WO2017135070A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2017135070A1
WO2017135070A1 PCT/JP2017/001908 JP2017001908W WO2017135070A1 WO 2017135070 A1 WO2017135070 A1 WO 2017135070A1 JP 2017001908 W JP2017001908 W JP 2017001908W WO 2017135070 A1 WO2017135070 A1 WO 2017135070A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
inflow
pipe
main body
outflow
Prior art date
Application number
PCT/JP2017/001908
Other languages
French (fr)
Japanese (ja)
Inventor
晋太郎 木暮
紀博 田中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017135070A1 publication Critical patent/WO2017135070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device including a cooler that cools a semiconductor module.
  • Patent Document 1 discloses a power conversion device that includes a semiconductor module incorporating a semiconductor element and a cooler (water jacket) that cools the semiconductor module.
  • the cooler includes an inlet (inflow part) of the refrigerant flow path, an outlet (outflow part) of the refrigerant flow path, and an air vent for extracting air from the refrigerant flow path.
  • the cooler of the power converter is configured such that the inflow portion and the air vent portion are arranged on the same axis, and the air flow direction in the air vent portion is the same as the refrigerant inflow direction in the inflow portion. Yes.
  • This cooler is equipped with guide fins for adjusting the refrigerant flow upstream of the air vent, but the inflow and air vents are arranged on the same axis, so they enter the air vent. It is difficult to completely block the flow of the refrigerant to be attempted by the guide fins.
  • the addition of elements such as guide fins may cause a problem that the structure becomes complicated.
  • the present disclosure is intended to provide a power conversion device that can suppress the refrigerant flowing through the cooler that cools the semiconductor module from entering the air vent portion with a simple structure.
  • the first aspect of the present disclosure is: A semiconductor module containing a semiconductor element; and a cooler for cooling the semiconductor module,
  • the cooler includes a main body portion through which a refrigerant that exchanges heat with the semiconductor module flows, an inflow portion into which the refrigerant flows into the main body portion, an outflow portion from which the refrigerant flows out from the main body portion, and the main body portion.
  • the position where the air vent part is provided in the cooler is the position after the refrigerant flowing into the main body from the inflow part changes its flow direction. Therefore, the momentum of the refrigerant flowing through this position is lower than the momentum of the refrigerant before the flow direction is changed. For this reason, it can suppress that a refrigerant
  • the refrigerant flowing through the cooler that cools the semiconductor module can be prevented from entering the air vent portion with a simple structure.
  • FIG. 1 is a diagram illustrating an outline of the power conversion device according to the first embodiment.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a view of the semiconductor laminated unit in FIG. 1 as viewed from the outlet side of the air vent pipe
  • FIG. 4 is a plan view of the cooler in FIG.
  • FIG. 5 is an inverter circuit diagram of the power converter
  • FIG. 6 is a plan view of a cooler in the power converter of Embodiment 2.
  • FIG. 1 is a diagram illustrating an outline of the power conversion device according to the first embodiment.
  • 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a view of the semiconductor laminated unit in FIG. 1 as viewed from the outlet side of the air vent pipe
  • FIG. 4 is a plan view of the cooler in FIG.
  • FIG. 5 is an inverter circuit diagram of the power converter
  • FIG. 6 is a plan view of a cooler
  • FIG. 7 is a diagram schematically showing a first modified example of the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler
  • FIG. 8 is a diagram schematically illustrating a second modification example of the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler
  • FIG. 9 is a diagram schematically illustrating a third modification example regarding the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler
  • FIG. 10 is a diagram schematically illustrating a fourth modification of the arrangement of the inflow pipe, the inflow pipe, and the air vent pipe of the cooler.
  • the first direction that is the stacking direction of the semiconductor modules in the semiconductor stacking unit is indicated by an arrow X
  • the width direction of the semiconductor modules in the semiconductor stacking unit and the longitudinal direction of the cooling pipe are A certain second direction is indicated by an arrow Y
  • a third direction orthogonal to both the first direction and the second direction is indicated by an arrow Z.
  • the power conversion device 1 As shown in FIGS. 1 and 2, the power conversion device 1 according to the first embodiment includes a plurality of elements including a semiconductor multilayer unit 10, electronic components 30, 31, 32 and a control circuit board 40. These plural elements are accommodated in a space defined by the case 2 and the covers 3 and 4.
  • the power conversion device 1 is mounted on, for example, an electric vehicle, a hybrid vehicle, or the like, and is used as an inverter that converts DC power supply power into AC power necessary for driving a drive motor.
  • the electronic component 30 is a reactor that converts electrical energy into magnetic energy using an inductor (hereinafter also referred to as “reactor 30”).
  • the reactor 30 constitutes a part of a booster circuit for boosting the input voltage to the semiconductor module 11.
  • the electronic component 31 is a smoothing capacitor (hereinafter also referred to as “capacitor 31”) that smoothes the input voltage or the boosted voltage.
  • the capacitor 31 constitutes a part of a conversion circuit that converts DC power into AC power.
  • the electronic component 32 is a converter (hereinafter also referred to as “converter 32”) that steps down the voltage of the DC power supply.
  • the semiconductor laminated unit 10 includes a plurality of semiconductor modules 11 and a cooler 20 having a plurality of cooling pipes 27.
  • a plurality of semiconductor modules 11 and a plurality of cooling pipes 27 are alternately stacked in the first direction X. That is, each semiconductor module 11 is sandwiched from both side surfaces in the first direction X by two cooling pipes 27.
  • the cooling pipe 27 includes a refrigerant flow path 27a through which the refrigerant flows. The heat generated in the semiconductor module 11 moves to the refrigerant side flowing through the refrigerant flow path 27a of the cooling pipe 27, whereby the semiconductor module 11 is cooled.
  • refrigerant flowing through the cooling pipe 27 examples include natural refrigerants such as water and ammonia, water mixed with ethylene glycol antifreeze, fluorocarbon refrigerants such as Fluorinert (registered trademark), and chlorofluorocarbon refrigerants such as HCFC123 and HFC134a.
  • natural refrigerants such as water and ammonia
  • fluorocarbon refrigerants such as Fluorinert (registered trademark)
  • chlorofluorocarbon refrigerants such as HCFC123 and HFC134a.
  • a refrigerant, an alcohol refrigerant such as methanol or alcohol, a ketone refrigerant such as acetone, or the like can be used.
  • the semiconductor module 11 includes a semiconductor element 12 such as an IGBT that converts DC power into AC power, a power terminal 13, and a plurality (five in FIG. 3) control terminals 14. It is equipped with.
  • the power terminal 13 and the control terminal 14 extend from the semiconductor module 11 in opposite directions.
  • the control terminal 14 is electrically connected to the control circuit board 40.
  • the control circuit board 40 is configured to control the switching operation of the semiconductor element 12 in order to convert the DC power supplied to the semiconductor module 11 into AC power.
  • the cooler 20 has a function of cooling the semiconductor module 11. As shown in FIG. 4, the cooler 20 includes an inflow pipe 21, an outflow pipe 22, an air vent pipe 23, and a main body 24.
