主動ギアに噛み合い、主動軸の回転に伴って増速回転される従動ギアと、従動ギアと一体となって回転駆動される従動軸と、従動軸を回転可能に支持するティルティングパッド軸受と、有する増速ギア機構と、従動軸に固定されるインペラと、備える。本発明におけるティルティングパッド軸受は、円周方向に設けられる複数の軸受パッドと、複数の軸受パッドのそれぞれを支持するピボットと、を有し、ティルティングパッド軸受が受ける従動軸の自重による荷重F1と主動ギアと従動ギアの接触によるギア接線力F2の合力Fの作用線と、ピボットによる軸受パッドの支持点と、の位置関係が一定である、ことを特徴とする。
 本発明のギアド圧縮機によれば、荷重F1とギア接線力F2との合力Fの作用線と、ピボットによる軸受パッドの支持点と、の位置関係が一定であるから、従動軸の不安定な振動を低減できる。
 本発明におけるギアド圧縮機において、ピボットによる軸受パッドの支持点との位置関係を一定にする手段として、二つの形態を含む。
 一つ目の形態は、ギア接線力F2が変化するのに応じて、ピボットによる軸受パッドの支持点を移動させることで、合力Fの作用線とピボットによる軸受パッドの支持点との位置関係を一定にする、と言うものである。
 二つ目の形態、ギア接線力F2の向きを鉛直方向の下向きに一定にすることで、ギア接線力F2の作用線と、ピボットによる軸受パッドの支持点との位置関係を一定にする、というものである。
 本発明における位置関係が一定とは、ギアド圧縮機を運転している間に、作用線と支持点との位置関係が一定に維持されることを意味する。
 この一定の位置関係としては、合力Fの作用線がピボットによる軸受パッドの支持点を通ることが最も好ましい。
 一つ目の形態は、ティルティングパッド軸受を回転させることにより実現できる。具体的には、回転可能に支持されているティルティングパッド軸受を回転させる軸受回転部と、主動ギアと従動ギアの間に生じるギア接線力F2を求め、求められたギア接線力F2に応じて、軸受回転部を介してティルティングパッド軸受を回転させる制御部と、を備えることができる。
 この場合、制御部は、主動軸に生じるトルク値Tに基づいてギア接線力F2を算出して特定することが好ましい。トルク値Tを用いれば、容易にギア接線力F2を算出できるからである。
 また、軸受回転部は、ギアの回転によりティルティングパッド軸受を回転させることが好ましい。ティルティングパッド軸受を高い精度で確実に回転させることができるからである。
 二つ目の形態は、ギア接線力F2の向きを鉛直方向の下向きに一定にすることで、合力Fの作用線とピボットによる軸受パッドの支持点との位置関係を一定にするものである。この形態は、一つ目の形態のように駆動機構を備える必要がないので、ギアド圧縮機の構成を簡易にできるとともに、製作コストを抑えることができる。
 本発明のギアド圧縮機によれば、荷重F1とギア接線力F2との合力Fの向きと、ピボットによる軸受パッドの支持点との位置関係が一定であるから、従動軸の不安定な振動を低減できる。
本発明の第1実施形態に係るギアド圧縮機の概略構成を示す図である。 第1実施形態に係るギアド圧縮機におけるティルティングパッド軸受の回転動作を示す図である。 第2実施形態に係るギアド圧縮機の要部の構成を示す図である。 第2実施形態に係るギアド圧縮機の効果を説明する図である。 ギアド圧縮機に生じる不具合を説明する図であり、(a)は主動軸と従動軸の関係を示し、(b)はティルティングパッド軸受が受け持つ合力Fの変化を示す図である。
<第1実施形態>
 以下、添付図面を参照しながら、本発明の実施形態に係るギアド圧縮機1を説明する。ギアド圧縮機1は、増速ギア機構2を内蔵した遠心式圧縮機である。
 第1実施形態は、ギア接線力F2が変化するのに応じて、ピボット25による軸受パッド21の支持点Pを移動させることで、合力Fの作用線とピボット25による軸受パッド21の支持点Pとの位置関係を一定にするものである。ここでいう、位置関係が一定とは、ギアド圧縮機1の運転中に位置関係が変わらないことを意味する。
