WO2017134975A1 - エタノールの製造方法 - Google Patents

エタノールの製造方法 Download PDF

Info

Publication number
WO2017134975A1
WO2017134975A1 PCT/JP2017/000099 JP2017000099W WO2017134975A1 WO 2017134975 A1 WO2017134975 A1 WO 2017134975A1 JP 2017000099 W JP2017000099 W JP 2017000099W WO 2017134975 A1 WO2017134975 A1 WO 2017134975A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
yeast
fermentation
furfural
critical value
Prior art date
Application number
PCT/JP2017/000099
Other languages
English (en)
French (fr)
Inventor
崇文 木内
森田 健太郎
吏 古賀
小川 健一
菜月 茗荷
典子 保谷
大西 徹
Original Assignee
新日鉄住金エンジニアリング株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社, トヨタ自動車株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Publication of WO2017134975A1 publication Critical patent/WO2017134975A1/ja
Priority to PH12018501629A priority Critical patent/PH12018501629A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing ethanol.
  • This application claims priority based on Japanese Patent Application No. 2016-019048 filed in Japan on February 3, 2016, the contents of which are incorporated herein by reference.
  • non-edible biomass examples include cellulose that is present most abundantly on the earth, but most of it exists as lignocellulose, which is a complex with the aromatic polymer lignin and hemicellulose.
  • pretreatment such as hydrothermal treatment is performed.
  • an acid or an alkali may be mixed as appropriate.
  • polymers such as hemicellulose and lignin constituting lignocellulose are decomposed to improve the reactivity of cellulose in the subsequent process.
  • the acid strength and temperature conditions are too strong, the monosaccharides produced by the decomposition of cellulose and hemicellulose are further decomposed to produce a hyperdegradation product, which inhibits the subsequent fermentation process.
  • organic acids such as acetic acid and formic acid are produced as by-products mainly when hemicellulose is decomposed, and these also inhibit the subsequent fermentation process.
  • Patent Document 1 discloses a method for removing fermentation-inhibiting substances by treating with a wood-based carbide.
  • Patent Document 2 discloses a method of removing a fermentation inhibitor by adsorbing or holding a polystyrene resin.
  • Patent Document 1 a wood-based carbide and a facility for removal treatment are required to remove fermentation-inhibiting substances.
  • the polystyrene-type resin and the installation for a removal process are needed. Furthermore, equipment for performing desorption treatment (regeneration treatment) of the polystyrene resin is required.
  • the present invention has been made in view of the above circumstances, and provides a stable and efficient method for producing a lignocellulosic biomass-derived compound in the presence of a fermentation inhibitor.
  • the present invention includes the following aspects.
  • a method for producing ethanol (A) mixing pre-treated lignocellulosic biomass and enzyme and saccharifying; (B) a step of inoculating and fermenting yeast to the saccharified solution and saccharification residue obtained in the step (A),
  • the yeast is Saccharomyces cerevisiae, Before step (A) or after step (A) and before step (B), (M)
  • a step of determining the yeast cell concentration in the step (B) so as to be a value The preset reference value is a yeast cell concentration that is not less than a critical value of the yeast cell concentration that does not undergo fermentation inhibition according to the furfural concentration,
  • yeast is inoculated so that it may become the said cell density
  • the manufacturing method characterized
  • the critical value is represented by a concentration (CFU (Colony forming unit) / mL) using the number of yeast cells,
  • concentration of the furfural is X (g / L)
  • the critical value is Y (CFU / mL)
  • the X and the Y are in a relationship represented by the following formula [1] (1) or (2 ) Production method of ethanol.
  • a is a number of 1.0 ⁇ 10 7 or more and 4.0 ⁇ 10 7 or less, and b is 2.0 ⁇ 10 6.
  • the critical value is represented by a concentration (g / L) using dry cell weight of yeast, The number of yeast cells contained per gram of dry cells is 1.5 ⁇ 10 10 CFU,
  • the concentration of the furfural is X (g / L) and the critical value is Y ′ (g / L)
  • the X and the Y ′ are in a relationship represented by the following formula [2] (1) or The method for producing ethanol according to (2).
  • the yield of the lignocellulosic biomass-derived compound can be improved stably and efficiently in the presence of a fermentation inhibitor.
  • the lignocellulosic biomass mainly contains cellulose, hemicellulose and lignin, such as conifers, hardwoods, construction wastes, forest land remnants, pruning wastes, rice straw, rice husks, wheat straw, wood
  • Agricultural and forestry product resources such as chips, wood fiber, chemical pulp, waste paper and plywood, agricultural and forestry product waste such as sugarcane bagasse, sugarcane foliage, and corn stover, processed agricultural and forestry products and plant tissues such as large algae and microalgae.
  • These lignocellulosic biomasses may be used alone or as a mixture.
  • hemicellulose is called pentose containing 5 carbons such as xylose, or hexose containing 6 carbons such as mannose, arabinose and galacturonic acid. Furthermore, since it has complex polysaccharides such as glucomannan and glucuronoxylan, when subjected to hydrolysis, a pentose oligosaccharide consisting of five carbon pentoses and a plurality of such saccharides linked together.
  • Saccharose six carbon hexose monosaccharides, hexose saccharide oligosaccharides linked to multiple monosaccharides, pentose saccharide monosaccharides and hexose sugar monosaccharides linked together Produces sugar.