  • the cooler 20 is made of a material having excellent thermal conductivity such as aluminum.
  • the inflow pipe 21 is configured as an inflow portion into which the refrigerant flows into the main body portion 24.
  • the inflow pipe 21 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to the main body 24.
  • the refrigerant inflow direction in the inflow pipe 21 is indicated by an arrow D1.
  • a refrigerant that exchanges heat with the semiconductor module 11 flows.
  • the outflow pipe 22 is configured as an outflow part from which the refrigerant flows out from the main body part 24.
  • the outflow pipe 22 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to the main body part 24.
  • the refrigerant outflow direction in the outflow pipe 22 is indicated by an arrow D2.
  • the inflow pipe 21 and the outflow pipe 22 are arranged on the same side of the main body 24 in the first direction X, and the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are opposite to each other. It is in the direction.
  • the main body 24 includes an inflow header pipe 25, an outflow header pipe 26, and the plurality of cooling pipes 27.
  • the inflow header pipe 25 is configured to communicate with the inflow pipe 21 and extend linearly in the first direction X.
  • the outflow header pipe 26 is configured to extend linearly in parallel with the inflow header pipe 25 and to communicate with the outflow pipe 22.
  • the inflow pipe 21, the outflow pipe 22, and the air vent pipe 23 extend on the same plane as the plane in which both the inflow header pipe 25 and the outflow header pipe 26 extend.
  • the plurality of cooling pipes 27 are spaced apart from each other and extend in the second direction Y so as to connect the inflow header pipe 25 and the outflow header pipe 26, respectively. Therefore, the refrigerant flowing into the inflow header pipe 25 from the inflow pipe 21 flows through the cooling pipes 27 toward the outflow header pipe 26 and then flows out from the outflow pipe 22 through the outflow header pipe 26.
  • the air vent tube 23 is configured as an air vent for extracting air from the main body 24.
  • the air vent pipe 23 extends on the same plane as the plane on which both the inflow pipe 21 and the outflow pipe 22 extend.
  • the air vent pipe 23 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to a predetermined position P of the main body 24.
  • This position P is the position farthest from the outflow pipe 22 in the outflow header pipe 26 of the main body 24, and is an extension line L1 in the refrigerant inflow direction D1 in the inflow pipe 21 (the virtual line indicated by the two-dot chain line in FIG. Line) It is a position off the top.
  • the position P deviated from the extension line L1 of the refrigerant inflow direction D1 in the inflow pipe 21 is an imaginary line extending continuously in a direction in which the refrigerant flows from the inflow pipe 21 into the main body 24. It is defined as the position excluding the position passing through the line.
  • This position P can also be referred to as a position after the refrigerant flowing into the main body 24 from the inflow pipe 21 changes its flow direction.
  • a position until the refrigerant flowing into the main body 24 from the inflow pipe 21 changes its flow direction can be defined as a position on the extension line L1 of the refrigerant inflow direction D1 in the inflow pipe 21. In the case of this embodiment, this position corresponds to each part of the inflow header pipe 25.
  • the other end of the air vent pipe 23 is connected to a reservoir tank (not shown). Therefore, the air in the main body 24 is extracted from the main body 24 at the position P and discharged to the reservoir tank through the air vent pipe 23.
  • An air bleeding direction in the air bleeding tube 23 is indicated by an arrow D3.
  • the air vent pipe 23 is disposed on the opposite side of the inflow pipe 21 and the outflow pipe 22 in the first direction X of the main body 24, and the air vent direction D3 in the air vent pipe 23 is the refrigerant outflow direction D2. It is the reverse direction (the same direction as the refrigerant inflow direction D1). Thereby, it is possible to keep the size of the cooler 20 in the second direction Y small.
  • the air vent pipe 23 is disposed on an extension line of the outflow pipe 22, and the air vent direction D3 (air vent pipe 23) and the refrigerant outflow direction D2 (outflow pipe 22) are on the same straight line L2. Thereby, the dimension of the cooler 20 in the second direction Y can be further reduced. Further, the structure of the cooler 20 can be simplified by connecting the air vent pipe 23 to one end of the outflow header pipe 26.
  • the switching operation (on / off operation) of the semiconductor element 12 incorporated in each semiconductor module 11 is controlled by the control circuit board 40, and the DC power of the DC power supply B1 is AC. Converted to electric power.
  • the reactor 30 and the semiconductor module 11a constitute the boosting unit 100a of the inverter circuit 100.
  • the booster 100a has a function of boosting the voltage of the DC power supply B1.
  • the conversion unit 100b of the inverter circuit 100 is configured by the capacitor 31 and the semiconductor module 11b.
  • the converter 100b has a function of converting the DC power that has been boosted by the booster 100a into AC power.
  • the three-phase AC motor M for driving the vehicle is driven by the AC power obtained by the converter 100b.
  • the converter 32 is connected to the DC power supply B1, and is used to step down the voltage of the DC power supply B1 and charge the auxiliary battery B2 having a lower voltage than the DC power supply B1.
  • the auxiliary battery B2 is used as a power source for various devices mounted on the vehicle.
  • the refrigerant that has flowed from the inflow pipe 21 into the inflow header pipe 25 of the main body 24 changes its flow direction by about 90 degrees and flows through each cooling pipe 27. Thereafter, the refrigerant flowing through each cooling pipe 27 changes its flow direction by approximately 90 degrees, flows through the outflow header pipe 26 of the main body 24, and then flows out from the outflow pipe 22.
  • the position P where the air vent pipe 23 is provided is a position after the refrigerant flowing into the inflow header pipe 25 of the main body 24 from the inflow pipe 21 changes its flow direction.
  • the momentum of the refrigerant flowing through the position P is lower than the momentum of the refrigerant flowing through the inflow pipe 21 and before changing the flow direction, that is, the refrigerant flowing through the inflow header pipe 25. For this reason, it can suppress that a refrigerant
  • the main body 24 has a plurality of cooling pipes 27 stacked with the plurality of semiconductor modules 11. Thereby, the semiconductor module 11 can be efficiently cooled by the cooling pipe 27.
  • the power conversion device includes a cooler 120 as illustrated in FIG. 6 instead of the cooler 20 according to the first embodiment.
  • Other configurations are the same as those of the first embodiment. Accordingly, only the cooler 120 will be described here, and the description of the other components will be omitted.
  • FIG. 6 the same elements as those shown in FIG. 4 are denoted by the same reference numerals.
  • the cooler 120 includes an inflow pipe 21, an outflow pipe 22, an air vent pipe 23, and a main body 124.
  • One end of the inflow pipe 21 is connected to the main body 124.
  • One end of the outflow pipe 22 is connected to the main body 124.
  • One end of the air vent tube 23 is connected to a predetermined position P of the main body 124. This position P is a position deviated from the extended line L1 (the phantom line indicated by the two-dot chain line in FIG. 6) of the refrigerant inflow direction D1 in the inflow pipe 21.
  • the main body portion 124 includes a space 124a serving as a refrigerant flow path through which the refrigerant flows.