[増速ギア機構2]
 増速ギア機構2は、図示を省略する駆動源、例えば回転電機により回転駆動される主動軸3と、主動軸3と一体となって回転駆動される主動ギア4と、主動ギア4に噛み合い、主動ギア4の回転に伴って増速回転される従動ギア6と、従動ギア6と一体となって回転駆動される従動軸5と、をケーシング10の内部に備えている。従動ギア6は主動ギア4に比べて十分に小さいギアであり、いわゆるピニオンである。この従動ギア6は、軸受20により回転可能に支持された従動軸5の長手方向の略中央部に固定されている。本実施形態における軸受20は、ティルティングパッド軸受から構成され、ケーシング10に回転可能に支持されるとともに、ギア接線力の向きに応じて正転及び逆転することができる。軸受20については、さらに後述する。
 本実施形態における従動軸5は、その軸方向の両端部に、インペラ8及びインペラ9がそれぞれ取り付けられている。これらインペラ8及びインペラ9は、軸受20に対して片持ち構造となっている。インペラ8及びインペラ9は、それぞれ従動軸5の回転による遠心力を利用して上流側流路から供給されるガスを圧縮して流す。
 ケーシング10には、上流側流路からガスを流入させる吸込通路12と、外部へガスを流出させるための排出通路13とが形成されている。
[軸受20]
 軸受20は、図2(a),(b)に示すように、従動軸5の外周に円周方向に沿って複数個、本実施形態では五つの軸受パッド21が軸受ハウジング23に収容されている。それぞれの軸受パッド21は、その背面がピボット25により支持されており、ピボット25による支持点Pを中心に各軸受パッド21が周方向に揺動可能とされるとともに、従動軸5の外周面と軸受パッド21の潤滑面との間には油膜が形成されることで、潤滑が確保される。従って、軸受パッド21は、ジャーナル、つまり従動軸5の動きに対して自由に動くことができ、軸受パッド21を備えたジャーナル軸受である軸受20は自動調心機能をもつ。そのため、軸受20は高速回転機械に適用される。
 軸受20は、軸受ハウジング23の外周には複数の軸受側歯24が形成されており、軸受ハウジング23はギアを構成している。軸受20は、軸受ハウジング23の軸受側歯24と噛み合う駆動側歯27が外周に形成された、軸受回転部としての軸受回転ギア26と、軸受回転ギア26を回転駆動させる回転電機29と、を付随して備えている。軸受回転ギア26が回転電機29により回転駆動されると、軸受20はこの回転にしたがって回転駆動される。回転電機29は、次に説明する制御部30の指示に従って回転動作を行う。この回転動作により、軸受20は、ピボット25で軸受パッド21を支持する支持点Pの位置を任意に移動させることができる。
[制御部30]
 図1に戻り、ギアド圧縮機1は、回転電機29を介して軸受回転ギア26の動作を制御する制御部30を備える。
 制御部30は、主動軸3の表面に貼り付けられる、当該表面のひずみγを検出するひずみゲージ31と、ひずみゲージ31で検出されたひずみγに基づいて軸受回転ギア26の回転動作を司るすなわち制御するように構成される演算部33と、を備える。ひずみゲージ31と演算部33は信号線32で電気的に接続され、また、演算部33と回転電機29は信号線34で電気的に接続されている。なお、ここでは信号線32、信号線34を用い、有線で信号の伝送を行うことにしているが、無線により信号を伝送することもできる。
 演算部33は、ひずみゲージ31で検出されたひずみγに基づいて主動軸3に加えられたトルク値Tを算出して求めるとともに、求められたトルク値Tに基づいて従動軸5のギア接線力F2を算出して求めるように構成される。なお、ひずみγは主動軸3に加えられたトルク値Tに比例する。さらに、演算部33は、従動軸5の自重により軸受20に加わる荷重F1に関する情報を保持しており、算出したギア接線力F2と荷重F1の合力Fを算出するように構成される。この合力Fは、大きさと向きを含むものである。この一連のギア接線力F2、合力Fの算出は、ギアド圧縮機1の運転中に継続して行われる。
