WO2017135037A1 - Semiconductor device, method for producing same, and power conversion device using same - Google Patents

Semiconductor device, method for producing same, and power conversion device using same Download PDF

Info

Publication number
WO2017135037A1
WO2017135037A1 PCT/JP2017/001622 JP2017001622W WO2017135037A1 WO 2017135037 A1 WO2017135037 A1 WO 2017135037A1 JP 2017001622 W JP2017001622 W JP 2017001622W WO 2017135037 A1 WO2017135037 A1 WO 2017135037A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
gate
type
semiconductor device
Prior art date
Application number
PCT/JP2017/001622
Other languages
French (fr)
Japanese (ja)
Inventor
智之 三好
悠次郎 竹内
智康 古川
Original Assignee
株式会社日立パワーデバイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーデバイス filed Critical 株式会社日立パワーデバイス
Priority to DE112017000224.9T priority Critical patent/DE112017000224B4/en
Publication of WO2017135037A1 publication Critical patent/WO2017135037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a semiconductor device, a manufacturing method thereof, and a power conversion device using the same.
  • the present invention relates to a semiconductor device suitable for a wide range of use from a low-power device such as an air conditioner or a microwave oven to a high-power device such as an inverter of a railway or a steel mill, a manufacturing method thereof, and a power converter using the same .
  • IGBTs Insulated Gate Bipolar Transistors
  • Patent Document 1 provides “[Problem] To provide a power diode capable of simultaneously realizing low on-resistance and soft recovery. [Solution] P-type emitter layer 2 on the surface of N ⁇ -type base layer 1, back surface An N + -type emitter layer is formed on the P-type emitter layer 2 and a trench groove having a depth reaching the N ⁇ -type base layer 1 is formed on the surface of the P-type emitter layer 2, and a gate electrode is formed in the trench groove via a gate insulating film 3. 4 is embedded (see [Summary]), and a technique relating to a diode is disclosed.
  • Patent Document 1 has the following problems.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor device that has both low conduction loss performance and low recovery loss performance, a driving device thereof, and a manufacturing method thereof.
  • a semiconductor device of the present invention includes a first conductive type first semiconductor layer, a first conductive type second semiconductor layer adjacent to the first semiconductor layer, and having a lower impurity concentration than the first semiconductor layer, A third semiconductor layer of a second conductivity type adjacent to the second semiconductor layer, a first electrode electrically connected to the third semiconductor layer, and a first electrode electrically connected to the first semiconductor layer.
  • the present invention it is possible to provide a semiconductor device that achieves both low conduction loss performance and low recovery loss performance, a manufacturing method thereof, and a power conversion device using the same.
  • FIG. 1 shows typically the example of the cross-section of the semiconductor device which concerns on 1st Embodiment of this invention, (a) partially represents the vicinity of two trench gate type
  • FIG. It is a figure which shows the example of the forward direction characteristic of the diode of the semiconductor device which concerns on 1st Embodiment of this invention. It is a figure which shows the example of the input signal of the gate of the diode of the semiconductor device which concerns on 1st Embodiment of this invention, and the input signal of the gate of IGBT of a pair arm.
  • FIG. 6 is a diagram illustrating an example of a transient characteristic of an anode current of a diode and a cathode-anode voltage when the control by the input signal of FIG. 5 is applied to the diode of the semiconductor device according to the first embodiment of the present invention. It is a figure which shows typically the example of the cross-section of the semiconductor device which concerns on 2nd Embodiment of this invention. It is a figure which shows typically the carrier profile of a hole and an electron when the voltage applied to the insulated gate electrode of the diode of the semiconductor device which concerns on 2nd Embodiment of this invention is made into zero. It is a figure which shows typically the example of the cross-section of the semiconductor device which concerns on 3rd Embodiment of this invention.
  • FIG. 1 It is a figure which shows typically the path
  • FIG. 10 is a diagram showing an example of a method for manufacturing a semiconductor device according to a fifth embodiment of the present invention, where (a) shows the state of the semiconductor device before the second P ⁇ -type anode layer is formed, and (b) Represents the state of the semiconductor device after the second P ⁇ -type anode layer is formed. It is a figure which shows the example of the manufacturing method of the semiconductor device which concerns on 6th Embodiment of this invention, (a) represents the state of the semiconductor device before a 2nd P ⁇ type anode layer is formed, (b) Represents the state of the semiconductor device after the second P ⁇ -type anode layer is formed.
  • FIG. 6 is a diagram illustrating an example of a cross-sectional structure of a diode having an insulated gate according to Comparative Example 2.
  • FIG. 10 is a diagram showing energy bands in a cross section of a central portion of an anode electrode and a P ⁇ type anode layer of a diode having an insulated gate according to Comparative Example 2.
  • FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 100 according to the first embodiment of the present invention.
  • FIG. 1 (a) is a partial view of the vicinity of two trench gate type insulated gates 3.
  • (B) shows a state in which a plurality of trench gate type insulated gates 3 are arranged.
  • the semiconductor device 100 is a trench gate control type diode. That is, the trench gate type insulated gate 3 is provided between the anode electrode 6 and the cathode electrode 9 forming the diode, and the diode characteristics of the semiconductor device 100 are changed by the voltage applied to the insulated gate electrode 1 of the insulated gate 3. Be controlled.
  • the semiconductor device 100 is characterized in that the second P ⁇ -type anode layer 5 having a reduced carrier lifetime is provided in the first P ⁇ -type anode layer 4 in the first embodiment of the present invention. It is that.
  • Comparative Example 1 As Comparative Example 1, a general diode (not having a gate electrode structure for controlling the diode characteristics) is connected in reverse parallel to the IGBT, and a plurality of IGBTs are used to convert an inverter (converting DC power into AC power). A configuration example will be described.
  • FIG. 17 shows an example of a partial circuit of an inverter (DC power-AC power converter) configured to include a plurality of IGBTs 43 in Comparative Example 1 and a plurality of diodes 47 respectively connected in reverse parallel to the IGBTs 43.
  • DC power-AC power converter DC power-AC power converter
  • the diode 47 is connected to the IGBT 43 in antiparallel.
  • the upper arm and the lower arm are constituted by two IGBTs 43 connected in series.
  • the upper arm and the lower arm are driven by the respective gate drive circuits 45, and are turned on and off at high speeds.
  • the DC power (DC voltage) of the DC power supply 40 is exchanged. It is controlled to convert it into electric power (alternating voltage).
  • the control circuit 46 that controls the plurality of IGBTs 43 in an integrated manner controls the U phase, the V phase, and the W phase, respectively. Generate AC power (AC voltage) for the phase.
  • the generated U-phase, V-phase, and W-phase three-phase AC power (three-phase AC voltage) is applied to and supplied to a three-phase AC motor (inductive load) 48 to drive the three-phase AC motor 48.
  • the IGBT 43 and the diode 47 generate conduction loss when conducting, and generate switching loss when switching.
  • the switching loss includes a turn-on loss and a turn-off loss generated from the IGBT 43 and a recovery loss generated from the diode 47 when the IGBT is turned on.
  • Comparative example 2 As Comparative Example 2, a diode (gate-controlled diode) having an insulated gate according to a conventional technique (for example, cited document 1) will be described.
  • FIG. 15A shows a circuit configuration for characteristic evaluation
  • FIG. 15B shows a partial configuration of a circuit used as an inverter.
  • the diode 42 having an insulated gate is different from the IGBT that constitutes the upper arm (not shown in FIG. 15A, FIG. 15B). Used as a free-wheeling diode connected in reverse parallel to the upper arm IGBT 43).
  • control circuit 46 and the gate drive circuit 45 control the IGBT 43 and the diode 42 having an insulated gate.
  • the delay circuit block 44 gives a delay to the on / off of the IGBT 43.
  • control circuit 46 controls the upper arm and the lower arm, whereby the DC power (DC voltage) of the DC power supply 40 is converted into AC power (AC voltage) and an inductive load (for example, a part of the motor) 41. Is supplied with AC power (AC voltage).
  • FIGS. 15A and 15B are also used in the embodiment of the present invention, and the details will be described later.
  • the diode 42 having an insulated gate has a buried insulated gate provided inside the trench.
  • a forward voltage is reduced by applying a negative voltage to the insulated gate during conduction to form a hole accumulation layer.
  • the gate voltage zero during recovery hole injection from the anode is suppressed and recovery loss is reduced.
  • the diode 42 having the insulated gate in the comparative example 2 can control the hole injection efficiency from the anode by the voltage applied to the insulated gate, thereby improving the trade-off between the forward voltage related to the conduction loss and the recovery loss. be able to. That is, the comparative example 2 is improved with respect to the reduction of the recovery loss than the comparative example 1.
  • Comparative Example 2 has the following problems.
  • FIG. 18 is a diagram showing an example of a cross-sectional structure of a diode having an insulated gate according to Comparative Example 2.
  • P comprises a layer containing a P-type impurity - -type anode layer (anode region) 4 and contacts the anode electrode 6, P - -type anode layer (anode region) gate insulating film in contact with the 4 (insulating oxide film ) 2 and an insulated gate 3 composed of an insulated gate electrode 1 is disposed.
  • an N ⁇ type drift layer 7 made of a layer containing a low concentration of N type impurities is provided below the P ⁇ type anode layer (anode region) 4 (corresponding to the lower side of the drawing) in order to ensure high breakdown voltage performance.
  • an N + type cathode layer 8 made of a layer containing a high concentration impurity for electrical connection with the cathode electrode 9 is disposed.
  • ⁇ Hole carrier distribution when forward voltage is applied ⁇ In FIG. 19, a negative voltage (11) was applied to the insulated gate electrode 1 of the diode having an insulated gate according to Comparative Example 2, and a forward voltage (12) was applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time.
  • hole carriers (14) accumulate in the region in contact with the gate insulating film 2 inside the P ⁇ -type anode layer 4 due to the electric field due to the applied negative voltage.
  • the accumulated hole carriers (14) are injected into the N ⁇ -type drift layer 7 by the applied forward voltage (12).
  • the hole carriers injected into the N ⁇ type drift layer 7 are denoted as hole carriers (15).
  • FIG. 20 is a diagram schematically illustrating the distribution of hole carriers when the voltage applied to the insulated gate electrode 1 of the diode having the insulated gate according to Comparative Example 2 is zero.
  • the impurity concentration of the P ⁇ -type anode layer 4 is increased, the concentration of hole carriers accumulated at the interface of the insulated gate 3 when a gate voltage is applied is increased, and the conduction loss is decreased. Is an important structural design item.
  • FIG. 21 is a diagram showing an energy band in the cross section of the central portion of the anode electrode 6 and the P ⁇ -type anode layer 4 of the diode having an insulated gate according to Comparative Example 2.
  • the horizontal axis represents “depth” from the interface between the anode electrode 6 and the P ⁇ -type anode layer 4, and the vertical axis represents “energy (energy level) (eV)”.
  • the characteristic line 51 indicates the energy level of the anode electrode.
  • the characteristic line 52 shows the energy level of the valence band when the anode P ⁇ layer concentration is high.
  • the characteristic line 53 shows the energy level of the valence band when the anode P ⁇ layer concentration is low.
  • the characteristic line 54 shows the energy level of the conduction band when the anode P ⁇ layer concentration is high.
  • the characteristic line 55 shows the energy level of the conduction band when the anode P ⁇ layer concentration is low.
  • An arrow 50 represents the boundary surface (interface) between the anode electrode and the anode P ⁇ layer.
  • Arrow 56 indicates a decrease in the hole injection barrier with increasing anode P ⁇ layer concentration.
  • An arrow 57 indicates the anode electrode region.
  • Arrow 58 indicates the anode P ⁇ layer region.
  • P - by the concentration of P-type layer type anode layer 4 increases, P - -type energy level (52) of the valence band of the anode layer 4 anode electrode 6 and the P - interface type anode layer 4 (50 ) Increases in the vicinity, and the hole injection barrier from the anode electrode 6 to the P ⁇ -type anode layer 4 decreases (56).
  • FIG. 22 shows the diode when the negative voltage is applied to the gate and when the P-type impurity concentration of the P ⁇ -type anode layer 4 of the diode having the insulated gate according to Comparative Example 2 is low and high. It is a figure which shows the forward direction characteristic.
  • the horizontal axis represents “forward voltage, VF (V)”, and the vertical axis represents “forward current density, JF (A / cm 2 )”.
  • a characteristic line 59 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the concentration of the P ⁇ -type anode layer 4 is low.
  • a characteristic line 60 is a forward characteristic of the diode when the gate-anode gap is zero bias when the concentration of the P ⁇ -type anode layer 4 is low.
  • a characteristic line 61 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the concentration of the P ⁇ -type anode layer 4 is high.
  • the characteristic line 62 is the forward characteristic of the diode when the gate-anode gap is zero bias when the concentration of the P ⁇ -type anode layer 4 is high.
  • the P-type impurity concentration is increased while the gate and anode are both negatively biased (negative voltage). This shows that the forward voltage of the diode is reduced. That is, the effect of reducing conduction loss can be confirmed.
  • FIG. 1 is a diagram showing a cross-sectional structure of the semiconductor device 100 according to the first embodiment of the present invention.
  • FIG. 1A is a partial view of the vicinity of two trench gate type insulating gates 3.
  • (B) shows a state in which a plurality of trench gate type insulated gates 3 are arranged.
  • the notations N ⁇ , N, and N + indicate that the semiconductor layer is N-type (first conductivity type), and the impurity concentration of pentavalent atoms is relatively higher in this order. Indicates high.
  • the notations P ⁇ , P, and P + indicate that the semiconductor layer is P-type (second conductivity type) and that the impurity concentration of trivalent atoms is relatively high in this order.
  • the semiconductor device 100 is a trench gate control type diode. That is, a trench gate type insulated gate 3 is provided between an anode electrode 6 (first electrode) and a cathode electrode 9 (second electrode) forming a diode, and is applied to the insulated gate electrode 1 of the insulated gate 3. The diode characteristics are controlled by the voltage.
  • the semiconductor device 100 as a first embodiment of the present invention is characterized in that the second P ⁇ type in which the lifetime of carriers is reduced in the first P ⁇ type anode layer 4 (third semiconductor layer).
  • the anode layer 5 (fourth semiconductor layer) is provided.
  • the second P ⁇ -type anode layer 5 is formed by irradiating a part of the first P ⁇ -type anode layer 4 with a lifetime killer. Therefore, the second P ⁇ type anode layer 5 is formed inside the first P ⁇ type anode layer 4.
  • the N ⁇ type drift layer 7 (second semiconductor layer), the first P ⁇ type anode layer 4 adjacent to the N ⁇ type drift layer 7 in the vertical direction (the vertical direction of the paper surface), and the first An N + -type cathode layer 8 (first semiconductor layer) adjacent to the N ⁇ -type drift layer 7 in the vertical direction is provided on the side opposite to the P ⁇ -type anode layer 4.
  • a trench gate type insulating gate 3 having an insulating gate electrode 1 provided on the surface of the first P ⁇ -type anode layer 4 via the gate insulating film 2 is provided. .
  • the first P ⁇ -type anode layer 4 includes a second P ⁇ -type anode layer 5 with a reduced carrier lifetime, and the second P ⁇ -type anode layer 5 is gate-insulated. It is in contact with the membrane 2.
  • the anode electrode 6 and the first P ⁇ -type anode layer 4 are in contact with each other at the metal-semiconductor contact surface 10. That is, the anode electrode 6 made of metal and the first P ⁇ -type anode layer 4 made of semiconductor are electrically connected by Schottky contact or ohmic contact.
  • the cathode electrode 9 by ohmic contact with the N + -type cathode layer 8, N + -type cathode layer 8 and are electrically connected. Further, the cathode electrode 9 and the N ⁇ type drift layer 7 are electrically connected via the N + type cathode layer 8.
  • the semiconductor substrate on which the first P ⁇ -type anode layer 4, the second P ⁇ -type anode layer 5, the N ⁇ -type drift layer 7 and the N + -type cathode layer 8 are based is silicon (silicon, Si) or It is formed from silicon carbide (SiC), and the gate insulating film 2 is formed from silicon dioxide (SiO 2 ).
  • a plurality of insulated gates 3 formed in the trench groove are arranged in the horizontal direction (the horizontal direction of the paper).
  • the width of the trench is indicated by W, and the interval between the trenches is indicated by S.
  • FIG. 1B the description of each element shown in FIG. 1A other than the trench structure (groove) and the insulated gate 3 is omitted.
  • the semiconductor device 100 is configured by repeatedly forming a plurality of the structures shown in FIG. 1B.
  • the trench width W is preferably larger than the trench spacing S.
  • a negative voltage is applied to the insulated gate electrode 1 of the semiconductor device 100 according to the first embodiment of the present invention, and a forward voltage for conducting the diode is applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time of being done.
  • a hole carrier accumulation layer (14) having the same concentration is also formed at the interface between the second P ⁇ -type anode layer 5 and the gate insulating film 2 in which the carrier lifetime is reduced.
  • Many hole carriers (15) are injected into the N ⁇ -type drift layer 7 via the hole carrier accumulation layer (14), the forward voltage (VF) of the diode is lowered, and the conduction loss is reduced.
  • electrons are represented as electron carriers 16.
  • Figure 2 is a second P - is a hole carrier distribution in the case where a type anode layer 5, a second P shown in FIG. 19 - -type anode layer 5 is the same as the hole carrier distribution in the absence of .
  • the voltage applied to the insulated gate electrode 1 of the semiconductor device 100 according to the first embodiment of the present invention is set to zero, and a forward voltage is applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time.
  • hole carriers are injected into this region (second P ⁇ -type anode layer) by the second P ⁇ -type anode layer 5 provided in the first P ⁇ -type anode layer 4 and having a reduced carrier lifetime. 5), the injection into the N ⁇ -type drift layer 7 can be further suppressed as compared with the case where the present invention is not applied, and the controllability of the hole carrier injection amount by the gate voltage can be improved.
  • FIG. 3 shows a distribution in which the amount of injected hole carriers is smaller than that in FIG.
  • the hole carrier injection amount is as shown in FIG. 3 and FIG. Less than comparison.
  • FIG. 4 is a diagram illustrating an example of forward characteristics of the diode of the semiconductor device 100 according to the first embodiment of the present invention.
  • the horizontal axis is “forward voltage, VF (V)”, and the vertical axis is “forward current density, JF (A / cm 2 )”.
  • a characteristic line 20 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the second P ⁇ -type anode layer 5 with reduced carrier lifetime is not present.
  • a characteristic line 21 is a forward characteristic of the diode when a zero bias is applied between the gate and the anode when the second P ⁇ -type anode layer 5 with reduced carrier lifetime is not present.
  • a characteristic line 22 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the second P ⁇ -type anode layer 5 having a reduced carrier lifetime is present.
  • a characteristic line 23 is a forward characteristic of the diode when a zero bias is applied between the gate and the anode when the second P ⁇ -type anode layer 5 in which the lifetime of carriers is reduced is present.
  • the gate voltage controllability of the forward voltage (VF) of the diode can be significantly improved as compared with the diode of Comparative Example 2 to which the present invention is not applied.
  • the characteristic line 21 corresponding to Comparative Example 2 is compared with the characteristic line 23 of the semiconductor device 100 according to the first embodiment of the present invention. As shown by the characteristic line 23, the forward voltage (VF) of the diode is greatly increased.
  • FIG. 5 is a diagram showing an example of the input signal 24 of the gate (insulated gate electrode 1: FIG. 1) of the diode and the input signal 25 of the gate of the IGBT of the pair arm of the semiconductor device 100 according to the first embodiment of the present invention. It is.
  • the input signal 24 varies between a negative voltage and a zero voltage
  • the input signal 25 varies between a negative voltage and a positive voltage.
  • FIG. 15A is an evaluation circuit, and the circuit shown in FIG. 15B is actually used.
  • the input signal 25 in FIG. 5 is input to the gate of the IGBT 43 constituting the lower arm of FIG.
  • the input signal 24 (FIG. 5) input to the insulated gate electrode 1 (FIG. 1) of the diode 42 of the semiconductor device 100 according to the first embodiment of the present invention is turned on and the input signal 25 input to the gate of the IGBT 43 of the opposite arm is turned on.
  • the forward voltage (VF) of the diode is high as described above, that is, hole carrier injection from the anode electrode 6 (FIG. 1) and conductivity modulation are performed.
  • the suppressed state (27: FIG. 5) it becomes possible to shift to the recovery state.
  • FIG. 6 shows the anode current (characteristic line 31) of the diode (100) and the cathode-anode when the control by the input signal of FIG. 5 is applied to the diode of the semiconductor device 100 according to the first embodiment of the invention. It is a figure which shows the example of the transient characteristic of a voltage (characteristic line 29).
  • the horizontal axis represents time (time transition: 1 scale is 1 ⁇ sec). Also, the right vertical axis represents the cathode-anode voltage of the diode, and the left vertical axis represents the current density flowing through the diode.
  • the characteristic line 29 indicates the cathode-anode voltage.
  • the characteristic line 30 is a characteristic of current density flowing through the diode of Comparative Example 2
  • the characteristic line 31 is a characteristic of current density flowing through the diode of the semiconductor device 100 according to the first embodiment of the present invention.
  • the reverse current due to recovery observed when the voltage between the cathode and the anode rises is significantly larger than the conventional anode current (characteristic line 30). Can be reduced.
  • FIG. 7 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 200 according to the second embodiment of the present invention.
  • an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulated gate 3, an insulated gate electrode 1, a gate insulating film 2, a first P ⁇ -type anode layer 4 (third semiconductor layer). ),
  • the second P ⁇ -type anode layer 5 (fourth semiconductor layer), the N ⁇ -type drift layer 7 (second semiconductor layer), and the N + -type cathode layer 8 (first semiconductor layer) are shown in FIG. Since the configuration is the same as that of the semiconductor device 100, a duplicate description is omitted.
  • the semiconductor device 200 of FIG. 7 differs from the semiconductor device 100 of FIG. 1 in that it has a second N ⁇ type drift layer 32 (fifth semiconductor layer) with a reduced carrier lifetime.
  • the second N ⁇ type drift layer 32 is formed by irradiating a part of the N ⁇ type drift layer 7 with a lifetime killer. Therefore, the second N ⁇ type drift layer 32 is formed inside the N ⁇ type drift layer 7 (first N ⁇ type drift layer).
  • the diode of the semiconductor device 200 of the second embodiment includes the second N ⁇ type drift layer 32, the voltage applied to the insulated gate electrode 1 is higher than the diode of the semiconductor device 100 of the first embodiment.
  • the injection controllability of internal charges (for example, hole carriers) due to can be improved.
  • FIG. 8 is a diagram schematically showing a hole and electron carrier profile when the voltage applied to the insulated gate electrode 1 of the diode of the semiconductor device 200 according to the second embodiment of the present invention is zero.
  • FIG. 8 what is different from FIG. 3 is an influence due to the presence of the second N ⁇ -type drift layer 32.
  • the hole carrier (17) is blocked from being injected into the N ⁇ -type drift layer 7 (hole carrier 15) by the second N ⁇ -type drift layer 32 with a reduced carrier lifetime, and the electrons (34) are transferred to the carrier
  • the second N ⁇ type drift layer 32 having a reduced lifetime works to block the injection into the first P ⁇ type anode layer 4, and the conductivity modulation can be further suppressed.
  • FIG. 9 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 300 according to the third embodiment of the present invention.
  • the semiconductor device 300 is a side gate control type diode.
  • a side gate control type insulating gate (insulating side gate) 37 is provided between the anode electrode 6 (first electrode) and the cathode electrode 9 (second electrode) forming the diode, and the insulating gate 37 is insulated.
  • the diode characteristics are controlled by the voltage applied to the gate electrode (insulated side gate electrode) 35.
  • a second P ⁇ type anode layer 5 (fourth semiconductor layer) with a reduced carrier lifetime is provided in the first P ⁇ type anode layer 4 (third semiconductor layer).
  • the N ⁇ type drift layer 7 (second semiconductor layer), the first P ⁇ type anode layer 4 vertically adjacent to the N ⁇ type drift layer 7, and the first P ⁇ type anode layer 4 And an N + type cathode layer 8 (first semiconductor layer) adjacent to the N ⁇ type drift layer 7 in the vertical direction on the opposite side.
  • the side facing the first P ⁇ type anode layer 4 includes a so-called side gate type insulating gate 37 in which an insulating film (oxide film) 38 is disposed and the first P ⁇ -type anode layer 4 is present only on one side with respect to the insulating gate electrode 35. .
  • the first P ⁇ -type anode layer 4 includes a second P ⁇ -type anode layer 5 with a reduced carrier lifetime, and the second P ⁇ -type anode layer 5 is gate-insulated. It is in contact with the film 36.
  • the anode electrode 6 and the first P ⁇ -type anode layer 4 are in contact with each other at the metal-semiconductor contact surface 10. That is, the anode electrode 6 made of metal and the first P ⁇ -type anode layer 4 made of semiconductor are electrically connected by Schottky contact or ohmic contact.
  • the cathode electrode 9 by ohmic contact with the N + -type cathode layer 8, N + -type cathode layer 8 and are electrically connected. Further, the cathode electrode 9 and the N ⁇ type drift layer 7 are electrically connected via the N + type cathode layer 8.
  • the semiconductor substrate on which the first P ⁇ -type anode layer 4, the second P ⁇ -type anode layer 5, the N ⁇ -type drift layer 7 and the N + -type cathode layer 8 are based is silicon (silicon, Si) or It is formed from silicon carbide (SiC), and the gate insulating film 2 is formed from silicon dioxide (SiO 2 ).
  • the recovery current can be further reduced by the diode of the semiconductor device 300 of the present embodiment (third embodiment) than the diode (semiconductor device 100) described in the first embodiment.
  • FIG. 10 is a diagram schematically showing a recovery current path of the diode of the semiconductor device 100 according to the first embodiment of the present invention.
  • FIG. 11 is a diagram schematically showing a recovery current path of the diode of the semiconductor device 300 according to the third embodiment of the present invention.
  • the recovery current path of the diode of the semiconductor device 100 is a recovery current that returns to the anode electrode 6 from the region facing the insulated gate 3 in addition to the path 70 from the N ⁇ -type drift layer 7.
  • the path 71 exists.
  • FIG. 12 is a diagram showing drive gate signals for driving an insulated gate vertical semiconductor device according to the fourth embodiment of the present invention.
  • the horizontal axis represents time (time transition)
  • the vertical axis represents the respective voltages of the input signals 24 and 25.
  • This transient state is the recovery state (28: FIG. 12).
  • the input signal 24 to the gate of the diode 42 is turned off (0 V) immediately before the recovery to reduce the injected charge amount of hole carriers (27, time t2). It is necessary to make.
  • FIG. 13 is a diagram showing an example of a manufacturing method of the semiconductor device 100 (FIG. 1) according to the fifth embodiment of the present invention.
  • FIG. 13 (a) shows a state before the second P ⁇ -type anode layer 5 is formed. The state of the semiconductor device 100 is shown, and (b) shows the state of the semiconductor device 100 after the second P ⁇ -type anode layer 5 is formed.
  • the fifth embodiment of the present invention is a method for manufacturing a trench gate control type diode, and in particular, a method for forming a second P ⁇ -type anode layer 5 in the first P ⁇ -type anode layer 4 will be described. .
  • the semiconductor device (100) includes an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulating gate 3, an insulating gate electrode 1, a gate insulating film 2, A first P ⁇ -type anode layer 4 (third semiconductor layer), an N ⁇ -type drift layer 7 (second semiconductor layer), and an N + -type cathode layer 8 (first semiconductor layer) are provided.
  • FIG. 13A The difference between FIG. 13A and FIG. 13B is the presence or absence of the second P ⁇ -type anode layer 5 (fourth semiconductor layer).
  • a method for manufacturing the second P ⁇ -type anode layer 5 (fourth semiconductor layer) will be described. The description of the manufacturing method other than the second P ⁇ -type anode layer 5 (fourth semiconductor layer) is omitted.
  • helium (He), protons (P, H + ), electron beams, etc. are mainly directed toward a predetermined position of a part of the first P ⁇ -type anode layer 4.
  • a lifetime killer is irradiated (63).
  • the portion of the first P ⁇ -type anode layer 4 that has been irradiated with the lifetime killer is damaged in the crystal structure (crystal defects), carriers (holes and electrons) are difficult to move, and the carrier lifetime is reduced.
  • the second P ⁇ -type anode layer 5 is formed.
  • FIG. 13B shows a state in which the second P ⁇ -type anode layer 5 is formed.
  • the second P ⁇ -type anode layer 5 in FIG. 13B is formed by irradiating a lifetime killer based on the first P ⁇ -type anode layer 4.
  • the P ⁇ -type anode layer 5 is included in the first P ⁇ -type anode layer 4.
  • ⁇ Effect of Fifth Embodiment> As described above, since the second P ⁇ -type anode layer 5 is formed by irradiating a part of the first P ⁇ -type anode layer 4 with a lifetime killer, it is easy and low in the manufacturing process. A semiconductor device (gate-controlled diode) having desired characteristics can be obtained at low cost.
  • Sixth Embodiment: Manufacturing Method of Semiconductor Device >> A method for manufacturing a semiconductor device (insulated gate type vertical semiconductor device) according to a sixth embodiment of the present invention will be described with reference to FIG.
  • FIG. 14 is a view showing an example of a manufacturing method of the semiconductor device 300 (FIG. 9) according to the sixth embodiment of the present invention.
  • FIG. 14 (a) shows a state before the second P ⁇ -type anode layer 5 is formed. The state of the semiconductor device is shown, and (b) shows the state of the semiconductor device after the second P ⁇ -type anode layer 5 is formed.
  • the sixth embodiment of the present invention is a method for manufacturing a side gate control type diode, and in particular, a method for forming a second P ⁇ -type anode layer 5 in the first P ⁇ -type anode layer 4 will be described. .
  • the semiconductor device (300) includes an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulating gate 37, an insulating gate electrode 35, a gate insulating film 36, An oxide film 38, a first P ⁇ type anode layer 4 (third semiconductor layer), an N ⁇ type drift layer 7 (second semiconductor layer), and an N + type cathode layer 8 (first semiconductor layer) are provided.
  • FIG. 14A The difference between FIG. 14A and FIG. 14B is the presence or absence of the second P ⁇ -type anode layer 5 (fourth semiconductor layer).
  • a method for manufacturing the second P ⁇ -type anode layer 5 (fourth semiconductor layer) will be described. The description of the manufacturing method other than the second P ⁇ -type anode layer 5 (fourth semiconductor layer) is omitted.
  • helium (He), protons (P, H + ), electron beams, etc. are mainly directed toward a predetermined position of a part of the first P ⁇ -type anode layer 4.
  • a lifetime killer is irradiated (63).
  • the portion of the first P ⁇ -type anode layer 4 that has been irradiated with the lifetime killer is damaged in the crystal structure (crystal defects), carriers (holes and electrons) are difficult to move, and the carrier lifetime is reduced.
  • the second P ⁇ -type anode layer 5 is formed.
  • FIG. 14B shows a state in which the second P ⁇ type anode layer 5 is formed.
  • the second P ⁇ -type anode layer 5 in FIG. 14B is formed by irradiating the lifetime killer based on the first P ⁇ -type anode layer 4.
  • the P ⁇ -type anode layer 5 is included in the first P ⁇ -type anode layer 4.
  • ⁇ Effects of Sixth Embodiment> As described above, since the second P ⁇ -type anode layer 5 is formed by irradiating a part of the first P ⁇ -type anode layer 4 with a lifetime killer, it is easy and low in the manufacturing process. A semiconductor device (gate-controlled diode) having desired characteristics can be obtained at low cost.
  • Driving Device for Semiconductor Circuit A semiconductor circuit (semiconductor device) drive device according to a seventh embodiment of the present invention will be described with reference to FIG.
  • FIG. 15 is a diagram illustrating an example of a circuit configuration of a driving device of a semiconductor circuit (semiconductor device) according to a seventh embodiment of the present invention, where (a) illustrates a circuit configuration for characteristic evaluation, and (b) illustrates The partial structure of the circuit used as an inverter is shown.
  • a diode (gate-controlled diode) 42 having an insulated gate is replaced with an IGBT constituting the upper arm. Used as a freewheeling diode connected in antiparallel.
  • control circuit 46 the gate drive circuit 45, and the delay circuit block 44 control the IGBT 43 and the diode 42 having an insulated gate.
  • the delay circuit block 44 generates the delay timing of the gate of the IGBT 43 and the gate of the diode 42. Then, as shown in the fourth embodiment with reference to FIG. 12, the insulated gate (3: FIG. 1) of the diode 42 is turned off immediately before the IGBT 43 of the pair arm is turned on and the diode 42 reaches the recovery state. It is controlled in the same way.
  • the delay constant circuit (not shown) provided in the delay circuit block 44 is mainly a so-called RC delay circuit composed of a resistor and a capacitor.
  • the gate drive circuit 45 mainly has a function of a level shift circuit that converts the input from the control circuit 46 into input signals of the gates of the IGBT 43 and the diode 42, respectively.
  • FIG. 15A the diode 42 is arranged in the upper arm, the IGBT 43 is arranged in the lower arm, and the inverter circuit is partially extracted and described.
  • FIG. 15B IGBTs are arranged in the upper arm and diodes are arranged in the lower arm, and the above-described drive circuit network is also arranged for these.
  • the control circuit 46 controls the upper arm and the lower arm in an integrated manner, so that the DC power (DC voltage) of the DC power supply 40 is converted into AC power (AC voltage) and an inductive load (for example, AC power (AC voltage) is supplied to a part of the motor 41.
  • a power conversion device such as a low-loss inverter can be provided by a drive device for a semiconductor circuit (semiconductor device) including the control circuit 46, the gate drive circuit 45, and the delay circuit block 44.
  • a power conversion device including any one of the semiconductor devices according to the first to third embodiments will be described.
  • FIG. 16 is a diagram illustrating an example of a circuit configuration of the power conversion device according to the eighth embodiment of the present invention. Note that the three-phase AC motor 48 is not included in the power converter.
  • the upper arm is constituted by an IGBT 43U (switching element) and a diode (gate control type diode) 42U having an insulated gate
  • the lower arm is constituted by an IGBT 43D (switching element) and a diode (gate control type diode) 42D having an insulated gate. And are configured.
  • the pair of the upper arm and the lower arm constitutes a power conversion leg for one phase.
  • the output signals of the delay circuit block 44 (6 in total) are input to the gates of the three IGBTs 43U and the three IGBTs 43D, respectively.
  • a total of six gate drive circuits 45 drive the diodes 42U (three in total), the diodes 42D (three in total), and the delay circuit blocks 44 (total six).
  • control circuit 46 controls the total of six gate drive circuits 45 so that the DC power (DC voltage) of the DC power supply 40 is converted into three-phase AC power (three-phase AC voltage).
  • the three-phase AC motor 48 is supplied.
  • the second P ⁇ -type anode layer 5 is formed by irradiating the first P ⁇ -type anode layer 4 with the lifetime killer, but the irradiated position is a region close to the anode electrode 6.
  • the anode electrode 6 and the second P ⁇ -type anode layer 5 are formed in contact with each other.
  • anode electrode 6 and the second P ⁇ -type anode layer 5 are in metal-semiconductor contact, they are in Schottky contact or ohmic contact.
  • the diode characteristics change, and this structure can be used for applications where this characteristic is desirable.
  • the lifetime killer irradiation causes damage (crystal defects) to the crystal structure of first P ⁇ -type anode layer 4, and the lifetime of carriers is reduced.
  • the method for forming the reduced second P ⁇ -type anode layer 5 has been described.
  • annealing may be performed. Good.
  • This annealing treatment recovers more than necessary crystal defects, and the second P ⁇ -type anode layer 5 needs to be performed to such an extent that the lifetime of the carrier is kept reduced.
  • the annealing process is performed at several hundred degrees Celsius.
  • a first semiconductor layer (N + -type cathode layer) and a second semiconductor layer (N ⁇ -type drift layer) are constituted by N-type semiconductor layers, and a third semiconductor layer (first P ⁇ -type) is formed.
  • the anode layer) and the fourth semiconductor layer (second P ⁇ -type anode layer) are composed of P-type semiconductor layers.
  • the power converter according to the present embodiment is also effective. It is. ⁇ Equipment equipped with diode with insulated gate ⁇ In FIG. 15 or FIG. 16, the example in which the diodes 42, 42U, and 42D having the insulated gate, which is the semiconductor device according to the embodiment of the present invention, are provided in the power conversion device as the inverter has been described.
  • diodes 42, 42U, and 42D having insulating gates which are semiconductor devices according to the embodiment of the present invention, are used as a free-wheeling diode connected in reverse parallel to a switching element (IGBT) of a converter that converts AC power into DC power. You may prepare.
  • IGBT switching element
  • devices such as a booster circuit device and a power factor correction device may include diodes 42, 42U, and 42D having an insulating gate, which is a semiconductor device according to the embodiment of the present invention.