  • a plurality of semiconductor modules 11 are attached to the outer surface 124 b of the main body 124.
  • the main body 124 is different from the main body 24 having a plurality of cooling pipes 27 formed by combining a plurality of pipes and being stacked with the plurality of semiconductor modules 11 like the cooler 20 in the first embodiment. Yes.
  • the refrigerant flowing through the cooler 120 that cools the semiconductor module 11 can be prevented from entering the air vent pipe 23 with a simple structure.
  • the same effects as those of the first embodiment are obtained.
  • the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are opposite to each other, and the air vent direction D3 in the air vent pipe 23 is opposite to the refrigerant outflow direction D2.
  • the configuration in which the air bleeding direction D3 and the refrigerant outflow direction D2 are on the same straight line L2 is illustrated, but the present configuration may be changed as shown in FIGS.
  • Both the first modified example shown in FIG. 7 and the second modified example shown in FIG. 8 are configured so that the air vent pipe 23 in the cooler 20 is out of the extension line of the refrigerant outlet direction D2 in the main body 24. It is the example arrange
  • the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are the same direction, and the air vent pipe 23 It is the example arrange
  • the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are the same direction, and the air vent direction D3 in the air vent pipe 23 is the same. Is a direction opposite to the refrigerant inflow direction D1.
  • Such an arrangement can also be applied to the cooler 120 described above.
  • Each of the first to fourth modified examples includes at least the requirement that the position P where the air vent pipe 23 is provided is a position deviated from the extended line L1 in the refrigerant inflow direction D1, and thus the first and second embodiments. In the same manner as the above, there is an effect that the refrigerant can be prevented from entering the air vent pipe 23 with a simple structure.
  • the air vent pipe 23 extends on a plane different from the plane on which both the inflow pipe 21 and the outflow pipe 22 extend. You can also.
  • the air bleeding tube 23 may extend in a direction intersecting with a plane defined by the first direction X and the second direction Y.
  • the inflow portion, the outflow portion, and the air vent portion of the cooler are configured by piping.
  • the inflow portion, the outflow portion, and the air vent portion of the cooler are configured by joints, flanges, and the like. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device is provided with a cooler (20) for cooling a semiconductor module that has a semiconductor element incorporated therein. The cooler (20) comprises: a main body (24) through which a refrigerant for performing heat exchange with a semiconductor module (11) flows; an inflow section (21) by which the refrigerant flows into the main body (24); an outflow section (22) by which the refrigerant flows out from the main body (24); and an air removal section (23) for removing air from the main body (24). The air removal section (23) is provided to a position (P) on the main body (24) separated from the line of extension (L1) of the refrigerant inflow direction (D1) in the inflow section (21).

Description

電力変換装置Power converter 関連出願の相互参照Cross-reference of related applications
 本出願は、2016年2月5日に出願された日本出願番号2016-021063号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2016-021063 filed on Feb. 5, 2016, the contents of which are incorporated herein by reference.
 本開示は、半導体モジュールを冷却する冷却器を備えた電力変換装置に関する。 The present disclosure relates to a power conversion device including a cooler that cools a semiconductor module.
 電気自動車、ハイブリッド自動車等の車両は、直流電力と交流電力との間で電力変換を行う電力変換装置を搭載している。例えば、下記の特許文献1には、半導体素子を内蔵した半導体モジュールと、この半導体モジュールを冷却する冷却器(ウォータージャケット)と、を備えた電力変換装置が開示されている。冷却器は、冷媒流路の流入口(流入部)と、冷媒流路の流出口(流出部)と、冷媒流路のエアを抜くためのエア抜き部と、を備えている。 Vehicles such as electric vehicles and hybrid vehicles are equipped with a power conversion device that converts power between DC power and AC power. For example, Patent Document 1 below discloses a power conversion device that includes a semiconductor module incorporating a semiconductor element and a cooler (water jacket) that cools the semiconductor module. The cooler includes an inlet (inflow part) of the refrigerant flow path, an outlet (outflow part) of the refrigerant flow path, and an air vent for extracting air from the refrigerant flow path.
特開2012-105370号公報JP 2012-105370 A
 上記電力変換装置の冷却器は、流入部とエア抜き部とが同一の軸線上に配置され、且つエア抜き部におけるエア流れ方向が流入部における冷媒流入方向と同方向となるように構成されている。本構成の場合、流入部から冷媒流路に流入した冷媒はその勢いで冷媒流入方向に沿って流れ易いため、エア抜き部に容易に侵入するという問題が生じ得る。この冷却器は、エア抜き部の上流側に冷媒流れを整えるためのガイドフィンを備えているが、流入部とエア抜き部とが同一の軸線上に配置されているため、エア抜き部に侵入しようとする冷媒の流れをこのガイドフィンによって完全に阻止するのは難しい。また、このガイドフィンのような要素を追加することで構造が複雑化するという問題が生じ得る。 The cooler of the power converter is configured such that the inflow portion and the air vent portion are arranged on the same axis, and the air flow direction in the air vent portion is the same as the refrigerant inflow direction in the inflow portion. Yes. In the case of this configuration, since the refrigerant that has flowed into the refrigerant flow path from the inflow portion easily flows along the refrigerant inflow direction, the problem of easily entering the air vent portion may occur. This cooler is equipped with guide fins for adjusting the refrigerant flow upstream of the air vent, but the inflow and air vents are arranged on the same axis, so they enter the air vent. It is difficult to completely block the flow of the refrigerant to be attempted by the guide fins. In addition, the addition of elements such as guide fins may cause a problem that the structure becomes complicated.
 本開示は、半導体モジュールを冷却する冷却器を流れる冷媒がエア抜き部に侵入するのを簡単な構造によって抑制することができる電力変換装置を提供しようとするものである。 The present disclosure is intended to provide a power conversion device that can suppress the refrigerant flowing through the cooler that cools the semiconductor module from entering the air vent portion with a simple structure.
 本開示の第一の態様は、
 半導体素子を内蔵した半導体モジュールと、上記半導体モジュールを冷却する冷却器と、を備え、
 上記冷却器は、上記半導体モジュールとの間で熱交換を行う冷媒が流れる本体部と、上記本体部に冷媒が流入する流入部と、上記本体部から冷媒が流出する流出部と、上記本体部からエアを抜くためのエア抜き部と、を有し、上記エア抜き部が上記本体部のうち上記流入部における冷媒流入方向の延長線上から外れた位置に設けられている、電力変換装置にある。
The first aspect of the present disclosure is:
A semiconductor module containing a semiconductor element; and a cooler for cooling the semiconductor module,
The cooler includes a main body portion through which a refrigerant that exchanges heat with the semiconductor module flows, an inflow portion into which the refrigerant flows into the main body portion, an outflow portion from which the refrigerant flows out from the main body portion, and the main body portion. An air vent part for venting air from the main body part, wherein the air vent part is provided at a position off the extended line in the refrigerant inflow direction in the inflow part of the main body part. .