  • Cellulose has 6 carbons as a structural unit, so when hydrolyzed, it produces 6-carbon monosaccharides composed of 6 carbons and hexose oligosaccharides in which a plurality of monosaccharides are linked.
  • composition ratio and production amount of at least one of monosaccharides and oligosaccharides are the pretreatment method, agricultural and forestry product resources used as raw materials, agricultural and forestry product waste, processed agricultural and forestry products, macroalgae, microalgae, etc. Depends on the type of plant tissue.
  • the method for producing the lignocellulosic biomass-derived compound of the present embodiment is as follows: (A) mixing pre-treated lignocellulosic biomass and enzyme and saccharifying; (B) a step of inoculating and fermenting yeast to the saccharified solution and saccharification residue obtained in the step (A), Before step (A) or after step (A) and before step (B), (M) Pre-set according to the concentration of the fermentation inhibitor in the liquid containing the pretreated lignocellulosic biomass before the step (A) or in the saccharified liquid obtained in the step (A).
  • a step of determining the yeast cell concentration in the step (B) so as to be a reference value is a yeast cell concentration that is not less than a critical value of the yeast cell concentration that does not undergo fermentation inhibition according to the concentration of the fermentation inhibitor,
  • yeast is inoculated so as to achieve the cell concentration determined in the step (M).
  • the yield of the lignocellulose-based biomass-derived compound can be improved stably and efficiently in the presence of the fermentation inhibitor.
  • the saccharification temperature is preferably 45 ° C or higher and 70 ° C or lower, more preferably 45 ° C or higher and 55 ° C or lower, and particularly preferably 50 ° C.
  • the saccharification time is preferably 12 hours to 120 hours, more preferably 24 hours to 96 hours, and even more preferably 24 hours to 72 hours.
  • the enzyme means an enzyme that decomposes lignocellulosic biomass into monosaccharides or oligosaccharide units, and any enzyme that decomposes lignocellulosic biomass into monosaccharides or oligosaccharides can be used. Any material having hemicellulase activity may be used.
  • the cellulase may be any one that decomposes cellulose into monosaccharides or oligosaccharides such as glucose. At least one activity of each activity of endoglucanase (EG), cellobiohydrolase (CBH), and ⁇ -glucosidase (BGL).
  • the hemicellulase may be any one that decomposes hemicellulose into monosaccharides or oligosaccharides such as xylose, and has at least one activity of each activity of xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, and arabinofuranosidase. It is preferable from a viewpoint of enzyme activity that it is an enzyme mixture which has each of these activity.
  • the origin of these cellulases and hemicellulases is not limited, and cellulases and hemicellulases such as filamentous fungi, basidiomycetes, and bacteria can be used.
  • the pretreated lignocellulosic biomass means lignocellulosic biomass that has been pretreated in order to efficiently perform a saccharification reaction.
  • the pretreatment method include a steaming method using only steam, a method using an ionic liquid, and a pulverizing method using a mill.
  • an acid or an alkali may be appropriately mixed as necessary.
  • the acid is selected from, for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and the like, and these may be used alone or in combination. Among them, sulfuric acid which is inexpensive and easily available is particularly preferable for industrial use.
  • alkali examples include sodium hydroxide, potassium hydroxide, ammonia, calcium carbonate, sodium carbonate, sodium sulfite and the like, and these may be used alone or in combination.
  • reaction vessel used for the pretreatment a form in which a heat pressure vessel having acid resistance or alkali resistance, or a vessel having acid resistance or alkali resistance is placed in a heating pressure device such as an autoclave is considered. It is done.
  • various by-products are contained in addition to at least one of cellulose, hemicellulose, monosaccharide and oligosaccharide. If these by-products are substances that do not adversely affect the subsequent saccharification process, fermentation process, etc., they can be removed in the final purification process, so this is not a big problem. However, if the fermentation inhibitor has an adverse effect, it is necessary to prevent adverse effects on each step in the saccharification step or the previous step of the fermentation step.
  • the fermentation inhibitor is a substance that interferes with the fermentation reaction in the fermentation process.
  • Representative fermentation inhibitors include sugar hyperdegradants, lignin or lignin-derived aromatic compounds, adhesives or paint-derived compounds.
  • compounds derived from artificial chemicals such as adhesives or paints can be avoided to some extent by using naturally derived lignocellulosic biomass that has not been treated.
  • lignocellulosic biomass is used as a raw material, it is difficult to avoid the production of sugar overdegradation products and lignin-derived aromatic compounds.
  • the fermentation inhibitor when the fermentation inhibitor is an insoluble solid such as lignin and at least one of cellulose, hemicellulose, monosaccharide and oligosaccharide is soluble, it can be removed by ordinary solid-liquid separation. In some cases. However, when both fermentation inhibitory substances and useful substances are soluble, ordinary solid-liquid separation cannot be applied. Therefore, there is a method for determining and inoculating the yeast cell concentration according to the concentration of fermentation inhibitory substances described later. