WO2017135038A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2017135038A1
WO2017135038A1 PCT/JP2017/001629 JP2017001629W WO2017135038A1 WO 2017135038 A1 WO2017135038 A1 WO 2017135038A1 JP 2017001629 W JP2017001629 W JP 2017001629W WO 2017135038 A1 WO2017135038 A1 WO 2017135038A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
injection
internal combustion
combustion engine
fuel
Prior art date
Application number
PCT/JP2017/001629
Other languages
English (en)
French (fr)
Inventor
修 向原
豊原 正裕
滋之 由布
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017000208.7T priority Critical patent/DE112017000208B4/de
Priority to JP2017565464A priority patent/JP6450863B2/ja
Priority to CN201780008270.9A priority patent/CN108603456B/zh
Priority to US16/070,863 priority patent/US10895217B2/en
Publication of WO2017135038A1 publication Critical patent/WO2017135038A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • F02D43/04Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment using only digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • a control device for a direct injection internal combustion engine that can prevent abnormal combustion in the process from compression stroke to ignition is known (see, for example, Patent Document 1).
  • Patent Document 1 states that the control means has a phase control function for changing and controlling the opening / closing timing of the intake valve to advance and retard according to various conditions including artificial operation and emission conditions.
  • the means divides the fuel injection during the opening period of the intake valve to be changed, completes the entire fuel injection for a predetermined time before the closing timing of the intake valve, and vaporizes the final injection amount.
  • the predetermined time is set in consideration of the time required for ".”
  • An object of the present invention is to provide a control device for an internal combustion engine capable of avoiding the risk of misfire while achieving a required torque even when an error occurs in the final injection end timing.
  • the present invention calculates a second timing further advanced from the first timing by a time required for vaporization of fuel injected into the cylinder of the internal combustion engine from the ignition timing.
  • a determination unit that determines whether a final injection end timing indicating a timing at which the last fuel injection of one combustion cycle ends exceeds the first timing or the second timing, and the final injection end When it is determined that the timing exceeds the first timing or the second timing, the time required for the fuel injected into the cylinder of the internal combustion engine to vaporize while satisfying the fuel injection amount required in the one combustion cycle is determined.
  • a first control unit that controls the injector or the ignition device so as to ensure.
  • FIG. 1 is a configuration diagram of a control device for an internal combustion engine according to a first embodiment of the present invention.
  • FIG. FIG. 4 is a block diagram for explaining functions of the microcomputer shown in FIG.
  • FIG. 5 is a diagram for explaining an example of control by an effective injection period excess restricting unit shown in FIG.
  • FIG. 3 is a configuration diagram of a control device for an internal combustion engine according to a second embodiment of the present invention.
  • 7 is a flowchart of an effective injection period excess prediction unit shown in FIG.
  • FIG. 7 is a diagram for explaining the operation of an effective injection period excess prediction unit shown in FIG. FIG.
  • FIG. 10 is a diagram for explaining the operation of an effective injection period excess prediction unit according to a first modification.
  • FIG. 10 is a diagram for explaining the operation of an effective injection period excess regulating unit according to a second modification.
  • FIG. 10 is a diagram for explaining the operation of an effective injection period excess prediction unit according to the third embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the operation of an effective injection period excess restricting unit according to a third modification.
  • FIG. 10 is a diagram for explaining an operation of an effective injection period excess restricting unit according to a fourth modified example.
  • the control device for the internal combustion engine must satisfy various combustion requirements with different values for each internal combustion engine for the purpose of preventing deterioration of exhaust performance and output reduction and avoiding the risk of misfire.
  • 101 in FIG. 1 is an example of an injection pulse signal in general single-stage injection control.
  • the injection start timing is fixed (109a), and when the crank angle of the internal combustion engine reaches the injection start timing (T105), the injection operation is started (injection pulse signal (101 ) Goes from low to high at T105). Thereafter, based on the required injection amount of the internal combustion engine, the injection pulse width (110) during which the injection pulse signal (101) is high is calculated, and the injection operation is performed at the time when the calculated injection amount is injected (T111). finish.
  • the injection start timing (T105) is set before the closing timing (T104) of the exhaust valve, the fuel injected from the fuel injection valve (injector) is discharged to the exhaust pipe without burning and exhausted. There is concern about a significant deterioration in performance.
  • the injection end timing (T111) is close to the ignition timing (T107), the fuel vaporization time of the injected fuel is not sufficiently secured, and the desired mixture cannot be formed. May adhere and cause misfire.
  • the injection operation must be completed from the ignition timing (T107) to the position (T106) where a predetermined period is provided on the advance side.
  • the period of fuel injection that can prevent the deterioration of exhaust performance and output reduction from T104 to T106, the risk of misfire is the effective injection period (108), and T104 is the start position of the effective injection period, T106 is referred to as the end position of the effective injection period.
  • particulate matter can be suppressed if the adhered fuel can be reduced.
  • penetration the spray length of fuel injected from the fuel injection valve (hereinafter referred to as penetration) is shortened by multi-stage injection control in which multiple injections are performed during one combustion cycle so that the injected fuel does not hit the piston crown or bore.
  • FIG. 1 is an example of an injection pulse signal when this multistage injection control is performed.
  • the injection start timing is determined at the injection control reference position (T103) (109b), and the injection is executed when the crank angle of the internal combustion engine reaches the injection start timing (T105). Thereafter, an injection amount (divided injection amount) per time is calculated from the split ratio, the intake air amount of the internal combustion engine, the fuel pressure in the common rail, the fuel injection amount calculated based on the constant specific to the fuel injection valve, and the like.
  • the period of 117a, 117b, 117c is determined based on the above-described divided injection amount calculation, and the injection end timing for each number of injection stages (T112, T114, T116)
  • the injection interval (118a, 118b) must be ensured between injection operations. For example, if the injection interval (118a, 118b) is short and the next injection command is given before the valve body of the fuel injection valve completes the valve closing operation, the valve opening operation of the next injection is during the valve closing operation of the previous injection. Therefore, the valve body operation is not stable, and the injection amount variation is induced.
  • the fuel injection valve when driving a fuel injection valve of a direct injection type internal combustion engine, the fuel injection valve is driven by a high voltage obtained by boosting the battery voltage and the battery voltage. If the high voltage becomes a predetermined value or less, Since the boosting operation occurs, it is necessary to wait for the next injection until the boosting operation is completed. If the next injection is performed before the boosting operation is completed, the current profile of the fuel injection valve varies due to the high voltage variation, and as a result, the valve body operation of the fuel injection valve varies. Arise.
  • the second and subsequent injection start timings (T113, T115) during the multi-stage injection control are calculated in consideration of the injection intervals (118a, 118b). Furthermore, as a matter of course, as the number of injection stages increases, the final stage injection end timing (T116) tends to approach the end position (T106) of the effective injection period.
  • the final injection end timing (T111) may be close to the end position (T106) of the effective injection period during high-load operation (a large amount of intake air).
  • FIG. 2 shows, from the top, the throttle opening (201), the intake air amount (202) of the internal combustion engine, the fuel pressure (203) in the common rail provided upstream of the fuel injection valve, and the injection pulse width calculation value (204). Since the throttle valve (201a) in FIG. 2 was changed from fully open to fully closed at the time of T205, the target fuel pressure of the high-pressure fuel pump changed in the low-pressure direction, while the fuel pressure (203) in the common rail rapidly decreased, while the intake The amount of air (202) does not decrease for a while (up to T208 in FIG. 2) due to the influence of the inertial force so far.
  • the injection pulse width calculation value (204) is first increased to T207 due to a decrease in the fuel pressure (203), and this (injection pulse width in T207) until T208 when the intake air amount (202) starts to decrease.
  • the calculation value 204) is continued, and then decreases according to the decreasing behavior of the intake air amount (202).
  • the injection pulse width (110) increases temporarily, and the injection end timing (T111) tends to approach the end position (T106) of the effective injection period.
  • FIG. 3 shows an example of the basic configuration of the control apparatus for an internal combustion engine according to the first embodiment of the present invention.
  • the control device for the internal combustion engine is provided in an ECM (Engine Control Module: 301), and the battery voltage (312) supplied from the battery (303) is a fuse (not shown) and a relay (not shown).
  • ECM Engine Control Module
  • the booster (304) boosts the battery voltage (312) to a preset target voltage.
  • the valve body in the fuel injection valve (308) is opened more than the strong closing force generated by the high fuel pressure. Valve force can be obtained.
