WO2017135047A1 - ベルト式無段変速機 - Google Patents

ベルト式無段変速機 Download PDF

Info

Publication number
WO2017135047A1
WO2017135047A1 PCT/JP2017/001712 JP2017001712W WO2017135047A1 WO 2017135047 A1 WO2017135047 A1 WO 2017135047A1 JP 2017001712 W JP2017001712 W JP 2017001712W WO 2017135047 A1 WO2017135047 A1 WO 2017135047A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
joint housing
belt
continuously variable
shaft
Prior art date
Application number
PCT/JP2017/001712
Other languages
English (en)
French (fr)
Inventor
和利 藤川
晃尚 岡本
圭宏 吉田
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to EP17747206.5A priority Critical patent/EP3412931A4/en
Publication of WO2017135047A1 publication Critical patent/WO2017135047A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism
    • F16H63/06Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions
    • F16H63/062Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism the final output mechanism having an indefinite number of positions electric or electro-mechanical actuating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • F16C11/0619Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints the female part comprising a blind socket receiving the male part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/04Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes
    • F16H9/12Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members
    • F16H9/16Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts
    • F16H9/18Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using belts, V-belts, or ropes engaging a pulley built-up out of relatively axially-adjustable parts in which the belt engages the opposite flanges of the pulley directly without interposed belt-supporting members using two pulleys, both built-up out of adjustable conical parts only one flange of each pulley being adjustable