 演算部33は、算出された合力Fの向きに応じて、合力Fの作用線(Fで代替)が所定の軸受パッド21のピボット25による支持点Pを通るように、軸受回転ギア26を回転駆動させるように構成される。なお、ここでは作用線を力の大きさを示す合力Fで代替しているが、よく知られているように作用線は作用点を通り力(合力F)の方向に引いた直線であるから、合力Fを矢印の方向に延長させた線分も作用線に該当する。
 例えば、合力Fの向きが図2(a)に示された向きから図2(b)に示された向きに変化し、逆に、図2(b)に示された向きから図2(a)に示された向きに変化したとしても、合力Fの作用線(F)が、最も下方に位置する特定の軸受パッド21のピボット25による支持点Pを通るように、軸受回転ギア26を回転駆動させる。
 具体的には、以下の手順で合力Fを求める。なお、図5(a)に示すように、主動軸3の軸心から従動軸5の従動ギア6のピッチ点までの距離L、及び、主動ギア4と従動ギア6の圧力角α(図示を省略)は既知とする。
 はじめに、ギア接線力F2は、下記の式(1)により算出される。ただし、トルク値Tは、ギアド圧縮機1の運転状態によって変化するために、ギア接線力F2も変化する。
 ギア接線力F2 = トルク値T/距離L … 式(1)
 次いで、合力Fは下記の式(2)により算出され、その向き(角度β)は下記の式(3)により求められる。
 合力F=[(F1+F2・cosα)+(F2・sinα)1/2 … 式(2)
 tanβ=(F2・sinα)/(F1+F2・cosα) … 式(3)
 演算部33は、合力Fの向き(角度β)を求めたならば、求められた合力Fに応じて、図2(a),(b)に示すように、合力Fの作用線(F)が軸受パッド21のピボット25による支持点Pを通るように、回転電機29に指令を出して、軸受20を回転駆動させるように構成される。
[ギアド圧縮機1の動作]
 次に、ギアド圧縮機1の動作を説明する。ギアド圧縮機1は、上述の構成を備えており、増速ギア機構2を介して従動軸5が回転すると、吸込通路12に流入したガスがインペラ8及びインペラ9によって圧縮され、その後に、インペラ8及びインペラ9の径方向の外側の排出通路13を介してケーシング10の外部に排出される。
 このギアド圧縮機1の運転の過程で、ひずみゲージ31が検出した主動軸3のひずみγを継続して検出し、検出されたひずみγは信号線32を介して演算部33に送られる。ひずみγを取得した演算部33は、上述した手順で算出された合力Fの向きを示す作用線(F)が特定のピボット25による軸受パッド21の支持点Pを通るままの状態を維持できるように、回転電機29を動作させるように構成される。
[ギアド圧縮機1の効果]
 以上説明したように、ギアド圧縮機1は、軸受20が受け持つ合力Fが変化するのに応じて軸受20を回転させることで、ピボット25による軸受パッド21の支持点Pを移動させる。これにより、ギア接線力F2の作用線が常に支持点Pを通ることができるので、ティルティングパッド軸受である軸受20の軸受性能を全運転領域で最高に発揮させることが可能となる。これにより、ギアド圧縮機1は、従動軸5の不安定な振動を低減できる。
 ここで、図5(b)に示すように、合力Fの向きが変わっても、ピボット25による軸受パッド21の支持点Pの位置が固定されていれば、合力Fの作用線(F)は当該軸受パッド21から外れてしまい、従動軸5の不安定な振動の発生が助長される。
 以上説明したギアド圧縮機1は、合力Fの作用線(F)とピボット25による軸受パッド21の支持点Pとの位置関係が一定であることの最も好ましい形態として、作用線(F)が支持点Pを通る状態が一定で変わらない例を示した。しかし、本発明は、作用線(F)が支持点Pを必ずしも通ることを要求するものではなく、軸受20が所望する軸受性能を発揮できる範囲で、作用線(F)が支持点Pとずれることを許容する。この場合でも、ずれた作用線(F)と支持点Pの位置関係が一定であることを維持できれば、不安定な振動の発生を防止できる。