  • the microcomputer (302) includes an intake air amount (314) of the internal combustion engine, a fuel pressure (315) in a common rail (not shown) provided upstream of the fuel injection valve (308), a battery voltage (312), etc. Based on the operating state of the internal combustion engine, the drive time of the fuel injection valve (308) and the start / end timing of injection are calculated, and this is output as an injection pulse signal (317) to the drive IC (305) for each cylinder, Each current corresponding to the drive current profile (318, 319) after selecting the drive current profile (318, 319) of the fuel injection valve (308) and the high pressure fuel pump solenoid (311) from the fuel pressure (315), etc. The control parameter is output to the drive IC (305).
  • the fuel sent from the fuel tank (not shown) to the high-pressure fuel pump (not shown) using the electric pump (not shown) is supplied to the common rail based on the operating state of the internal combustion engine.
  • a drive signal (320) of the high-pressure fuel pump as a control signal is output to the drive IC (305) so that the fuel pressure (315) in the inside becomes a desired pressure.
  • a fuel injection device driving device is provided, and the upstream side of the fuel injection valve is 306, the downstream side is 307, and a plurality of transistors provided in each of the driving devices (306, 307) are switching signals.
  • the high pressure fuel pump solenoid (311) is also provided with 309 drive units on the upstream side and 310 drive units on the downstream side, and a plurality of transistors provided in each of the drive units (309, 310) by switching signals (323, 324). By controlling, current control is performed.
  • FIG. 4 shows the functions provided in the microcomputer 302 in FIG.
  • the total injection amount calculation unit (401) calculates the total fuel injection amount (410) required for one combustion cycle based on the intake air amount (314) of the internal combustion engine.
  • the multi-stage injection information calculation unit (402) converts the multi-stage injection information (411) based on the operation information (409) of the internal combustion engine represented by the rotational speed, water temperature, oil temperature, and the like. Calculate.
  • the multistage injection information here includes the number of injections, the division ratio, the basic injection timing, etc. during one combustion cycle of the cylinder.
  • a fuel injection valve drive time (injection pulse width: 412) is calculated from the fuel pressure (315), total fuel injection amount (410), and multistage injection information (411) by an injection pulse width calculation unit (403). To do.
  • the divided injection pulse width is calculated for each number of injection stages.
  • the injection timing calculation unit (404) calculates the drive start timing of the fuel injection valve (308) based on the operation information (409) of the internal combustion engine. I will explain it on the premise.
  • the multi-stage injection information (411) including the basic injection timing calculated by the multi-stage injection information calculation unit (402), the injection pulse width (412) calculated by the injection pulse width calculation unit (403), and the above-described injection interval (
  • the final injection timing (413) is calculated from the requirements of 118a and 118b). Note that the control device that supports multi-stage injection calculates the fixed injection timing (413) for each number of injection stages, and outputs this to the drive IC (305) as an injection pulse signal (317).
  • the drive current setting unit (405) determines the drive current profile (318) of the fuel injection valve (308) and the drive current profile (319) of the high pressure fuel pump solenoid (311) based on the fuel pressure (315). The information is determined and the information is output to the driving IC (305).
  • the HPP control value calculation unit (408) calculates the drive command value of the high pressure fuel pump solenoid (311) from the intake air amount (314) of the internal combustion engine, the operation information (409) of the internal combustion engine, etc. So-called feedback control is performed between the fuel pressure (315) and the target fuel pressure.
  • An ignition control command value calculation unit (415) performs predetermined calculation based on the intake air amount (314) of the internal combustion engine, the fuel pressure (315), the operation information (409) of the internal combustion engine, and the like, and calculates the ignition timing. In both cases, the energization time required for the ignition coil is divided from the ignition timing, the energization start timing is also calculated, and an ignition signal (416) is output.
  • an effective injection period excess regulation unit (406) is provided.
  • the effective injection period excess regulation unit (406) includes the injection pulse width (412), the fixed injection timing (413), the fuel pressure (315), the operation information (409) of the internal combustion engine, and the intake air of the internal combustion engine.
  • the multistage injection information calculation unit (402) When it is determined that the final injection end timing (T111 or T116 in FIG. 1) exceeds the end position (T106) of the effective injection period according to the amount (314), the multistage injection information calculation unit (402), the injection timing
  • the control command change value (414) is output to the calculation unit (404) and the HPP control value calculation unit (408).
  • the multi-stage injection information calculation unit 402, the injection timing calculation unit 404, and the HPP control value calculation unit 408) each satisfy the required injection amount of the internal combustion engine based on the control command change value (414) and within the effective injection period. Complete fuel injection.
  • the effective injection period excess regulation unit (406) outputs the control command change value (414) to the ignition control command value calculation unit (415), and the ignition control command value calculation unit (415)
  • a method such as changing the angle to the retard side is also effective. A detailed control method will be described later.
  • the pre-correction ignition signal (503a) represents an ignition timing obtained by a predetermined calculation from the operation information (409) of the internal combustion engine described above.
  • the injection pulse width (501a) is determined at the time when the injection start timing is reached (T504) in the single stage injection
  • the final injection end timing (T504) is determined at this time (T504).
  • T505) exceeds the end position (T106) of the effective injection period.
  • the effective injection period excess regulating unit (406) controls the ignition timing (T506) to be retarded and ignition is performed at T507.
  • the microcomputer (302) when it is determined that the final injection end timing (T505) exceeds T106 (first timing), the microcomputer (302) satisfies the fuel injection amount required in one combustion cycle while satisfying the fuel injection amount. It functions as a first control unit that controls the ignition device so as to secure time for the fuel injected into the cylinder to vaporize. In the present embodiment, the microcomputer (302) as the first control unit retards the ignition timing (T506).
  • the required torque can be achieved even when an error occurs in the final injection end timing.
  • any of the injection start timing (T508, T510, T512) and injection end timing (T509, T511, T513) for each injection operation In this case, when it is found that the final injection end timing (T505) exceeds the end position (T106) of the effective injection period, the same effect as the single stage injection control can be obtained by performing the above processing. .
  • the timing at which the final injection end timing (T505) is found to exceed the end position (T106) of the effective injection period is not limited to the above-described timing, for example, during injection execution (T504 to T505 or T508 to T505) Even in the case where the final determination is made at, the same effect can be obtained as long as the final injection end timing (T505) does not exceed the ignition timing (T507).
  • the risk of misfire can be avoided while achieving the required torque even when an error occurs in the final injection end timing.
  • FIG. 6 shows a basic configuration of a control device for an internal combustion engine according to the second embodiment of the present invention.
  • FIG. 6 includes an effective injection period excess prediction unit (601).
  • the effective injection period excess prediction unit (601) determines whether the injection operation is within the effective injection period (108) before the first injection start timing.
  • FIG. 7 is a flowchart of the effective injection period excess prediction unit (601).
  • S701 it is determined whether or not it is a prediction timing (timing to start prediction). As the prediction timing is predicted earlier, there are more suppression methods by the effective injection period excess regulation unit (406) and the effect can be expected, but the qualitative prediction accuracy deteriorates. In the embodiment of the present invention, this point is defined as before the first injection start timing. If it is the prediction timing (S701: Yes), the process proceeds to S702, and nothing is performed when the condition is not satisfied (S701: No).
  • the injection control information at the prediction timing is acquired. Specifically, the injection pulse width (412), the fuel pressure (315), the operation information (409) of the internal combustion engine, the internal combustion engine This is the latest information at the time of the prediction timing in the intake air amount (314) of the engine.
  • the final injection end timing in one combustion cycle of the cylinder is calculated from the injection control information acquired in S702.
  • the calculation accuracy can be improved by predicting acceleration / deceleration after storing the rotational speed of the internal combustion engine for a predetermined period.
  • the microcomputer (302) functions as a prediction unit that predicts the final injection end timing before the timing at which the first fuel injection of one combustion cycle starts.
  • the microcomputer (302) as the prediction unit may predict the final injection end timing based on the rotational speed of the internal combustion engine.
  • S704 it is determined whether or not the final injection end timing calculated in S703 exceeds the preset end position (T106) of the effective injection period.
  • T106 preset end position
  • control command change value there is a method of setting a control flag or the like and performing a specific regulation method in the effective injection period excess regulation unit (406), or when setting the control command change value (414), an ID (identifier) for each control unit Alternatively, a method of outputting the control command change value (414) may be used.
  • FIG. 8 shows the scheduled job calculation result (801), the injection timing prediction result (802), and the excess regulation command line (803) from the top.
  • the injection start timing is fixed (804) at the reference position (T103) of the injection control.
  • the processing of S701 is performed at this timing (T103).
  • T104 to T106 is the above-described effective injection period (108).