Definitions

  • the present invention changes the groove width of any one of the pulleys, the driving pulley supported by the input shaft, the driven pulley supported by the output shaft, the belt wound around both the pulleys, and the pulleys.
  • the present invention relates to an improvement of a belt type continuously variable transmission including a possible actuator.
  • the actuator disclosed in Patent Document 1 includes a nut member that rotates by receiving the rotational force of the motor and a male screw that is screwed to the nut member in order to convert the rotational force of the motor into thrust of the output rod.
  • a screw shaft that converts the rotational motion of the member into linear motion, and this screw shaft is considered to be configured as an output rod.
  • the arm and the screw shaft are connected via a ball joint. Because the screw shaft rotates together with the rotation of the nut member, the rotational force of the motor cannot be accurately converted to the thrust of the screw shaft, and the pulley can be driven accurately. Hinder.
  • the ball joint is composed of a plurality of parts such as a seat and a ball
  • the above-mentioned Patent Document 1 has a large number of parts and a complicated structure.
  • the present invention has been made in view of such circumstances, and is capable of driving a pulley by accurately converting the rotational force of a motor to a thrust of a screw shaft, and having a small number of parts and a simple structure.
  • An object is to obtain a continuously variable transmission.
  • the present invention provides a drive pulley supported by an input shaft, a driven pulley supported by an output shaft, a belt wound around both pulleys, and any one of the two pulleys.
  • An actuator capable of changing the groove width of the pulley by driving one pulley, and an arm for transmitting the driving force of the actuator to any one of the pulleys.
  • a rotating nut member; and a screw shaft that drives the pulley by converting the rotational motion of the nut member into a linear motion by a male screw threadedly engaged with the nut member, the arm and the screw shaft Are connected via a ball joint, wherein the ball joint includes a joint housing provided on the screw shaft, and the arm.
  • the ball stud has a ball shaft portion having a spherical outer peripheral surface, and the ball shaft portion coaxial with the ball shaft portion.
  • a cylindrical shaft portion having a cylindrical outer peripheral surface having a diameter smaller than the diameter of the ball, and the joint housing is in contact with a ball support surface into which the ball shaft portion is fitted, and an outer peripheral surface of the cylindrical shaft portion.
  • a first feature is that a stopper surface is provided that restricts the rotation angle around the axis of the screw shaft to a constant angle ⁇ .
  • the rotation angle around the axis of the screw shaft refers to the rotation angle of the axis of the joint housing relative to the axis of the ball stud.
  • the stopper surface is an inclined surface that is inclined with respect to the axis of the joint housing and is in contact with the outer peripheral surface of the cylindrical shaft portion in a line contact state.
  • the stopper surface is a tapered surface having a large diameter toward the outer side of the joint housing, and is closer to the arm side than the ball support surface.
  • the arrangement is the third feature.
  • the present invention has a fourth feature that the ball support surface is a cylindrical surface having a width in the axial direction of the joint housing.
  • the present invention has a fifth feature that the stopper surface is a curved surface that swells toward the inner peripheral side of the joint housing.
  • the present invention provides a rotation angle around the axis of the screw shaft by contacting the joint housing when the ball stud is not inserted into the joint housing.
  • a sixth feature is that a detent that restricts the angle to a certain angle ⁇ is provided in the unit case that forms the outer shell of the actuator.
  • the seventh feature is that the angle ⁇ and the angle ⁇ are set as ⁇ ⁇ .
  • the joint housing when the nut member is rotated by the operation of the actuator, the joint housing also tries to rotate with the rotation of the screw shaft.
  • the stopper surface provided on the inner periphery of the joint housing is the ball stud. Since the rotation of the joint housing is restricted by contacting the cylindrical shaft portion, the rotation of the screw shaft is thereby restricted and the rotation of the screw shaft accompanying the rotation of the nut member is prevented. As a result, the pulley can be driven by accurately converting the rotational force of the motor into the thrust of the screw shaft.
  • the reaction force acts in a direction perpendicular to the axis of the ball stud, and the reaction force does not act in the axis direction of the ball stud.
  • the ball stud can be prevented from coming off from the joint housing.
  • the ball stud can swing within the range where the cylindrical shaft does not contact the stopper surface, it can absorb manufacturing errors of actuator components, mounting errors of the actuator to the transmission case, etc. Absorbing the vibration of the resulting arm can prevent generation of vibration noise and improve the durability of the actuator.
  • the ball stud is directly provided on the ball stud and the ball support surface is directly provided on the joint housing, it is not necessary to use a separate ball or seat, thereby reducing the number of components and reducing the manufacturing cost. .
  • by directly supporting the ball shaft portion of the ball stud with the ball support surface of the joint housing it is possible to increase the diameter of the ball shaft portion and increase the contact area between the ball support surface and the ball shaft portion. The surface pressure of the thrust transmission portion between the ball support surface and the ball shaft portion can be kept small.
  • the stopper surface is inclined with respect to the axis of the joint housing and is in contact with the outer peripheral surface of the cylindrical shaft portion in a line contact state, the surface pressure of the contact portion is reduced. Can be kept low, and the wear resistance of the contact portion can be increased.
  • the stopper surface is a tapered surface having a large diameter toward the outer side of the joint housing, and is disposed on the arm side with respect to the ball support surface.
  • the stopper surface can serve as a guide to easily insert the ball stud into the joint housing.
  • the ball support surface is a cylindrical surface having a width in the axial direction of the joint housing, the ball shaft portion is moved in the axial direction due to arm vibration caused by pulley vibration or the like. Even when displaced, the ball shaft portion can be reliably supported within the ball support surface, and the thrust transmission between the ball support surface and the ball shaft portion can be performed reliably.
  • the stopper surface is a curved surface that swells toward the inner peripheral side of the joint housing, so that the ball shaft portion is displaced in the axial direction due to arm vibration caused by pulley vibration or the like.