 上記電力変換装置によれば、冷却器においてエア抜き部が設けられている位置は、流入部から本体部に流入した冷媒がその流れ方向を転換した後の位置である。従って、この位置を流れる冷媒の勢いは、流れ方向を転換する前の冷媒の勢いよりも低下している。このため、前記の延長線上にエア抜き部を設ける場合に比べて、冷媒がエア抜き部に侵入するのを抑制することができる。また、エア抜き部の位置を適正に設定することのみによって対処可能であり、別部材が必要にならないため構造が複雑化するのを防止できる。 According to the above power converter, the position where the air vent part is provided in the cooler is the position after the refrigerant flowing into the main body from the inflow part changes its flow direction. Therefore, the momentum of the refrigerant flowing through this position is lower than the momentum of the refrigerant before the flow direction is changed. For this reason, it can suppress that a refrigerant | coolant penetrate | invades into an air bleeding part compared with the case where an air bleeding part is provided on the said extension line. Further, it can be dealt with only by appropriately setting the position of the air bleeding portion, and since no separate member is required, it is possible to prevent the structure from becoming complicated.
 以上のごとく、上記態様によれば、半導体モジュールを冷却する冷却器を流れる冷媒がエア抜き部に侵入するのを簡単な構造によって抑制することができる。 As described above, according to the above aspect, the refrigerant flowing through the cooler that cools the semiconductor module can be prevented from entering the air vent portion with a simple structure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1の電力変換装置の概要を示す図であり、 図2は、図1のII-II線矢視断面図であり、 図3は、図1中の半導体積層ユニットをエア抜き管の出口側から視た図であり、 図4は、図1中の冷却器の平面図であり、 図5は、電力変換装置のインバータ回路図であり、 図6は、実施形態2の電力変換装置における冷却器の平面図であり、 図7は、冷却器の流入管、流入管、エア抜き管のそれぞれの配置についての第1変更例を模式的に示す図であり、 図8は、冷却器の流入管、流入管、エア抜き管のそれぞれの配置についての第2変更例を模式的に示す図であり、 図9は、冷却器の流入管、流入管、エア抜き管のそれぞれの配置についての第3変更例を模式的に示す図であり、 図10は、冷却器の流入管、流入管、エア抜き管のそれぞれの配置についての第4変更例を模式的に示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a diagram illustrating an outline of the power conversion device according to the first embodiment. 2 is a cross-sectional view taken along the line II-II in FIG. FIG. 3 is a view of the semiconductor laminated unit in FIG. 1 as viewed from the outlet side of the air vent pipe, FIG. 4 is a plan view of the cooler in FIG. FIG. 5 is an inverter circuit diagram of the power converter, FIG. 6 is a plan view of a cooler in the power converter of Embodiment 2. FIG. 7 is a diagram schematically showing a first modified example of the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler, FIG. 8 is a diagram schematically illustrating a second modification example of the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler, FIG. 9 is a diagram schematically illustrating a third modification example regarding the arrangement of the inflow pipe, the inflow pipe, and the air bleeding pipe of the cooler, FIG. 10 is a diagram schematically illustrating a fourth modification of the arrangement of the inflow pipe, the inflow pipe, and the air vent pipe of the cooler.
 以下、電力変換装置に係る実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the power conversion device will be described with reference to the drawings.
 なお、本明細書の図面では、特に断わらない限り、半導体積層ユニットにおける半導体モジュールの積層方向である第1方向を矢印Xで示し、半導体積層ユニットにおける半導体モジュールの幅方向及び冷却管の長手方向である第2方向を矢印Yで示し、第1方向及び第2方向の双方と直交する第3方向を矢印Zで示すものとする。 In the drawings of this specification, unless otherwise specified, the first direction that is the stacking direction of the semiconductor modules in the semiconductor stacking unit is indicated by an arrow X, and the width direction of the semiconductor modules in the semiconductor stacking unit and the longitudinal direction of the cooling pipe are A certain second direction is indicated by an arrow Y, and a third direction orthogonal to both the first direction and the second direction is indicated by an arrow Z.
(実施形態1)
 図1及び図2に示されるように、実施形態1の電力変換装置1は、半導体積層ユニット10、電子部品30,31,32及び制御回路基板40を含む複数の要素を備えている。これら複数の要素はケース2及びカバー3,4によって区画された空間に収容されている。この電力変換装置1は、例えば、電気自動車やハイブリッド自動車等に搭載され、直流の電源電力を駆動用モータの駆動に必要な交流電力に変換するインバータとして用いられる。
(Embodiment 1)
As shown in FIGS. 1 and 2, the power conversion device 1 according to the first embodiment includes a plurality of elements including a semiconductor multilayer unit 10, electronic components 30, 31, 32 and a control circuit board 40. These plural elements are accommodated in a space defined by the case 2 and the covers 3 and 4. The power conversion device 1 is mounted on, for example, an electric vehicle, a hybrid vehicle, or the like, and is used as an inverter that converts DC power supply power into AC power necessary for driving a drive motor.
 電子部品30は、インダクタを利用して電気エネルギーを磁気エネルギーに変換するリアクトル(以下、「リアクトル30」ともいう。)である。このリアクトル30は、半導体モジュール11への入力電圧を昇圧するための昇圧回路の一部を構成している。電子部品31は、入力電圧又は昇圧した電圧を平滑化する平滑コンデンサ(以下、「コンデンサ31」ともいう。)である。このコンデンサ31は、直流電力を交流電力に変換する変換回路の一部を構成している。電子部品32は、直流電源の電圧を降圧するコンバータ(以下、「コンバータ32」ともいう。)である。 The electronic component 30 is a reactor that converts electrical energy into magnetic energy using an inductor (hereinafter also referred to as “reactor 30”). The reactor 30 constitutes a part of a booster circuit for boosting the input voltage to the semiconductor module 11. The electronic component 31 is a smoothing capacitor (hereinafter also referred to as “capacitor 31”) that smoothes the input voltage or the boosted voltage. The capacitor 31 constitutes a part of a conversion circuit that converts DC power into AC power. The electronic component 32 is a converter (hereinafter also referred to as “converter 32”) that steps down the voltage of the DC power supply.
 半導体積層ユニット10は、複数の半導体モジュール11と、複数の冷却管27を有する冷却器20と、を備えている。この半導体積層ユニット10において、複数の半導体モジュール11と複数の冷却管27とが第1方向Xに交互に積層配置されている。即ち、各半導体モジュール11は、2つの冷却管27,27によって第1方向Xの両側面から挟持されている。冷却管27は、冷媒が流れる冷媒流路27aを備えている。半導体モジュール11で生じた熱が冷却管27の冷媒流路27aを流れる冷媒側へと移動することによって、半導体モジュール11が冷却される。 The semiconductor laminated unit 10 includes a plurality of semiconductor modules 11 and a cooler 20 having a plurality of cooling pipes 27. In the semiconductor stacked unit 10, a plurality of semiconductor modules 11 and a plurality of cooling pipes 27 are alternately stacked in the first direction X. That is, each semiconductor module 11 is sandwiched from both side surfaces in the first direction X by two cooling pipes 27. The cooling pipe 27 includes a refrigerant flow path 27a through which the refrigerant flows. The heat generated in the semiconductor module 11 moves to the refrigerant side flowing through the refrigerant flow path 27a of the cooling pipe 27, whereby the semiconductor module 11 is cooled.