  • the scheduled JOB calculation result (801) includes calculation of each control parameter used for the fuel injection control, solenoid control of the high-pressure fuel pump, ignition control, etc. described in FIG. 4, and input processing by a sensor or the like. Further, since the process is performed at regular intervals (predetermined period), the calculated value is updated at T807 and T808, for example. In 801a, 801b, and 801c, updated calculation values are held.
  • the injection control information acquired in S702 of FIG. 7 is 801a in the example of FIG.
  • the injection timing prediction result (802) is schematically shown as an injection pulse signal in FIG. 8, but the injection start timing (T805) and injection end timing (T806) are calculated based on the injection control information of 801a. Just do it.
  • the predicted value of the final injection end timing is T806 at T806.
  • the final injection end timing (T806) is a predicted value, from the predicted time (T103), the fuel pressure (315), the operation information (409) of the internal combustion engine, the intake air amount of the internal combustion engine (314 ) And the like may change, and there is a possibility that a deviation occurs between the predicted value and the control effective value.
  • FIG. 9 describes a method by which an appropriate determination can be made even if an error occurs in the prediction result of the effective injection period excess prediction unit (601).
  • FIG. 9 shows the scheduled job calculation result (801), the injection timing prediction result 1 (901a), and the injection timing prediction result 2 (901b) from the top. Since this configuration basically overlaps with the content described with reference to FIG. 8, only differences will be described.
  • a position (T902) moved by a predetermined period (904) from the end position (T106) of the effective injection period to the advance side is set, and this is defined as an excessive injection warning position.
  • the microcomputer (302) advances the T902 (second timing) further advanced from the previous T106 (first timing) by the time necessary for vaporization of the fuel injected into the cylinder of the internal combustion engine from the ignition timing. It functions as a calculation unit that calculates.
  • the predetermined period (904) is set by, for example, a method of reflecting the rotation error after grasping the inclination of the increase or decrease of the rotation speed.
  • the final injection end timing (T903) indicating the timing at which the last fuel injection of one combustion cycle ends exceeds T106 (first timing) or T902 (second timing). It functions as a determination unit that determines whether or not.
  • the excess warning regulation command and the excess regulation command (803) are handled as separate commands, but the present invention is also implemented when the same contents are used or when either one is used. The effect of form is the same.
  • FIG. 10 is the timing chart described in FIG. From the top, the throttle opening (201), the intake air amount of the internal combustion engine (202), the fuel pressure in the common rail provided upstream of the fuel injection valve (203), and the injection pulse width calculation value (204). Further, since the problem of FIG. 2 has been described above, description thereof is omitted here.
  • the intake air amount (202) of the internal combustion engine is greater than or equal to a predetermined value (1004) set in advance.
  • the throttle opening becomes the closing direction, and the required fuel injection amount decreases, so that the target fuel pressure is controlled to decrease, and the fuel pressure (203) decreases from T206.
  • the injection pulse width calculation value (204) is increased due to the correction by the fuel pressure (203), and the final injection end timing (T806 or T903) is the injection excess warning position (T902) or the effective injection period ( 108) is exceeded, and the excess warning regulation command or the excess regulation command (803) is input to the effective injection period excess regulation unit (406).
  • the effective injection period excess restricting unit (406) is used for an over warning so that the target fuel pressure is not changed or the target fuel pressure is increased until the intake air amount (202) of the internal combustion engine becomes a predetermined value (1004) or less.
  • a command is issued to the ignition control command value calculation unit (415) as a regulation command or an excess regulation command (803).
  • the broken line (1001) in the period from T206 to T1002 in FIG. 10 shows an example in which the target fuel pressure is not changed until the intake air amount (202) of the internal combustion engine becomes equal to or less than a predetermined value (1004).
  • the microcomputer (302) transmits the throttle valve (201a) from the timing (T205) at which the throttle valve (201a) is fully closed to the timing (T1002) at which the intake air amount of the internal combustion engine becomes equal to or less than the predetermined value (1004).
  • the microcomputer (302) transmits the throttle valve (201a) from the timing (T205) at which the throttle valve (201a) is fully closed to the timing (T1002) at which the intake air amount of the internal combustion engine becomes equal to or less than the predetermined value (1004).
  • Sets a value equal to or higher than the target fuel pressure when fully closed as the target fuel pressure and functions as a second control unit that controls the high-pressure fuel pump so that the fuel pressure matches the target fuel pressure.
  • the injection pulse width calculation value (204) behaves as shown by the broken line shown in 1003 because the fuel pressure does not decrease. Since the fuel pressure is maintained while suppressing an increase in the injection pulse width, the injection amount required by the internal combustion engine can also be satisfied.
  • the pulse width can be reduced by increasing the fuel pressure.
  • the risk of misfire can be avoided while achieving the required torque.
  • 1101 and 1103 indicate the rotational speed of the internal combustion engine as time on the horizontal axis
  • 1102 and 1104 indicate the time on the horizontal axis for each position related to each injection control.
  • 1101 indicates a case where the rotation speed is constant, and 1101a indicates a timing at which the rotation speed of the internal combustion engine is calculated by regular processing (for example, every 10 ms).
  • the injection control reference position (T103), the effective injection period start position (T104), the effective injection period end position (T106), and the over-injection warning position (T902) shown on 1102 are essentially those of the internal combustion engine. Although determined based on the crank angle, the rotational speed of the internal combustion engine is constant, so that the positional relationship does not change even if time elapses. For this reason, for example, even if the end position (T106) of the effective injection period and the over-injection warning position (T902) are predicted from the injection control reference position (T103), no error theoretically occurs.
  • a process such as predicting the future rotation speed from the difference between the rotation speed calculated last time or the previous time and the rotation speed calculated this time is performed.
  • An upper injection control reference position T103
  • an effective injection period start position T104
  • an effective injection period end position T106
  • an excessive injection warning position T902
  • the injection control reference position (T103), the effective injection period start position (T104), the effective injection period end position (T106), and the over injection warning in the figure becomes shorter with time.
  • the rotational speed decreases, it becomes longer as time elapses. Therefore, it is desirable to predict the position by the calculation represented by the above-described correction.
  • FIG. 12 shows the injection timing when three injections (three-stage injection) are performed in the cylinder, and 1201 shows the injection timing calculated by the normal calculation.
  • the microcomputer (302) when it is determined that the final injection end timing (T1204) exceeds T902 (second timing), the microcomputer (302) satisfies the fuel injection amount required in one combustion cycle while satisfying the fuel injection amount. It functions as a first control unit that controls the injector so as to secure time for the fuel injected into the gas to evaporate.
  • the microcomputer (302) serving as the first control unit performs the first fuel injection in one combustion cycle when it is determined that the final injection end timing (T1204) exceeds T902 (second timing). Advance the start timing.
  • the effective injection period excess restriction unit (406) outputs a command to shorten the injection interval (1306) as the control command change value (414), and sets the injection interval to 1307 on 1302.
  • the injection excess warning position (T902) is not exceeded.
  • the microcomputer (302) shortens the injection interval per combustion cycle when it is determined that the final injection end timing (T1305) exceeds T902 (second timing) during multi-stage injection control. Functions as 1 control unit.
  • the microcomputer (302) reduces the number of injections per combustion cycle when it is determined that the final injection end timing (T1305) exceeds T902 (second timing) during multi-stage injection control. Functions as a control unit.
  • control command change value (414) from the operating state of the internal combustion engine.
  • the risk of misfire can be avoided while achieving the required torque.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • the microcomputer (302) as the first control unit performs determination using T106 (first timing) which is the end position of the effective injection period, as shown in FIG.
  • the determination may be made using T902 (second timing) which is the injection excess warning position.
  • each of the above-described configurations, functions, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by a processor (microcomputer).