  • the outer peripheral surface of the cylindrical shaft portion contacts within the curved surface without contacting the edge of the stopper surface, the wear resistance of the contact portion can be improved.
  • the rotation stopper around the axis of the screw shaft is regulated to a fixed angle ⁇ by contacting the joint housing. Since it is provided in the case, it is easy to fit the ball stud into the joint housing, and also prevents the screw shaft from rotating in the rotational direction due to vibration during handling of the actuator during transportation, etc. The shaft can be prevented from falling off.
  • the stopper surface is the cylindrical shaft. Since the joint housing does not come into contact with the rotation stopper before coming into contact with the portion, it is not necessary to generate a frictional resistance that hinders the useless operation of the screw shaft due to the contact between the joint housing and the rotation prevention.
  • FIG. 1 is a plan sectional view of a belt type continuously variable transmission according to an embodiment of the present invention.
  • FIG. 2 is a side view of the belt-type continuously variable transmission according to the embodiment of the present invention (as viewed from arrow 2 in FIG. 1).
  • FIG. 3 is an enlarged view of a portion indicated by an arrow 3 in FIG.
  • First embodiment 4 is a cross-sectional view taken along line 4-4 of FIG.
  • FIG. 5 is a view showing a state before the ball stud is inserted into the joint housing in the sectional view taken along line 4-4 of FIG. 3, and showing the state where the back surface of the joint housing is in contact with the detent. .
  • FIG. 1 is a plan sectional view of a belt-type continuously variable transmission according to the present invention
  • FIG. 2 is a view taken in the direction of arrow 2 in FIG.
  • a belt type continuously variable transmission 1 includes an input shaft 2 to which power is transmitted from a power source such as an engine or a motor (not shown), and is not shown in parallel with the input shaft 2.
  • a transmission case 7 that accommodates both pulleys 4 and 5 and the belt 6 and an actuator 8 that is attached to the transmission case 7 and can change the groove width of the drive pulley 4 are mounted on a vehicle such as a motorcycle. .
  • the actuator 8 may change the groove width of the driven pulley 5.
  • the drive pulley 4 includes a drive-side fixed sheave 4a fixed to the input shaft 2, and a drive-side movable sheave 4b supported by the input shaft 2 and movable in the axial direction of the input shaft 2.
  • the driven side fixed sheave 5a is fixed to the output shaft 3 and the driven side movable sheave 5b is supported by the output shaft 3 and is movable in the axial direction of the output shaft 3.
  • the lamp plate 9 is fixed to the input shaft 2 behind the drive side movable sheave 4b, and a plurality of centrifugal weights 10 are held between the drive side movable sheave 4b and the lamp plate 9.
  • the centrifugal weight 10 moves radially outward along the cam surface 4c of the drive side movable sheave 4b, and the drive side
  • the winding radius of the belt 6 is increased.
  • an arm 12 is connected to the drive side movable sheave 4b via a bearing 11 so as to be relatively rotatable.
  • the drive side movable sheave 4b is connected to the arm 12 via the arm 12 along the axis of the input shaft 2.
  • An actuator 8 that drives in the direction is connected via a ball joint 13.
  • the actuator 8 is a unit case composed of a first case half 14a and a second case half 14b that form an outer shell thereof. 14, and a flat storage space 15 is defined between the first and second case halves 14a and 14b.
  • the outer wall surface 14a 'of the first case half 14a opposite to the second case half 14b is a mounting surface to the mounting portion 7a formed in the mission case 7, and the transmission from the outer wall surface 14a' In the case 7, the first and second bulging portions 16 and 17 of the first case half 14a bulge.
  • a motor 18 is disposed in the first bulging portion 16, and a screw shaft 19 is disposed in the second bulging portion 17.
  • the mounting portion 7 a of the transmission case 7 has first and second portions.
  • An opening 7 b for inserting the bulging portions 16 and 17 into the mission case 7 is formed.
  • a reduction gear mechanism 20 that reduces the output of the motor 18 and a nut member 21 that is rotationally driven by the motor 18 via the reduction gear mechanism 20 are disposed in the storage space 15.
  • the nut member 21 is rotatably supported by the first and second case halves 14 a and 14 b via bearings 22 and 23, and a female screw 21 a formed on the inner periphery of the nut member 21 is attached to the screw shaft 19.
  • a feed screw mechanism that converts the rotational movement of the nut member 21 into the linear movement of the screw shaft 19 is configured by screwing with the formed male screw 19a.
  • the screw shaft 19 is slidably disposed in the second bulging portion 17 so that the tip end portion 19 b protrudes outward from the second bulging portion 17, and the nut member 21 rotates the motor 18.
  • the male screw 19a may be formed integrally with the screw shaft 19, or may be formed separately and integrated with the screw shaft 19.
  • a cylindrical joint housing 25 having an axis X2 orthogonal to the axis X1 of the screw shaft 19 is provided at the tip 19b of the screw shaft 19.
  • the ball joint 13 is configured by the joint housing 25 and the ball stud 26 supported by the joint housing 25 so as to be swingable.
  • One end of the ball stud 26 is fitted in the fitting hole 12a at the tip of the arm 12 and fixed to the arm 12, and the ball shaft portion having a spherical outer peripheral surface on the other end protruding from the arm 12.
  • the ball stud 26 may be formed integrally with the arm 12.
  • a ball support surface 25a is formed on the inner periphery of the joint housing 25 so that the ball shaft portion 26a of the ball stud 26 can be inserted and removed.
  • This ball support surface 25a reliably supports the ball shaft portion 26a within the ball support surface 25a even when the ball shaft portion 26a is displaced in the axis X3 direction of the ball stud 26 within the joint housing 25.
  • the shape of the ball support surface 25a is not particularly limited to such a cylindrical surface, but is formed in a cylindrical surface having a width in the direction of the axis X2 of the joint housing 25.
  • the rotation angle about the axis X1 of the screw shaft 19 by contacting the outer peripheral surface 26b 'of the cylindrical shaft portion 26b (the rotation angle of the axis X2 of the joint housing 25 with respect to the axis X3 of the ball stud 26).
  • the cylindrical shaft portion 26b and the stopper surface 25b may be provided only on one side of the ball shaft portion 26a and only one side of the ball support surface 25a opposite thereto.
  • the stopper surface 25b is arranged on the arm 12 side with respect to the ball support surface 25a as in this embodiment, the stopper surface 25b has a taper having a large diameter toward the outer side of the joint housing 25. Therefore, when the ball stud 26 is fitted into the joint housing 25, the stopper surface 25b can be used as a guide to easily fit the ball stud 26 into the joint housing 25.
  • the contact portion is compared with the case where it is provided only on one side. It is possible to increase the wear resistance of the contact portion by dispersing the surface pressure.
  • the stopper surface 25b is simply inclined at an angle ⁇ with respect to the axis line X2 of the joint housing 25, and the cylindrical shaft portion 26b.
  • the back surface 25c (surface opposite to the arm 12) of the joint housing 25 is sealed in order to avoid the inflow of dust. Instead of sealing, a lid is provided, or if it is not necessary, it is used as an open surface. Also good.
  • the first and second bulging portions 16 and 17 of the first case half 14a of the actuator 8 are inserted into the transmission case 7 from the opening 7b of the transmission case 7, and the joint 8
  • the ball shaft portion 26a of the ball stud 26 extending from the tip of the arm 12 is fitted into the ball support surface 25a of the housing 25
  • the opening 7b of the mission case 7 is opened by the outer wall surface 14a ′ of the first case half 14a.
  • the unit case 14 of the actuator 8 is fixed to the transmission case 7 so as to cover it.
  • the joint housing 25 is a state that can freely rotate around the axis X1 of the screw shaft 19. Therefore, the direction of the axis X2 of the joint housing 25 is largely deviated from the direction of the axis X3 of the ball stud 26, or when the actuator 8 is handled such as when it is transported, the screw shaft 19 moves loosely from the nut member 21 due to vibration or the like. There is a possibility that a state of falling off may occur.
  • the ball stud 26 can be easily fitted into the joint housing 25, and the actuator 8 Prevents the screw shaft 19 from rotating in the rotational direction due to vibration during handling such as transporting It is possible to prevent falling off of the screw shaft 19 from the nut member 21 due to the act blindly.
  • the angle ⁇ is set to ⁇ ⁇ , and when the nut member 21 is rotated by the operation of the actuator 8 to operate the screw shaft 19, the joint housing before the stopper surface 25b abuts on the cylindrical shaft portion 26b. 25 does not come into contact with the rotation stopper 28, so that it is not necessary to generate a frictional resistance that hinders the unnecessary operation of the screw shaft 19 due to the contact between the joint housing 25 and the rotation stopper 28.
  • the joint housing 25 is also rotated with the rotation of the screw shaft 19, but the stopper surface 25 b provided on the inner periphery of the joint housing 25 is a cylindrical shaft provided on the ball stud 26. Since the rotation of the joint housing 25 is restricted by coming into contact with the portion 26b, the rotation of the screw shaft 19 is thereby restricted and the rotation of the screw shaft 19 accompanying the rotation of the nut member 21 is prevented. As a result, the rotational force of the motor 18 can be accurately converted into the thrust of the screw shaft 19 to drive the drive side movable sheave 4b of the drive pulley 4.
  • the reaction force acts in a direction perpendicular to the axis X3 of the ball stud 26, and the reaction force is applied to the ball stud 26. Therefore, the ball stud 26 can be prevented from coming off from the joint housing 25. Moreover, since the ball stud 26 can swing within a range where the cylindrical shaft portion 26b does not contact the stopper surface 25b, it is possible to absorb manufacturing errors of components of the actuator 8, mounting errors of the actuator 8 to the transmission case 7, and the like. Further, the vibration of the arm 12 caused by the vibration of the drive pulley 4 and the like can be absorbed to prevent generation of vibration noise and improve the durability of the actuator 8.
  • the ball stud portion 26a is directly provided on the ball stud 26 and the ball support surface 25a is directly provided on the joint housing 25, it is not necessary to use a separate ball or seat, so that the number of components can be reduced. Cost can be reduced. Moreover, by directly supporting the ball shaft portion 26a of the ball stud 26 with the ball support surface 25a of the joint housing 25, the ball shaft portion 26a has a large diameter, and the contact area between the ball support surface 25a and the ball shaft portion 26a is increased. Therefore, the surface pressure of the thrust transmission portion between the ball support surface 25a and the ball shaft portion 26a can be kept small.
  • the stopper surface 25b is inclined with respect to the axis X2 of the joint housing 25 and is in contact with the outer peripheral surface 26b ′ of the cylindrical shaft portion 26b in a line contact state, the surface pressure of the contact portion is kept low, The wear resistance of the contact portion can be improved.
  • the stopper surface 25b is disposed on the arm 12 side with respect to the ball support surface 25a as a tapered surface having a large diameter toward the outer side of the joint housing 25, the ball stud 26 is fitted into the joint housing 25. At this time, the stopper surface 25b serves as a guide, and the ball stud 26 can be easily fitted into the joint housing 25.
  • the ball support surface 25a is a cylindrical surface having a width in the direction of the axis line X2 of the joint housing 25, the ball shaft portion 26a is moved to the axis line X3 of the ball stud 26 by the vibration of the arm 12 caused by the vibration of the drive pulley 4 or the like. Even when displaced in the direction, the ball shaft portion 26a can be reliably supported in the ball support surface 25a, and the thrust transmission between the ball support surface 25a and the ball shaft portion 26a can be reliably performed.
  • the stopper surface 25b is a curved surface that swells toward the inner peripheral side of the joint housing 25, the ball shaft portion 26a is displaced in the direction of the axis X3 of the ball stud 26 by the vibration of the arm 12 caused by the vibration of the drive pulley 4 or the like. Even in this case, the outer peripheral surface 26b 'of the cylindrical shaft portion 26b contacts the curved surface without contacting the edge of the stopper surface 25b, so that the wear resistance of the contact portion can be improved.
  • the rotation stopper 28 that restricts the rotation angle around the axis X1 of the screw shaft 19 to a constant angle ⁇ by contacting the back surface 25c of the joint housing 25 is a unit case. 14 makes it easy to fit the ball stud 26 into the joint housing 25, and prevents the screw shaft 19 from rotating in the rotational direction due to vibration or the like when handling the actuator 8 during transportation, etc. The screw shaft 19 can be prevented from falling off from the member 21.
  • the angle ⁇ and the angle ⁇ are set as ⁇ ⁇ , when the screw shaft 19 is operated by rotating the nut member 21 by the operation of the actuator 8, the stopper surface 25b is not in contact with the cylindrical shaft portion 26b. In addition, since the joint housing 25 does not come into contact with the rotation stopper 28, unnecessary frictional resistance due to contact between the joint housing 25 and the rotation stopper 28 can be avoided.
  • the belt-type continuously variable transmission of the present invention is not limited to that mounted on a motorcycle, and can be used in any type of vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