 なお、冷却管27に流す冷媒として、例えば、水やアンモニア等の自然冷媒、エチレングリコール系の不凍液を混入した水、フロリナート(登録商標)等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒等を用いることができる。 Examples of the refrigerant flowing through the cooling pipe 27 include natural refrigerants such as water and ammonia, water mixed with ethylene glycol antifreeze, fluorocarbon refrigerants such as Fluorinert (registered trademark), and chlorofluorocarbon refrigerants such as HCFC123 and HFC134a. A refrigerant, an alcohol refrigerant such as methanol or alcohol, a ketone refrigerant such as acetone, or the like can be used.
 図3に示されるように、半導体モジュール11は、直流電力を交流電力に変換するIGBT等の半導体素子12を内蔵するとともに、パワー端子13と、複数(図3では5つ)の制御端子14と、を備えている。パワー端子13と制御端子14とは、半導体モジュール11から互いに反対方向に延出している。制御端子14は、制御回路基板40に電気的に接続されている。制御回路基板40は、半導体モジュール11に供給された直流電力を交流電力に変換するために半導体素子12のスイッチング動作を制御するように構成されている。 As shown in FIG. 3, the semiconductor module 11 includes a semiconductor element 12 such as an IGBT that converts DC power into AC power, a power terminal 13, and a plurality (five in FIG. 3) control terminals 14. It is equipped with. The power terminal 13 and the control terminal 14 extend from the semiconductor module 11 in opposite directions. The control terminal 14 is electrically connected to the control circuit board 40. The control circuit board 40 is configured to control the switching operation of the semiconductor element 12 in order to convert the DC power supplied to the semiconductor module 11 into AC power.
 冷却器20は、半導体モジュール11を冷却する機能を有する。この冷却器20は、図4に示されるように、流入管21、流出管22、エア抜き管23及び本体部24を備えている。この冷却器20は、アルミニウム等の熱伝導性に優れた材料からなる。 The cooler 20 has a function of cooling the semiconductor module 11. As shown in FIG. 4, the cooler 20 includes an inflow pipe 21, an outflow pipe 22, an air vent pipe 23, and a main body 24. The cooler 20 is made of a material having excellent thermal conductivity such as aluminum.
 流入管21は、本体部24に冷媒が流入する流入部として構成されている。この流入管21は、第1方向Xに直線状に延在する円筒形状の配管であり、その一端部が本体部24に接続されている。この流入管21における冷媒流入方向が矢印D1で示される。そして、この本体部24において半導体モジュール11との間で熱交換を行う冷媒が流れる。 The inflow pipe 21 is configured as an inflow portion into which the refrigerant flows into the main body portion 24. The inflow pipe 21 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to the main body 24. The refrigerant inflow direction in the inflow pipe 21 is indicated by an arrow D1. In the main body 24, a refrigerant that exchanges heat with the semiconductor module 11 flows.
 流出管22は、本体部24から冷媒が流出する流出部として構成されている。この流出管22は、第1方向Xに直線状に延在する円筒形状の配管であり、その一端部が本体部24に接続されている。この流出管22における冷媒流出方向が矢印D2で示される。この場合、流入管21及び流出管22は、第1方向Xについて本体部24の同じ側に配置されており、流入管21における冷媒流入方向D1と流出管22における冷媒流出方向D2とが互いに逆方向になっている。 The outflow pipe 22 is configured as an outflow part from which the refrigerant flows out from the main body part 24. The outflow pipe 22 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to the main body part 24. The refrigerant outflow direction in the outflow pipe 22 is indicated by an arrow D2. In this case, the inflow pipe 21 and the outflow pipe 22 are arranged on the same side of the main body 24 in the first direction X, and the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are opposite to each other. It is in the direction.
 本体部24は、流入ヘッダー管25と、流出ヘッダー管26と、前記の複数の冷却管27と、を備えている。流入ヘッダー管25は、流入管21に連通して第1方向Xに直線状に延在するように構成されている。流出ヘッダー管26は、流入ヘッダー管25と平行に直線状に延在し且つ流出管22に連通するように構成されている。流入ヘッダー管25及び流出ヘッダー管26の双方が延在する平面と同一平面上に、前記の流入管21、流出管22及びエア抜き管23が延在している。 The main body 24 includes an inflow header pipe 25, an outflow header pipe 26, and the plurality of cooling pipes 27. The inflow header pipe 25 is configured to communicate with the inflow pipe 21 and extend linearly in the first direction X. The outflow header pipe 26 is configured to extend linearly in parallel with the inflow header pipe 25 and to communicate with the outflow pipe 22. The inflow pipe 21, the outflow pipe 22, and the air vent pipe 23 extend on the same plane as the plane in which both the inflow header pipe 25 and the outflow header pipe 26 extend.
 複数の冷却管27は、互いに離間して配置され且つそれぞれが流入ヘッダー管25と流出ヘッダー管26とを接続するように第2方向Yに延在している。従って、流入管21から流入ヘッダー管25に流入した冷媒は、複数の冷却管27のそれぞれを流出ヘッダー管26に向けて流れた後、流出ヘッダー管26を通じて流出管22から流出する。 The plurality of cooling pipes 27 are spaced apart from each other and extend in the second direction Y so as to connect the inflow header pipe 25 and the outflow header pipe 26, respectively. Therefore, the refrigerant flowing into the inflow header pipe 25 from the inflow pipe 21 flows through the cooling pipes 27 toward the outflow header pipe 26 and then flows out from the outflow pipe 22 through the outflow header pipe 26.
 エア抜き管23は、本体部24からエアを抜くためのエア抜き部として構成されている。エア抜き管23は、流入管21及び流出管22の双方が延在する平面と同一平面上に延在している。このエア抜き管23は、第1方向Xに直線状に延在する円筒形状の配管であり、その一端部が本体部24の所定の位置Pに接続されている。この位置Pは、本体部24の流出ヘッダー管26のうち流出管22から最も離れた位置であり、流入管21における冷媒流入方向D1の延長線L1(図3中の二点鎖線で示される仮想線)上から外れた位置である。 The air vent tube 23 is configured as an air vent for extracting air from the main body 24. The air vent pipe 23 extends on the same plane as the plane on which both the inflow pipe 21 and the outflow pipe 22 extend. The air vent pipe 23 is a cylindrical pipe extending linearly in the first direction X, and one end thereof is connected to a predetermined position P of the main body 24. This position P is the position farthest from the outflow pipe 22 in the outflow header pipe 26 of the main body 24, and is an extension line L1 in the refrigerant inflow direction D1 in the inflow pipe 21 (the virtual line indicated by the two-dot chain line in FIG. Line) It is a position off the top.