 また、以上説明したギアド圧縮機1は、軸受20を回転させるのに軸受回転ギア26を用いたが、軸受20を所望する位置に回転できるのであれば、その手段は任意である。例えば、軸受回転ギア26を介することなく回転電機29で軸受20を直接的に回転させることができるし、また、回転電機29の回転駆動力をタイミングベルトで軸受20に伝達して回転させることもできる。
<第2実施形態>
 次に、本発明の第2実施形態に係るギアド圧縮機100を、図3及び図4(a),(b)を参照して説明する。
 第2実施形態に係るギアド圧縮機100は、図3に示すように、荷重F1とギア接線力F2の合力Fの向きを一定にする。より具体的には、荷重F1の向きが鉛直方向の下向きで一定であるから、ギア接線力F2も荷重F1と同様に鉛直方向の下向きに揃えることで、合力Fの向きも鉛直方向の下向きで一定にしようというものである。
 ギア接線力F2を鉛直方向の下向きにするには、主動軸3と従動軸5の相対的な位置関係を調整することにより実現できる。つまり、ギア接線力F2は、主動軸3の主動ギア4の歯面と従動軸5の従動ギア6の歯面の共通法線Nの方向に働くので、共通法線Nが鉛直方向の下向きになるように調整する。この調整をするには、接触角θを考慮する。ここで、接触角θは、主動軸3の中心軸と従動軸5の中心軸を結ぶ線分Mと主動軸3の中心軸を通る水平線Hとのなす角度である。ギアド圧縮機1を作製する際に、この接触角θを調整することにより、ギア接線力F2を常に鉛直方向の下向きにできる。そうすれば、合力Fも常に鉛直方向の下向きにできるので、ピボット25による軸受パッド21の支持点Pをこれに応じた位置に配置すれば、軸受20による軸受剛性,減衰比などの性能を安定して得ることができる。特に、好ましくは、合力Fの作用線(F)がピボット25による軸受パッド21の支持点Pを通ることにより、軸受剛性,減衰比に代表される軸受性能を最大にすることができる。
 図4(a),(b)はこれによる効果を示している。
 図4(a)は、ギア接線力F2の大きさが変化するのに伴って、合力Fの向き及び大きさが変化する様子を二次元座標上に示している。これに対して、第2実施形態によれば、図4(b)に示すようにギア接線力F2が鉛直方向の下向きであり、これが維持されるので、合力Fも鉛直方向の下向きのままである。
 したがって、この合力Fに対応する位置にピボット25による軸受パッド21の支持点Pを配置しさえすれば、ギア接線力F2の変化に関わらず、作用線(F)と支持点Pとの位置関係を一定にすることができる。
 第2実施形態においても作用線(F)が支持点Pを通ることが最も好ましいが、第1実施形態と同様に、軸受20が所望する軸受性能を発揮できる範囲で、作用線(F)が支持点Pとずれることを許容する。このずれは、例えば、支持点Pを中心にして±10°の範囲であれば、十分に許容される。
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 例えば、以上で示した増速ギア機構2も含めたギアド圧縮機1の構成はあくまで一例であり、例えば、従動軸5が単一の例を示したが、複数の従動軸を備えることもできる。
1   ギアド圧縮機(遠心式圧縮機)
2   増速ギア機構
3   主動軸
4   主動ギア
5   従動軸
6   従動ギア
8,9 インペラ
10  ケーシング
12  吸込通路
13  排出通路
20  軸受
21  軸受パッド
23  軸受ハウジング
24  軸受側歯
25  ピボット
26  軸受回転ギア
27  駆動側歯
29  回転電機
30  制御部
31  ひずみゲージ
32,34  信号線
33  演算部
 