ベルト式無段変速機において、ボールジョイント(13)は、ねじ軸(19)に設けられるジョイントハウジング(25)と、アーム(12)から延びてジョイントハウジング(25)に揺動可能に支持されるボールスタッド(26)とを有し、ボールスタッド(26)には、球状の外周面を有するボール軸部(26a)と、それと同軸でボール軸部(26a)の直径よりも小径且つ円筒状の外周面を有する円筒軸部(26b)とを設け、ジョイントハウジング(25)には、ボール軸部(26a)が嵌入されるボール支持面(25a)と、円筒軸部(26b)の外周面(26b')に当接してねじ軸(19)の軸線(X1)周りの回転角度を一定角度αに規制するストッパ面(25b)とを設けた。これにより、モータの回転力をねじ軸の推力に的確に変換してプーリを駆動することができ、且つ部品点数が少なくて構造も簡便なものを提供することができる。

Description

ベルト式無段変速機
本発明は、入力軸に支持される駆動プーリと、出力軸に支持される従動プーリと、それら両プーリに巻き掛けられるベルトと、前記両プーリのうちの何れか一方のプーリの溝幅を変更可能なアクチュエータとを備えるベルト式無段変速機の改良に関する。
 このようなベルト式無段変速機として、下記特許文献1に開示されるように、アクチュエータの駆動力をプーリに伝達するアームを備え、アーム及びアクチュエータの出力ロッドをボールジョイントを介して連結したものが既に知られている。
日本特開2015-92100号公報
 上記特許文献1に開示されるアクチュエータは、モータの回転力を出力ロッドの推力に変換するために、モータの回転力を受けて回転するナット部材と、このナット部材に螺合する雄ねじにより該ナット部材の回転運動を直線運動に変換するねじ軸とを有し、このねじ軸を出力ロッドとして構成したものであると考えられるが、その場合、アームおよびねじ軸がボールジョイントを介して連結されていることに起因して、ナット部材の回転に伴いねじ軸が共回りしてしまうので、モータの回転力を的確にねじ軸の推力に変換することができず、プーリを正確に駆動することの妨げとなる。
 しかも、上記特許文献1のものは、シートやボールといった複数の部品でボールジョイントが構成されているために、部品点数が多く構造も複雑である。
 本発明は、かかる事情に鑑みてなされたものであって、モータの回転力をねじ軸の推力に的確に変換してプーリを駆動することができ、且つ部品点数が少なくて構造も簡便なベルト式無段変速機を得ることを目的とする。
 上記目的を達成するために、本発明は、入力軸に支持される駆動プーリと、出力軸に支持される従動プーリと、それら両プーリに巻き掛けられるベルトと、前記両プーリのうちの何れか一方のプーリを駆動して該プーリの溝幅を変更可能なアクチュエータと、このアクチュエータの駆動力を前記何れか一方のプーリに伝達するアームとを備え、前記アクチュエータは、モータの回転力を受けて回転するナット部材と、このナット部材に螺合する雄ねじにより該ナット部材の回転運動を直線運動に変換して前記何れか一方のプーリを駆動するねじ軸とを有し、前記アームおよび前記ねじ軸をボールジョイントを介して連結したベルト式無段変速機であって、前記ボールジョイントは、前記ねじ軸に設けられるジョイントハウジングと、前記アームから延びて前記ジョイントハウジングに揺動可能に支持されるボールスタッドとを有し、前記ボールスタッドには、球状の外周面を有するボール軸部と、このボール軸部と同軸で該ボール軸部の直径よりも小径且つ円筒状の外周面を有する円筒軸部とを設け、前記ジョイントハウジングには、前記ボール軸部が嵌入されるボール支持面と、前記円筒軸部の外周面に当接して前記ねじ軸の軸線周りの回転角度を一定角度αに規制するストッパ面とを設けたことを第1の特徴とする。
 なお、ねじ軸の軸線周りの回転角度とは、ボールスタッドの軸線に対するジョイントハウジングの軸線の回転角度を言うものとする。
 また本発明は、第1の特徴に加えて、前記ストッパ面を、前記ジョイントハウジングの軸線に対して傾斜して前記円筒軸部の外周面と線接触状態で当接する傾斜面としたことを第2の特徴とする。
 また本発明は、第1または第2の特徴に加えて、前記ストッパ面を、前記ジョイントハウジングの外方側に向かって大径となるテーパ面として、前記ボール支持面に対して前記アーム側に配置したことを第3の特徴とする。
 また本発明は、第1ないし第3の特徴の何れかに加えて、前記ボール支持面を、前記ジョイントハウジングの軸線方向に幅を持った円筒面としたことを第4の特徴とする。
 また本発明は、第4の特徴に加えて、前記ストッパ面を、前記ジョイントハウジングの内周側に膨らむ湾曲面としたことを第5の特徴とする。
 また本発明は、第1ないし第5の特徴の何れかに加えて、前記ジョイントハウジングへの前記ボールスタッドの非嵌入状態において、前記ジョイントハウジングと当接することで前記ねじ軸の軸線周りの回転角度を一定角度βに規制する回り止めを、前記アクチュエータの外殻をなすユニットケースに設けたことを第6の特徴とする。
 また本発明は、第6の特徴に加えて、前記角度α及び前記角度βを、α<βと設定したことを第7の特徴とする。
 本発明の第1の特徴によれば、アクチュエータの作動によりナット部材が回転すると、ねじ軸の回転に伴いジョイントハウジングも回転しようとするが、ジョイントハウジングの内周に設けたストッパ面がボールスタッドの円筒軸部に当接してジョイントハウジングの回転が規制されるので、これによりねじ軸の回転が規制されてナット部材の回転に伴うねじ軸の共回りが阻止される。その結果、モータの回転力をねじ軸の推力に的確に変換してプーリを駆動することができる。さらに、ストッパ面と円筒軸部とが当接することで、その反力がボールスタッドの軸線と直交する方向に作用することになり、該反力がボールスタッドの軸線方向に作用することがないので、ジョイントハウジングからのボールスタッドの抜けを防止できる。しかも円筒軸部がストッパ面と当接しない範囲でボールスタッドが揺動可能なため、アクチュエータの構成部品の製作誤差や、ミッションケースへのアクチュエータの取付誤差等を吸収でき、またプーリの振動等に起因するアームの振動を吸収して、振動騒音の発生を防ぐと共にアクチュエータの耐久性を向上させることができる。また、ボールスタッドの最大揺動角度が円筒軸部とストッパ面との当接により規制されるので、ボールスタッドからねじ軸に作用する無用な側圧分力の増加が抑えられ、ねじ軸のスムーズな動作を保証することができる。
 また、ボールスタッドに直接ボール軸部が設けられると共にジョイントハウジングに直接ボール支持面が設けられていて、別体のボールやシートを用いる必要がないので、部品点数を少なくして製造コストを下げられる。しかも、ボールスタッドのボール軸部をジョイントハウジングのボール支持面で直接支持することで、ボール軸部を大径にしてボール支持面とボール軸部との接触面積を広く取ることが可能となるから、ボール支持面とボール軸部との推力伝達部の面圧を小さく抑えることができる。
 また本発明の第2の特徴によれば、ストッパ面をジョイントハウジングの軸線に対して傾斜して円筒軸部の外周面と線接触状態で当接する傾斜面としたので、当接部の面圧を低く抑え、当接部の耐摩耗性を高めることができる。
 また本発明の第3の特徴によれば、ストッパ面を、ジョイントハウジングの外方側に向かって大径となるテーパ面として、ボール支持面に対してアーム側に配置したので、ボールスタッドをジョイントハウジングに嵌入する際、ストッパ面がガイドとなってジョイントハウジングへのボールスタッドの嵌入を容易に行うことができる。
 また本発明の第4の特徴によれば、ボール支持面をジョイントハウジングの軸線方向に幅を持った円筒面としたので、プーリの振動等に起因するアームの振動によりボール軸部が軸線方向に変位した場合でも、ボール軸部をボール支持面内で確実に支持することができて、ボール支持面とボール軸部との推力伝達を確実に行うことができる。
 また本発明の第5の特徴によれば、ストッパ面をジョイントハウジングの内周側に膨らむ湾曲面としたので、プーリの振動等に起因するアームの振動によりボール軸部が軸線方向に変位した場合でも、円筒軸部の外周面がストッパ面のエッジに当接することなく、曲面状の面内で当接するので、当接部の耐摩耗性を高めることができる。