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる内燃機関の制御装置を提供する。 マイコンは、点火タイミングから内燃機関の気筒に噴射された燃料の気化に必要な時間だけ前のT106よりさらに進角したT902を演算する。マイコンは、最終噴射終了タイミング(T903)が、T106又はT902を超えるか否かを判定する。マイコンは、最終噴射終了タイミング(T1204)がT106又はT902を超えると判定された場合、1燃焼サイクルにおいて要求される燃料噴射量を満たしつつ内燃機関の気筒に噴射された燃料が気化する時間を確保するようにインジェクタ又は点火装置を制御する。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御装置に関する。
 圧縮行程から点火時に至る過程での異常燃焼を防止することができる筒内噴射型内燃機関の制御装置が知られている(例えば、特許文献1参照)。
 特許文献1には、「吸気バルブの開閉時期を人為操作及びエミッション条件を含む様々な条件に応じて進角及び遅角するように変更制御する位相制御機能を制御手段に有さしめる一方、制御手段は、変更される吸気バルブの開期間に燃料噴射を分割して行うとともに、分割最後の燃料噴射を吸気バルブの閉時期に対して所定時間前に全量噴射完了し、且つ最後噴射量の気化に要する時間を考慮して前記所定時間を設定する。」と記載されている。
特開2009-174344号公報
 特許文献1に開示されるような技術では、最終噴射終了タイミングに誤差が生じた場合に、要求トルクを達成できないとともに失火するリスクもあった。
 本発明の目的は、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる内燃機関の制御装置を提供することにある。
 上記目的を達成するために、本発明は、点火タイミングから内燃機関の気筒に噴射された燃料の気化に必要な時間だけ前の第1のタイミングよりさらに進角した第2のタイミングを演算する演算部と、1燃焼サイクルの最後の燃料噴射が終了するタイミングを示す最終噴射終了タイミングが、前記第1のタイミング又は前記第2のタイミングを超えるか否かを判定する判定部と、前記最終噴射終了タイミングが前記第1のタイミング又は前記第2のタイミングを超えると判定された場合、前記1燃焼サイクルにおいて要求される燃料噴射量を満たしつつ前記内燃機関の気筒に噴射された燃料が気化する時間を確保するようにインジェクタ又は点火装置を制御する第1の制御部と、を備える。
 本発明によれば、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
比較例による噴射制御を説明するための図である。 比較例による内燃機関の運転状態の一例を示す図である。 本発明の第1の実施形態による内燃機関の制御装置の構成図である。 図3に示すマイコンの機能を説明するためのブロック図である。 図4に示す有効噴射期間超過規制部の制御の一例を説明するための図である。 本発明の第2の実施形態による内燃機関の制御装置の構成図である。 図6に示す有効噴射期間超過予測部のフローチャートである。 図6に示す有効噴射期間超過予測部の動作を説明するための図である。 第1の変形例による有効噴射期間超過予測部の動作を説明するための図である。 第2の変形例による有効噴射期間超過規制部の動作を説明するための図である。 本発明の第3の実施形態による有効噴射期間超過予測部の動作を説明するための図である。 第3の変形例による有効噴射期間超過規制部の動作を説明するための図である。 第4の変形例による有効噴射期間超過規制部の動作を説明するための図である。
 以下、図面を用いて、本発明の第1~第3の実施形態による内燃機関の制御装置の構成及び動作について説明する。なお、各図において、同一符号は同一部分を示す。
 (比較例)
 最初に、図1~図2を用いて、第1~第3の実施形態による内燃機関の制御装置との比較例について説明する。
 内燃機関の制御装置は、排気性能の悪化や出力低下の防止、失火のリスクを回避する等の目的で、内燃機関毎で異なる値となる様々な燃焼要件を満足しければならない。図1内の101は、一般的な単段噴射制御における噴射パルス信号の一例である。
 まず、噴射制御の基準位置(T103)で、噴射開始タイミングを確定させ(109a)、内燃機関のクランク角が噴射開始タイミングに至った際(T105)、噴射動作を開始する(噴射パルス信号(101)がT105でLowからHighとなる)。その後、内燃機関の要求噴射量に基づき、噴射パルス信号(101)がHighとなる期間である噴射パルス幅(110)を演算し、演算した噴射量を噴射した時点(T111)にて噴射動作を終了する。
 ここで、排気弁の閉弁完了タイミング(T104)より以前に噴射開始タイミング(T105)を設定した場合、燃料噴射弁(インジェクタ)から噴射された燃料が燃焼することなく排気管へ排出され、排気性能の著しい悪化が懸念される。一方、噴射終了タイミング(T111)が点火タイミング(T107)近傍となった場合、噴射燃料の気化時間が十分に確保されず、所望の混合気形成ができないばかりか、最悪の場合、点火プラグに燃料が付着し、失火を招く恐れがある。
 よって、燃料の気化時間などを考慮し、点火タイミング(T107)から、進角側へ所定期間を設けた位置(T106)までに噴射動作を完了させなければならない。尚、本明細書では、このT104からT106までの排気性能の悪化や出力低下の防止、失火のリスクを回避できる燃料噴射の期間を有効噴射期間(108)、T104を有効噴射期間の開始位置、T106を有効噴射期間の終了位置と呼称する。
 更に、近年、排気規制の強化に伴い、特に粒子状物質(PN: Particulate Number、PM: Particulate Matter)に対する規制が新たに設けられている。この粒子状物質(PN、PM)は、燃料噴射弁から噴射された燃料が、燃焼室内のピストン冠面やボアへ付着して燃焼しないことにより生成される。
 このため、付着燃料を低減できれば粒子状物質(PN、PM)を抑制できる。例えば、1燃焼サイクル中に複数回の噴射を行う多段噴射制御により、燃料噴射弁から噴射された燃料の噴霧長(以下、ペネトレーション)を短くし、ピストン冠面やボアへ噴射燃料が当たらない様にする。
 図1内の102は、この多段噴射制御を行った場合における噴射パルス信号の一例である。
 まず、単段噴射同様に、噴射制御の基準位置(T103)で、噴射開始タイミングを確定させ (109b)、内燃機関のクランク角が噴射開始タイミングに至った時(T105)に噴射を実行する。その後、分割比と内燃機関の吸入空気量、コモンレール内の燃料圧力、燃料噴射弁固有の定数に基づき演算される燃料噴射量などから、1回当たりの噴射量(分割噴射量)を演算する。
 図1内では、3段噴射時の一例となっており、前述の分割噴射量演算に基づき、117a、117b、117cの期間が決定され、噴射段数毎の噴射終了タイミング(T112、T114、T116)が決定されるが、多段噴射制御を行う場合、噴射動作間に噴射間隔(118a、118b)を確保しなければならない。例えば、噴射間隔(118a、118b)が短く、燃料噴射弁の弁体が閉弁動作を完了する前に次の噴射指令を与えた場合、次噴射の開弁動作が前噴射の閉弁動作中に生じるため、弁体動作が安定せず、噴射量ばらつきを誘発する。
 同様に、筒内直噴式内燃機関の燃料噴射弁を駆動する際は、バッテリ電圧とバッテリ電圧を昇圧した高電圧によって、燃料噴射弁を駆動するが、高電圧が所定値以下になった場合、昇圧動作が生じるため、この昇圧動作が完了するまで次噴射を待つ必要がある。もし、昇圧動作が完了する前に次噴射を行った場合、高電圧のばらつきに起因し、燃料噴射弁の電流プロフィールがばらつき、結果、燃料噴射弁の弁体動作もばらつくため、噴射量ばらつきが生じる。
 このため、多段噴射制御中における2段目以降の噴射開始タイミング(T113、T115)は、この噴射間隔(118a、118b)を考慮した演算を行う。更に当然のことながら、噴射段数が増える程、最終段の噴射終了タイミング(T116)は、有効噴射期間の終了位置(T106)に近接する傾向になる。
 単段噴射においても、高負荷運転(吸入空気量が多い)時において、最終的な噴射終了タイミング(T111)が、有効噴射期間の終了位置(T106)に近接する場合もある。
 図2は、上から、スロットル開度(201)、内燃機関の吸入空気量(202)、燃料噴射弁上流に備わるコモンレール内の燃料圧力(203)、噴射パルス幅演算値(204)を示す。図2内のスロットル弁(201a)は、T205時点で全開から全閉としたため、高圧燃料ポンプの目標燃圧が低圧方向に変化し、コモンレール内の燃料圧力(203)が急速に低くなる一方、吸入空気量(202)は、それまでの慣性力の影響から暫く(図2内ではT208まで)は減少しない。
 このため、噴射パルス幅演算値(204)は、まず、燃料圧力(203)が低下したことで、T207まで増加し、吸入空気量(202)が低下を始めるT208までこれ(T207における噴射パルス幅演算値204)を継続し、その後、吸入空気量(202)の低下挙動に応じて減少する。これらのことから、噴射パルス幅(110)が一時的に増加し、噴射終了タイミング(T111)が有効噴射期間の終了位置(T106)に近接する傾向になる。
 図1及び図2で挙げた現象も含め、有効噴射期間(108)内に燃料噴射動作を全て完了させることが燃焼要件であるが、原則的にこの様な現象は、燃料系部品の性能により保証されることが前提であり、従来制御では、有効噴射期間の終了位置(T106)以降まで噴射動作が継続した場合、強制的に燃料噴射を終了することが一般的である。
 (第1の実施形態)
 図3は、本発明の第1の実施形態による内燃機関の制御装置について基本構成例を示したものである。