Abstract

The present invention, which addresses the problem of providing a semiconductor device that exhibits both low conduction loss and low recovery loss, a method for producing said semiconductor device, and a power conversion device that uses said semiconductor device, is characterized by being provided with: a first semiconductor layer 8 of a first conductivity type; a second semiconductor layer 7 of the first conductivity type, said layer 7 being adjacent to the first semiconductor layer 8 and having a lower concentration of impurities than the first semiconductor layer 8; a third semiconductor layer 4 of a second conductivity type, said layer 4 being adjacent to the second semiconductor layer 7; a first electrode 6 that is electrically connected to the third semiconductor layer 4; a second electrode 9 that is electrically connected to the first semiconductor layer 8; a fourth semiconductor layer 5 of the second conductivity type, said layer 5 being included in the third semiconductor layer 4 and having a reduced carrier lifetime compared to the third semiconductor layer 4; and an insulated gate 3 that is in contact with the third semiconductor layer.

Description

半導体装置、その製造方法、及びそれを用いた電力変換装置Semiconductor device, manufacturing method thereof, and power conversion device using the same
 本発明は、半導体装置、その製造方法、及びそれを用いた電力変換装置に関する。例えば、エアコンや電子レンジなどの小電力機器から、鉄道や製鉄所のインバータなどの大電力機器まで広く使われているものに好適な半導体装置、その製造方法、及びそれを用いた電力変換装置に関する。 The present invention relates to a semiconductor device, a manufacturing method thereof, and a power conversion device using the same. For example, the present invention relates to a semiconductor device suitable for a wide range of use from a low-power device such as an air conditioner or a microwave oven to a high-power device such as an inverter of a railway or a steel mill, a manufacturing method thereof, and a power converter using the same .
 地球温暖化が世界共通の重要な緊急課題となっており、その対策の一つとしてパワーエレクトロニクス技術の貢献期待度が高まっている。例えば、電力変換機能を司るインバータの高効率化に向けて、それを構成するパワースイッチング機能を果たすIGBT(Insulated Gate Bipolar Transistor)と、整流機能を果たすダイオードを主としたパワー半導体デバイスの低消費電力化が求められている。 Global warming has become an important urgent issue common to the world, and the contribution expectation of power electronics technology is increasing as one of the countermeasures. For example, in order to increase the efficiency of inverters that control power conversion functions, low power consumption of power semiconductor devices mainly composed of IGBTs (Insulated Gate Bipolar Transistors) that perform power switching functions and diodes that perform rectification functions Is required.
 直流電力を交流電力に変換するインバータでは、詳細を後記するように、スイッチング時の損失であるIGBTから発生するターンオン損失とターンオフ損失、ダイオードから発生する導通損失とリカバリー損失を低減する必要がある。 In an inverter that converts DC power into AC power, as will be described in detail later, it is necessary to reduce the turn-on loss and turn-off loss generated from the IGBT, which is the loss at the time of switching, and the conduction loss and recovery loss generated from the diode.
 例えば、特許文献1には、「[課題]低いオン抵抗およびソフトリカバリを同時に実現できる電力用ダイオードを提供すること。[解決手段]N- 型ベース層1の表面にP型エミッタ層2、裏面にN+ 型エミッタ層を形成し、さらにP型エミッタ層2の表面にN- 型ベース層1に達する深さのトレンチ溝を形成し、このトレンチ溝内にゲート絶縁膜3を介してゲート電極4を埋め込み形成する。([要約]を参照)」と記載され、ダイオードに関わる技術が開示されている。 For example, Patent Document 1 provides “[Problem] To provide a power diode capable of simultaneously realizing low on-resistance and soft recovery. [Solution] P-type emitter layer 2 on the surface of N -type base layer 1, back surface An N + -type emitter layer is formed on the P-type emitter layer 2 and a trench groove having a depth reaching the N -type base layer 1 is formed on the surface of the P-type emitter layer 2, and a gate electrode is formed in the trench groove via a gate insulating film 3. 4 is embedded (see [Summary]), and a technique relating to a diode is disclosed.
特開平10-163469号公報JP-A-10-163469
 しかしながら、前記の特許文献1に開示された技術には、次のような課題がある。 However, the technique disclosed in Patent Document 1 has the following problems.
 特許文献1に開示された技術のダイオードでは、詳細を後記するように、絶縁ゲートを有するダイオードのゲート電圧印加時においては、ダイオードの順方向電圧が下げられ、導通損失の低減効果はあるものの、ゲート電圧を印加しない状態でのホール注入量が上昇して、ゲート電圧印加時と同様に順方向電圧が低減してしまい、本状態でのリカバリー損失が上昇してしまう副作用が生ずるという課題がある。 In the diode of the technique disclosed in Patent Document 1, as will be described later in detail, when the gate voltage of the diode having an insulated gate is applied, the forward voltage of the diode is lowered, and there is an effect of reducing conduction loss. When the gate voltage is not applied, the amount of hole injection is increased, the forward voltage is reduced in the same manner as when the gate voltage is applied, and there is a problem that the recovery loss in this state is increased. .
 本発明は、前記した課題に鑑みて創案されたものであり、低導通損失性能と低リカバリー損失性能を両立する半導体装置、その駆動装置、及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor device that has both low conduction loss performance and low recovery loss performance, a driving device thereof, and a manufacturing method thereof.
 前記の課題を解決して、本発明の目的を達成するために、以下のように構成した。 In order to solve the above-described problems and achieve the object of the present invention, the following configuration is provided.
 すなわち、本発明の半導体装置は、第1導電型の第1半導体層と、前記第1半導体層に隣接し、前記第1半導体層よりも不純物濃度が低い第1導電型の第2半導体層と、前記第2半導体層に隣接する第2導電型の第3半導体層と、前記第3半導体層と電気的に接続された第1電極と、前記第1半導体層と電気的に接続された第2電極と、前記第3半導体層に含まれ、前記第3半導体層よりもキャリアのライフタイムが低減された第2導電型の第4半導体層と、前記第3半導体層に接する絶縁ゲートと、を備える、ことを特徴とする。 That is, a semiconductor device of the present invention includes a first conductive type first semiconductor layer, a first conductive type second semiconductor layer adjacent to the first semiconductor layer, and having a lower impurity concentration than the first semiconductor layer, A third semiconductor layer of a second conductivity type adjacent to the second semiconductor layer, a first electrode electrically connected to the third semiconductor layer, and a first electrode electrically connected to the first semiconductor layer. Two electrodes, a fourth semiconductor layer of a second conductivity type contained in the third semiconductor layer and having a carrier lifetime reduced as compared with the third semiconductor layer, an insulated gate in contact with the third semiconductor layer, It is characterized by comprising.
 また、その他の手段は、発明を実施するための形態のなかで説明する。 Further, other means will be described in the embodiment for carrying out the invention.
 本発明によれば、低導通損失性能と低リカバリー損失性能を両立する半導体装置、その製造方法、及びそれを用いた電力変換装置を提供することができる。 According to the present invention, it is possible to provide a semiconductor device that achieves both low conduction loss performance and low recovery loss performance, a manufacturing method thereof, and a power conversion device using the same.
本発明の第1実施形態に係る半導体装置の断面構造の例を模式的に示す図であり、(a)は、二つのトレンチゲート型の絶縁ゲートの近傍を部分的に表記したものであり、(b)は、トレンチゲート型の絶縁ゲートが複数個、配置されている様子を示すものである。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the example of the cross-section of the semiconductor device which concerns on 1st Embodiment of this invention, (a) partially represents the vicinity of two trench gate type | mold insulated gates, (B) shows a state in which a plurality of trench gate type insulated gates are arranged. 本発明の第1実施形態に係る半導体装置の絶縁ゲート電極に負電圧を印加し、さらにカソード電極とアノード電極との間に、導通させる順方向電圧が印加された際のホールキャリアの分布を模式的に示す図である。Schematic representation of the distribution of hole carriers when a negative voltage is applied to the insulated gate electrode of the semiconductor device according to the first embodiment of the present invention and a forward voltage is applied between the cathode electrode and the anode electrode. FIG. 本発明の第1実施形態に係る半導体装置の絶縁ゲート電極に印加する電圧をゼロにし、カソード電極とアノード電極との間に、導通させる順方向電圧が印加された際のホールキャリアの分布を模式的に示す図である。The distribution of hole carriers when a voltage applied to the insulated gate electrode of the semiconductor device according to the first embodiment of the present invention is zeroed and a forward voltage is applied between the cathode electrode and the anode electrode is schematically shown. FIG. 本発明の第1実施形態に係る半導体装置のダイオードの順方向特性の例を示す図である。It is a figure which shows the example of the forward direction characteristic of the diode of the semiconductor device which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る半導体装置のダイオードのゲートの入力信号、及び対アームのIGBTのゲートの入力信号の例を示す図である。It is a figure which shows the example of the input signal of the gate of the diode of the semiconductor device which concerns on 1st Embodiment of this invention, and the input signal of the gate of IGBT of a pair arm. 本発明の第1実施形態に係る半導体装置のダイオードに図5の入力信号による制御を適用した場合における、ダイオードのアノード電流と、カソード・アノード間電圧の過渡特性の例を示す図である。FIG. 6 is a diagram illustrating an example of a transient characteristic of an anode current of a diode and a cathode-anode voltage when the control by the input signal of FIG. 5 is applied to the diode of the semiconductor device according to the first embodiment of the present invention. 本発明の第2実施形態に係る半導体装置の断面構造の例を模式的に示す図である。It is a figure which shows typically the example of the cross-section of the semiconductor device which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る半導体装置のダイオードの絶縁ゲート電極に印加する電圧をゼロにした場合における、ホールと電子のキャリアプロファイルを模式的に示す図である。It is a figure which shows typically the carrier profile of a hole and an electron when the voltage applied to the insulated gate electrode of the diode of the semiconductor device which concerns on 2nd Embodiment of this invention is made into zero. 本発明の第3実施形態に係る半導体装置の断面構造の例を模式的に示す図である。It is a figure which shows typically the example of the cross-section of the semiconductor device which concerns on 3rd Embodiment of this invention. 本発明の第1実施形態に係る半導体装置のダイオードのリカバリー電流の経路を模式的に示す図である。It is a figure which shows typically the path | route of the recovery current of the diode of the semiconductor device which concerns on 1st Embodiment of this invention. 本発明の第3実施形態に係る半導体装置のダイオードのリカバリー電流の経路を模式的に示す図である。It is a figure which shows typically the path | route of the recovery current of the diode of the semiconductor device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態における絶縁ゲート型の縦型半導体装置を駆動する駆動ゲート信号を示す図である。It is a figure which shows the drive gate signal which drives the insulated gate vertical semiconductor device in 4th Embodiment of this invention. 本発明の第5実施形態に係る半導体装置の製造方法の例を示す図であり、(a)は第2のP型アノード層が形成される前の半導体装置の状態を表し、(b)は第2のP型アノード層が形成された後の半導体装置の状態を表している。FIG. 10 is a diagram showing an example of a method for manufacturing a semiconductor device according to a fifth embodiment of the present invention, where (a) shows the state of the semiconductor device before the second P -type anode layer is formed, and (b) Represents the state of the semiconductor device after the second P -type anode layer is formed. 本発明の第6実施形態に係る半導体装置の製造方法の例を示す図であり、(a)は第2のP型アノード層が形成される前の半導体装置の状態を表し、(b)は第2のP型アノード層が形成された後の半導体装置の状態を表している。It is a figure which shows the example of the manufacturing method of the semiconductor device which concerns on 6th Embodiment of this invention, (a) represents the state of the semiconductor device before a 2nd P type anode layer is formed, (b) Represents the state of the semiconductor device after the second P -type anode layer is formed. 本発明の第7実施形態に係る半導体回路の駆動装置の回路構成の例を示す図であり、(a)は特性評価用の回路構成を示し、(b)はインバータとして用いる回路の部分構成を示している。It is a figure which shows the example of the circuit structure of the drive device of the semiconductor circuit which concerns on 7th Embodiment of this invention, (a) shows the circuit structure for characteristic evaluation, (b) shows the partial structure of the circuit used as an inverter. Show. 本発明の第8実施形態に係る電力変換装置の回路構成の例を示す図である。It is a figure which shows the example of the circuit structure of the power converter device which concerns on 8th Embodiment of this invention. 比較例1における複数のIGBTと、このIGBTにそれぞれ逆並列に接続された複数のダイオードを備えて構成されるインバータの部分回路の例を示す図である。It is a figure which shows the example of the partial circuit of the inverter comprised including the some IGBT in the comparative example 1, and the some diode respectively connected to this IGBT in antiparallel. 比較例2による絶縁ゲートを有するダイオードの断面構造の例を示す図である。6 is a diagram illustrating an example of a cross-sectional structure of a diode having an insulated gate according to Comparative Example 2. FIG. 比較例2による絶縁ゲートを有するダイオードの絶縁ゲート電極に負電圧を印加し、さらにカソード電極とアノード電極との間に、順方向電圧を印加した際の、ホールキャリアの分布を模式的に示す図である。The figure which shows typically distribution of a hole carrier when a negative voltage is applied to the insulated gate electrode of the diode which has the insulated gate by the comparative example 2, and also a forward voltage is applied between a cathode electrode and an anode electrode. It is. 比較例2による絶縁ゲートを有するダイオードの絶縁ゲート電極に印加する電圧をゼロにした場合のホールキャリアの分布を模式的に示す図である。It is a figure which shows typically distribution of a hole carrier when the voltage applied to the insulated gate electrode of the diode which has the insulated gate by the comparative example 2 is made into zero. 比較例2による絶縁ゲートを有するダイオードのアノード電極とP型アノード層の中心部断面における、エネルギーバンドを示す図である。FIG. 10 is a diagram showing energy bands in a cross section of a central portion of an anode electrode and a P type anode layer of a diode having an insulated gate according to Comparative Example 2. 比較例2による絶縁ゲートを有するダイオードのP型アノード層のP型不純物濃度が低い場合と高い場合とにおいて、ゲートに負電圧を印加した時と、印加しない時のダイオードの順方向特性を示す図である。The forward characteristics of the diode when the negative voltage is applied to the gate and when the P-type impurity concentration of the P -type anode layer of the diode having the insulated gate according to Comparative Example 2 is low and high are shown. FIG.
 以下、本発明を実施するための形態(以下においては「実施形態」と表記する)を、適宜、図面を参照して説明する。
≪第1実施形態:その1≫
 本発明の第1実施形態の絶縁ゲート型(ゲート制御型)の縦型半導体装置(半導体装置)100を、図1を参照して説明する。
Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings as appropriate.
<< First Embodiment: Part 1 >>
An insulated gate type (gate control type) vertical semiconductor device (semiconductor device) 100 according to a first embodiment of the present invention will be described with reference to FIG.
 図1は、本発明の第1実施形態に係る半導体装置100の断面構造の例を模式的に示す図であり、(a)は、二つのトレンチゲート型の絶縁ゲート3の近傍を部分的に表記したものであり、(b)は、トレンチゲート型の絶縁ゲート3が複数個、配置されている様子を示すものである。 FIG. 1 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 100 according to the first embodiment of the present invention. FIG. 1 (a) is a partial view of the vicinity of two trench gate type insulated gates 3. (B) shows a state in which a plurality of trench gate type insulated gates 3 are arranged.
 図1(a)において、半導体装置100は、トレンチゲート制御型のダイオードである。すなわち、ダイオードを形成するアノード電極6とカソード電極9との間に、トレンチゲート型の絶縁ゲート3が備えられ、絶縁ゲート3の絶縁ゲート電極1に印加する電圧によって、半導体装置100のダイオード特性が制御される。 1A, the semiconductor device 100 is a trench gate control type diode. That is, the trench gate type insulated gate 3 is provided between the anode electrode 6 and the cathode electrode 9 forming the diode, and the diode characteristics of the semiconductor device 100 are changed by the voltage applied to the insulated gate electrode 1 of the insulated gate 3. Be controlled.
 また、半導体装置100における本発明の第1実施形態としての特徴は、第1のP型アノード層4の中にキャリアのライフタイムが低減された第2のP型アノード層5が備えられていることである。 Further, the semiconductor device 100 is characterized in that the second P -type anode layer 5 having a reduced carrier lifetime is provided in the first P -type anode layer 4 in the first embodiment of the present invention. It is that.
 図1の構造による半導体装置100(トレンチゲート制御型のダイオード)の特性や効果をわかりやすく説明するために、まず、比較例1および比較例2として従来の構造例や特性を先に説明し、その後に、≪第1実施形態:その2≫として、半導体装置100の構造と特性を詳細に再度、説明する。
≪比較例1≫
 比較例1として、一般的なダイオード(ダイオード特性を制御するゲート電極構造を有していない)をIGBTに逆並列接続して、複数のIGBTを用いてインバータ(直流電力を交流電力に変換)の構成例を説明する。
In order to explain the characteristics and effects of the semiconductor device 100 (trench gate control type diode) having the structure of FIG. 1 in an easy-to-understand manner, first, conventional structural examples and characteristics will be described first as Comparative Example 1 and Comparative Example 2. Thereafter, the structure and characteristics of the semiconductor device 100 will be described again in detail as << first embodiment: part 2 >>.
≪Comparative example 1≫
As Comparative Example 1, a general diode (not having a gate electrode structure for controlling the diode characteristics) is connected in reverse parallel to the IGBT, and a plurality of IGBTs are used to convert an inverter (converting DC power into AC power). A configuration example will be described.
 図17は、比較例1における複数のIGBT43と、このIGBT43にそれぞれ逆並列に接続された複数のダイオード47を備えて構成されるインバータ(直流電力-交流電力変換装置)の部分回路の例を示す図である。 FIG. 17 shows an example of a partial circuit of an inverter (DC power-AC power converter) configured to include a plurality of IGBTs 43 in Comparative Example 1 and a plurality of diodes 47 respectively connected in reverse parallel to the IGBTs 43. FIG.
 図17において、前記したように、IGBT43には、逆並列にダイオード47が接続されている。二つの直列接続されたIGBT43によって上アームと下アームが構成され、それぞれのゲート駆動回路45で、駆動されて、高速にターンオン、ターンオフを繰り返して、直流電源40の直流電力(直流電圧)を交流電力(交流電圧)に変換するように、制御される。 In FIG. 17, as described above, the diode 47 is connected to the IGBT 43 in antiparallel. The upper arm and the lower arm are constituted by two IGBTs 43 connected in series. The upper arm and the lower arm are driven by the respective gate drive circuits 45, and are turned on and off at high speeds. The DC power (DC voltage) of the DC power supply 40 is exchanged. It is controlled to convert it into electric power (alternating voltage).
 前記の二つのIGBT43によって構成される上アームと下アームの対の組は、合計で3組あって、これら複数のIGBT43を統合的に制御する制御回路46によって、それぞれU相、V相、W相の交流電力(交流電圧)を生成する。 There are a total of three pairs of upper and lower arms configured by the two IGBTs 43. The control circuit 46 that controls the plurality of IGBTs 43 in an integrated manner controls the U phase, the V phase, and the W phase, respectively. Generate AC power (AC voltage) for the phase.
 生成されたU相、V相、W相の三相交流電力(三相交流電圧)は、三相交流モータ(誘導性負荷)48に印加、供給されて、三相交流モータ48を駆動する。 The generated U-phase, V-phase, and W-phase three-phase AC power (three-phase AC voltage) is applied to and supplied to a three-phase AC motor (inductive load) 48 to drive the three-phase AC motor 48.
 以上の過程において、IGBT43とダイオード47は、導通時に導通損失を発生し、スイッチング時にスイッチング損失を発生する。 In the above process, the IGBT 43 and the diode 47 generate conduction loss when conducting, and generate switching loss when switching.
 そのため、インバータを小型化・高効率化するには、IGBT43とダイオード47の導通損失とスイッチング損失を低減する必要がある。 Therefore, in order to reduce the size and increase the efficiency of the inverter, it is necessary to reduce the conduction loss and switching loss between the IGBT 43 and the diode 47.
 なお、スイッチング損失は、IGBT43から発生するターンオン損失とターンオフ損失と、IGBTのターンオン時にダイオード47から発生するリカバリー損失から構成される。 The switching loss includes a turn-on loss and a turn-off loss generated from the IGBT 43 and a recovery loss generated from the diode 47 when the IGBT is turned on.