 また本発明の第6の特徴によれば、ジョイントハウジングへのボールスタッドの非嵌入状態において、ジョイントハウジングと当接することでねじ軸の軸線周りの回転角度を一定角度βに規制する回り止めをユニットケースに設けたので、ジョイントハウジングへのボールスタッドの嵌入が容易になると共に、アクチュエータの搬送時等の取り扱い時に、振動等によるねじ軸の回転方向の妄動を防ぎ、その妄動によるナット部材からのねじ軸の脱落を防ぐことができる。
 また本発明の第7の特徴によれば、角度α及び角度βを、α<βと設定したことで、アクチュエータの作動によりナット部材を回転させてねじ軸を動作させる時に、ストッパ面が円筒軸部に当接する以前にジョイントハウジングが回り止めと当接することがないので、ジョイントハウジングと回り止めとの接触による無用なねじ軸の動作の妨げとなる摩擦抵抗を発生させずに済む。
図1は本発明の実施形態におけるベルト式無段変速機の平断面図である。(第1の実施の形態) 図2は本発明の実施形態におけるベルト式無段変速機の側面図(図1の2矢視図)である。(第1の実施の形態) 図3は図1の矢視3部分の拡大図である。(第1の実施の形態) 図4は図3の4-4線断面図である。(第1の実施の形態) 図5は図3の4-4線断面図において、ジョイントハウジングにボールスタッドが嵌入される以前の状態を示す図であって、ジョイントハウジングの背面が回り止めに当接した状態を示す図である。(第1の実施の形態)
2・・・・入力軸
3・・・・出力軸
4・・・・駆動プーリ
5・・・・従動プーリ
6・・・・ベルト
8・・・・アクチュエータ
12・・・アーム
13・・・ボールジョイント
14・・・ユニットケース
18・・・モータ
19・・・ねじ軸
19a・・雄ねじ
21・・・ナット部材
25・・・ジョイントハウジング
25a・・ボール支持面
25b・・ストッパ面
26・・・ボールスタッド
26a・・ボール軸部
26b・・円筒軸部
26b′・外周面
28・・・回り止め
X1・・・ねじ軸の軸線
X2・・・ジョイントハウジングの軸線
α・・・・ストッパ面により規制されるねじ軸の軸線周りの回転角度
β・・・・回り止めにより規制されるねじ軸の軸線周りの回転角度
 本発明のベルト式無段変速機を自動二輪車等の車両に適用した実施形態を、添付図面に基づいて以下に説明する。
第1の実施の形態
 図1は、本発明に係るベルト式無段変速機の平断面図であり、図2は図1の2矢視図である。
 図1,図2に示すように、ベルト式無段変速機1は、図示せぬエンジンやモータ等の動力源から動力が伝達される入力軸2と、この入力軸2に平行で図示せぬ車輪に動力を伝達する出力軸3と、入力軸2に支持される駆動プーリ4と、出力軸3に支持される従動プーリ5と、それら両プーリ4,5に巻き掛けられるベルト6と、それら両プーリ4,5およびベルト6を収容するミッションケース7と、そのミッションケース7に取り付けられて駆動プーリ4の溝幅を変更可能なアクチュエータ8とを備えて、自動二輪車等の車両に搭載される。なお、アクチュエータ8は従動プーリ5の溝幅を変更するものであってもよい。
 駆動プーリ4は入力軸2に固定される駆動側固定シーブ4aと、入力軸2に支持されて入力軸2の軸線方向に移動可能な駆動側可動シーブ4bとからなっており、従動プーリ5は出力軸3に固定される従動側固定シーブ5aと、出力軸3に支持されて出力軸3の軸線方向に移動可能な従動側可動シーブ5bとからなっている。
 駆動側可動シーブ4bの背後で入力軸2にはランププレート9が固定されて、この駆動側可動シーブ4bとランププレート9との間に複数の遠心ウエイト10が保持される。いま入力軸2が回転して、その回転速度に応じた遠心力が遠心ウエイト10に作用すると、遠心ウエイト10が駆動側可動シーブ4bのカム面4cに沿って径外方へ移動し、駆動側可動シーブ4bを駆動側固定シーブ4a側へ移動させることでベルト6の巻き掛け半径が大きくなる。
 また、駆動側可動シーブ4bには、軸受11を介してアーム12が相対回転可能に連結されており、そのアーム12には、該アーム12を介して駆動側可動シーブ4bを入力軸2の軸線方向に駆動するアクチュエータ8がボールジョイント13を介して接続される。
 図1の矢視3部分の拡大図である図3を併せて参照して、アクチュエータ8は、その外殻をなす第1ケース半体14aと第2ケース半体14bとで構成されるユニットケース14を備えており、これら第1,第2ケース半体14a,14b間には扁平な収納空間15が画成される。第1ケース半体14aの第2ケース半体14bとは反対側の外壁面14a′は、ミッションケース7に形成された取付部7aへの取り付け面とされており、この外壁面14a′からミッションケース7内に、第1ケース半体14aの第1,第2膨出部16,17が膨出している。
 第1膨出部16内にはモータ18が配置されると共に、第2膨出部17内にはねじ軸19が配置されており、ミッションケース7の取付部7aには、第1,第2膨出部16,17をミッションケース7内に挿入するための開口部7bが形成されている。また、収納空間15内には、モータ18の出力を減速する減速ギヤ機構20と、この減速ギヤ機構20を介してモータ18により回転駆動されるナット部材21とが配置される。
 ナット部材21はベアリング22,23を介して第1,第2ケース半体14a,14bに回動可能に支持されており、このナット部材21の内周に形成された雌ねじ21aがねじ軸19に形成された雄ねじ19aと螺合することで、ナット部材21の回転運動をねじ軸19の直線運動に変換する送りねじ機構が構成される。ねじ軸19は、先端部19bを第2膨出部17から外方に突出させるようにして該第2膨出部17内に摺動自在に配置されており、ナット部材21がモータ18の回転力を受けて回転することで、第2膨出部17から先端部19aを突出させたねじ軸19がナット部材21の軸線に沿って進退動する。なお、雄ねじ19aはねじ軸19と一体に形成されるものであっても、別体に形成されてねじ軸19に一体化されるものであっても良い。
 図3の4-4矢視図である図4を併せて参照して、ねじ軸19の先端部19bには、該ねじ軸19の軸線X1と直交する軸線X2を有する筒状のジョイントハウジング25が設けられ、このジョイントハウジング25と、該ジョイントハウジング25に揺動可能に支持されるボールスタッド26とでボールジョイント13が構成される。
 ボールスタッド26は、その一端側がアーム12先端の嵌合孔12aに嵌め込まれて該アーム12に固設されると共に、アーム12から突出させた他端側に、球状の外周面を有するボール軸部26aと、このボール軸部26aと同軸で該ボール軸部26aの直径よりも小径且つ円筒状の外周面を有する円筒軸部26bとが、ボール軸部26aの両側に円筒軸部26bが配置されるようにして連設される。なお、このボールスタッド26はアーム12と一体に形成されていても良い。
 ジョイントハウジング25の内周には、ボールスタッド26のボール軸部26aを抜き差し可能に嵌入させるボール支持面25aが形成される。このボール支持面25aは、ジョイントハウジング25内をボール軸部26aがボールスタッド26の軸線X3方向に変位した場合でも、該ボール軸部26aをボール支持面25a内で確実に支持して密接な接触が保たれるように、ジョイントハウジング25の軸線X2方向に幅を持った円筒面に形成されるが、該ボール支持面25aの形状は特にこのような円筒面に限定されるものではない。
 またジョイントハウジング25の内周には、円筒軸部26bの外周面26b′に当接してねじ軸19の軸線X1周りの回転角度(ボールスタッド26の軸線X3に対するジョイントハウジング25の軸線X2の回転角度)を一定角度αに規制するストッパ面25bが、ボール支持面25aと連続するようにして該ボール支持面25aの軸方向両側に設けられており、該ストッパ面25bは、ボール軸部26aがボールスタッド26の軸線X3方向に変位した場合でも、円筒軸部26bの外周面26b′との当接部の面圧を低く抑え得るよう、軸線X2に対して角度αだけ傾斜すると共にジョイントハウジング25の内周側に膨らむ湾曲面に形成されている。
 なお、円筒軸部26b及びストッパ面25bは、各々ボール軸部26aの一方側及びそれに対向するボール支持面25aの一方側だけに設けても良い。その場合、本実施形態のように、該ストッパ面25bをボール支持面25aに対してアーム12側に配置していれば、ストッパ面25bがジョイントハウジング25の外方側に向かって大径のテーパ面となるので、ボールスタッド26をジョイントハウジング25に嵌入する際、ストッパ面25bがガイドとなってジョイントハウジング25へのボールスタッド26の嵌入を容易に行うことができる。なお、本実施形態のように、円筒軸部26b及びストッパ面25bをボール軸部26a及びボール支持面25aの両側に設けた場合には、一方側だけに設ける場合と比較して、当接部の面圧を分散して、当接部の耐摩耗性を高めることができる。
 またボール軸部26aがボールスタッド26の軸線X3方向に変位しない構造である場合には、該ストッパ面25bを、単にジョイントハウジング25の軸線X2に対して角度αだけ傾斜して円筒軸部26bの外周面26b′と線接触状態で当接する傾斜面とすることで、当接部の面圧を低く抑え、当接部の耐摩耗性を高めることができる。
 またジョイントハウジング25の背面25c(アーム12と反対側の面)は、塵埃の流入を避けるために密封されているが、密封する代わりに蓋体を設けたり、必要がなければそれを開放面としても良い。
 アクチュエータ8をミッションケース7に取り付けるには、アクチュエータ8の第1ケース半体14aの第1,第2膨出部16,17をミッションケース7の開口部7bからミッションケース7内に挿入し、ジョイントハウジング25のボール支持面25aに、アーム12先端から延びたボールスタッド26のボール軸部26aを嵌入した後、ミッションケース7の開口部7bを前記第1ケース半体14aの前記外壁面14a′で覆うようにして、アクチュエータ8のユニットケース14をミッションケース7に固定するが、その際、ジョイントハウジング25のボール支持面25aにボールスタッド26のボール軸部26aを嵌入する以前の状態では、ジョイントハウジング25がねじ軸19の軸線X1周りに自由に回転し得る状態であるので、ジョイントハウジング25の軸線X2の方向がボールスタッド26の軸線X3の方向から大きくずれてしまったり、アクチュエータ8の搬送時等の取り扱い時に、振動等によりねじ軸19が妄動してナット部材21から脱落してしまうような状態が生じる虞がある。
 而るに本実施形態では、ジョイントハウジング25にボールスタッド26が嵌入される以前の状態を示す図5のように、ジョイントハウジング25へのボールスタッド26の非嵌入状態において、ジョイントハウジング25の背面25cと当接することでねじ軸19の軸線X1周りの回転角度(ボール軸部26aをボール支持面25aに嵌入した状態における、ボールスタッド26の軸線X3に対するジョイントハウジング25の軸線X2の回転角度)を一定角度βに規制する回り止め28が第1ケース半体14aの第2膨出部17の先端に突設されているので、ジョイントハウジング25へのボールスタッド26の嵌入が容易になると共に、アクチュエータ8の搬送時等の取り扱い時に、振動等によるねじ軸19の回転方向の妄動を防ぎ、その妄動によるナット部材21からのねじ軸19の脱落を防ぐことができる。
 しかも該角度βは、α<βに設定されていて、アクチュエータ8の作動によりナット部材21を回転させてねじ軸19を動作させる時に、ストッパ面25bが円筒軸部26bに当接する以前にジョイントハウジング25が回り止め28と当接することがないので、ジョイントハウジング25と回り止め28との接触による無用なねじ軸19の動作の妨げとなる摩擦抵抗を発生させずに済む。
 次に、この実施形態の作用を説明する。
 アクチュエータ8の作動によりナット部材21が回転すると、ねじ軸19の回転に伴いジョイントハウジング25も回転しようとするが、ジョイントハウジング25の内周に設けたストッパ面25bがボールスタッド26に設けた円筒軸部26bに当接してジョイントハウジング25の回転が規制されるので、これによりねじ軸19の回転が規制されてナット部材21の回転に伴うねじ軸19の共回りが阻止される。その結果、モータ18の回転力をねじ軸19の推力に的確に変換して駆動プーリ4の駆動側可動シーブ4bを駆動することができる。さらに、ストッパ面25bと円筒軸部26bの外周面26b′とが当接することで、その反力がボールスタッド26の軸線X3と直交する方向に作用することになり、該反力がボールスタッド26の軸線X3方向に作用することがないので、ジョイントハウジング25からのボールスタッド26の抜けを防止できる。しかも円筒軸部26bがストッパ面25bと当接しない範囲でボールスタッド26が揺動可能なため、アクチュエータ8の構成部品の製作誤差や、ミッションケース7へのアクチュエータ8の取付誤差等を吸収でき、また駆動プーリ4の振動等に起因するアーム12の振動を吸収して、振動騒音の発生を防ぐと共にアクチュエータ8の耐久性を向上させることができる。また、ボールスタッド26の最大揺動角度が円筒軸部26bとストッパ面25bとの当接により規制されるので、ボールスタッド26からねじ軸19に作用する無用な側圧分力の増加が抑えられ、ねじ軸19のスムーズな動作を保証することができる。
 また、ボールスタッド26に直接ボール軸部26aが設けられると共にジョイントハウジング25に直接ボール支持面25aが設けられていて、別体のボールやシートを用いる必要がないので、部品点数を少なくして製造コストを下げられる。しかも、ボールスタッド26のボール軸部26aをジョイントハウジング25のボール支持面25aで直接支持することで、ボール軸部26aを大径にしてボール支持面25aとボール軸部26aとの接触面積を広く取ることが可能となるから、ボール支持面25aとボール軸部26aとの推力伝達部の面圧を小さく抑えることができる。
 また、ストッパ面25bをジョイントハウジング25の軸線X2に対して傾斜して円筒軸部26bの外周面26b′と線接触状態で当接する傾斜面としたので、当接部の面圧を低く抑え、当接部の耐摩耗性を高めることができる。
 また、ストッパ面25bを、ジョイントハウジング25の外方側に向かって大径となるテーパ面として、ボール支持面25aに対してアーム12側に配置したので、ボールスタッド26をジョイントハウジング25に嵌入する際、ストッパ面25bがガイドとなってジョイントハウジング25へのボールスタッド26の嵌入を容易に行うことができる。
 また、ボール支持面25aをジョイントハウジング25の軸線X2方向に幅を持った円筒面としたので、駆動プーリ4の振動等に起因するアーム12の振動によりボール軸部26aがボールスタッド26の軸線X3方向に変位した場合でも、ボール軸部26aをボール支持面25a内で確実に支持することができて、ボール支持面25aとボール軸部26aとの推力伝達を確実に行うことができる。
 また、ストッパ面25bをジョイントハウジング25の内周側に膨らむ湾曲面としたので、駆動プーリ4の振動等に起因するアーム12の振動によりボール軸部26aがボールスタッド26の軸線X3方向に変位した場合でも、円筒軸部26bの外周面26b′がストッパ面25bのエッジに当接することなく、曲面状の面内で当接するので、当接部の耐摩耗性を高めることができる。
 また、ジョイントハウジング25へのボールスタッド26の非嵌入状態において、ジョイントハウジング25の背面25cと当接することでねじ軸19の軸線X1周りの回転角度を一定角度βに規制する回り止め28をユニットケース14に設けたので、ジョイントハウジング25へのボールスタッド26の嵌入が容易になると共に、アクチュエータ8の搬送時等の取り扱い時に、振動等によるねじ軸19の回転方向の妄動を防ぎ、その妄動によるナット部材21からのねじ軸19の脱落を防ぐことができる。
 また、角度α及び角度βを、α<βと設定したことで、アクチュエータ8の作動によりナット部材21を回転させてねじ軸19を動作させる時に、ストッパ面25bが円筒軸部26bに当接する以前にジョイントハウジング25が回り止め28と当接することがないので、ジョイントハウジング25と回り止め28との接触による無用な摩擦抵抗を発生させずに済む。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱することなく種々の設計変更を行うことが可能である。
 例えば、本発明のベルト式無段変速機は、自動二輪車に搭載されるものに限定されるものでなく、どのような形態の車両にも用いることができる。