 内燃機関の制御装置は、ECM( Engine Control Module:301)内に設けられており、バッテリ(303)から供給されるバッテリ電圧(312)は、ヒューズ(図示せず)とリレー(図示せず)を介して、ECM(301)に供給される。駆動IC(305)からの指令に基づき、昇圧装置(304)は、バッテリ電圧(312)を予め設定された目標電圧に昇圧する。これにより生成された高電圧(313)を、燃料噴射弁(308)の作動開始時に印加することで、燃料噴射弁(308)内の弁体が、高燃圧により生じる強い閉弁力に勝る開弁力を得ることができる。
 また、マイコン(302)は、内燃機関の吸入空気量(314)や燃料噴射弁(308)の上流側に備わるコモンレール(図示せず)内の燃料圧力(315)、バッテリ電圧(312)などの内燃機関の運転状態に基づき、燃料噴射弁(308)の駆動時間及び噴射の開始・終了タイミングを算出し、これを噴射パルス信号(317)として気筒毎に駆動IC(305)へ出力すると共に、前記燃料圧力(315)などから燃料噴射弁(308)及び高圧燃料ポンプ用ソレノイド(311)の駆動電流プロフィール(318、319)を選択の上、駆動電流プロフィール(318、319)に対応する各電流制御パラメータを駆動IC(305)へ出力する。
 更に、マイコン(102)では、燃料タンク(図示せず)から電動ポンプ(図示せず)を用いて高圧燃料ポンプ(図示せず)に送られた燃料を内燃機関の運転状態などに基づき、コモンレール内の前記燃料圧力(315)が所望の圧力になる様に制御信号としての高圧燃料ポンプの駆動信号(320)を駆動IC(305)へ出力する。
 燃料噴射弁(308)を駆動するため、燃料噴射装置駆動装置が備わり、燃料噴射弁の上流側は306、下流側は307により、それぞれの駆動装置(306、307)に複数備わるトランジスタをスイッチング信号(321、322)により制御することで、高精度の電流制御を行う。同様に、高圧燃料ポンプ用ソレノイド(311)についても上流側に309、下流側に310の駆動装置を備え、それぞれの駆動装置(309、310)に複数備わるトランジスタをスイッチング信号(323、324)により制御することで電流制御を行う。
 次に図4を用いて、本実施形態に係るマイコン(102)の機能の一例について説明する。
 図4は、図3内のマイコン(302)内に備わる機能を示したものである。まず、総噴射量演算部(401)は、内燃機関の吸入空気量(314)に基づき、1燃焼サイクルに要求される総燃料噴射量(410)の演算を行う。
 多段噴射に対応した制御装置である場合、回転速度、水温、油温などに代表される内燃機関の運転情報(409)に基づき、多段噴射情報演算部(402)が多段噴射情報(411)を演算する。尚、ここでいう多段噴射情報としては、当該気筒の1燃焼サイクル中における、噴射回数、分割比、基本噴射タイミングなどが挙げられる。
 その後、噴射パルス幅演算部(403)により、前記燃料圧力(315)、総燃料噴射量(410)、多段噴射情報(411)から、燃料噴射弁の駆動時間(噴射パルス幅:412)を演算する。尚、多段噴射に対応した制御装置では、噴射段数毎に分割噴射パルス幅を演算する。
 一方、噴射タイミング演算部(404)は、前記内燃機関の運転情報(409)に基づき、燃料噴射弁(308)の駆動開始タイミングを演算するが、図4では、多段噴射に対応した制御装置を前提に説明する。
 多段噴射情報演算部(402)で演算した基本噴射タイミングを含む多段噴射情報(411)及び、噴射パルス幅演算部(403)にて演算した前記噴射パルス幅(412)と、前述の噴射間隔(118a、118b)の要件から、確定噴射タイミング(413)を演算する。尚、多段噴射に対応した制御装置では、噴射段数毎に前記確定噴射タイミング(413)を演算し、これを噴射パルス信号(317)として駆動IC(305)へ出力する。
 また、駆動電流設定部(405)は、前記燃料圧力(315)に基づき、燃料噴射弁(308)の駆動電流プロフィール(318)及び高圧燃料ポンプ用ソレノイド(311)の駆動電流プロフィール(319)を決定し、その情報を駆動IC(305)へ出力する。
 HPP制御値演算部(408)は、内燃機関の吸入空気量(314)、前記内燃機関の運転情報(409)などから、高圧燃料ポンプ用ソレノイド(311)の駆動指令値を演算すると共に、前記燃料圧力(315)と目標燃料圧力とにおいて所謂、フィードバック制御を行う。
 点火制御指令値演算部(415)は、内燃機関の吸入空気量(314)、前記燃料圧力(315)、前記内燃機関の運転情報(409)などから、所定演算を行い、点火タイミングを算出する共に、点火タイミングから点火コイルに必要な通電時間を除算し、通電開始タイミングも合わせて算出し、点火信号(416)を出力する。
 本実施形態の特徴として、有効噴射期間超過規制部(406)を備える。有効噴射期間超過規制部(406)は、前記噴射パルス幅(412)、前記確定噴射タイミング(413)及び、前記燃料圧力(315)、前記内燃機関の運転情報(409)、内燃機関の吸入空気量(314)に応じて、最終噴射終了タイミング(図1内T111もしくはT116)が、前記有効噴射期間の終了位置(T106)を超過すると判定した場合、多段噴射情報演算部(402)、噴射タイミング演算部(404)、HPP制御値演算部(408)に対して制御指令変更値(414)を出力する。
 多段噴射情報演算部402、噴射タイミング演算部404、HPP制御値演算部408)はそれぞれ、制御指令変更値(414)に基づき、内燃機関の要求噴射量を満足しつつ、前記有効噴射期間内に燃料噴射を完了させる。また、別方法として、有効噴射期間超過規制部(406)が、点火制御指令値演算部(415)に制御指令変更値(414)を出力し、点火制御指令値演算部(415)は点火タイミングを遅角側へ変更するなどの方法も有効である。尚、詳しい制御方法について、後述する。
 次に、図5を用いて、前記有効噴射期間超過規制部(406)を用いた制御の一例を説明する。
 図5内の上から、単段噴射制御時の噴射パルス信号(501)、多段噴射制御時の噴射パルス信号(502)、補正前点火信号(503a)、補正後点火信号(503b)を示す。補正前点火信号(503a)は、前述した前記内燃機関の運転情報(409)などから、所定演算にて求まる点火タイミングを表す。
 まず、図5の例では、単段噴射時において、噴射開始タイミングに至った時点(T504)で、噴射パルス幅(501a)を確定させた場合、この時点(T504)で、最終噴射終了タイミング(T505)が、有効噴射期間の終了位置(T106)を超過している。これにより、前記有効噴射期間超過規制部(406)は、点火タイミング(T506)を遅角させ、T507にて点火を行う様に制御する。
 換言すれば、マイコン(302)は、最終噴射終了タイミング(T505)がT106(第1のタイミング)を超えると判定された場合、1燃焼サイクルにおいて要求される燃料噴射量を満たしつつ前記内燃機関の気筒に噴射された燃料が気化する時間を確保するように点火装置を制御する第1の制御部として機能する。本実施形態では、第1の制御部としてのマイコン(302)は、点火タイミング(T506)を遅角する。
 これにより、前記有効噴射期間(108)内に噴射が終了できないながらも、噴射終了タイミング(T505)から点火タイミング(T507)までに十分な時間を確保できるため、噴射燃料の気化が可能となり、失火の恐れを回避することが可能となる。
 さらに、1燃焼サイクルにおいて要求される燃料噴射量を満たすため、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成することができる。
 また、多段噴射制御中においても、多段噴射制御時の噴射パルス信号(502)において、噴射動作毎の噴射開始タイミング(T508、T510、T512)及び、噴射終了タイミング(T509、T511、T513)のいずれかにおいて、最終噴射終了タイミング(T505)が有効噴射期間の終了位置(T106)を超過することが分かった時点で、上記の処理を行うことで、単段噴射制御同様の効果を得ることができる。
 尚、最終噴射終了タイミング(T505)が有効噴射期間の終了位置(T106)を超過することが分かるタイミングは、前述のタイミングに限らず、例えば、噴射実行中(T504~T505もしくは、T508からT505)において確定する場合においても、最終噴射終了タイミング(T505)が点火タイミング(T507)を超過しない限り、同様の効果を得ることができる。
 以上説明したように、本実施形態によれば、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。
 (第2の実施形態)
 次に別の実施形態について、図6を用いて説明を行う。
 図6は、本発明の第2の実施形態による内燃機関の制御装置について基本構成を示したものである。図4にて説明した構成に対して、図6では、有効噴射期間超過予測部(601)を備える。
 図4の構成では、最終噴射終了タイミング(T505)が有効噴射期間の終了位置(T106)を超過することが分かった時点で、前記有効噴射期間超過規制部(406)による制御指令変更値(414)を発動する様にしている。しかし、有効噴射期間(108)内に燃料噴射を完了しようとした場合、判定を早くしなければ、制御指令変更値(414)を発動しても、制御自体が間に合わない恐れがある。
 そこで、有効噴射期間超過予測部(601)は、最初の噴射開始タイミングよりも以前で、当該噴射動作が、有効噴射期間(108)内を超過しないかを判定するものである。
 図7は、有効噴射期間超過予測部(601)のフローチャートである。
 まず、S701にて予測タイミング(予測を開始するタイミング)であるか否かの判定を行う。この予測タイミングは、早く予測する程、有効噴射期間超過規制部(406)による抑制方法は多くなり、且つ、効果も見込めるが、定性的な予測精度は悪化する。本発明の実施形態では、この点について、初回の噴射開始タイミングより前と定義している。予測タイミングである場合(S701:Yes)、S702へ進み、条件不成立時(S701:No)は何もしない。
 次に、S702で予測タイミング時点における噴射制御情報を取得するが、具体的には、前述した前記噴射パルス幅(412)、前記燃料圧力(315)、前記内燃機関の運転情報(409)、内燃機関の吸入空気量(314)で、予測タイミング時点の最新情報である。
 次にS703にて、S702で取得した噴射制御情報から、当該気筒の1燃焼サイクル中における最終噴射終了タイミングを演算する。尚、演算方法は前述であるが、例えば内燃機関の回転速度を所定期間に渡り保存した上で、加減速を予測することで演算精度を向上することができる。
 換言すれば、マイコン(302)は、1燃焼サイクルの最初の燃料噴射が開始するタイミングの前に、最終噴射終了タイミングを予測する予測部として機能する。予測部としてマイコン(302)は、図11を用いて後述するように、内燃機関の回転速度に基づいて最終噴射終了タイミングを予測してもよい。
 その後、S704にて、S703で演算した最終噴射終了タイミングが、予め設定した有効噴射期間の終了位置(T106)を超過しているか否かの判定を行う。条件不成立時(S704:No)は何もせず、条件成立時(S704:Yes)は、S705へ進む。S705では、制御指令変更値(414)を含む超過規制指令を有効噴射期間超過規制部(406)へ出力する。
 例えば、制御フラグなどをセットし、有効噴射期間超過規制部(406)にて特定の規制方法を行う方法もあれば、制御指令変更値(414)とする場合、制御部毎にID(識別子)を付けた上で、制御指令変更値(414)を出力する方法でも良い。
 次に図8を用いて、有効噴射期間超過予測部(601)の詳細説明を行う。
 図8は、上から、定時JOB演算結果(801)、噴射タイミング予測結果(802)、超過規制指令 (803)を示す。まず、噴射制御の基準位置(T103)で、噴射開始タイミングを確定(804)させるが、本実施形態では、このタイミング(T103)でS701の処理を行う。
 T104からT106は、前述の有効噴射期間(108)である。定時JOB演算結果(801)には、図4で説明した燃料噴射制御や高圧燃料ポンプのソレノイド制御、点火制御などに使用する各制御パラメータ演算や、センサなどによる入力処理も含まれる。また、定時間隔(所定周期)による処理であるため、例えばT807、T808で演算値が更新される。801a、801b、801cでは、それぞれ更新された演算値が保持される。図7のS702で取得する噴射制御情報は、図8の例では801aとなる。
 次に噴射タイミング予測結果(802)について、図8では模式的に噴射パルス信号で表記しているが、801aの噴射制御情報に基づき、噴射開始タイミング(T805)や噴射終了タイミング(T806)を演算すれば良い。また図8では、単段噴射時を想定しているためT806は最終噴射終了タイミングの予測値がT806となる。
 図7のS704では、予測した最終噴射終了タイミング(T806)が、有効噴射期間の終了位置(T106)を超過するか否かを判定するが、図8の例では、条件成立(S704:Yes)した状態と予測できるため、T103で、超過規制指令(803)をセットする。これらの処理により、噴射動作を行う前にて、最終噴射終了タイミング(T806)が有効噴射期間(108)を超過するか否かの判定が可能となる。
 但し、最終噴射終了タイミング(T806)は、予測値であるため、予測した時点(T103)から、前記燃料圧力(315)、前記内燃機関の運転情報(409)、内燃機関の吸入空気量(314)などが変化することで予測値と制御実効値の間で乖離が生じる恐れがある。この課題を解決する実施形態について図9を用いて説明する。
 (第1の変形例)
 図9は、有効噴射期間超過予測部(601)の予測結果に対する誤差が生じても適正な判定ができる方法について述べたものである。
 図9は、上から、定時JOB演算結果(801)、噴射タイミング予測結果1(901a)、噴射タイミング予測結果2(901b)を示す。本構成は基本的に図8で説明した内容と重複する為、差異がある点のみの説明を行う。まず、特徴的な点として、有効噴射期間の終了位置(T106)から進角側へ、所定期間(904)分の移動した位置(T902)を設定し、これを噴射超過警告位置と定義する。
 換言すれば、マイコン(302)は、点火タイミングから内燃機関の気筒に噴射された燃料の気化に必要な時間だけ前のT106(第1のタイミング)よりさらに進角したT902(第2のタイミング)を演算する演算部として機能する。
 また、所定期間(904)については、例えば回転速度の上昇または下降の傾きを把握した上で、回転誤差分を反映する方法等で設定する。
 また、T103で予測した噴射タイミング予測結果1(901a)から、最終噴射終了タイミング(T806)が有効噴射期間の終了位置(T106)を超過したと判定した場合は、図8の処理と同様に制御指令変更値(414)を含む超過規制指令(803)を有効噴射期間超過規制部(406)へ出力する。
 一方、T103で予測した結果として、噴射タイミング予測結果2(901b)の様に最終噴射終了タイミング(T903)が、噴射超過警告位置(T902)を超過し、且つ、有効噴射期間の終了位置(T106)を超過していない場合、超過警告用規制指令を有効噴射期間超過規制部(406)へ出力する。
 換言すれば、マイコン(302)は、1燃焼サイクルの最後の燃料噴射が終了するタイミングを示す最終噴射終了タイミング(T903)が、T106(第1のタイミング)又はT902(第2のタイミング)を超えるか否かを判定する判定部として機能する。
 尚、本実施形態の場合、超過警告用規制指令と超過規制指令(803)は別指令として扱っているが、同じ内容とする場合、または、どちらか一方を使用する場合についても本発明の実施形態の効果は同じとなる。
 本変形例によれば、予測された最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。
 (第2の変形例)
 図10を用いて、本実施形態の有効噴射期間超過規制部(406)の説明を行う。
 図10は、図2で説明したタイミングチャートである。上から、スロットル開度(201)、内燃機関の吸入空気量(202)、燃料噴射弁上流に備わるコモンレール内の燃料圧力(203)、噴射パルス幅演算値(204)となっている。また、図2の課題について、前述のためここでの説明を省略する。
 まず、T200において、内燃機関の吸入空気量(202)が予め設定された所定値(1004)以上である。T205でスロットル開度が閉方向となり、要求噴射量が減少することから目標燃圧を下げる様に制御され、T206から燃料圧力(203)は下降する。一方、噴射パルス幅演算値(204)は、燃料圧力(203)による補正が働くことから増加し、最終噴射終了タイミング(T806又はT903)が、噴射超過警告位置(T902)又は、有効噴射期間(108)を超過し、超過警告用規制指令又は超過規制指令(803)が有効噴射期間超過規制部(406)に入力される。
 有効噴射期間超過規制部(406)は、内燃機関の吸入空気量(202)が、所定値(1004)以下となるまで、目標燃圧の変更をしない、もしくは、目標燃圧を上げる様に超過警告用規制指令又は、超過規制指令(803)として、点火制御指令値演算部(415)に指令を出す。なお、図10のT206からT1002までの期間における破線(1001)は、内燃機関の吸入空気量(202)が所定値(1004)以下となるまで、目標燃圧の変更をしない例を示している。
 換言すれば、マイコン(302)は、スロットル弁(201a)が全閉になるタイミング(T205)から内燃機関の吸入空気量が所定値(1004)以下になるタイミング(T1002)まで、スロットル弁(201a)が全閉時の目標燃圧以上の値を目標燃圧として設定し、燃料圧力が目標燃圧に一致するように高圧燃料ポンプを制御する第2の制御部として機能する。
 これにより、燃料圧力(203)は、1001の破線の様な挙動となり、これを内燃機関の吸入空気量(202)が予め設定された所定値(1004)以下となるT1002まで継続する。
 噴射パルス幅演算値(204)は、燃料圧力が低下しないことから1003に示した破線の様な挙動となる。噴射パルス幅の増大を抑制しつつ、燃料圧力を維持することから、内燃機関が要求する噴射量も満足することができる。
 また、別シーンにおいて、更なるパルス幅の短縮が必要な場合は、燃圧を高くすることによりパルス幅の短縮が可能となる。
 本変形例によれば、スロットル弁(201a)が全閉になるタイミング(T205)の後のリーンバーンを防止することができる。
 以上説明したように、第2の実施形態によれば、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。
 (第3の実施形態)
 図11を用いて、本発明の第3の実施形態を説明する。
 1101、1103は内燃機関の回転速度について、横軸を時間として示したものであり、1102、1104は、それぞれの噴射制御に関する各位置について、横軸を時間として示したものである。
 まず、1101は、一定の回転速度である場合を示しており、1101aは、定時処理(例えば10ms毎)により、内燃機関の回転速度を演算しているタイミングを示している。
 また、1102上で表記した噴射制御基準位置(T103)、有効噴射期間の開始位置(T104)、有効噴射期間の終了位置(T106)及び、噴射超過警告位置(T902)は、本来、内燃機関のクランク角に基づいて決定されるが、内燃機関の回転速度が一定であるため、時間経過があっても、その位置関係は変わらない。このため、例えば、噴射制御基準位置(T103)から、有効噴射期間の終了位置(T106)及び、噴射超過警告位置(T902)を予測しても、誤差は理論上生じない。
 しかし、1103に示した様に、T1105から回転速度が変化(図内では上昇)した場合、1103aの定時処理で演算された回転速度から、1104上に存在する噴射制御基準位置(T103)、有効噴射期間の開始位置(T104)、有効噴射期間の終了位置(T106)を予測すると誤差が生じる。