Claims (10)

  1.  駆動源により回転駆動される主動軸と、前記主動軸と一体となって回転駆動される主動ギアと、前記主動ギアに噛み合い、前記主動軸の回転に伴って増速回転される従動ギアと、前記従動ギアと一体となって回転駆動される従動軸と、前記従動軸を回転可能に支持するティルティングパッド軸受と、を有する増速ギア機構と、
     前記従動軸に固定されるインペラと、備え、
     前記ティルティングパッド軸受は、
     円周方向に設けられる複数の軸受パッドと、
     複数の前記軸受パッドのそれぞれを支持するピボットと、を有し、
     前記ティルティングパッド軸受が受ける前記従動軸の自重による荷重F1と前記主動ギアと前記従動ギアの接触によるギア接線力F2の合力Fの作用線と、前記ピボットによる前記軸受パッドの支持点と、の位置関係が一定である、
    ことを特徴とするギアド圧縮機。
  2.  前記ギア接線力F2が変化するのに応じて、前記ピボットによる前記軸受パッドの前記支持点を移動させることで、前記合力Fの前記作用線と前記ピボットによる前記軸受パッドの前記支持点との位置関係を一定にする、
    請求項1に記載のギアド圧縮機。
  3.  回転可能に支持されている前記ティルティングパッド軸受を回転させる軸受回転部と、
     前記主動ギアと前記従動ギアの間に生じる前記ギア接線力F2を求め、求められた前記ギア接線力F2に応じて、前記軸受回転部を介して前記ティルティングパッド軸受を回転させる制御部と、
    を備える請求項2に記載のギアド圧縮機。
  4.  前記制御部は、
     前記主動軸に生じるトルク値Tに基づいて前記ギア接線力F2を算出して求める、
    請求項3に記載のギアド圧縮機。
  5.  前記軸受回転部は、ギアの回転により前記ティルティングパッド軸受を回転させる、
    請求項3又は請求項4に記載のギアド圧縮機。
  6.  前記ギア接線力F2の向きを鉛直方向の下向きに一定にすることで、前記合力Fの前記作用線と前記ピボットによる前記軸受パッドの支持点との位置関係を一定にする、
    請求項1に記載のギアド圧縮機。
  7.  前記合力Fの前記作用線が前記ピボットによる前記軸受パッドの支持点を通る、
    請求項1~請求項6のいずれか一項に記載のギアド圧縮機。
  8.  前記制御部は、
     前記主動軸のひずみを検出するひずみゲージと、
     前記ひずみゲージで検出されたひずみに基づいて前記軸受回転部の回転動作を制御する演算部と、を備える、
    請求項3に記載のギアド圧縮機。
  9.  前記軸受回転部は、前記ディルティングパット軸受を回転させる回転ギアを備える、
    請求項4に記載のギアド圧縮機。
  10.  前記制御部は、前記ギア接線力F2を下記式(1)により算出し、前記合力F1を下記式(2)により算出するように構成される、
    請求項3に記載のギアド圧縮機。
    但し、
     前記ギア接線力F2 = 前記主動軸に加えられたトルク値T/距離L … 式(1)
     前記合力F=[(F1+F2・cosα)+(F2・sinα)1/2 … 式(2)
PCT/JP2017/002099 2016-02-01 2017-01-23 ギアド圧縮機 WO2017135082A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016017108A JP2017137768A (ja) 2016-02-01 2016-02-01 ギアド圧縮機
JP2016-017108 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017135082A1 true WO2017135082A1 (ja) 2017-08-10