Claims (7)

  1. 入力軸(2)に支持される駆動プーリ(4)と、出力軸(3)に支持される従動プーリ(5)と、それら両プーリ(4,5)に巻き掛けられるベルト(6)と、前記両プーリ(4,5)のうちの何れか一方のプーリを駆動して該プーリの溝幅を変更可能なアクチュエータ(8)と、このアクチュエータ(8)の駆動力を前記何れか一方のプーリに伝達するアーム(12)とを備え、前記アクチュエータ(8)は、モータ(18)の回転力を受けて回転するナット部材(21)と、このナット部材(21)に螺合する雄ねじ(19a)により該ナット部材(21)の回転運動を直線運動に変換して前記何れか一方のプーリを駆動するねじ軸(19)とを有し、前記アーム(12)および前記ねじ軸(19)をボールジョイント(13)を介して連結したベルト式無段変速機であって、
     前記ボールジョイント(13)は、前記ねじ軸(19)に設けられるジョイントハウジング(25)と、前記アーム(12)から延びて前記ジョイントハウジング(25)に揺動可能に支持されるボールスタッド(26)とを有し、前記ボールスタッド(26)には、球状の外周面を有するボール軸部(26a)と、このボール軸部(26a)と同軸で該ボール軸部(26a)の直径よりも小径且つ円筒状の外周面を有する円筒軸部(26b)とを設け、前記ジョイントハウジング(25)には、前記ボール軸部(26a)が嵌入されるボール支持面(25a)と、前記円筒軸部(26b)の外周面(26b′)に当接して前記ねじ軸(19)の軸線(X1)周りの回転角度を一定角度αに規制するストッパ面(25b)とを設けたことを特徴とするベルト式無段変速機。
  2.  前記ストッパ面(25b)を、前記ジョイントハウジング(25)の軸線(X2)に対して傾斜して前記円筒軸部(26b)の外周面(26b′)と線接触状態で当接する傾斜面としたことを特徴とする請求項1に記載のベルト式無段変速機。
  3.  前記ストッパ面(25b)を、前記ジョイントハウジング(25)の外方側に向かって大径となるテーパ面として、前記ボール支持面(25a)に対して前記アーム(12)側に配置したことを特徴とする請求項1または請求項2に記載のベルト式無段変速機。
  4.  前記ボール支持面(25a)を、前記ジョイントハウジング(25)の軸線(X2)方向に幅を持った円筒面としたことを特徴とする請求項1ないし請求項3の何れかに記載のベルト式無段変速機。
  5.  前記ストッパ面(25b)を、前記ジョイントハウジング(25)の内周側に膨らむ湾曲面としたことを特徴とする請求項4に記載のベルト式無段変速機。
  6.  前記ジョイントハウジング(25)への前記ボールスタッド(26)の非嵌入状態において、前記ジョイントハウジング(25)と当接することで前記ねじ軸(19)の軸線(X1)周りの回転角度を一定角度βに規制する回り止め(28)を、前記アクチュエータ(8)の外殻をなすユニットケース(14)に設けたことを特徴とする請求項1ないし請求項5の何れかに記載のベルト式無段変速機。
  7.  前記角度α及び前記角度βを、α<βと設定したことを特徴とする請求項6に記載のベルト式無段変速機。
PCT/JP2017/001712 2016-02-02 2017-01-19 ベルト式無段変速機 WO2017135047A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17747206.5A EP3412931A4 (en) 2016-02-02 2017-01-19 CONTINUOUS VARIATION TYPE BELT TRANSMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-017773 2016-02-02
JP2016017773A JP6639932B2 (ja) 2016-02-02 2016-02-02 ベルト式無段変速機

Publications (1)

Publication Number Publication Date
WO2017135047A1 true WO2017135047A1 (ja) 2017-08-10

Family

ID=59499528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001712 WO2017135047A1 (ja) 2016-02-02 2017-01-19 ベルト式無段変速機

Country Status (3)

Country Link
EP (1) EP3412931A4 (ja)
JP (1) JP6639932B2 (ja)
WO (1) WO2017135047A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133824U (ja) * 1983-02-28 1984-09-07 市光工業株式会社 リンクレバ−の球継手連結構造
JP2002364628A (ja) * 2001-06-05 2002-12-18 Somic Ishikawa Inc ボールジョイントおよびそのハウジング
JP2012225509A (ja) * 2011-04-18 2012-11-15 Lg Innotek Co Ltd ボールジョイント
JP2015092100A (ja) 2013-09-30 2015-05-14 本田技研工業株式会社 Vベルト式無段変速機
JP2015172377A (ja) * 2014-03-11 2015-10-01 武蔵精密工業株式会社 ベルト式無段変速機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1125668A (fr) * 1955-03-16 1956-11-05 Ehrenreich & Cie A Articulation à rotule
JP6002614B2 (ja) * 2013-03-29 2016-10-05 武蔵精密工業株式会社 Vベルト式無段変速機
JP2015172382A (ja) * 2014-03-11 2015-10-01 武蔵精密工業株式会社 ベルト式無段変速機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133824U (ja) * 1983-02-28 1984-09-07 市光工業株式会社 リンクレバ−の球継手連結構造
JP2002364628A (ja) * 2001-06-05 2002-12-18 Somic Ishikawa Inc ボールジョイントおよびそのハウジング
JP2012225509A (ja) * 2011-04-18 2012-11-15 Lg Innotek Co Ltd ボールジョイント
JP2015092100A (ja) 2013-09-30 2015-05-14 本田技研工業株式会社 Vベルト式無段変速機
JP2015172377A (ja) * 2014-03-11 2015-10-01 武蔵精密工業株式会社 ベルト式無段変速機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412931A4

Also Published As

Publication number Publication date
JP6639932B2 (ja) 2020-02-05
EP3412931A1 (en) 2018-12-12
JP2017137911A (ja) 2017-08-10
EP3412931A4 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
US8516924B2 (en) Reducing mechanism and harmonic drive thereof
JP6332463B2 (ja) 電動式パワーステアリング装置
JP5293887B2 (ja) 直動アクチュエータ
EP3163117A1 (en) Damper device
JP2009190440A (ja) 車両用インホイールモータ
JP2020101118A (ja) 減速機及び内燃機関の可変圧縮機構のアクチュエータ
JP4941166B2 (ja) 内燃機関の圧縮比可変機構
WO2017135047A1 (ja) ベルト式無段変速機
WO2017135046A1 (ja) ベルト式無段変速機
US20180142739A1 (en) Clutch structure
WO2016017437A1 (ja) 無段変速機用アクチュエータ及び無段変速機
JP5866852B2 (ja) アクチュエータ
JP6204306B2 (ja) 伸縮アクチュエータ
JP2016161068A (ja) 無段変速機及びアクチュエータ
JP6506115B2 (ja) 電動パワーステアリング装置
JP6120439B2 (ja) 伸縮アクチュエータ
WO2017086305A1 (ja) ベルト式無段変速機
JP6159708B2 (ja) 伸縮アクチュエータ
JP6524763B2 (ja) ボールねじ機構及びアクチュエータ
JP2018132120A (ja) アクチュエータ
US9989142B2 (en) Linear actuator
JP5488492B2 (ja) 無段変速機
JP2012122567A (ja) 無段変速機
JP2014214800A (ja) 伸縮アクチュエータ
JP2008169757A (ja) ベルト駆動機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747206

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747206

Country of ref document: EP

Effective date: 20180903