 なお、ここでいう「流入管21における冷媒流入方向D1の延長線L1上から外れた位置P」とは、流入管21から本体部24に冷媒が流入する方向に連続して直線状に延びる仮想線を通る位置を除く位置として定義される。この位置Pを、流入管21から本体部24に流入した冷媒がその流れ方向を転換した後の位置ということもできる。一方で、流入管21から本体部24に流入した冷媒がその流れ方向を転換するまでの位置を、流入管21における冷媒流入方向D1の延長線L1上の位置として定義できる。本実施形態の場合、この位置は流入ヘッダー管25の各部位に相当する。 Here, “the position P deviated from the extension line L1 of the refrigerant inflow direction D1 in the inflow pipe 21” is an imaginary line extending continuously in a direction in which the refrigerant flows from the inflow pipe 21 into the main body 24. It is defined as the position excluding the position passing through the line. This position P can also be referred to as a position after the refrigerant flowing into the main body 24 from the inflow pipe 21 changes its flow direction. On the other hand, a position until the refrigerant flowing into the main body 24 from the inflow pipe 21 changes its flow direction can be defined as a position on the extension line L1 of the refrigerant inflow direction D1 in the inflow pipe 21. In the case of this embodiment, this position corresponds to each part of the inflow header pipe 25.
 エア抜き管23の他端部は、リザーバタンク(図示省略)に接続されている。従って、本体部24内にあるエアは、位置Pにおいて本体部24から抜き出されてエア抜き管23を通じてリザーバタンクに排出される。このエア抜き管23におけるエア抜き方向が矢印D3で示される。この場合、エア抜き管23は、本体部24の第1方向Xについて流入管21及び流出管22とは反対側に配置されており、エア抜き管23におけるエア抜き方向D3が冷媒流出方向D2と逆方向(冷媒流入方向D1と同方向)になっている。これにより、冷却器20の第2方向Yの寸法を小さく抑えることが可能になる。更に、エア抜き管23は、流出管22の延長線上に配置されており、エア抜き方向D3(エア抜き管23)と冷媒流出方向D2(流出管22)とが同一の直線L2上にある。これにより、冷却器20の第2方向Yの寸法を更に小さく抑えることが可能になる。また、流出ヘッダー管26の一端部にエア抜き管23を接続することによって、冷却器20の構造を簡素化できる。 The other end of the air vent pipe 23 is connected to a reservoir tank (not shown). Therefore, the air in the main body 24 is extracted from the main body 24 at the position P and discharged to the reservoir tank through the air vent pipe 23. An air bleeding direction in the air bleeding tube 23 is indicated by an arrow D3. In this case, the air vent pipe 23 is disposed on the opposite side of the inflow pipe 21 and the outflow pipe 22 in the first direction X of the main body 24, and the air vent direction D3 in the air vent pipe 23 is the refrigerant outflow direction D2. It is the reverse direction (the same direction as the refrigerant inflow direction D1). Thereby, it is possible to keep the size of the cooler 20 in the second direction Y small. Further, the air vent pipe 23 is disposed on an extension line of the outflow pipe 22, and the air vent direction D3 (air vent pipe 23) and the refrigerant outflow direction D2 (outflow pipe 22) are on the same straight line L2. Thereby, the dimension of the cooler 20 in the second direction Y can be further reduced. Further, the structure of the cooler 20 can be simplified by connecting the air vent pipe 23 to one end of the outflow header pipe 26.
 図5に示されるように、インバータ回路100において、各半導体モジュール11に内蔵されている半導体素子12のスイッチング動作(オンオフ動作)が制御回路基板40によって制御されて、直流電源B1の直流電力が交流電力に変換される。 As shown in FIG. 5, in the inverter circuit 100, the switching operation (on / off operation) of the semiconductor element 12 incorporated in each semiconductor module 11 is controlled by the control circuit board 40, and the DC power of the DC power supply B1 is AC. Converted to electric power.
 本実施形態では、リアクトル30及び半導体モジュール11aによって、インバータ回路100の昇圧部100aが構成されている。この昇圧部100aは、直流電源B1の電圧を昇圧する機能を有する。一方で、コンデンサ31及び半導体モジュール11bによって、インバータ回路100の変換部100bが構成されている。この変換部100bは、昇圧部100aで昇圧された後の直流電力を交流電力に変換する機能を有する。変換部100bで得られた交流電力によって、車両走行用の三相交流モータMが駆動される。 In this embodiment, the reactor 30 and the semiconductor module 11a constitute the boosting unit 100a of the inverter circuit 100. The booster 100a has a function of boosting the voltage of the DC power supply B1. On the other hand, the conversion unit 100b of the inverter circuit 100 is configured by the capacitor 31 and the semiconductor module 11b. The converter 100b has a function of converting the DC power that has been boosted by the booster 100a into AC power. The three-phase AC motor M for driving the vehicle is driven by the AC power obtained by the converter 100b.
 コンバータ32は、直流電源B1に接続されており、直流電源B1の電圧を降圧して、直流電源B1よりも低圧の補助バッテリB2を充電するのに用いられる。補助バッテリB2は、車両に搭載される各種機器の電源として使用される。 The converter 32 is connected to the DC power supply B1, and is used to step down the voltage of the DC power supply B1 and charge the auxiliary battery B2 having a lower voltage than the DC power supply B1. The auxiliary battery B2 is used as a power source for various devices mounted on the vehicle.
 次に、実施形態1の電力変換装置1の作用効果について図4を参照しつつ説明する。 Next, the effect of the power converter 1 of Embodiment 1 is demonstrated, referring FIG.
 この電力変換装置1の冷却器20において、流入管21から本体部24の流入ヘッダー管25に流入した冷媒は、その流れ方向をおよそ90度転換して各冷却管27を流れる。その後、各冷却管27を流れた冷媒は、その流れ方向をおよそ90度転換して本体部24の流出ヘッダー管26を流れた後、流出管22から流出する。このとき、エア抜き管23が設けられている位置Pは、流入管21から本体部24の流入ヘッダー管25に流入した冷媒がその流れ方向を転換した後の位置である。 In the cooler 20 of the power converter 1, the refrigerant that has flowed from the inflow pipe 21 into the inflow header pipe 25 of the main body 24 changes its flow direction by about 90 degrees and flows through each cooling pipe 27. Thereafter, the refrigerant flowing through each cooling pipe 27 changes its flow direction by approximately 90 degrees, flows through the outflow header pipe 26 of the main body 24, and then flows out from the outflow pipe 22. At this time, the position P where the air vent pipe 23 is provided is a position after the refrigerant flowing into the inflow header pipe 25 of the main body 24 from the inflow pipe 21 changes its flow direction.