 比較例1の場合において、これらのターンオン損失とターンオフ損失とリカバリー損失からなるスイッチング損失は、発熱や電力効率の観点から無視できない課題である。
≪比較例2≫
 比較例2として、従来技術(例えば引用文献1)による絶縁ゲートを有するダイオード(ゲート制御型ダイオード)について、説明する。
In the case of the comparative example 1, the switching loss including the turn-on loss, the turn-off loss, and the recovery loss is a problem that cannot be ignored from the viewpoint of heat generation and power efficiency.
≪Comparative example 2≫
As Comparative Example 2, a diode (gate-controlled diode) having an insulated gate according to a conventional technique (for example, cited document 1) will be described.
 図15(a)、(b)の詳細は後記するが、図15(a)は特性評価用の回路構成を示し、図15(b)はインバータとして用いる回路の部分構成を示している。 Although details of FIGS. 15A and 15B will be described later, FIG. 15A shows a circuit configuration for characteristic evaluation, and FIG. 15B shows a partial configuration of a circuit used as an inverter.
 図15(a)に示すように、例えば下アームを構成するIGBT43に対して、絶縁ゲートを有するダイオード42は、上アームを構成するIGBT(図15(a)では不図示、図15(b)の上アームのIGBT43)に逆並列に接続される還流ダイオードとして用いられる。 As shown in FIG. 15A, for example, with respect to the IGBT 43 that constitutes the lower arm, the diode 42 having an insulated gate is different from the IGBT that constitutes the upper arm (not shown in FIG. 15A, FIG. 15B). Used as a free-wheeling diode connected in reverse parallel to the upper arm IGBT 43).
 そして、制御回路46およびゲート駆動回路45によって、IGBT43と絶縁ゲートを有するダイオード42は、制御される。 Then, the control circuit 46 and the gate drive circuit 45 control the IGBT 43 and the diode 42 having an insulated gate.
 なお、遅延回路ブロック44は、IGBT43のオンオフに遅延を与えるものである。 The delay circuit block 44 gives a delay to the on / off of the IGBT 43.
 また、制御回路46が上アームと下アームを制御することによって、直流電源40の直流電力(直流電圧)は、交流電力(交流電圧)に変換され、誘導性負荷(例えばモータの一部)41に交流電力(交流電圧)が供給される。 Further, the control circuit 46 controls the upper arm and the lower arm, whereby the DC power (DC voltage) of the DC power supply 40 is converted into AC power (AC voltage) and an inductive load (for example, a part of the motor) 41. Is supplied with AC power (AC voltage).
 なお、図15(a)、(b)の回路構成は、本発明の実施形態においても用いられるので、詳細については後記する。 Note that the circuit configurations of FIGS. 15A and 15B are also used in the embodiment of the present invention, and the details will be described later.
 絶縁ゲートを有するダイオード42は、トレンチ溝内部に設けられる埋め込み絶縁ゲートを備えている。導通時に絶縁ゲートに負電圧を印加し、ホール蓄積層を形成することで、順方向電圧を低減する。一方、リカバリー時にはゲート電圧をゼロにすることにより、アノードからのホール注入を抑制して、リカバリー損失を低減する。 The diode 42 having an insulated gate has a buried insulated gate provided inside the trench. A forward voltage is reduced by applying a negative voltage to the insulated gate during conduction to form a hole accumulation layer. On the other hand, by making the gate voltage zero during recovery, hole injection from the anode is suppressed and recovery loss is reduced.
 このように、比較例2における絶縁ゲートを有するダイオード42は、アノードからのホール注入効率を絶縁ゲートに印加する電圧により制御できるので、導通損失に係る順方向電圧とリカバリー損失のトレードオフを改善することができる。すなわち、比較例2は、比較例1よりも、リカバリー損失の低減については、改善されている。 As described above, the diode 42 having the insulated gate in the comparative example 2 can control the hole injection efficiency from the anode by the voltage applied to the insulated gate, thereby improving the trade-off between the forward voltage related to the conduction loss and the recovery loss. be able to. That is, the comparative example 2 is improved with respect to the reduction of the recovery loss than the comparative example 1.
 しかしながら、比較例2には、次のような課題があることを、本願の発明者は見出した。 However, the inventors of the present application have found that Comparative Example 2 has the following problems.
 そのため、比較例2について、詳細に説明する。 Therefore, Comparative Example 2 will be described in detail.
 比較例2の課題を説明するにあたって、「(比較例2による)絶縁ゲートを有するダイオードの断面構造」、「順方向電圧を印加した際のホールキャリアの分布」、「絶縁ゲート電極に印加する電圧をゼロにした場合のホールキャリアの分布」、「中心部断面におけるエネルギーバンド図」、「P型不純物濃度が低い場合、高い場合において、ゲートに負電圧を印加した時と、印加しない時の、順方向特性」、について順に説明する。 In explaining the problem of Comparative Example 2, “a cross-sectional structure of a diode having an insulated gate (according to Comparative Example 2)”, “a distribution of hole carriers when a forward voltage is applied”, “a voltage applied to an insulated gate electrode” Distribution of hole carriers when zero is set to zero, “energy band diagram in the central cross section”, “when the P-type impurity concentration is low and high, when a negative voltage is applied to the gate and when not applied, The “forward characteristics” will be described in order.
 そして、比較例2はスイッチング損失の低減の観点において、比較例1よりも改善されるものの、比較例2においても、低導通損失と低リカバリー損失の両立が困難であることを説明する。
《比較例2による絶縁ゲートを有するダイオードの断面構造》
 図18は、比較例2による絶縁ゲートを有するダイオードの断面構造の例を示す図である。
Then, although Comparative Example 2 is improved from Comparative Example 1 in terms of reducing switching loss, it will be described that it is difficult to achieve both low conduction loss and low recovery loss in Comparative Example 2 as well.
<< Cross-sectional structure of a diode having an insulated gate according to Comparative Example 2 >>
FIG. 18 is a diagram showing an example of a cross-sectional structure of a diode having an insulated gate according to Comparative Example 2.
 図18において、P型の不純物を含む層から成るP型アノード層(アノード領域)4とアノード電極6が接触し、P型アノード層(アノード領域)4に接するゲート絶縁膜(絶縁酸化膜)2と絶縁ゲート電極1から成る絶縁ゲート3を配置して形成されている。 In Figure 18, P comprises a layer containing a P-type impurity - -type anode layer (anode region) 4 and contacts the anode electrode 6, P - -type anode layer (anode region) gate insulating film in contact with the 4 (insulating oxide film ) 2 and an insulated gate 3 composed of an insulated gate electrode 1 is disposed.
 また、P型アノード層(アノード領域)4の下側(紙面の下側に相当)に、高耐圧性能を確保するため、低濃度のN型不純物を含む層から成るN型ドリフト層7と、カソード電極9と電気的に接続するための高濃度不純物を含む層から成るN型カソード層8が配置されている。
《順方向電圧を印加した際のホールキャリアの分布》
 図19は、比較例2による絶縁ゲートを有するダイオードの絶縁ゲート電極1に負電圧(11)を印加し、さらにカソード電極9とアノード電極6との間に、順方向電圧(12)を印加した際の、ホールキャリアの分布を模式的に示す図である。
In addition, an N type drift layer 7 made of a layer containing a low concentration of N type impurities is provided below the P type anode layer (anode region) 4 (corresponding to the lower side of the drawing) in order to ensure high breakdown voltage performance. In addition, an N + type cathode layer 8 made of a layer containing a high concentration impurity for electrical connection with the cathode electrode 9 is disposed.
《Hole carrier distribution when forward voltage is applied》
In FIG. 19, a negative voltage (11) was applied to the insulated gate electrode 1 of the diode having an insulated gate according to Comparative Example 2, and a forward voltage (12) was applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time.
 図19に示すように、P型アノード層4内部のゲート絶縁膜2に接する領域において、印加された負電圧による電界によって、ホールキャリア(14)が蓄積する。 As shown in FIG. 19, hole carriers (14) accumulate in the region in contact with the gate insulating film 2 inside the P -type anode layer 4 due to the electric field due to the applied negative voltage.
 さらに印加された順方向電圧(12)によって、蓄積されたホールキャリア(14)は、N型ドリフト層7に注入される。このN型ドリフト層7に注入されたホールキャリアをホールキャリア(15)と表記する。 Furthermore, the accumulated hole carriers (14) are injected into the N -type drift layer 7 by the applied forward voltage (12). The hole carriers injected into the N type drift layer 7 are denoted as hole carriers (15).
 このホールキャリア(15)と、カソード電極9から注入される電子(16)が再結合することによって、N型ドリフト層7の内部で伝導度変調が生じ、ダイオードの導通を維持するに必要なダイオードの順方向電圧が低減される。
《絶縁ゲート電極に印加する電圧をゼロにした場合のホールキャリアの分布》
 図20は、比較例2による絶縁ゲートを有するダイオードの絶縁ゲート電極1に印加する電圧をゼロにした場合の、ホールキャリアの分布を模式的に示す図である。
This hole carrier (15) and electrons (16) injected from the cathode electrode 9 are recombined, whereby conductivity modulation occurs inside the N -type drift layer 7 and is necessary for maintaining the conduction of the diode. The forward voltage of the diode is reduced.
<< Hole carrier distribution when voltage applied to insulated gate electrode is zero >>
FIG. 20 is a diagram schematically illustrating the distribution of hole carriers when the voltage applied to the insulated gate electrode 1 of the diode having the insulated gate according to Comparative Example 2 is zero.
 図20において、絶縁ゲート電極1の電圧がゼロのため、P型アノード層4内部のゲート絶縁膜2に接する領域において、ホールキャリアの蓄積層が消失し、P型アノード層4内部のホールキャリア濃度が大幅に低減する。 In Figure 20, the voltage of the insulated gate electrode 1 is zero, P - -type in the anode layer 4 region in contact with the gate insulating film 2 in the accumulation layer of hole carriers is lost, P - -type anode layer 4 inside the hole The carrier concentration is greatly reduced.
 このホールキャリア濃度の低減によって、N型ドリフト層7内部の伝導度変調効果が失われ、導通を維持するに必要なダイオードの順方向電圧が上昇する。 By reducing the hole carrier concentration, the conductivity modulation effect inside the N -type drift layer 7 is lost, and the forward voltage of the diode required to maintain conduction increases.
 この状態において、カソード電極9とアノード電極6との間に、正の高電圧が印加されると、内部電荷が、カソード電極9、アノード電極6に戻ることで生ずるリカバリー電流が無くなり、リカバリー損失を大幅に低減することができる。 In this state, when a positive high voltage is applied between the cathode electrode 9 and the anode electrode 6, the recovery current generated when the internal charges return to the cathode electrode 9 and the anode electrode 6 disappears, and recovery loss is reduced. It can be greatly reduced.
 以上の様に、絶縁ゲート電極1に印加する電圧を制御することで、P型アノード層4からN型ドリフト層7に注入するホールキャリア(15)の濃度、即ち伝導度変調の起こり易さを変調することができ、導通損失とリカバリー損失の両損失を共に下げることが可能となり、高効率なダイオードを実現することが可能となる。 As described above, by controlling the voltage applied to the insulated gate electrode 1, the concentration of hole carriers (15) injected from the P -type anode layer 4 into the N -type drift layer 7, that is, conductivity modulation is likely to occur. Therefore, both the conduction loss and the recovery loss can be reduced, and a highly efficient diode can be realized.
 ここで、低損失性能を実現するにおいて、P型アノード層4の不純物濃度を上昇し、ゲート電圧を印加した際の絶縁ゲート3の界面に蓄積するホールキャリア濃度を上昇し、導通損失を下げることが重要な構造設計項目となる。 Here, in realizing low loss performance, the impurity concentration of the P -type anode layer 4 is increased, the concentration of hole carriers accumulated at the interface of the insulated gate 3 when a gate voltage is applied is increased, and the conduction loss is decreased. Is an important structural design item.
 ただし、ここで、P型不純物濃度を上昇させた場合、ゲート電圧印加時での順方向電圧が下げられる一方で、ゲート電圧を印加しない状態でのホール注入量が上昇してしまう副作用が発生する。 However, when the P-type impurity concentration is increased, the forward voltage when the gate voltage is applied is lowered, while the side effect of increasing the hole injection amount when the gate voltage is not applied occurs. .
 この副作用の現象を、次に、図21と図22を参照して説明する。
《中心部断面におけるエネルギーバンド図》
 図21は、比較例2による絶縁ゲートを有するダイオードのアノード電極6とP型アノード層4の中心部断面における、エネルギーバンドを示す図である。
This side effect phenomenon will now be described with reference to FIGS.
《Energy band diagram in the central section》
FIG. 21 is a diagram showing an energy band in the cross section of the central portion of the anode electrode 6 and the P -type anode layer 4 of the diode having an insulated gate according to Comparative Example 2.
 図21において、横軸は、アノード電極6とP型アノード層4との界面からの「深さ」であり、縦軸は、「エネルギー(エネルギー準位)(eV)」を示している。 In FIG. 21, the horizontal axis represents “depth” from the interface between the anode electrode 6 and the P -type anode layer 4, and the vertical axis represents “energy (energy level) (eV)”.
 また、特性線51は、アノード電極のエネルギー準位を示している。特性線52は、アノードP層濃度が高い場合の価電子帯のエネルギー準位を示している。特性線53は、アノードP層濃度が低い場合の価電子帯のエネルギー準位を示している。特性線54は、アノードP層濃度が高い場合の伝導帯のエネルギー準位を示している。特性線55は、アノードP層濃度が低い場合の伝導帯のエネルギー準位を示している。 The characteristic line 51 indicates the energy level of the anode electrode. The characteristic line 52 shows the energy level of the valence band when the anode P layer concentration is high. The characteristic line 53 shows the energy level of the valence band when the anode P layer concentration is low. The characteristic line 54 shows the energy level of the conduction band when the anode P layer concentration is high. The characteristic line 55 shows the energy level of the conduction band when the anode P layer concentration is low.
 また、矢印50は、アノード電極とアノードP層の境界面(界面)を表している。矢印56は、アノードP層濃度の上昇に伴うホール注入障壁の低下を示している。矢印57は、アノード電極領域を示している。矢印58は、アノードP層領域を示している。 An arrow 50 represents the boundary surface (interface) between the anode electrode and the anode P layer. Arrow 56 indicates a decrease in the hole injection barrier with increasing anode P layer concentration. An arrow 57 indicates the anode electrode region. Arrow 58 indicates the anode P layer region.
 P型アノード層4のP型層の濃度が上昇することにより、P型アノード層4の価電子帯のエネルギー準位(52)がアノード電極6とP型アノード層4の界面(50)付近において上昇し、アノード電極6からP型アノード層4へのホールの注入障壁が低下(56)する。 P - by the concentration of P-type layer type anode layer 4 increases, P - -type energy level (52) of the valence band of the anode layer 4 anode electrode 6 and the P - interface type anode layer 4 (50 ) Increases in the vicinity, and the hole injection barrier from the anode electrode 6 to the P -type anode layer 4 decreases (56).
 すなわち、ゲート電圧を印加しない状態においても、カソード・アノード間に順方向電圧が印加されると、ホールが注入し易い状態が生ずる。
《P型不純物濃度が低い場合と高い場合とにおいて、ゲートに負電圧を印加した時と、印加しない時の順方向特性》
 図22は、比較例2による絶縁ゲートを有するダイオードのP型アノード層4のP型不純物濃度が低い場合と高い場合とにおいて、ゲートに負電圧を印加した時と、印加しない時の、ダイオードの順方向特性を示す図である。
That is, even when no gate voltage is applied, if a forward voltage is applied between the cathode and the anode, a state in which holes are easily injected occurs.
<< Forward characteristics when a negative voltage is applied to the gate and when the P-type impurity concentration is low and when it is not applied >>
FIG. 22 shows the diode when the negative voltage is applied to the gate and when the P-type impurity concentration of the P -type anode layer 4 of the diode having the insulated gate according to Comparative Example 2 is low and high. It is a figure which shows the forward direction characteristic.
 図22において、横軸は「順方向電圧、VF(V)」であり、縦軸は「順方向電流密度、JF(A/cm)」である。 In FIG. 22, the horizontal axis represents “forward voltage, VF (V)”, and the vertical axis represents “forward current density, JF (A / cm 2 )”.
 また、特性線59は、P型アノード層4の濃度が低い場合のゲート・アノード間に負バイアスを印加した際のダイオードの順方向特性である。 A characteristic line 59 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the concentration of the P -type anode layer 4 is low.
 特性線60は、P型アノード層4の濃度が低い場合のゲート・アノード間がゼロバイアス時のダイオードの順方向特性である。 A characteristic line 60 is a forward characteristic of the diode when the gate-anode gap is zero bias when the concentration of the P -type anode layer 4 is low.
 特性線61は、P型アノード層4の濃度が高い場合のゲート・アノード間に負バイアスを印加した際のダイオードの順方向特性である。 A characteristic line 61 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the concentration of the P -type anode layer 4 is high.
 特性線62は、P型アノード層4の濃度が高い場合のゲート・アノード間がゼロバイアス時のダイオードの順方向特性である。 The characteristic line 62 is the forward characteristic of the diode when the gate-anode gap is zero bias when the concentration of the P -type anode layer 4 is high.
 図22における特性線59(濃度が低い)と特性線61(濃度が高い)とを比較することによって、共にゲート・アノード間に負バイアス(負電圧)でありながら、P型不純物濃度を高くすることで、ダイオードの順方向電圧が低下していることが分かる。すなわち、導通損失の低減効果を確認できる。 By comparing the characteristic line 59 (concentration is low) and the characteristic line 61 (concentration is high) in FIG. 22, the P-type impurity concentration is increased while the gate and anode are both negatively biased (negative voltage). This shows that the forward voltage of the diode is reduced. That is, the effect of reducing conduction loss can be confirmed.
 一方で、図22における特性線60(濃度が低い)と特性線62(濃度が高い)とを比較することによって、共にゲート・アノード間に負バイアス(負電圧)を印加しないゼロバイアス(ゼロ電圧)時の順方向特性に着目すると、P型不純物濃度が上昇(高く)することで、負電圧印加時と同様に、大きく順方向電圧が低減してしまい、本状態でのリカバリー損失が上昇してしまう副作用が生ずることを示している。
<比較例2における低導通損失と低リカバリー損失の両立の実現困難について>
 すなわち、P型不純物濃度を上昇して、導通損失を下げようとすると、ゲート電圧(ゲート・アノード間電圧)によるホール注入の制御性が失われ、ゲート電圧によるP型アノード層4(アノード領域)のホールキャリア濃度を制御することで低導通損失と低リカバリー損失を両立させる本来の構造コンセプトが実現困難であることを示している。
≪第1実施形態:その2≫
 以上の「ゲート電圧によるホール注入量の制御性を向上し、低導通損失性能と低リカバリー損失性能を両立する」という課題を踏まえて、本発明の第1実施形態について、再度、詳細に説明する。
《半導体装置100の断面構造》
 前記したように、図1は、本発明の第1実施形態に係る半導体装置100の断面構造を示す図であり、(a)は、二つのトレンチゲート型の絶縁ゲート3の近傍を部分的に表記したものであり、(b)は、トレンチゲート型の絶縁ゲート3が複数個、配置されている様子を示すものである。
On the other hand, by comparing the characteristic line 60 (low density) and the characteristic line 62 (high density) in FIG. 22, a zero bias (zero voltage) in which no negative bias (negative voltage) is applied between the gate and the anode is obtained. ) When focusing on the forward characteristics, the increase in the P-type impurity concentration (increase) causes the forward voltage to decrease significantly, as in the case of negative voltage application, resulting in an increase in recovery loss in this state. This shows that side effects occur.
<Difficulty in realizing both low conduction loss and low recovery loss in Comparative Example 2>
That is, if the P-type impurity concentration is increased to reduce the conduction loss, the controllability of hole injection by the gate voltage (gate-anode voltage) is lost, and the P -type anode layer 4 (anode region) by the gate voltage is lost. This shows that it is difficult to realize the original structural concept that achieves both low conduction loss and low recovery loss by controlling the hole carrier concentration of
<< First Embodiment: Part 2 >>
The first embodiment of the present invention will be described in detail again in light of the above-mentioned problem “improves controllability of the hole injection amount by the gate voltage and achieves both low conduction loss performance and low recovery loss performance”. .
<< Cross-sectional structure of semiconductor device 100 >>
As described above, FIG. 1 is a diagram showing a cross-sectional structure of the semiconductor device 100 according to the first embodiment of the present invention. FIG. 1A is a partial view of the vicinity of two trench gate type insulating gates 3. (B) shows a state in which a plurality of trench gate type insulated gates 3 are arranged.
 なお、以下の説明において、N、N、Nという表記は、半導体層がN型(第1導電型)であることを示し、かつ、この順に5価の原子の不純物濃度が相対的に高いことを示す。また、P、P、Pという表記は、半導体層がP型(第2導電型)であることを示し、かつ、この順に3価の原子の不純物濃度が相対的に高いことを示す。 In the following description, the notations N , N, and N + indicate that the semiconductor layer is N-type (first conductivity type), and the impurity concentration of pentavalent atoms is relatively higher in this order. Indicates high. In addition, the notations P , P, and P + indicate that the semiconductor layer is P-type (second conductivity type) and that the impurity concentration of trivalent atoms is relatively high in this order.
 図1(a)において、半導体装置100は、トレンチゲート制御型のダイオードである。すなわち、ダイオードを形成するアノード電極6(第1電極)とカソード電極9(第2電極)との間に、トレンチゲート型の絶縁ゲート3が備えられ、絶縁ゲート3の絶縁ゲート電極1に印加する電圧によって、ダイオード特性が制御される。 1A, the semiconductor device 100 is a trench gate control type diode. That is, a trench gate type insulated gate 3 is provided between an anode electrode 6 (first electrode) and a cathode electrode 9 (second electrode) forming a diode, and is applied to the insulated gate electrode 1 of the insulated gate 3. The diode characteristics are controlled by the voltage.
 また、半導体装置100における本発明の第1実施形態としての特徴は、第1のP型アノード層4(第3半導体層)の中にキャリアのライフタイムが低減された第2のP型アノード層5(第4半導体層)が備えられていることである。 Further, the semiconductor device 100 as a first embodiment of the present invention is characterized in that the second P type in which the lifetime of carriers is reduced in the first P type anode layer 4 (third semiconductor layer). The anode layer 5 (fourth semiconductor layer) is provided.
 なお、詳細は後記するが、第2のP型アノード層5は、第1のP型アノード層4の一部の所定の位置にライフタイムキラーを照射して形成される。そのため、第2のP型アノード層5は、第1のP型アノード層4の内部に形成されている。 Although the details will be described later, the second P -type anode layer 5 is formed by irradiating a part of the first P -type anode layer 4 with a lifetime killer. Therefore, the second P type anode layer 5 is formed inside the first P type anode layer 4.
 また、N型ドリフト層7(第2半導体層)と、このN型ドリフト層7に縦方向(紙面の縦方向)で隣接する第1のP型アノード層4と、この第1のP型アノード層4とは反対側においてN型ドリフト層7と縦方向で隣接するN型カソード層8(第1半導体層)と、を備える。 Further, the N type drift layer 7 (second semiconductor layer), the first P type anode layer 4 adjacent to the N type drift layer 7 in the vertical direction (the vertical direction of the paper surface), and the first An N + -type cathode layer 8 (first semiconductor layer) adjacent to the N -type drift layer 7 in the vertical direction is provided on the side opposite to the P -type anode layer 4.
 さらに、いわゆるトレンチ溝内において、ゲート絶縁膜2を介して、第1のP型アノード層4の表面上に設けられる絶縁ゲート電極1を有するトレンチゲート型の前記した絶縁ゲート3を備えている。 Further, in the so-called trench groove, a trench gate type insulating gate 3 having an insulating gate electrode 1 provided on the surface of the first P -type anode layer 4 via the gate insulating film 2 is provided. .
 第1のP型アノード層4の内部には、キャリアのライフタイムが低減された第2のP型アノード層5が含まれており、この第2のP型アノード層5はゲート絶縁膜2に接している。 The first P -type anode layer 4 includes a second P -type anode layer 5 with a reduced carrier lifetime, and the second P -type anode layer 5 is gate-insulated. It is in contact with the membrane 2.
 アノード電極6と第1のP型アノード層4とは、金属-半導体接触面10において接触している。すなわち、金属であるアノード電極6と半導体である第1のP型アノード層4とは、ショットキー接触あるいは、オーミック接触によって、電気的に接続される。 The anode electrode 6 and the first P -type anode layer 4 are in contact with each other at the metal-semiconductor contact surface 10. That is, the anode electrode 6 made of metal and the first P -type anode layer 4 made of semiconductor are electrically connected by Schottky contact or ohmic contact.
 さらに、カソード電極9は、N型カソード層8とオーミック接触することによって、N型カソード層8と電気的に接続される。さらに、このN型カソード層8を介して、カソード電極9とN型ドリフト層7とが電気的に接続される。 Further, the cathode electrode 9 by ohmic contact with the N + -type cathode layer 8, N + -type cathode layer 8 and are electrically connected. Further, the cathode electrode 9 and the N type drift layer 7 are electrically connected via the N + type cathode layer 8.
 なお、第1のP型アノード層4、第2のP型アノード層5、N型ドリフト層7、N型カソード層8の基となる半導体基板は、ケイ素(シリコン、Si)もしくは炭化ケイ素(SiC)から形成され、ゲート絶縁膜2は二酸化ケイ素(SiO)から形成される。 The semiconductor substrate on which the first P -type anode layer 4, the second P -type anode layer 5, the N -type drift layer 7 and the N + -type cathode layer 8 are based is silicon (silicon, Si) or It is formed from silicon carbide (SiC), and the gate insulating film 2 is formed from silicon dioxide (SiO 2 ).
 図1(b)において、トレンチ溝内に形成された絶縁ゲート3が横方向(紙面の横方向)に複数個、配置されている。トレンチの幅をWで、トレンチの間隔をSで示している。 In FIG. 1B, a plurality of insulated gates 3 formed in the trench groove are arranged in the horizontal direction (the horizontal direction of the paper). The width of the trench is indicated by W, and the interval between the trenches is indicated by S.
 図1(b)において、前記のトレンチ構造(溝)と絶縁ゲート3以外の図1(a)で示した各要素の記載は省略している。 In FIG. 1B, the description of each element shown in FIG. 1A other than the trench structure (groove) and the insulated gate 3 is omitted.
 半導体装置100は、図1(b)に示すように、図1(a)で示した構造が複数個、繰り返し形成され、構成されている。 As shown in FIG. 1B, the semiconductor device 100 is configured by repeatedly forming a plurality of the structures shown in FIG.
 なお、トレンチの幅Wは、トレンチの間隔Sよりも大きいことが望ましい。
《半導体装置100の作用・特性》
 次に、本発明の第1実施形態に係る半導体装置100の作用・特性について説明する。
The trench width W is preferably larger than the trench spacing S.
<< Operation and Characteristics of Semiconductor Device 100 >>
Next, functions and characteristics of the semiconductor device 100 according to the first embodiment of the present invention will be described.
 図2は、本発明の第1実施形態に係る半導体装置100の絶縁ゲート電極1に負電圧を印加し、さらにカソード電極9とアノード電極6との間に、ダイオードを導通させる順方向電圧が印加された際のホールキャリアの分布を模式的に示す図である。 In FIG. 2, a negative voltage is applied to the insulated gate electrode 1 of the semiconductor device 100 according to the first embodiment of the present invention, and a forward voltage for conducting the diode is applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time of being done.
 図2において、絶縁ゲート電極1をアノード電極6に対して負電圧(負バイアス)とすることで、第1のP型アノード層4とゲート絶縁膜2との界面にホールキャリアの蓄積層(14)が形成される。 In FIG. 2, by setting the insulated gate electrode 1 to a negative voltage (negative bias) with respect to the anode electrode 6, a hole carrier accumulation layer (at the interface between the first P -type anode layer 4 and the gate insulating film 2 ( 14) is formed.
 また、同様にキャリアのライフタイムが低減された第2のP型アノード層5とゲート絶縁膜2との界面においても、同濃度のホールキャリアの蓄積層(14)が形成される。
このホールキャリアの蓄積層(14)を経由して、N型ドリフト層7に多くのホールキャリア(15)が注入され、ダイオードの順方向電圧(VF)が低下し、導通損失が低減する。なお、図2で電子は電子キャリア16として表記している。
Similarly, a hole carrier accumulation layer (14) having the same concentration is also formed at the interface between the second P -type anode layer 5 and the gate insulating film 2 in which the carrier lifetime is reduced.
Many hole carriers (15) are injected into the N -type drift layer 7 via the hole carrier accumulation layer (14), the forward voltage (VF) of the diode is lowered, and the conduction loss is reduced. In FIG. 2, electrons are represented as electron carriers 16.
 図2は、第2のP型アノード層5を有する場合におけるホールキャリア分布であるが、図19に示した第2のP型アノード層5が存在しない場合のホールキャリア分布と同一である。 Figure 2 is a second P - is a hole carrier distribution in the case where a type anode layer 5, a second P shown in FIG. 19 - -type anode layer 5 is the same as the hole carrier distribution in the absence of .
 すなわち、絶縁ゲート電極1に負電圧を印加する場合には、第2のP型アノード層5の有無は、ホールキャリア分布に影響を与えない。
《順方向電圧が印加された際のホールキャリアの分布》
 図3は、本発明の第1実施形態に係る半導体装置100の絶縁ゲート電極1に印加する電圧をゼロにし、カソード電極9とアノード電極6との間に、導通させる順方向電圧が印加された際のホールキャリアの分布を模式的に示す図である。
That is, when a negative voltage is applied to the insulated gate electrode 1, the presence or absence of the second P -type anode layer 5 does not affect the hole carrier distribution.
《Hole carrier distribution when forward voltage is applied》
In FIG. 3, the voltage applied to the insulated gate electrode 1 of the semiconductor device 100 according to the first embodiment of the present invention is set to zero, and a forward voltage is applied between the cathode electrode 9 and the anode electrode 6. It is a figure which shows typically distribution of the hole carrier at the time.
 図3において、絶縁ゲート電極1に印加する電圧をゼロにすることで、第1のP型アノード層4とゲート絶縁膜2との界面のホールキャリアの蓄積層が消失し、N型ドリフト層7へのホールキャリアの注入量を抑制することができる。 In FIG. 3, by making the voltage applied to the insulated gate electrode 1 zero, the hole carrier accumulation layer at the interface between the first P -type anode layer 4 and the gate insulating film 2 disappears, and the N -type drift is eliminated. The amount of hole carriers injected into the layer 7 can be suppressed.
 さらに第1のP型アノード層4の内部に設けられたキャリアのライフタイムを低減した第2のP型アノード層5によって、ホールキャリアの注入を本領域(第2のP型アノード層5)で阻止し、N型ドリフト層7への注入を、本発明を適用しない場合に対しさらに抑制することができ、ゲート電圧によるホールキャリアの注入量の制御性を向上できる。 Furthermore, hole carriers are injected into this region (second P -type anode layer) by the second P -type anode layer 5 provided in the first P -type anode layer 4 and having a reduced carrier lifetime. 5), the injection into the N -type drift layer 7 can be further suppressed as compared with the case where the present invention is not applied, and the controllability of the hole carrier injection amount by the gate voltage can be improved.
 なお、図3は図19と比較してホールキャリアの注入量が少ない分布となっている。ただし、図3と図19は共に模式的に示しているので実際には、図4の順方向の電圧-電流特性でも説明するように、ホールキャリアの注入量は、図3と図19との比較以上に少ない。
《ダイオードの順方向特性》
 図4は、本発明の第1実施形態に係る半導体装置100のダイオードの順方向特性の例を示す図である。
Note that FIG. 3 shows a distribution in which the amount of injected hole carriers is smaller than that in FIG. However, since both FIG. 3 and FIG. 19 are schematically shown, in practice, the hole carrier injection amount is as shown in FIG. 3 and FIG. Less than comparison.
<Forward characteristics of diode>
FIG. 4 is a diagram illustrating an example of forward characteristics of the diode of the semiconductor device 100 according to the first embodiment of the present invention.
 図4において、横軸は「順方向電圧、VF(V)」であり、縦軸は「順方向電流密度、JF(A/cm)」である。 In FIG. 4, the horizontal axis is “forward voltage, VF (V)”, and the vertical axis is “forward current density, JF (A / cm 2 )”.
 特性線20は、キャリアのライフタイムが低減された第2のP型アノード層5が存在しない場合のゲート・アノード間に負バイアスを印加した際のダイオードの順方向特性である。 A characteristic line 20 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the second P -type anode layer 5 with reduced carrier lifetime is not present.
 特性線21は、キャリアのライフタイムが低減された第2のP型アノード層5が存在しない場合のゲート・アノード間にゼロバイアス印加時のダイオードの順方向特性である。 A characteristic line 21 is a forward characteristic of the diode when a zero bias is applied between the gate and the anode when the second P -type anode layer 5 with reduced carrier lifetime is not present.
 特性線22は、キャリアのライフタイムが低減された第2のP型アノード層5が存在する場合のゲート・アノード間に負バイアスを印加した際のダイオードの順方向特性である。 A characteristic line 22 is a forward characteristic of the diode when a negative bias is applied between the gate and the anode when the second P -type anode layer 5 having a reduced carrier lifetime is present.
 特性線23は、キャリアのライフタイムが低減された第2のP型アノード層5が存在する場合のゲート・アノード間にゼロバイアス印加時のダイオードの順方向特性である。 A characteristic line 23 is a forward characteristic of the diode when a zero bias is applied between the gate and the anode when the second P -type anode layer 5 in which the lifetime of carriers is reduced is present.
 以上より、本発明の第1実施形態に係る半導体装置100の第1のP型アノード層4の内部に設けられたキャリアのライフタイムが低減された第2のP型アノード層5の効果により、ダイオードの順方向電圧(VF)のゲート電圧制御性を、本発明を適用しない比較例2のダイオードに対し、大幅に改善できる効果を確認できる。 As described above, the effect of the second P -type anode layer 5 in which the lifetime of the carriers provided in the first P -type anode layer 4 of the semiconductor device 100 according to the first embodiment of the present invention is reduced. Thus, it can be confirmed that the gate voltage controllability of the forward voltage (VF) of the diode can be significantly improved as compared with the diode of Comparative Example 2 to which the present invention is not applied.
 特に、ゲート・アノード間にゲート電圧を印加しない(ゼロバイアス)条件においては、比較例2に相当する特性線21と本発明の第1実施形態に係る半導体装置100の特性線23との比較において、特性線23で示すようにダイオードの順方向電圧(VF)が大きく上昇している。 In particular, in a condition where no gate voltage is applied between the gate and the anode (zero bias), the characteristic line 21 corresponding to Comparative Example 2 is compared with the characteristic line 23 of the semiconductor device 100 according to the first embodiment of the present invention. As shown by the characteristic line 23, the forward voltage (VF) of the diode is greatly increased.
 すなわち、キャリアのライフタイムが低減された第2のP型アノード層5によって、第1のP型アノード層4からのホールキャリアがブロック(17:図3)され、N型ドリフト層7内部での伝導度変調が抑制された効果を示している。
《ダイオードのゲートの入力信号と対アームのIGBTのゲートの入力信号》
 次に、リカバリー時における本発明の第1実施形態の効果を説明する。
That is, hole carriers from the first P -type anode layer 4 are blocked (17: FIG. 3) by the second P -type anode layer 5 with reduced carrier lifetime, and the N -type drift layer 7 This shows the effect of suppressing the internal conductivity modulation.
《Diode gate input signal and anti-IGBT gate input signal》
Next, the effect of the first embodiment of the present invention at the time of recovery will be described.
 図5は、本発明の第1実施形態に係る半導体装置100のダイオードのゲート(絶縁ゲート電極1:図1)の入力信号24、及び対アームのIGBTのゲートの入力信号25の例を示す図である。なお、入力信号24は負電圧と0電圧との間、入力信号25は負電圧と正電圧との間で変化する。また、入力信号24と入力信号25との立ち上がりには時間t1の時間差がある。 FIG. 5 is a diagram showing an example of the input signal 24 of the gate (insulated gate electrode 1: FIG. 1) of the diode and the input signal 25 of the gate of the IGBT of the pair arm of the semiconductor device 100 according to the first embodiment of the present invention. It is. The input signal 24 varies between a negative voltage and a zero voltage, and the input signal 25 varies between a negative voltage and a positive voltage. Further, there is a time difference of time t1 between the rising edge of the input signal 24 and the input signal 25.
 また、前記の入力信号24および入力信号25を適用する回路は、図15(a)である。前記したように、図15(a)は評価用の回路であって、実際には、図15(b)に示す回路が用いられる。 Further, a circuit to which the input signal 24 and the input signal 25 are applied is shown in FIG. As described above, FIG. 15A is an evaluation circuit, and the circuit shown in FIG. 15B is actually used.
 図5における入力信号24は、図15(a)の絶縁ゲートを有するダイオード42のゲートに入力する。 5 is inputted to the gate of the diode 42 having the insulated gate shown in FIG.
 また、図5における入力信号25は、図15(a)の下アームを構成するIGBT43のゲートに入力する。 Further, the input signal 25 in FIG. 5 is input to the gate of the IGBT 43 constituting the lower arm of FIG.
 IGBT43のゲートの入力信号25がオン(正電圧)になることで、絶縁ゲートを有するダイオード42に流れていた誘導性負荷との還流電流が急峻になくなると同時に、ダイオード42のカソード・アノード間の電圧が上昇し、ダイオード42は急速に逆方向状態に推移する。この過渡的な状態をリカバリー状態と呼び、以下、このリカバリー状態における本発明の効果を述べる。 When the input signal 25 of the gate of the IGBT 43 is turned on (positive voltage), the return current to the inductive load flowing in the diode 42 having the insulated gate is sharply eliminated, and at the same time, between the cathode and the anode of the diode 42. The voltage rises and the diode 42 rapidly changes to the reverse direction. This transient state is called a recovery state, and the effects of the present invention in this recovery state will be described below.
 本発明の第1実施形態に係る半導体装置100のダイオード42の絶縁ゲート電極1(図1)に入力する入力信号24(図5)を、対アームのIGBT43のゲートに入力する入力信号25がオンするよりも前に、オフ(0V:図5)することで、前述した通りダイオードの順方向電圧(VF)が高い、すなわちアノード電極6(図1)からのホールキャリアの注入と伝導度変調が抑制された状態(27:図5)で、リカバリー状態に移行することが可能となる。
《ダイオードのアノード電流とカソード・アノード間電圧の過渡特性》
 図6は、本発明の第1実施形態に係る半導体装置100のダイオードに図5の入力信号による制御を適用した場合における、ダイオード(100)のアノード電流(特性線31)と、カソード・アノード間電圧(特性線29)の過渡特性の例を示す図である。
The input signal 24 (FIG. 5) input to the insulated gate electrode 1 (FIG. 1) of the diode 42 of the semiconductor device 100 according to the first embodiment of the present invention is turned on and the input signal 25 input to the gate of the IGBT 43 of the opposite arm is turned on. Before turning on (0V: FIG. 5), the forward voltage (VF) of the diode is high as described above, that is, hole carrier injection from the anode electrode 6 (FIG. 1) and conductivity modulation are performed. In the suppressed state (27: FIG. 5), it becomes possible to shift to the recovery state.
<Transient characteristics of diode anode current and cathode-anode voltage>
FIG. 6 shows the anode current (characteristic line 31) of the diode (100) and the cathode-anode when the control by the input signal of FIG. 5 is applied to the diode of the semiconductor device 100 according to the first embodiment of the invention. It is a figure which shows the example of the transient characteristic of a voltage (characteristic line 29).
 図6において、横軸は、時間(時間の推移:1目盛が1μsec.)を表している。また、右側の縦軸がダイオードのカソード・アノード間電圧を示し、左側の縦軸がダイオードに流れる電流密度を示している。 In FIG. 6, the horizontal axis represents time (time transition: 1 scale is 1 μsec). Also, the right vertical axis represents the cathode-anode voltage of the diode, and the left vertical axis represents the current density flowing through the diode.
 また、特性線29は、カソード・アノード間電圧を示している。特性線30は、比較例2のダイオードに流れる電流密度の特性であり、特性線31は本発明の第1実施形態に係る半導体装置100のダイオードに流れる電流密度の特性である。 The characteristic line 29 indicates the cathode-anode voltage. The characteristic line 30 is a characteristic of current density flowing through the diode of Comparative Example 2, and the characteristic line 31 is a characteristic of current density flowing through the diode of the semiconductor device 100 according to the first embodiment of the present invention.
 本発明の半導体装置100のダイオードのアノード電流(特性線31)では、カソード・アノード間の電圧が上昇する際に観られるリカバリーによる逆電流を、従来のアノード電流(特性線30)に対して大幅に低減できる。 In the anode current (characteristic line 31) of the diode of the semiconductor device 100 of the present invention, the reverse current due to recovery observed when the voltage between the cathode and the anode rises is significantly larger than the conventional anode current (characteristic line 30). Can be reduced.
 カソード・アノード間の電圧が上昇する本期間にておいては、リカバリー電流とカソード・アノード間電圧によって電力消費が発生するため、リカバリー電流が下がることは、リカバリー損失を低減することを示している。 In this period when the cathode-anode voltage rises, power consumption occurs due to the recovery current and the cathode-anode voltage, so a decrease in the recovery current indicates a reduction in recovery loss. .
 このように本発明により、ゲート電圧をゼロにした際、アノード領域内部のライフタイムを低減した領域において、アノード電極からのホール注入と伝導度変調が抑制されたため、ホールがアノードに戻ることにより生ずるリカバリー電流を低減することができる。
<第1実施形態の効果>
以上より、本発明の第1実施形態によって、ゲートに負電圧を印加した際、ゼロにした際の、内部キャリア量の制御性を向上し、低導通損失と低リカバリー損失を併せ持つダイオードが実現できる。
≪第2実施形態≫
 本発明の第2実施形態の絶縁ゲート型の縦型半導体装置(半導体装置)200を、図7を参照して説明する。
《絶縁ゲート型(トレンチゲート制御型)の縦型半導体装置の断面図》
 図7は、本発明の第2実施形態に係る半導体装置200の断面構造の例を模式的に示す図である。
As described above, according to the present invention, when the gate voltage is reduced to zero, hole injection from the anode electrode and conductivity modulation are suppressed in the region where the lifetime inside the anode region is reduced. Recovery current can be reduced.
<Effects of First Embodiment>
As described above, according to the first embodiment of the present invention, when a negative voltage is applied to the gate, the controllability of the internal carrier amount when it is reduced to zero can be improved, and a diode having both low conduction loss and low recovery loss can be realized. .
<< Second Embodiment >>
An insulated gate vertical semiconductor device (semiconductor device) 200 according to a second embodiment of the present invention will be described with reference to FIG.
<< Cross Sectional View of Insulated Gate Type (Trench Gate Control Type) Vertical Semiconductor Device >>
FIG. 7 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 200 according to the second embodiment of the present invention.