Family

ID=59499764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002099 WO2017135082A1 (ja) 2016-02-01 2017-01-23 ギアド圧縮機

Country Status (2)

Country Link
JP (1) JP2017137768A (ja)
WO (1) WO2017135082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060561B2 (en) * 2019-02-20 2021-07-13 Mitsubishi Heavy Industries, Ltd. Oil bath type bearing device and rotary machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111038U (ja) * 1980-12-26 1982-07-09
JP2000213542A (ja) * 1999-01-26 2000-08-02 Kobe Steel Ltd ティルティングパッドジャ―ナル軸受
JP2005025039A (ja) * 2003-07-04 2005-01-27 Canon Inc 転写装置及び画像形成装置
JP2011136782A (ja) * 2009-12-28 2011-07-14 Fuji Xerox Co Ltd 用紙搬送装置及びこれを備えた画像形成装置
JP2015048707A (ja) * 2013-08-29 2015-03-16 株式会社東芝 軸流タービン
JP2015081649A (ja) * 2013-10-23 2015-04-27 スズキ株式会社 トランスミッションケース
JP2015140884A (ja) * 2014-01-29 2015-08-03 三菱重工業株式会社 ジャーナル軸受及び蒸気タービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111038U (ja) * 1980-12-26 1982-07-09
JP2000213542A (ja) * 1999-01-26 2000-08-02 Kobe Steel Ltd ティルティングパッドジャ―ナル軸受
JP2005025039A (ja) * 2003-07-04 2005-01-27 Canon Inc 転写装置及び画像形成装置
JP2011136782A (ja) * 2009-12-28 2011-07-14 Fuji Xerox Co Ltd 用紙搬送装置及びこれを備えた画像形成装置
JP2015048707A (ja) * 2013-08-29 2015-03-16 株式会社東芝 軸流タービン
JP2015081649A (ja) * 2013-10-23 2015-04-27 スズキ株式会社 トランスミッションケース
JP2015140884A (ja) * 2014-01-29 2015-08-03 三菱重工業株式会社 ジャーナル軸受及び蒸気タービン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060561B2 (en) * 2019-02-20 2021-07-13 Mitsubishi Heavy Industries, Ltd. Oil bath type bearing device and rotary machine

Also Published As

Publication number Publication date
JP2017137768A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
US10774673B2 (en) Guide vane adjustment device and turbomachine
JP4885118B2 (ja) 可変ノズル機構を備えた可変容量型排気ターボ過給機
BRPI0605188B1 (pt) turbo-carregador de exaustão de garganta variável e método de fabricar elementos constituintes de mecanismo de garganta variável
JP2012528017A (ja) ローラ型の圧縮・切込み・切断ユニット
CN102869570B (zh) 基于平衡块的涡轮螺旋桨发动机风扇叶片方向控制装置
JP2008231933A (ja) 歯車駆動ターボ圧縮機
JP4435176B2 (ja) 抄紙機のロールを移動するための装備
WO2017135082A1 (ja) ギアド圧縮機
US3424012A (en) Friction gear
JP5622586B2 (ja) ガス駆動式回転モータ、ガス駆動式回転モータが設けられた工具及びガス駆動式回転モータの回転速度調整方法
US9551341B2 (en) Scroll type fluid machine with eccentric bush
CN101978170B (zh) 改变叶轮/推进器的叶片间距的装置及包括该装置的扇
KR20110038146A (ko) 블레이드 휠들을 가진 터보 장치
CN102832738B (zh) 一种振动电机用偏心块
JP4557584B2 (ja) ターボ機械
US772052A (en) Windmill.
JP6978426B2 (ja) 羽根の制御を改善した、方向付け可能な羽根を伴う流体ロータ
JP5398323B2 (ja) 静翼可変装置および軸流式流体機械
JP4845114B2 (ja) スピンドル装置
CN104482158A (zh) 一种精确旋转机构
US1180867A (en) Expanding rope-pulley.
US245773A (en) Steam-engine governor
US1091181A (en) Governor mechanism.
US619420A (en) irving
US536505A (en) Julius begtrup

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747241

Country of ref document: EP

Kind code of ref document: A1