 従って、この位置Pを流れる冷媒の勢いは、流入管21から流入した後に流れ方向を転換する前の冷媒、即ち流入ヘッダー管25を流れる冷媒の勢いよりも低下している。このため、前記の延長線L1上にエア抜き管23を設ける場合に比べて、冷媒がエア抜き管23に侵入するのを抑制することができる。また、エア抜き管23の位置を適正に設定することのみによって対処可能であり別部材が必要にならないため構造が複雑化するのを防止できる。その結果、半導体モジュール11を冷却する冷却器20を流れる冷媒がエア抜き管23に侵入するのを簡単な構造によって抑制することができる。 Therefore, the momentum of the refrigerant flowing through the position P is lower than the momentum of the refrigerant flowing through the inflow pipe 21 and before changing the flow direction, that is, the refrigerant flowing through the inflow header pipe 25. For this reason, it can suppress that a refrigerant | coolant penetrate | invades into the air vent pipe 23 compared with the case where the air vent pipe 23 is provided on the said extension line L1. Further, it can be dealt with only by appropriately setting the position of the air vent pipe 23, and since no separate member is required, it is possible to prevent the structure from becoming complicated. As a result, it is possible to suppress the refrigerant flowing through the cooler 20 that cools the semiconductor module 11 from entering the air vent pipe 23 with a simple structure.
 また、この冷却器20の場合、本体部24は、複数の半導体モジュール11と積層される複数の冷却管27を有する。これにより、半導体モジュール11を冷却管27によって効率良く冷却することができる。 In the case of this cooler 20, the main body 24 has a plurality of cooling pipes 27 stacked with the plurality of semiconductor modules 11. Thereby, the semiconductor module 11 can be efficiently cooled by the cooling pipe 27.
(実施形態2)
 実施形態2の電力変換装置は、実施形態1における冷却器20に代えて、図6に示されるような冷却器120を備えている。その他の構成は、実施形態1と同様である。従って、ここでは冷却器120のみについて説明するものとし、その他の構成についての説明は省略する。また、図6において、図4に示される要素と同一の要素には同一の符号を付している。
(Embodiment 2)
The power conversion device according to the second embodiment includes a cooler 120 as illustrated in FIG. 6 instead of the cooler 20 according to the first embodiment. Other configurations are the same as those of the first embodiment. Accordingly, only the cooler 120 will be described here, and the description of the other components will be omitted. In FIG. 6, the same elements as those shown in FIG. 4 are denoted by the same reference numerals.
 冷却器120は、流入管21、流出管22、エア抜き管23及び本体部124を備えている。流入管21の一端部が本体部124に接続されている。流出管22の一端部が本体部124に接続されている。エア抜き管23の一端部が本体部124の所定の位置Pに接続されている。この位置Pは、流入管21における冷媒流入方向D1の延長線L1(図6中の二点鎖線で示される仮想線)上から外れた位置である。 The cooler 120 includes an inflow pipe 21, an outflow pipe 22, an air vent pipe 23, and a main body 124. One end of the inflow pipe 21 is connected to the main body 124. One end of the outflow pipe 22 is connected to the main body 124. One end of the air vent tube 23 is connected to a predetermined position P of the main body 124. This position P is a position deviated from the extended line L1 (the phantom line indicated by the two-dot chain line in FIG. 6) of the refrigerant inflow direction D1 in the inflow pipe 21.
 本体部124は、冷媒が流れる冷媒流路となる空間124aを備えている。また、本体部124の外表面124bに、複数の半導体モジュール11が取付けられている。要するに、この本体部124は、実施形態1における冷却器20のように複数の配管を組み合わせてなり且つ複数の半導体モジュール11と積層される複数の冷却管27を有する本体部24とは相違している。 The main body portion 124 includes a space 124a serving as a refrigerant flow path through which the refrigerant flows. A plurality of semiconductor modules 11 are attached to the outer surface 124 b of the main body 124. In short, the main body 124 is different from the main body 24 having a plurality of cooling pipes 27 formed by combining a plurality of pipes and being stacked with the plurality of semiconductor modules 11 like the cooler 20 in the first embodiment. Yes.
 この実施形態2によれば、実施形態1の場合と同様に、半導体モジュール11を冷却する冷却器120を流れる冷媒がエア抜き管23に侵入するのを簡単な構造によって抑制することができる。
 その他、実施形態1と同様の作用効果を奏する。
According to the second embodiment, similarly to the first embodiment, the refrigerant flowing through the cooler 120 that cools the semiconductor module 11 can be prevented from entering the air vent pipe 23 with a simple structure.
In addition, the same effects as those of the first embodiment are obtained.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.
 上記の実施形態1では、流入管21における冷媒流入方向D1と流出管22における冷媒流出方向D2とが互いに逆方向であり、且つエア抜き管23におけるエア抜き方向D3が冷媒流出方向D2と逆方向であり、且つエア抜き方向D3と冷媒流出方向D2とが同一の直線L2上にある構成について例示したが、本構成を図7~図10のように変更することもできる。 In the first embodiment, the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are opposite to each other, and the air vent direction D3 in the air vent pipe 23 is opposite to the refrigerant outflow direction D2. In addition, the configuration in which the air bleeding direction D3 and the refrigerant outflow direction D2 are on the same straight line L2 is illustrated, but the present configuration may be changed as shown in FIGS.
 図7に示される第1変更例及び図8に示される第2変更例はいずれも、上記の冷却器20において、エア抜き管23を本体部24のうち冷媒流出方向D2の延長線から外れた位置に配置した例である。このような配置を上記の冷却器120に適用することもできる。 Both the first modified example shown in FIG. 7 and the second modified example shown in FIG. 8 are configured so that the air vent pipe 23 in the cooler 20 is out of the extension line of the refrigerant outlet direction D2 in the main body 24. It is the example arrange | positioned in the position. Such an arrangement can also be applied to the cooler 120 described above.
 図9に示される第3変更例は、上記の冷却器20において、流入管21における冷媒流入方向D1と流出管22における冷媒流出方向D2を同方向とし、且つエア抜き管23を本体部24のうち冷媒流出方向D2の延長線から外れた位置に配置した例である。このような配置を上記の冷却器120に適用することもできる。 In the third modification shown in FIG. 9, in the cooler 20 described above, the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are the same direction, and the air vent pipe 23 It is the example arrange | positioned in the position which remove | deviated from the extension line of the refrigerant | coolant outflow direction D2. Such an arrangement can also be applied to the cooler 120 described above.
 図10に示される第4変更例は、上記の冷却器20において、流入管21における冷媒流入方向D1と流出管22における冷媒流出方向D2を同方向とし、且つエア抜き管23におけるエア抜き方向D3を冷媒流入方向D1と逆方向とした例である。このような配置を上記の冷却器120に適用することもできる。 In the fourth modification shown in FIG. 10, in the cooler 20, the refrigerant inflow direction D1 in the inflow pipe 21 and the refrigerant outflow direction D2 in the outflow pipe 22 are the same direction, and the air vent direction D3 in the air vent pipe 23 is the same. Is a direction opposite to the refrigerant inflow direction D1. Such an arrangement can also be applied to the cooler 120 described above.
 これら第1~第4変更例はいずれも、エア抜き管23を設ける位置Pが冷媒流入方向D1の延長線L1上から外れた位置であるという要件を少なくとも備えているため、実施形態1及び2と同様に、冷媒がエア抜き管23に侵入するのを簡単な構造によって抑制できるという作用効果を奏する。 Each of the first to fourth modified examples includes at least the requirement that the position P where the air vent pipe 23 is provided is a position deviated from the extended line L1 in the refrigerant inflow direction D1, and thus the first and second embodiments. In the same manner as the above, there is an effect that the refrigerant can be prevented from entering the air vent pipe 23 with a simple structure.