 図7において、アノード電極6(第1電極)、カソード電極9(第2電極)、絶縁ゲート3、絶縁ゲート電極1、ゲート絶縁膜2、第1のP型アノード層4(第3半導体層)、第2のP型アノード層5(第4半導体層)、N型ドリフト層7(第2半導体層)、N型カソード層8(第1半導体層)は、図1に示した半導体装置100と同じ構成であるので、重複する説明は省略する。 In FIG. 7, an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulated gate 3, an insulated gate electrode 1, a gate insulating film 2, a first P -type anode layer 4 (third semiconductor layer). ), The second P -type anode layer 5 (fourth semiconductor layer), the N -type drift layer 7 (second semiconductor layer), and the N + -type cathode layer 8 (first semiconductor layer) are shown in FIG. Since the configuration is the same as that of the semiconductor device 100, a duplicate description is omitted.
 図7の半導体装置200が図1の半導体装置100と異なるのは、キャリアのライフタイムが低減された第2のN型ドリフト層32(第5半導体層)を有することである。 The semiconductor device 200 of FIG. 7 differs from the semiconductor device 100 of FIG. 1 in that it has a second N type drift layer 32 (fifth semiconductor layer) with a reduced carrier lifetime.
 第2のN型ドリフト層32は、N型ドリフト層7の一部の所定の位置にライフタイムキラーを照射して形成される。そのため、第2のN型ドリフト層32は、N型ドリフト層7(第1のN型ドリフト層)の内部に形成されている。 The second N type drift layer 32 is formed by irradiating a part of the N type drift layer 7 with a lifetime killer. Therefore, the second N type drift layer 32 is formed inside the N type drift layer 7 (first N type drift layer).
 この第2実施形態の半導体装置200のダイオードは、第2のN型ドリフト層32を備えたことによって、第1実施形態の半導体装置100のダイオードよりも、絶縁ゲート電極1に印加された電圧による内部電荷(例えばホールキャリア)の注入制御性を向上することができる。 Since the diode of the semiconductor device 200 of the second embodiment includes the second N type drift layer 32, the voltage applied to the insulated gate electrode 1 is higher than the diode of the semiconductor device 100 of the first embodiment. The injection controllability of internal charges (for example, hole carriers) due to can be improved.
 この制御性の向上は、アノード電極6からのホールキャリアの注入を促す要因として、カソード電極9から第1のP型アノード層4を介してアノード電極6へ注入される電子の濃度が一因として存在することによる。そのため、第2のN型ドリフト層32がN型ドリフト層7(第1のN型ドリフト層)の内部に存在することが制御性の向上に関係するのである。 This improvement in controllability is partly due to the concentration of electrons injected from the cathode electrode 9 into the anode electrode 6 through the first P -type anode layer 4 as a factor for promoting the injection of hole carriers from the anode electrode 6. As it exists. Therefore, the presence of the second N -type drift layer 32 inside the N -type drift layer 7 (first N -type drift layer) is related to improvement in controllability.
 次に、前記の第2のN型ドリフト層32が制御性の向上に関係することを、キャリアプロファイルを示して説明する。
《ホールと電子のキャリアプロファイル》
 図8は、本発明の第2実施形態に係る半導体装置200のダイオードの絶縁ゲート電極1に印加する電圧をゼロにした場合における、ホールと電子のキャリアプロファイルを模式的に示す図である。
Next, the fact that the second N type drift layer 32 is related to improvement in controllability will be described with reference to a carrier profile.
《Hall and electron carrier profile》
FIG. 8 is a diagram schematically showing a hole and electron carrier profile when the voltage applied to the insulated gate electrode 1 of the diode of the semiconductor device 200 according to the second embodiment of the present invention is zero.
 図8において、第1のP型アノード層4とキャリアのライフタイムを低減した第2のP型アノード層5の作用効果については、前記した図3の説明と同じであるので、重複する説明は省略する。 In FIG. 8, the operation and effect of the first P -type anode layer 4 and the second P -type anode layer 5 with reduced carrier lifetime are the same as those described above with reference to FIG. Description is omitted.
 図8において、図3と異なるのは、第2のN型ドリフト層32が存在することによる影響である。ホールキャリア(17)が、キャリアのライフタイム低減された第2のN型ドリフト層32により、N型ドリフト層7への注入(ホールキャリア15)がブロックされ、電子(34)が、キャリアのライフタイムが低減された第2のN型ドリフト層32により、第1のP型アノード層4への注入がブロックされる効果が働き、伝導度変調をさらに抑制することができる。 In FIG. 8, what is different from FIG. 3 is an influence due to the presence of the second N -type drift layer 32. The hole carrier (17) is blocked from being injected into the N -type drift layer 7 (hole carrier 15) by the second N -type drift layer 32 with a reduced carrier lifetime, and the electrons (34) are transferred to the carrier The second N type drift layer 32 having a reduced lifetime works to block the injection into the first P type anode layer 4, and the conductivity modulation can be further suppressed.
 なお、表記の都合上、図8と図3において、ホールや電子の個数を同じように記載しているが、実際には差異がある。
<第2実施形態の効果>
 以上、本発明の第2実施形態によって、ゲートに負電圧をかけた場合のダイオードの順方向電圧と、電圧をゼロにした場合のダイオードの順方向電圧の差を広げることができる。すなわち、ゲート電圧によるダイオード特性の制御性をさらに向上することができる。
≪第3実施形態≫
 本発明の第3実施形態の絶縁ゲート型の縦型半導体装置(半導体装置)300を、図9を参照して説明する。
《絶縁ゲート型(サイドゲート制御型)の縦型半導体装置の断面図》
 図9は、本発明の第3実施形態に係る半導体装置300の断面構造の例を模式的に示す図である。
For convenience of description, the numbers of holes and electrons are shown in the same way in FIGS. 8 and 3, but there are actually differences.
<Effects of Second Embodiment>
As described above, according to the second embodiment of the present invention, the difference between the forward voltage of the diode when a negative voltage is applied to the gate and the forward voltage of the diode when the voltage is zero can be widened. That is, the controllability of the diode characteristics by the gate voltage can be further improved.
«Third embodiment»
An insulated gate vertical semiconductor device (semiconductor device) 300 according to a third embodiment of the present invention will be described with reference to FIG.
<< Cross Section of Insulated Gate Type (Side Gate Control Type) Vertical Semiconductor Device >>
FIG. 9 is a diagram schematically showing an example of a cross-sectional structure of a semiconductor device 300 according to the third embodiment of the present invention.
 図9において、半導体装置300は、サイドゲート制御型のダイオードである。 In FIG. 9, the semiconductor device 300 is a side gate control type diode.
 すなわち、ダイオードを形成するアノード電極6(第1電極)とカソード電極9(第2電極)との間に、サイドゲート制御型の絶縁ゲート(絶縁サイドゲート)37が備えられ、絶縁ゲート37の絶縁ゲート電極(絶縁サイドゲート電極)35に印加する電圧によって、ダイオード特性が制御される。 That is, a side gate control type insulating gate (insulating side gate) 37 is provided between the anode electrode 6 (first electrode) and the cathode electrode 9 (second electrode) forming the diode, and the insulating gate 37 is insulated. The diode characteristics are controlled by the voltage applied to the gate electrode (insulated side gate electrode) 35.
 また、第1のP型アノード層4(第3半導体層)の中にキャリアのライフタイムが低減された第2のP型アノード層5(第4半導体層)が備えられている。 In addition, a second P type anode layer 5 (fourth semiconductor layer) with a reduced carrier lifetime is provided in the first P type anode layer 4 (third semiconductor layer).
 また、N型ドリフト層7(第2半導体層)と、このN型ドリフト層7に縦方向で隣接する第1のP型アノード層4と、この第1のP型アノード層4とは反対側においてN型ドリフト層7と縦方向で隣接するN型カソード層8(第1半導体層)を備える。 The N type drift layer 7 (second semiconductor layer), the first P type anode layer 4 vertically adjacent to the N type drift layer 7, and the first P type anode layer 4 And an N + type cathode layer 8 (first semiconductor layer) adjacent to the N type drift layer 7 in the vertical direction on the opposite side.
 また、ゲート絶縁膜(サイドゲート絶縁膜)36を介して、第1のP型アノード層4の表面上に設けられる絶縁ゲート電極35において、第1のP型アノード層4と対向する側には、絶縁膜(酸化膜)38が配置され、絶縁ゲート電極35に対して片側にしか、第1のP型アノード層4が存在しない、いわゆるサイドゲート型の絶縁ゲート37を備えている。 In addition, in the insulated gate electrode 35 provided on the surface of the first P type anode layer 4 through the gate insulating film (side gate insulating film) 36, the side facing the first P type anode layer 4 Includes a so-called side gate type insulating gate 37 in which an insulating film (oxide film) 38 is disposed and the first P -type anode layer 4 is present only on one side with respect to the insulating gate electrode 35. .
 第1のP型アノード層4の内部には、キャリアのライフタイムが低減された第2のP型アノード層5が含まれており、この第2のP型アノード層5はゲート絶縁膜36に接している。 The first P -type anode layer 4 includes a second P -type anode layer 5 with a reduced carrier lifetime, and the second P -type anode layer 5 is gate-insulated. It is in contact with the film 36.
 アノード電極6と第1のP型アノード層4とは、金属-半導体接触面10において接触している。すなわち、金属であるアノード電極6と半導体である第1のP型アノード層4とは、ショットキー接触、あるいは、オーミック接触によって、電気的に接続される。 The anode electrode 6 and the first P -type anode layer 4 are in contact with each other at the metal-semiconductor contact surface 10. That is, the anode electrode 6 made of metal and the first P -type anode layer 4 made of semiconductor are electrically connected by Schottky contact or ohmic contact.
 さらに、カソード電極9は、N型カソード層8とオーミック接触することによって、N型カソード層8と電気的に接続される。さらに、このN型カソード層8を介して、カソード電極9とN型ドリフト層7とが電気的に接続される。 Further, the cathode electrode 9 by ohmic contact with the N + -type cathode layer 8, N + -type cathode layer 8 and are electrically connected. Further, the cathode electrode 9 and the N type drift layer 7 are electrically connected via the N + type cathode layer 8.
 なお、第1のP型アノード層4、第2のP型アノード層5、N型ドリフト層7、N型カソード層8の基となる半導体基板は、ケイ素(シリコン、Si)もしくは炭化ケイ素(SiC)から形成され、ゲート絶縁膜2は二酸化ケイ素(SiO)から形成される。 The semiconductor substrate on which the first P -type anode layer 4, the second P -type anode layer 5, the N -type drift layer 7 and the N + -type cathode layer 8 are based is silicon (silicon, Si) or It is formed from silicon carbide (SiC), and the gate insulating film 2 is formed from silicon dioxide (SiO 2 ).
 本実施形態(第3実施形態)の半導体装置300のダイオードによって、第1実施形態に記載されたダイオード(半導体装置100)よりも、さらにリカバリー電流を低減することができる。 The recovery current can be further reduced by the diode of the semiconductor device 300 of the present embodiment (third embodiment) than the diode (semiconductor device 100) described in the first embodiment.
 その理由を、図10、図11を参照して、次に説明する。
《第1実施形態および第3実施形態のダイオードのリカバリー電流の経路》
 図10は、本発明の第1実施形態に係る半導体装置100のダイオードのリカバリー電流の経路を模式的に示す図である。
The reason will be described next with reference to FIGS.
<< Recovery Current Path of Diode of First Embodiment and Third Embodiment >>
FIG. 10 is a diagram schematically showing a recovery current path of the diode of the semiconductor device 100 according to the first embodiment of the present invention.
 図11は、本発明の第3実施形態に係る半導体装置300のダイオードのリカバリー電流の経路を模式的に示す図である。 FIG. 11 is a diagram schematically showing a recovery current path of the diode of the semiconductor device 300 according to the third embodiment of the present invention.
 図10において、半導体装置100のダイオードのリカバリー電流の経路は、N型ドリフト層7からの経路70以外に、絶縁ゲート3に対して、対向する領域から回りこんでアノード電極6に戻るリカバリー電流の経路71が存在する。 In FIG. 10, the recovery current path of the diode of the semiconductor device 100 is a recovery current that returns to the anode electrode 6 from the region facing the insulated gate 3 in addition to the path 70 from the N -type drift layer 7. The path 71 exists.
 一方で、図11において、半導体装置300のダイオードでは、N型ドリフト層7からの経路70と経路72は存在するが、図10に示した、前記の対向する領域から回りこんでアノード電極6に戻るリカバリー電流の経路39に相当する電流経路は存在しない。 On the other hand, in FIG. 11, in the diode of the semiconductor device 300, the path 70 and the path 72 from the N type drift layer 7 exist, but the anode electrode 6 wraps around from the above-described facing region shown in FIG. There is no current path corresponding to the recovery current path 39 that goes back to.
 したがって、リカバリー電流量を削減でき、リカバリー損失の低減効果をさらに向上することができる。
<第3実施形態の効果>
 すなわち、本発明の第3実施形態である半導体装置300のダイオードは、第1実施形態である半導体装置100のダイオードに対し、導通損失とリカバリー損失をさらに向上した高効率性能を実現することができる。
≪第4実施形態≫
 本発明の第4実施形態として、絶縁ゲート型の縦型半導体装置を駆動する駆動ゲート信号を、図12を参照して説明する。
《絶縁ゲート型の縦型半導体装置の駆動ゲート信号》
 図12は、本発明の第4実施形態における絶縁ゲート型の縦型半導体装置を駆動する駆動ゲート信号を示す図である。
Therefore, the amount of recovery current can be reduced, and the effect of reducing recovery loss can be further improved.
<Effect of the third embodiment>
That is, the diode of the semiconductor device 300 according to the third embodiment of the present invention can realize high efficiency performance with further improved conduction loss and recovery loss compared to the diode of the semiconductor device 100 according to the first embodiment. .
<< Fourth Embodiment >>
As a fourth embodiment of the present invention, a drive gate signal for driving an insulated gate vertical semiconductor device will be described with reference to FIG.
<< Drive gate signal of insulated gate type vertical semiconductor device >>
FIG. 12 is a diagram showing drive gate signals for driving an insulated gate vertical semiconductor device according to the fourth embodiment of the present invention.
 図12において、本発明の第1~第3実施形態の半導体装置のダイオードを図15に示す駆動回路に用いる場合に、絶縁ゲートを有するダイオード42のゲートの入力信号24、及び対アームのIGBT43のゲートの入力信号25を示している。 In FIG. 12, when the diodes of the semiconductor devices of the first to third embodiments of the present invention are used in the drive circuit shown in FIG. 15, the input signal 24 of the gate of the diode 42 having an insulated gate and the IGBT 43 of the pair arm The gate input signal 25 is shown.
 また、横軸は時間(時間の推移)であり、縦軸は入力信号24、25のそれぞれの電圧を表している。 Also, the horizontal axis represents time (time transition), and the vertical axis represents the respective voltages of the input signals 24 and 25.
 図12において、対アームのIGBT43(図15)のゲートの入力信号25がオン(正電圧)になることで、ダイオード42(図15)に流れていた誘導性負荷41(図15)との還流電流が急峻になくなると同時に、ダイオード42のカソード・アノード間の電圧が上昇し、ダイオード42は急速に逆方向状態に推移する。 In FIG. 12, when the input signal 25 of the gate of the IGBT 43 (FIG. 15) of the pair arm is turned on (positive voltage), it is returned to the inductive load 41 (FIG. 15) flowing in the diode 42 (FIG. 15). At the same time as the current disappears steeply, the voltage between the cathode and anode of the diode 42 increases, and the diode 42 rapidly changes to the reverse direction.
 この過渡的な状態がリカバリー状態(28:図12)である。低リカバリー電流、即ち低リカバリー損失を実現するには、リカバリー直前に、ダイオード42のゲートの入力信号24をオフ(0V)して、ホールキャリアの注入電荷量を低減する状態(27、時間t2)を作ることが必要である。 This transient state is the recovery state (28: FIG. 12). In order to realize a low recovery current, that is, a low recovery loss, the input signal 24 to the gate of the diode 42 is turned off (0 V) immediately before the recovery to reduce the injected charge amount of hole carriers (27, time t2). It is necessary to make.
 この過程において、ダイオード42のゲートの入力信号24がオン(負電圧)してホールキャリアの注入量が上昇した状態から、オフ(0V)して注入量が低減された状態に至るまで、ホールキャリアのライフタイムによって、ホールキャリアを消失することが必要である。その間の時間t2は、オフ信号(0V)を入力してからホールキャリアのライフタイムを考慮し、2μ秒以上、とることが望ましい。 In this process, the hole carrier from the state where the input signal 24 of the gate of the diode 42 is turned on (negative voltage) and the injection amount of hole carriers is increased to the state where it is turned off (0 V) and the injection amount is reduced. It is necessary to eliminate the hole carrier according to the lifetime of It is desirable that the time t2 during that time be 2 μsec or more in consideration of the lifetime of the hole carrier after the OFF signal (0 V) is input.
 2μ秒以上の期間(時間t2)を設けた後、対アームのIGBT43のゲートの入力信号25をオン(正電圧)することで、ダイオード42はリカバリー状態となるが、低リカバリー電流、即ち低リカバリー損失性能を実現できる。
≪第5実施形態:半導体装置の製造方法≫
 本発明の第5実施形態の半導体装置(絶縁ゲート型の縦型半導体装置)の製造方法を、図13を参照して説明する。
After providing a period of 2 μs or more (time t2), turning on the input signal 25 of the gate of the IGBT 43 of the opposite arm (positive voltage) causes the diode 42 to be in a recovery state, but a low recovery current, that is, a low recovery Loss performance can be realized.
<< Fifth Embodiment: Manufacturing Method of Semiconductor Device >>
A method for manufacturing a semiconductor device (insulated gate type vertical semiconductor device) according to a fifth embodiment of the present invention will be described with reference to FIG.
 図13は、本発明の第5実施形態に係る半導体装置100(図1)の製造方法の例を示す図であり、(a)は第2のP型アノード層5が形成される前の半導体装置100の状態を表し、(b)は第2のP型アノード層5が形成された後の半導体装置100の状態を表している。 FIG. 13 is a diagram showing an example of a manufacturing method of the semiconductor device 100 (FIG. 1) according to the fifth embodiment of the present invention. FIG. 13 (a) shows a state before the second P -type anode layer 5 is formed. The state of the semiconductor device 100 is shown, and (b) shows the state of the semiconductor device 100 after the second P -type anode layer 5 is formed.
 本発明の第5実施形態は、トレンチゲート制御型のダイオードの製造方法であって、特に第1のP型アノード層4内に第2のP型アノード層5を形成する方法について説明する。 The fifth embodiment of the present invention is a method for manufacturing a trench gate control type diode, and in particular, a method for forming a second P -type anode layer 5 in the first P -type anode layer 4 will be described. .
 図13(a)、(b)において、半導体装置(100)は、アノード電極6(第1電極)、カソード電極9(第2電極)、絶縁ゲート3、絶縁ゲート電極1、ゲート絶縁膜2、第1のP型アノード層4(第3半導体層)、N型ドリフト層7(第2半導体層)、N型カソード層8(第1半導体層)を備えている。 13A and 13B, the semiconductor device (100) includes an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulating gate 3, an insulating gate electrode 1, a gate insulating film 2, A first P -type anode layer 4 (third semiconductor layer), an N -type drift layer 7 (second semiconductor layer), and an N + -type cathode layer 8 (first semiconductor layer) are provided.
 図13(a)と図13(b)の相違は、第2のP型アノード層5(第4半導体層)の有無である。次に第2のP型アノード層5(第4半導体層)の製造方法について説明する。なお、第2のP型アノード層5(第4半導体層)以外の製造方法については、説明を省略する。 The difference between FIG. 13A and FIG. 13B is the presence or absence of the second P -type anode layer 5 (fourth semiconductor layer). Next, a method for manufacturing the second P -type anode layer 5 (fourth semiconductor layer) will be described. The description of the manufacturing method other than the second P -type anode layer 5 (fourth semiconductor layer) is omitted.
 図13(a)に示した状態において、第1のP型アノード層4の一部の所定の位置に向けてヘリウム(He)、プロトン(P、H)、電子線などを主としたライフタイムキラーを照射(63)する。 In the state shown in FIG. 13A, helium (He), protons (P, H + ), electron beams, etc. are mainly directed toward a predetermined position of a part of the first P -type anode layer 4. A lifetime killer is irradiated (63).
 このライフタイムキラーの照射を受けた部分の第1のP型アノード層4は、結晶構造にダメージ(結晶欠陥)が生じ、キャリア(ホールおよび電子)が移動しにくい、キャリアのライフタイムが低減した第2のP型アノード層5が形成される。 The portion of the first P -type anode layer 4 that has been irradiated with the lifetime killer is damaged in the crystal structure (crystal defects), carriers (holes and electrons) are difficult to move, and the carrier lifetime is reduced. Thus, the second P -type anode layer 5 is formed.
 この第2のP型アノード層5が形成された状態を示すのが図13(b)である。 FIG. 13B shows a state in which the second P -type anode layer 5 is formed.
 なお、前記したように、図13(b)における第2のP型アノード層5は、第1のP型アノード層4を基にライフタイムキラーを照射して形成されるので、第2のP型アノード層5は、第1のP型アノード層4の内部に含まれる。
<第5実施形態の効果>
 以上、第2のP型アノード層5を第1のP型アノード層4の一部の所定の位置にライフタイムキラーを照射して形成されるので、製作工程上、容易に、かつ低コストで所望の特性の半導体装置(ゲート制御型ダイオード)が得られる。
≪第6実施形態:半導体装置の製造方法≫
 本発明の第6実施形態の半導体装置(絶縁ゲート型の縦型半導体装置)の製造方法を、図14を参照して説明する。
As described above, the second P -type anode layer 5 in FIG. 13B is formed by irradiating a lifetime killer based on the first P -type anode layer 4. The P -type anode layer 5 is included in the first P -type anode layer 4.
<Effect of Fifth Embodiment>
As described above, since the second P -type anode layer 5 is formed by irradiating a part of the first P -type anode layer 4 with a lifetime killer, it is easy and low in the manufacturing process. A semiconductor device (gate-controlled diode) having desired characteristics can be obtained at low cost.
<< Sixth Embodiment: Manufacturing Method of Semiconductor Device >>
A method for manufacturing a semiconductor device (insulated gate type vertical semiconductor device) according to a sixth embodiment of the present invention will be described with reference to FIG.