 このため、1103bの定時処理により演算した回転速度と合わせて、例えば、前回や前々回に演算した回転速度と今回演算した回転速度の差から、この先の回転速度を予測するなどの処理を行い、1104上の噴射制御基準位置(T103)、有効噴射期間の開始位置(T104)、有効噴射期間の終了位置(T106)及び、噴射超過警告位置(T902)を予測する。
 当然、回転速度が変化(図内では上昇)するため、図内では噴射制御基準位置(T103)、有効噴射期間の開始位置(T104)、有効噴射期間の終了位置(T106)及び、噴射超過警告位置 (T902)は、時間経過と共に短くなる。反対に、回転速度が低下する場合には、時間経過と共に長くなるため、前述の補正に代表される演算により、その位置について予測することが望ましい。当然、図9で示した有効噴射期間の終了位置(T106)と噴射超過警告位置(T902)に設ける所定期間(904)に関しても、これらの誤差により生じるギャップを考慮することで本発明の実施形態の効果を、より効果的に得ることができる。
 (第3の変形例)
 これを踏まえ、図12の説明を行う。図12は、当該気筒に3回噴射(3段噴射)を行う場合の噴射タイミングについて示したものであり、1201は、通常演算により算出された噴射タイミングを示している。
 T103時点の噴射制御情報から、T1203から初回噴射を開始し、最終噴射終了タイミング(T1204)まで、計3回の噴射を実行すると予測する。また、S704の処理により、1201の最終噴射終了タイミング(T1204)が、噴射超過警告位置(T902)を超過すると予測するため、有効噴射期間超過規制部(406)は、制御指令変更値(414)により初回噴射開始タイミングを1207a分、前倒しにする。その結果、以後の噴射タイミングも1207a分、前倒しとなるため、1202の様な噴射パルス信号となる。
 換言すれば、マイコン(302)は、最終噴射終了タイミング(T1204)がT902(第2のタイミング)を超えると判定された場合、1燃焼サイクルにおいて要求される燃料噴射量を満たしつつ内燃機関の気筒に噴射された燃料が気化する時間を確保するようにインジェクタを制御する第1の制御部として機能する。
 これにより、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。
 本実施形態では、第1の制御部としてのマイコン(302)は、最終噴射終了タイミング(T1204)がT902(第2のタイミング)を超えると判定された場合、1燃焼サイクルの最初の燃料噴射が開始するタイミングを進角する。
 これにより、最終噴射終了タイミングは、T1206となり、噴射超過警告位置(T902)を超えることはない。事前に噴射形態を変えることで、有効噴射期間(108)内に全ての噴射が行えることになる。
 (第4の変形例)
 次に、図13を用いて、有効噴射期間超過規制部(406)の制御指令変更値(414)について別方法を説明する。
 1301は、図12内の1201と同じ意味合いのため、詳細説明を省略するが、T103時点の噴射制御情報により、最終噴射終了タイミング(T1305)が、噴射超過警告位置(T902)を超過することが予測できる。
 このため、有効噴射期間超過規制部(406)は、制御指令変更値(414)として、噴射間隔(1306)を短くする様に指令を出力し、噴射間隔を1302上の1307とする。これより、最終噴射終了タイミングがT1308となるため、噴射超過警告位置(T902)を超えることはない。
 換言すれば、マイコン(302)は、多段噴射制御中に、最終噴射終了タイミング(T1305)がT902(第2のタイミング)を超えると判定された場合、1燃焼サイクル当たりの噴射間隔を短くする第1の制御部として機能する。
 但し、この方法では燃料噴射弁の特性や制御装置の特性により、噴射間隔(1306)を短くできる幅に限界があるため、1303の様に、制御指令変更値(414)にて噴射回数を減らし(図内では3回噴射から2回噴射へ減らす)、噴射間隔(T1309)自体を減らすことで、最終噴射終了タイミングをT1310とし、噴射超過警告位置(T902)を超えない様にすることが可能となる。
 換言すれば、マイコン(302)は、多段噴射制御中に、最終噴射終了タイミング(T1305)がT902(第2のタイミング)を超えると判定された場合、1燃焼サイクル当たりの噴射回数を減らす第1の制御部として機能する。
 尚、これらの方法は、内燃機関の運転状態などから、制御指令変更値(414)による別性能への影響を考慮し、選択できることが望ましい。
 また、図12、図13の説明では、最終噴射終了タイミング(T1204、T1305)が噴射超過警告位置(T902)を超えた場合として説明したが、これを有効噴射期間の終了位置(T106)を超えるか否としても、その一定の効果を得ることができる。
 以上説明したように、第3の実施形態によれば、最終噴射終了タイミングに誤差が生じた場合でも、要求トルクを達成しつつ失火のリスクを回避することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 上記第1の実施形態において、第1の制御部としてのマイコン(302)は、図5に示すように、有効噴射期間の終了位置であるT106(第1のタイミング)を用いて判定を行っているが、図9に示すように、噴射超過警告位置であるT902(第2のタイミング)を用いて判定を行ってもよい。
 また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサ(マイコン)がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
314…吸入空気量
315…燃料圧力
317…噴射パルス信号(気筒毎)
318…燃料噴射弁の駆動電流プロフィール
319…高圧燃料ポンプの駆動電流プロフィール
320…高圧燃料ポンプの駆動信号
401…総噴射量演算部
402…多段噴射情報演算部
403…噴射パルス幅演算部
404…噴射タイミング演算部
405…駆動電流設定部
406…有効噴射期間超過規制部
407…パルス信号生成部
408…HPP制御値演算部
409…内燃機関の運転情報
410…総燃料噴射量
411…多段噴射情報
412…噴射パルス幅
413…確定噴射タイミング
414…制御指令変更値
415…点火制御指令値演算部

Claims (7)

  1.  点火タイミングから内燃機関の気筒に噴射された燃料の気化に必要な時間だけ前の第1のタイミングよりさらに進角した第2のタイミングを演算する演算部と、
     1燃焼サイクルの最後の燃料噴射が終了するタイミングを示す最終噴射終了タイミングが、前記第1のタイミング又は前記第2のタイミングを超えるか否かを判定する判定部と、
     前記最終噴射終了タイミングが前記第1のタイミング又は前記第2のタイミングを超えると判定された場合、前記1燃焼サイクルにおいて要求される燃料噴射量を満たしつつ前記内燃機関の気筒に噴射された燃料が気化する時間を確保するようにインジェクタ又は点火装置を制御する第1の制御部と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  請求項1に記載の内燃機関の制御装置であって、
     前記第1の制御部は、
     前記最終噴射終了タイミングが前記第1のタイミング又は前記第2のタイミングを超えると判定された場合、前記1燃焼サイクルの最初の燃料噴射が開始するタイミングを進角する
     ことを特徴とする内燃機関の制御装置。
  3.  請求項1に記載の内燃機関の制御装置であって、
     前記第1の制御部は、
     多段噴射制御中に、前記最終噴射終了タイミングが前記第1のタイミング又は前記第2のタイミングを超えると判定された場合、前記1燃焼サイクル当たりの噴射間隔を短くする又は噴射回数を減らす
     ことを特徴とする内燃機関の制御装置。
  4.  請求項1に記載の内燃機関の制御装置であって、
     スロットル弁が全閉になるタイミングから前記内燃機関の吸入空気量が所定値以下になるタイミングまで、前記スロットル弁が全閉時の目標燃圧以上の値を目標燃圧として設定し、燃料圧力が前記目標燃圧に一致するように高圧燃料ポンプを制御する第2の制御部をさらに備える
     ことを特徴とする内燃機関の制御装置。
  5.  請求項1に記載の内燃機関の制御装置であって、
     前記第1の制御部は、
     前記最終噴射終了タイミングが前記第1のタイミング又は前記第2のタイミングを超えると判定された場合、前記点火タイミングを遅角する
     ことを特徴とする内燃機関の制御装置。
  6.  請求項1に記載の内燃機関の制御装置であって、
     前記1燃焼サイクルの最初の燃料噴射が開始するタイミングの前に、前記最終噴射終了タイミングを予測する予測部をさらに備える
     ことを特徴とする内燃機関の制御装置。
  7.  請求項6に記載の内燃機関の制御装置であって、
     予測部は、
     前記内燃機関の回転速度に基づいて前記最終噴射終了タイミングを予測する
     ことを特徴とする内燃機関の制御装置。
PCT/JP2017/001629 2016-02-05 2017-01-19 内燃機関の制御装置 WO2017135038A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017000208.7T DE112017000208B4 (de) 2016-02-05 2017-01-19 Steuervorrichtung für Brennkraftmaschine
JP2017565464A JP6450863B2 (ja) 2016-02-05 2017-01-19 内燃機関の制御装置
CN201780008270.9A CN108603456B (zh) 2016-02-05 2017-01-19 内燃机的控制装置