 また、実施形態1及び2、第1~第4変更例のそれぞれにおいて、流入管21及び流出管22の双方が延在する平面と異なる平面上にエア抜き管23が延在するように構成することもできる。例えば、第1方向X及び第2方向Yによって規定される平面と交差する方向にエア抜き管23が延在してもよい。 In each of the first and second embodiments and the first to fourth modified examples, the air vent pipe 23 extends on a plane different from the plane on which both the inflow pipe 21 and the outflow pipe 22 extend. You can also. For example, the air bleeding tube 23 may extend in a direction intersecting with a plane defined by the first direction X and the second direction Y.
 上記の実施形態では、冷却器の流入部、流出部及びエア抜き部が配管によって構成される場合について記載したが、冷却器の流入部、流出部及びエア抜き部が継手やフランジ等によって構成されてもよい。 In the above embodiment, the case where the inflow portion, the outflow portion, and the air vent portion of the cooler are configured by piping is described. However, the inflow portion, the outflow portion, and the air vent portion of the cooler are configured by joints, flanges, and the like. May be.

Claims (4)

  1.  半導体素子(12)を内蔵した半導体モジュール(11)と、上記半導体モジュールを冷却する冷却器(20,120)と、を備え、
     上記冷却器は、上記半導体モジュールとの間で熱交換を行う冷媒が流れる本体部(24,124)と、上記本体部に冷媒が流入する流入部(21)と、上記本体部から冷媒が流出する流出部(22)と、上記本体部からエアを抜くためのエア抜き部(23)と、を有し、上記エア抜き部が上記本体部のうち上記流入部における冷媒流入方向(D1)の延長線(L1)上から外れた位置(P)に設けられている、電力変換装置(1)。
    A semiconductor module (11) containing the semiconductor element (12), and coolers (20, 120) for cooling the semiconductor module,
    The cooler includes a main body portion (24, 124) through which a refrigerant exchanging heat with the semiconductor module, an inflow portion (21) into which the refrigerant flows into the main body portion, and a refrigerant outflow from the main body portion. And an air vent part (23) for extracting air from the main body part, wherein the air vent part is in the refrigerant inflow direction (D1) in the inflow part of the main body part. The power converter device (1) provided in the position (P) off the extension line (L1).
  2.  上記冷却器は、上記流入部における冷媒流入方向(D1)と上記流出部における冷媒流出方向(D2)とが互いに逆方向であり、且つ上記エア抜き部におけるエア抜き方向(D3)が上記冷媒流出方向と逆方向となるように構成されている、請求項1に記載の電力変換装置。 In the cooler, the refrigerant inflow direction (D1) in the inflow portion and the refrigerant outflow direction (D2) in the outflow portion are opposite to each other, and the air vent direction (D3) in the air vent portion is the refrigerant outflow. The power conversion device according to claim 1, wherein the power conversion device is configured to be in a direction opposite to the direction.
  3.  上記冷却器は、上記エア抜き部における上記エア抜き方向と上記流出部における上記冷媒流出方向とが同一の直線(L2)上にあるように構成されている、請求項2に記載の電力変換装置。 The power converter according to claim 2, wherein the cooler is configured such that the air bleeding direction in the air bleeding part and the refrigerant outlet direction in the outflow part are on the same straight line (L2). .
  4.  上記冷却器の上記本体部は、上記流入部に連通して直線状に延在する流入ヘッダー管(25)と、上記流入ヘッダー管と平行に直線状に延在し且つ上記流出部に連通する流出ヘッダー管(26)と、互いに離間して配置され且つそれぞれが上記流入ヘッダー管と上記流出ヘッダー管とを接続する複数の冷却管(27)と、を備え、
     上記半導体モジュールの複数と上記複数の冷却管とが交互に積層配置されている、請求項1~3のいずれか一項に記載の電力変換装置。
    The main body portion of the cooler communicates with the inflow portion and extends in a straight line, and extends in a straight line parallel to the inflow header tube and communicates with the outflow portion. An outflow header pipe (26), and a plurality of cooling pipes (27) that are spaced apart from each other and each connect the inflow header pipe and the outflow header pipe,
    The power conversion device according to any one of claims 1 to 3, wherein a plurality of the semiconductor modules and the plurality of cooling pipes are alternately stacked.
PCT/JP2017/001908 2016-02-05 2017-01-20 Power conversion device WO2017135070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021063 2016-02-05
JP2016021063A JP6512125B2 (en) 2016-02-05 2016-02-05 Power converter

Publications (1)

Publication Number Publication Date
WO2017135070A1 true WO2017135070A1 (en) 2017-08-10

Family

ID=59500705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001908 WO2017135070A1 (en) 2016-02-05 2017-01-20 Power conversion device

Country Status (2)

Country Link
JP (1) JP6512125B2 (en)
WO (1) WO2017135070A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052066A (en) * 1996-07-31 1998-02-20 Calsonic Corp Cooling device for converter
JP2006332597A (en) * 2005-04-28 2006-12-07 Denso Corp Semiconductor cooling unit
US20130003301A1 (en) * 2010-11-24 2013-01-03 Toyota Jidosha Kabushiki Kaisha Stacked cooler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1052066A (en) * 1996-07-31 1998-02-20 Calsonic Corp Cooling device for converter
JP2006332597A (en) * 2005-04-28 2006-12-07 Denso Corp Semiconductor cooling unit
US20130003301A1 (en) * 2010-11-24 2013-01-03 Toyota Jidosha Kabushiki Kaisha Stacked cooler

Also Published As

Publication number Publication date
JP6512125B2 (en) 2019-05-15
JP2017139936A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US9986665B2 (en) Power conversion apparatus
US9750166B2 (en) Electric power converter
JP5326334B2 (en) Power control unit
JP5167728B2 (en) Power converter
JP2017152612A (en) Electric power conversion system
JP6136760B2 (en) Power converter
US20200176168A1 (en) Reactor cooling structure
JP2014138445A (en) Electric power conversion apparatus
JP2008198751A (en) Cooler and power converter using the same
US11183949B2 (en) Power conversion device with a coolant passage
JP2015139299A (en) power converter
JP4600428B2 (en) Drive unit integrated power converter
US20200068749A1 (en) Cooling structure of power conversion device
JP5712750B2 (en) Power converter
JP6115430B2 (en) Power converter
JP2016163478A (en) Power converter
JP6459904B2 (en) Power converter
JP2015050211A (en) Stacked type cooler
WO2017135070A1 (en) Power conversion device
JP6350330B2 (en) Power converter
JP5644643B2 (en) Load drive device
JP2018057190A (en) Electric power conversion system
JP2019122064A (en) Power conversion device
JP6451379B2 (en) Power converter
JP5949602B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747229

Country of ref document: EP

Kind code of ref document: A1