 図14は、本発明の第6実施形態に係る半導体装置300(図9)の製造方法の例を示す図であり、(a)は第2のP型アノード層5が形成される前の半導体装置の状態を表し、(b)は第2のP型アノード層5が形成された後の半導体装置の状態を表している。 FIG. 14 is a view showing an example of a manufacturing method of the semiconductor device 300 (FIG. 9) according to the sixth embodiment of the present invention. FIG. 14 (a) shows a state before the second P -type anode layer 5 is formed. The state of the semiconductor device is shown, and (b) shows the state of the semiconductor device after the second P -type anode layer 5 is formed.
 本発明の第6実施形態は、サイドゲート制御型のダイオードの製造方法であって、特に第1のP型アノード層4内に第2のP型アノード層5を形成する方法について説明する。 The sixth embodiment of the present invention is a method for manufacturing a side gate control type diode, and in particular, a method for forming a second P -type anode layer 5 in the first P -type anode layer 4 will be described. .
 図14(a)、(b)において、半導体装置(300)は、アノード電極6(第1電極)、カソード電極9(第2電極)、絶縁ゲート37、絶縁ゲート電極35、ゲート絶縁膜36、酸化膜38、第1のP型アノード層4(第3半導体層)、N型ドリフト層7(第2半導体層)、N型カソード層8(第1半導体層)を備えている。 14A and 14B, the semiconductor device (300) includes an anode electrode 6 (first electrode), a cathode electrode 9 (second electrode), an insulating gate 37, an insulating gate electrode 35, a gate insulating film 36, An oxide film 38, a first P type anode layer 4 (third semiconductor layer), an N type drift layer 7 (second semiconductor layer), and an N + type cathode layer 8 (first semiconductor layer) are provided.
 図14(a)と図14(b)の相違は、第2のP型アノード層5(第4半導体層)の有無である。次に第2のP型アノード層5(第4半導体層)の製造方法について説明する。なお、第2のP型アノード層5(第4半導体層)以外の製造方法については、説明を省略する。 The difference between FIG. 14A and FIG. 14B is the presence or absence of the second P -type anode layer 5 (fourth semiconductor layer). Next, a method for manufacturing the second P -type anode layer 5 (fourth semiconductor layer) will be described. The description of the manufacturing method other than the second P -type anode layer 5 (fourth semiconductor layer) is omitted.
 図14(a)に示した状態において、第1のP型アノード層4の一部の所定の位置に向けてヘリウム(He)、プロトン(P、H)、電子線などを主としたライフタイムキラーを照射(63)する。 In the state shown in FIG. 14A, helium (He), protons (P, H + ), electron beams, etc. are mainly directed toward a predetermined position of a part of the first P -type anode layer 4. A lifetime killer is irradiated (63).
 このライフタイムキラーの照射を受けた部分の第1のP型アノード層4は、結晶構造にダメージ(結晶欠陥)が生じ、キャリア(ホールおよび電子)が移動しにくい、キャリアのライフタイムが低減した第2のP型アノード層5が形成される。 The portion of the first P -type anode layer 4 that has been irradiated with the lifetime killer is damaged in the crystal structure (crystal defects), carriers (holes and electrons) are difficult to move, and the carrier lifetime is reduced. Thus, the second P -type anode layer 5 is formed.
 この第2のP型アノード層5が形成された状態を示すのが図14(b)である。 FIG. 14B shows a state in which the second P type anode layer 5 is formed.
 なお、前記したように、図14(b)における第2のP型アノード層5は、第1のP型アノード層4を基にライフタイムキラーを照射して形成されるので、第2のP型アノード層5は、第1のP型アノード層4の内部に含まれる。
<第6実施形態の効果>
 以上、第2のP型アノード層5を第1のP型アノード層4の一部の所定の位置にライフタイムキラーを照射して形成されるので、製作工程上、容易に、かつ低コストで所望の特性の半導体装置(ゲート制御型ダイオード)が得られる。
≪第7実施形態:半導体回路の駆動装置≫
 本発明の第7実施形態の半導体回路(半導体装置)の駆動装置を、図15を参照して説明する。
As described above, the second P -type anode layer 5 in FIG. 14B is formed by irradiating the lifetime killer based on the first P -type anode layer 4. The P -type anode layer 5 is included in the first P -type anode layer 4.
<Effects of Sixth Embodiment>
As described above, since the second P -type anode layer 5 is formed by irradiating a part of the first P -type anode layer 4 with a lifetime killer, it is easy and low in the manufacturing process. A semiconductor device (gate-controlled diode) having desired characteristics can be obtained at low cost.
<< Seventh Embodiment: Driving Device for Semiconductor Circuit >>
A semiconductor circuit (semiconductor device) drive device according to a seventh embodiment of the present invention will be described with reference to FIG.
 図15は、本発明の第7実施形態に係る半導体回路(半導体装置)の駆動装置の回路構成の例を示す図であり、(a)は特性評価用の回路構成を示し、(b)はインバータとして用いる回路の部分構成を示している。 FIG. 15 is a diagram illustrating an example of a circuit configuration of a driving device of a semiconductor circuit (semiconductor device) according to a seventh embodiment of the present invention, where (a) illustrates a circuit configuration for characteristic evaluation, and (b) illustrates The partial structure of the circuit used as an inverter is shown.
 図15(a)、(b)に示すように、例えば下アームを構成するIGBT43(スイッチング素子)に対して、絶縁ゲートを有するダイオード(ゲート制御型ダイオード)42は、上アームを構成するIGBTに逆並列に接続される還流ダイオードとして用いられる。 As shown in FIGS. 15A and 15B, for example, with respect to the IGBT 43 (switching element) constituting the lower arm, a diode (gate-controlled diode) 42 having an insulated gate is replaced with an IGBT constituting the upper arm. Used as a freewheeling diode connected in antiparallel.
 そして、制御回路46、ゲート駆動回路45、遅延回路ブロック44によって、IGBT43と絶縁ゲートを有するダイオード42は、制御される。 Then, the control circuit 46, the gate drive circuit 45, and the delay circuit block 44 control the IGBT 43 and the diode 42 having an insulated gate.
 なお、遅延回路ブロック44は、IGBT43のゲートとダイオード42のゲートの遅延タイミングを生成する。そして、図12を参照して第4実施形態において示した通り、対アームのIGBT43がオンして、ダイオード42がリカバリー状態に至る直前に、ダイオード42の絶縁ゲート(3:図1)がオフする様に制御している。 Note that the delay circuit block 44 generates the delay timing of the gate of the IGBT 43 and the gate of the diode 42. Then, as shown in the fourth embodiment with reference to FIG. 12, the insulated gate (3: FIG. 1) of the diode 42 is turned off immediately before the IGBT 43 of the pair arm is turned on and the diode 42 reaches the recovery state. It is controlled in the same way.
 なお、遅延回路ブロック44に備えられる遅延定数回路(不図示)は、抵抗と容量から成るいわゆるRC遅延回路が主なものである。 The delay constant circuit (not shown) provided in the delay circuit block 44 is mainly a so-called RC delay circuit composed of a resistor and a capacitor.
 また、ゲート駆動回路45は、制御回路46からの入力を、IGBT43とダイオード42のそれぞれのゲートの入力信号に変換するレベルシフト回路の機能が主なものである。 The gate drive circuit 45 mainly has a function of a level shift circuit that converts the input from the control circuit 46 into input signals of the gates of the IGBT 43 and the diode 42, respectively.
 また、本実施形態(第7実施形態)において、図15(a)では、上アームにダイオード42を配置し、下アームにIGBT43を配置し、インバータ回路を部分的に抽出して記載しているが、実際のインバータには、図15(b)に示す様に、上アームにもIGBTが、下アームにもダイオードが配置され、これらに対しても前述の駆動回路網が配置される。 Further, in this embodiment (seventh embodiment), in FIG. 15A, the diode 42 is arranged in the upper arm, the IGBT 43 is arranged in the lower arm, and the inverter circuit is partially extracted and described. However, in the actual inverter, as shown in FIG. 15B, IGBTs are arranged in the upper arm and diodes are arranged in the lower arm, and the above-described drive circuit network is also arranged for these.
 以上の回路構成で制御回路46が上アームと下アームを統合的に制御することによって、直流電源40の直流電力(直流電圧)は、交流電力(交流電圧)に変換され、誘導性負荷(例えばモータの一部)41に交流電力(交流電圧)が供給される。
<第7実施形態の効果>
 以上、制御回路46、ゲート駆動回路45、遅延回路ブロック44を備える半導体回路(半導体装置)の駆動装置によって、低損失のインバータ等の電力変換装置が提供できる。
≪第8実施形態:電力変換装置≫
 次に、第1~第3実施形態のいずれかの半導体装置を備えた電力変換装置について説明する。
With the above circuit configuration, the control circuit 46 controls the upper arm and the lower arm in an integrated manner, so that the DC power (DC voltage) of the DC power supply 40 is converted into AC power (AC voltage) and an inductive load (for example, AC power (AC voltage) is supplied to a part of the motor 41.
<Effect of 7th Embodiment>
As described above, a power conversion device such as a low-loss inverter can be provided by a drive device for a semiconductor circuit (semiconductor device) including the control circuit 46, the gate drive circuit 45, and the delay circuit block 44.
«Eighth embodiment: power conversion device»
Next, a power conversion device including any one of the semiconductor devices according to the first to third embodiments will be described.
 図16は、本発明の第8実施形態に係る電力変換装置の回路構成の例を示す図である。なお、三相交流モータ48は、電力変換装置に含まれていない。 FIG. 16 is a diagram illustrating an example of a circuit configuration of the power conversion device according to the eighth embodiment of the present invention. Note that the three-phase AC motor 48 is not included in the power converter.
 図16において、IGBT43U(スイッチング素子)と絶縁ゲートを有するダイオード(ゲート制御型ダイオード)42Uとによって上アームが、IGBT43D(スイッチング素子)と絶縁ゲートを有するダイオード(ゲート制御型ダイオード)42Dとによって下アームとが構成されている。この上アームと下アームの組によって、1相分の電力変換用のレッグが構成されている。 In FIG. 16, the upper arm is constituted by an IGBT 43U (switching element) and a diode (gate control type diode) 42U having an insulated gate, and the lower arm is constituted by an IGBT 43D (switching element) and a diode (gate control type diode) 42D having an insulated gate. And are configured. The pair of the upper arm and the lower arm constitutes a power conversion leg for one phase.
 この電力変換用のレッグは、3組あって、それぞれU相、V相、W相の交流電力(交流電圧)を生成する。 There are three sets of legs for power conversion, and generate U-phase, V-phase, and W-phase AC power (AC voltage), respectively.
 3個のIGBT43Uと3個のIGBT43Dのゲートにはそれぞれ遅延回路ブロック44(計6個)の出力信号が入力している。 The output signals of the delay circuit block 44 (6 in total) are input to the gates of the three IGBTs 43U and the three IGBTs 43D, respectively.
 また、合計6個のゲート駆動回路45がそれぞれダイオード42U(計3個)とダイオード42D(計3個)、および遅延回路ブロック44(計6個)を駆動している。 In addition, a total of six gate drive circuits 45 drive the diodes 42U (three in total), the diodes 42D (three in total), and the delay circuit blocks 44 (total six).
 また、制御回路46は、合計6個のゲート駆動回路45を統合的に制御することにより、直流電源40の直流電力(直流電圧)は、3相交流電力(3相交流電圧)に変換され、三相交流モータ48に供給される。
<第8実施形態の効果>
 以上、第1~第3実施形態の半導体装置、すなわち絶縁ゲートを有するダイオード42を、インバータを構成するIGBTに逆並列に接続される還流ダイオードとして用いることにより、低損失の電力変換装置が提供できる。
≪その他の実施形態≫
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明をわかりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を加えることも可能である。
In addition, the control circuit 46 controls the total of six gate drive circuits 45 so that the DC power (DC voltage) of the DC power supply 40 is converted into three-phase AC power (three-phase AC voltage). The three-phase AC motor 48 is supplied.
<Effects of Eighth Embodiment>
As described above, by using the semiconductor device of the first to third embodiments, that is, the diode 42 having an insulated gate, as a freewheeling diode connected in reverse parallel to the IGBT constituting the inverter, a low-loss power conversion device can be provided. .
<< Other Embodiments >>
In addition, this invention is not limited to embodiment described above, Furthermore, various modifications are included. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with a part of the configuration of another embodiment, and further, a part or all of the configuration of the other embodiment is added to the configuration of the certain embodiment. Is also possible.
 以下に、その他の実施形態や変形例について、さらに説明する。
《第2のP型アノード層5とN型ドリフト層7との関係》
 図1に示した第1実施形態、図7に示した第2実施形態、および図9で示した第3実施形態において、キャリアのライフタイムが低減された第2のP型アノード層5と、N型ドリフト層7とは接せずに記載されているが、第2のP型アノード層5とN型ドリフト層7とが接していても、同様の効果が得られる。
《アノード電極6と第2のP型アノード層5との関係》
 図1(a)に示した第1実施形態において、アノード電極6と第1のP型アノード層4が接触していることを説明したが、それのみならず、アノード電極6と第2のP型アノード層5が接触していてもよい。
Other embodiments and modifications will be further described below.
<< Relationship Between Second P - type Anode Layer 5 and N - type Drift Layer 7 >>
In the first embodiment shown in FIG. 1, the second embodiment shown in FIG. 7, and the third embodiment shown in FIG. 9, the second P -type anode layer 5 with reduced carrier lifetime and , N - are described without contact from the type drift layer 7, a second P - -type anode layer 5 and the N - even -type drift layer 7 is in contact, the same effect can be obtained.
<< Relationship Between Anode Electrode 6 and Second P - type Anode Layer 5 >>
In the first embodiment shown in FIG. 1A, it has been described that the anode electrode 6 and the first P -type anode layer 4 are in contact with each other. The P -type anode layer 5 may be in contact.
 前記したように、第2のP型アノード層5は、第1のP型アノード層4にライフタイムキラーが照射されて形成されるが、照射される位置がアノード電極6の近接した領域にも到達している場合には、アノード電極6と第2のP型アノード層5が接触して形成される。 As described above, the second P -type anode layer 5 is formed by irradiating the first P -type anode layer 4 with the lifetime killer, but the irradiated position is a region close to the anode electrode 6. In this case, the anode electrode 6 and the second P -type anode layer 5 are formed in contact with each other.
 このとき、アノード電極6と第2のP型アノード層5とは、金属-半導体の接触となるので、ショットキー接触あるいは、オーミック接触となる。 At this time, since the anode electrode 6 and the second P -type anode layer 5 are in metal-semiconductor contact, they are in Schottky contact or ohmic contact.
 特に、アノード電極6と第2のP型アノード層5がショットキー接触している場合にダイオード特性が変化して、この特性が望ましい用途には、この構造を用いることもできる。
《アニール》
 図13を参照して第5実施形態の半導体製造方法において、ライフタイムキラーの照射により、第1のP型アノード層4の結晶構造にダメージ(結晶欠陥)が生じさせ、キャリアのライフタイムが低減した第2のP型アノード層5を形成する方法について説明した。
In particular, when the anode electrode 6 and the second P type anode layer 5 are in Schottky contact, the diode characteristics change, and this structure can be used for applications where this characteristic is desirable.
《Annealing》
Referring to FIG. 13, in the semiconductor manufacturing method of the fifth embodiment, the lifetime killer irradiation causes damage (crystal defects) to the crystal structure of first P -type anode layer 4, and the lifetime of carriers is reduced. The method for forming the reduced second P -type anode layer 5 has been described.
 この際、第1のP型アノード層4や第2のP型アノード層5にリーク等が生ずるような大きな結晶欠陥が生じている可能性がある場合には、アニール処理を行ってもよい。 At this time, if there is a possibility that a large crystal defect such as leakage occurs in the first P -type anode layer 4 or the second P -type anode layer 5, annealing may be performed. Good.
 このアニール処理は、必要以上の結晶欠陥を回復するものであって、かつ、第2のP型アノード層5は、キャリアのライフタイムが低減した状態を保つ程度に行われる必要がある。 This annealing treatment recovers more than necessary crystal defects, and the second P -type anode layer 5 needs to be performed to such an extent that the lifetime of the carrier is kept reduced.
 そのため、前記のアニール処理は、数100℃で行われることが望ましい。 Therefore, it is desirable that the annealing process is performed at several hundred degrees Celsius.
 《P型とN型の逆の構成》
 図1において、第1半導体層(N型カソード層)と第2半導体層(N型ドリフト層)をN型の半導体層で構成し、また、第3半導体層(第1のP型アノード層)と第4半導体層(第2のP型アノード層)をP型の半導体層で構成する説明をした。
《P type and N type reverse configuration》
In FIG. 1, a first semiconductor layer (N + -type cathode layer) and a second semiconductor layer (N -type drift layer) are constituted by N-type semiconductor layers, and a third semiconductor layer (first P -type) is formed. In the above description, the anode layer) and the fourth semiconductor layer (second P -type anode layer) are composed of P-type semiconductor layers.
 しかしながら、これらのP型とN型の半導体の構成を逆にしてもよい。ただし、電源やスイッチング素子の極性を逆にする。また、制御方法もそれらの極性を反映した方法をとる。
《遅延回路ブロック44とゲート駆動回路45との関係》
 図15を参照して第7実施形態の説明では、遅延定数回路を含む遅延回路ブロック44は、ゲート駆動回路45の後段に挿入された例を示しているが、ゲート駆動回路45の前段に配置して、IGBT43のゲート入力とダイオード42のゲート入力用に、それぞれゲート駆動回路45を設ける回路ブロック構成でもよい。
《スイッチング素子》
 図15、図16において、スイッチング素子をIGBTで説明したが、MOSFET(metal-oxide-semiconductor field-effect transistor)やスーパージャンクションMOSFETの場合でも、同じように、本実施形態の電力変換装置は、有効である。
《絶縁ゲートを有するダイオードを搭載する機器》
 図15または図16において、本発明の実施形態に係る半導体装置である絶縁ゲートを有するダイオード42、42U、42Dを、インバータとしての電力変換装置に備えた例を説明したが、これに限定されない。
However, the configurations of these P-type and N-type semiconductors may be reversed. However, the polarity of the power supply or switching element is reversed. Moreover, the control method takes the method reflecting those polarities.
<< Relationship Between Delay Circuit Block 44 and Gate Drive Circuit 45 >>
In the description of the seventh embodiment with reference to FIG. 15, an example in which the delay circuit block 44 including the delay constant circuit is inserted in the subsequent stage of the gate drive circuit 45 is shown. A circuit block configuration in which a gate driving circuit 45 is provided for the gate input of the IGBT 43 and the gate input of the diode 42 may be employed.
<Switching element>
15 and 16, the switching element has been described as an IGBT. However, even in the case of a MOSFET (metal-oxide-semiconductor field-effect transistor) or a super-junction MOSFET, the power converter according to the present embodiment is also effective. It is.
《Equipment equipped with diode with insulated gate》
In FIG. 15 or FIG. 16, the example in which the diodes 42, 42U, and 42D having the insulated gate, which is the semiconductor device according to the embodiment of the present invention, are provided in the power conversion device as the inverter has been described.
 例えば、交流電力を直流電力に変換するコンバータのスイッチング素子(IGBT)に逆並列に接続される還流ダイオードとして、本発明の実施形態に係る半導体装置である絶縁ゲートを有するダイオード42、42U、42Dを備えてもよい。 For example, diodes 42, 42U, and 42D having insulating gates, which are semiconductor devices according to the embodiment of the present invention, are used as a free-wheeling diode connected in reverse parallel to a switching element (IGBT) of a converter that converts AC power into DC power. You may prepare.
 また、電力変換装置に限らず、昇圧回路装置や力率改善装置などの機器に、本発明の実施形態に係る半導体装置である絶縁ゲートを有するダイオード42、42U、42Dを備えてもよい。 Further, not limited to the power conversion device, devices such as a booster circuit device and a power factor correction device may include diodes 42, 42U, and 42D having an insulating gate, which is a semiconductor device according to the embodiment of the present invention.
 1  絶縁ゲート電極
 2  ゲート絶縁膜
 3  絶縁ゲート
 4  第1のP型アノード層(第3半導体層)
 5  第2のP型アノード層(第4半導体層)
 6  アノード電極(第1電極)
 7  N型ドリフト層、第1のN型ドリフト層(第2半導体層)
 8  N型カソード層(第1半導体層)
 9  カソード電極(第2電極)
 10  金属-半導体接触面
 14、15、17  ホールキャリア
 16  電子キャリア
 32  第2のN型ドリフト層(第5半導体層)
 35  絶縁ゲート電極、絶縁サイドゲート電極
 36  サイドゲート絶縁膜
 37  絶縁ゲート、絶縁サイドゲート
 38  絶縁膜
 40  直流電源
 41  誘導性負荷(インダクタンス)
 42、42U、42D  ゲート制御型ダイオード(半導体装置)
 43、43U、43D  IGBT(スイッチング素子)
 44  遅延回路ブロック
 45  ゲート駆動回路
 46  制御回路
 47  ダイオード
 48  誘導性負荷(モータ)
 100、200、300  半導体装置
DESCRIPTION OF SYMBOLS 1 Insulated gate electrode 2 Gate insulating film 3 Insulated gate 4 1st P < - > type | mold anode layer (3rd semiconductor layer)
5 Second P -type anode layer (fourth semiconductor layer)
6 Anode electrode (first electrode)
7 N type drift layer, first N type drift layer (second semiconductor layer)
8 N + type cathode layer (first semiconductor layer)
9 Cathode electrode (second electrode)
10 Metal- semiconductor contact surface 14, 15, 17 Hole carrier 16 Electron carrier 32 Second N -type drift layer (fifth semiconductor layer)
35 Insulated gate electrode, insulated side gate electrode 36 Side gate insulating film 37 Insulated gate, insulated side gate 38 Insulating film 40 DC power supply 41 Inductive load (inductance)
42, 42U, 42D Gate controlled diode (semiconductor device)
43, 43U, 43D IGBT (switching element)
44 Delay circuit block 45 Gate drive circuit 46 Control circuit 47 Diode 48 Inductive load (motor)
100, 200, 300 Semiconductor device