US16/070,863 US10895217B2 (en) 2016-02-05 2017-01-19 Control apparatus for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-020592 2016-02-05
JP2016020592 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135038A1 true WO2017135038A1 (ja) 2017-08-10

Family

ID=59500140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001629 WO2017135038A1 (ja) 2016-02-05 2017-01-19 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US10895217B2 (ja)
JP (1) JP6450863B2 (ja)
CN (1) CN108603456B (ja)
DE (1) DE112017000208B4 (ja)
WO (1) WO2017135038A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964095B (zh) * 2020-08-25 2022-10-21 松山湖材料实验室 燃烧系统控制方法、装置及燃烧系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200935A (ja) * 1998-01-08 1999-07-27 Nissan Motor Co Ltd 直噴式内燃機関の制御装置
JP2003222049A (ja) * 2002-01-30 2003-08-08 Mazda Motor Corp 火花点火式直噴エンジン
JP2012117400A (ja) * 2010-11-30 2012-06-21 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
JP2015040535A (ja) * 2013-08-23 2015-03-02 株式会社デンソー 圧力センサの応答性学習装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152106B2 (ja) * 1995-05-16 2001-04-03 三菱自動車工業株式会社 筒内噴射型火花点火式内燃エンジンの制御装置
SE522177C2 (sv) * 1996-08-27 2004-01-20 Mitsubishi Motors Corp Styranordning för en förbränningsmotor med cylinderinsprutning och gnisttändning
JP4023115B2 (ja) * 2001-07-17 2007-12-19 日産自動車株式会社 直噴火花点火式エンジンの制御装置
JP2003120367A (ja) 2001-10-15 2003-04-23 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
US6814046B1 (en) * 2003-04-25 2004-11-09 Nissan Motor Co., Ltd. Direct fuel injection engine
JP4135643B2 (ja) * 2004-01-19 2008-08-20 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
EP1621748A1 (en) * 2004-07-26 2006-02-01 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combusion engine
US7159566B2 (en) * 2004-09-30 2007-01-09 Nissan Motor Co., Ltd. Control method and apparatus for direct injection spark ignited internal combustion engine
US7185631B2 (en) * 2004-10-15 2007-03-06 Nissan Motor Co., Ltd. Combustion control system and method for direct-injection spark-ignition internal combustion engine
JP4499643B2 (ja) * 2005-09-30 2010-07-07 日立オートモティブシステムズ株式会社 多段燃料噴射式内燃機関
JP5046190B2 (ja) 2008-01-22 2012-10-10 スズキ株式会社 筒内噴射型内燃機関の制御装置
JP5303511B2 (ja) * 2010-06-11 2013-10-02 日立オートモティブシステムズ株式会社 筒内燃料噴射式内燃機関の制御装置
JP5915472B2 (ja) * 2012-09-07 2016-05-11 マツダ株式会社 火花点火式直噴エンジン
JP5784682B2 (ja) * 2013-10-31 2015-09-24 三菱電機株式会社 内燃機関の制御装置
JP6172189B2 (ja) * 2015-03-23 2017-08-02 マツダ株式会社 直噴エンジンの燃料噴射制御装置
JP6260795B2 (ja) * 2015-03-27 2018-01-17 マツダ株式会社 エンジンの燃料制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200935A (ja) * 1998-01-08 1999-07-27 Nissan Motor Co Ltd 直噴式内燃機関の制御装置
JP2003222049A (ja) * 2002-01-30 2003-08-08 Mazda Motor Corp 火花点火式直噴エンジン
JP2012117400A (ja) * 2010-11-30 2012-06-21 Hitachi Automotive Systems Ltd 内燃機関の燃料噴射制御装置
JP2015040535A (ja) * 2013-08-23 2015-03-02 株式会社デンソー 圧力センサの応答性学習装置

Also Published As

Publication number Publication date
DE112017000208B4 (de) 2023-08-10
CN108603456A (zh) 2018-09-28
DE112017000208T5 (de) 2018-09-06
US10895217B2 (en) 2021-01-19
US20190017461A1 (en) 2019-01-17
JPWO2017135038A1 (ja) 2018-07-12
JP6450863B2 (ja) 2019-01-09
CN108603456B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
KR100818134B1 (ko) 내연기관용 배기 가스 제어 장치에 적용되는 연료 공급제어 방법 및 그 방법이 적용되는 배기 가스 제어 장치
JP4029893B2 (ja) 燃料噴射制御装置
JP2008513679A (ja) 内燃機関の制御方法および制御装置
JP6450863B2 (ja) 内燃機関の制御装置
JP2011032922A (ja) 電磁弁駆動制御装置
US9869263B2 (en) Method of controlling a solenoid valve
CN102652216B (zh) 内燃机控制装置
US7027907B2 (en) Sequence scheduling control for a fuel injected engine
JP2007132315A (ja) 燃料噴射制御装置
JP5512239B2 (ja) 燃料噴射制御装置
CN111033020A (zh) 内燃机的控制装置及控制方法
JP2019190379A (ja) 内燃機関及びそれを備えたハイブリッド車両
CN109838318B (zh) 内燃机的控制装置及控制方法
JP2017133438A (ja) 内燃機関の燃料噴射制御装置及び燃料噴射システム
JP4206759B2 (ja) 燃料噴射制御装置
US20240044303A1 (en) Injection control device
WO2018096940A1 (ja) 燃料噴射制御装置
KR101786114B1 (ko) 엔진의 점화시기 제어 방법
JP6229679B2 (ja) エンジンの燃圧制御装置
JP7127300B2 (ja) 噴射制御装置
WO2020162111A1 (ja) 制御装置
CN111065809A (zh) 内燃机的控制装置以及控制方法
KR102214575B1 (ko) 48v 마일드 하이브리드 차량에서의 인젝터 제어 방법 및 제어 장치
JP2013113211A (ja) 内燃機関の制御装置
JP2005530089A (ja) 内燃機関を作動する方法、コンピュータプログラム、制御および/または調整装置ならびに内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565464

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000208

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747197

Country of ref document: EP

Kind code of ref document: A1