Claims (12)

  1.  第1導電型の第1半導体層と、
     前記第1半導体層に隣接し、前記第1半導体層よりも不純物濃度が低い第1導電型の第2半導体層と、
     前記第2半導体層に隣接する第2導電型の第3半導体層と、
     前記第3半導体層と電気的に接続された第1電極と、
     前記第1半導体層と電気的に接続された第2電極と、
     前記第3半導体層に含まれ、前記第3半導体層よりもキャリアのライフタイムが低減された第2導電型の第4半導体層と、
     前記第3半導体層に接する絶縁ゲートと、
    を備える、
    ことを特徴とする半導体装置。
    A first semiconductor layer of a first conductivity type;
    A second semiconductor layer of a first conductivity type adjacent to the first semiconductor layer and having a lower impurity concentration than the first semiconductor layer;
    A third semiconductor layer of a second conductivity type adjacent to the second semiconductor layer;
    A first electrode electrically connected to the third semiconductor layer;
    A second electrode electrically connected to the first semiconductor layer;
    A fourth semiconductor layer of a second conductivity type, which is included in the third semiconductor layer and has a carrier lifetime reduced as compared with the third semiconductor layer;
    An insulated gate in contact with the third semiconductor layer;
    Comprising
    A semiconductor device.
  2.  請求項1において、
     さらに、
     前記第2半導体層に含まれ、前記第2半導体層よりもキャリアのライフタイムが低減された第1導電型の第5半導体層を備える、
    ことを特徴とする半導体装置。
    In claim 1,
    further,
    A fifth semiconductor layer of a first conductivity type, which is included in the second semiconductor layer and has a carrier lifetime lower than that of the second semiconductor layer;
    A semiconductor device.
  3.  請求項1または請求項2において、
     前記第4半導体層が前記絶縁ゲートに接している、
    ことを特徴とする半導体装置。
    In claim 1 or claim 2,
    The fourth semiconductor layer is in contact with the insulated gate;
    A semiconductor device.
  4.  請求項3において、
     前記第3半導体層または前記第4半導体層と、前記第1電極とで接触する面が、ショットキー接合である、
    ことを特徴とする半導体装置。
    In claim 3,
    The surface that contacts the third semiconductor layer or the fourth semiconductor layer and the first electrode is a Schottky junction.
    A semiconductor device.
  5.  請求項1において、
     前記絶縁ゲートは、複数であり、それぞれトレンチ形状の複数のトレンチ構内に設けられ、
     前記第3半導体層と前記第4半導体層は、二つの前記絶縁ゲートに挟まれている、
    ことを特徴とする半導体装置。
    In claim 1,
    A plurality of the insulated gates, each provided in a plurality of trench-shaped trenches;
    The third semiconductor layer and the fourth semiconductor layer are sandwiched between two insulated gates,
    A semiconductor device.
  6.  請求項5において、
     前記絶縁ゲートが設けられた複数のトレンチのそれぞれの幅は、互いに隣接するトレンチの間隔よりも大きい、
    ことを特徴とする半導体装置。
    In claim 5,
    The width of each of the plurality of trenches provided with the insulated gate is larger than the interval between adjacent trenches,
    A semiconductor device.
  7.  請求項1において、
     前記第1半導体層、第2半導体層、第3半導体層、第4半導体層は、ケイ素もしくは炭化ケイ素を基に構成され、
     前記絶縁ゲートは二酸化ケイ素から構成されるゲート絶縁膜を有する、
    ことを特徴とする半導体装置。
    In claim 1,
    The first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer are configured based on silicon or silicon carbide,
    The insulating gate has a gate insulating film made of silicon dioxide;
    A semiconductor device.
  8.  請求項1に記載の半導体装置において、
     前記第4半導体層は、前記第3半導体層の内部の所定の領域に、ライフタイムキラーを照射することによって形成される、
    ことを特徴とする半導体装置の製造方法。
    The semiconductor device according to claim 1,
    The fourth semiconductor layer is formed by irradiating a predetermined region inside the third semiconductor layer with a lifetime killer.
    A method for manufacturing a semiconductor device.
  9.  請求項2に記載の半導体装置において、
     前記第5半導体層は、前記第2半導体層の内部の所定の領域に、ライフタイムキラーを照射することによって形成される、
    ことを特徴とする半導体装置の製造方法。
    The semiconductor device according to claim 2,
    The fifth semiconductor layer is formed by irradiating a predetermined region inside the second semiconductor layer with a lifetime killer.
    A method for manufacturing a semiconductor device.
  10.  請求項8または請求項9において、
     前記ライフタイムキラーは、へリュウム、またはプロトン、または電子線である、
    ことを特徴とする半導体装置の製造方法。
    In claim 8 or claim 9,
    The lifetime killer is helium, proton, or electron beam.
    A method for manufacturing a semiconductor device.
  11.  請求項1乃至請求項7のいずれか一項に記載の半導体装置を備える、
    ことを特徴とする電力変換装置。
    A semiconductor device according to any one of claims 1 to 7, comprising:
    The power converter characterized by the above-mentioned.
  12.  請求項11に記載の電力変換装置において、
     さらに、
     前記電力変換装置が有するスイッチング素子と絶縁ゲートを有するダイオードを駆動するゲート駆動回路と、
     前記スイッチング素子と絶縁ゲートを有するダイオードの遅延タイミングを生成する遅延回路ブロックと、
     前記ゲート駆動回路を統合的に制御する制御回路と、
    を具備した半導体回路の駆動装置を備える、
    ことを特徴とする電力変換装置。
    The power conversion device according to claim 11,
    further,
    A gate drive circuit for driving a diode having a switching element and an insulated gate included in the power conversion device;
    A delay circuit block for generating a delay timing of the diode having the switching element and the insulated gate;
    A control circuit for comprehensively controlling the gate driving circuit;
    Comprising a semiconductor circuit drive device comprising:
    The power converter characterized by the above-mentioned.
PCT/JP2017/001622 2016-02-05 2017-01-19 Semiconductor device, method for producing same, and power conversion device using same WO2017135037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017000224.9T DE112017000224B4 (en) 2016-02-05 2017-01-19 Semiconductor device, method of manufacturing the same, and power conversion device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-020394 2016-02-05
JP2016020394A JP6709062B2 (en) 2016-02-05 2016-02-05 Semiconductor device, manufacturing method thereof, and power conversion device using the same

Publications (1)

Publication Number Publication Date
WO2017135037A1 true WO2017135037A1 (en) 2017-08-10

Family

ID=59500634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001622 WO2017135037A1 (en) 2016-02-05 2017-01-19 Semiconductor device, method for producing same, and power conversion device using same

Country Status (3)

Country Link
JP (1) JP6709062B2 (en)
DE (1) DE112017000224B4 (en)
WO (1) WO2017135037A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788695A (en) * 2018-02-28 2020-10-16 株式会社日立功率半导体 Semiconductor device and power conversion device
CN112447824A (en) * 2019-08-30 2021-03-05 株式会社东芝 Semiconductor device and semiconductor module
CN112786696A (en) * 2019-11-01 2021-05-11 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN113497033A (en) * 2020-03-19 2021-10-12 株式会社东芝 Semiconductor device and control method thereof
CN116454119A (en) * 2023-06-15 2023-07-18 广东巨风半导体有限公司 Fast recovery diode and preparation method thereof
EP4071813A4 (en) * 2019-12-06 2023-12-06 Hitachi, Ltd. Semiconductor circuit control method, and power converter adopting same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017390A1 (en) 2017-07-18 2019-01-24 日産自動車株式会社 Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP2023106016A (en) * 2022-01-20 2023-08-01 株式会社日立製作所 Power conversion device
JP2023144454A (en) * 2022-03-28 2023-10-11 株式会社 日立パワーデバイス Semiconductor device, manufacturing method for the same, and power conversion device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163469A (en) * 1996-11-29 1998-06-19 Toshiba Corp Diode and driving method thereof
JP2009272550A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Semiconductor device
JP2010147381A (en) * 2008-12-22 2010-07-01 Denso Corp Method for manufacturing semiconductor device
JP2014138182A (en) * 2013-01-18 2014-07-28 Hitachi Power Semiconductor Device Ltd Diode and electric power conversion system
WO2014128953A1 (en) * 2013-02-25 2014-08-28 株式会社 日立製作所 Semiconductor device, drive device for semiconductor circuit, and power conversion device
JP2014175517A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069989A (en) * 2011-09-26 2013-04-18 Toshiba Corp Semiconductor device
JP6277814B2 (en) * 2014-03-25 2018-02-14 株式会社デンソー Semiconductor device
JP6018163B2 (en) * 2014-12-02 2016-11-02 トヨタ自動車株式会社 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163469A (en) * 1996-11-29 1998-06-19 Toshiba Corp Diode and driving method thereof
JP2009272550A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Semiconductor device
JP2010147381A (en) * 2008-12-22 2010-07-01 Denso Corp Method for manufacturing semiconductor device
JP2014138182A (en) * 2013-01-18 2014-07-28 Hitachi Power Semiconductor Device Ltd Diode and electric power conversion system
WO2014128953A1 (en) * 2013-02-25 2014-08-28 株式会社 日立製作所 Semiconductor device, drive device for semiconductor circuit, and power conversion device
JP2014175517A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788695A (en) * 2018-02-28 2020-10-16 株式会社日立功率半导体 Semiconductor device and power conversion device
CN111788695B (en) * 2018-02-28 2023-12-08 株式会社日立功率半导体 Semiconductor device and power conversion device
CN112447824A (en) * 2019-08-30 2021-03-05 株式会社东芝 Semiconductor device and semiconductor module
CN112786696A (en) * 2019-11-01 2021-05-11 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN112786696B (en) * 2019-11-01 2023-06-27 株式会社东芝 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
EP4071813A4 (en) * 2019-12-06 2023-12-06 Hitachi, Ltd. Semiconductor circuit control method, and power converter adopting same
CN113497033A (en) * 2020-03-19 2021-10-12 株式会社东芝 Semiconductor device and control method thereof
CN116454119A (en) * 2023-06-15 2023-07-18 广东巨风半导体有限公司 Fast recovery diode and preparation method thereof

Also Published As

Publication number Publication date
JP2017139393A (en) 2017-08-10
JP6709062B2 (en) 2020-06-10
DE112017000224B4 (en) 2022-09-22
DE112017000224T5 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017135037A1 (en) Semiconductor device, method for producing same, and power conversion device using same
JP6964950B2 (en) Semiconductor devices and power converters
CN107342329B (en) Diode and power conversion device using same
CN111418071B (en) Semiconductor device and power conversion device
JP6144510B2 (en) Manufacturing method of semiconductor device
US10872959B2 (en) Semiconductor device and power converter
CN110678988B (en) Semiconductor device with a plurality of semiconductor chips
JP2009033036A (en) Semiconductor device, and electric circuit device using same
JP5492225B2 (en) Semiconductor device and power conversion device using the same
WO2013179379A1 (en) Insulating gate-type bipolar transistor
JPWO2018084020A1 (en) Silicon carbide semiconductor device and power converter
WO2015114787A1 (en) Semiconductor element drive apparatus and power conversion apparatus using same
JP5932623B2 (en) Semiconductor device and power conversion device using the same
US20140003109A1 (en) Semiconductor device and power conversion device using same
JP5135666B2 (en) Power converter
WO2018135224A1 (en) Semiconductor device and electric power conversion device using same
US20180261700A1 (en) High withstand voltage diode and power conversion device
JP2023070368A (en) Semiconductor device, power converter, and method for driving semiconductor device
WO2014128953A1 (en) Semiconductor device, drive device for semiconductor circuit, and power conversion device
WO2020202430A1 (en) Semiconductor device
JP7094439B2 (en) Silicon carbide semiconductor device and power conversion device
US20160013300A1 (en) Semiconductor device, drive device for semiconductor circuit, and power conversion device
US20230411448A1 (en) Semiconductor device and power conversion apparatus
US20230246095A1 (en) Semiconductor device and three-phase inverter comprising the same
WO2023188577A1 (en) Semiconductor device and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000224

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747196

Country of ref document: EP

Kind code of ref document: A1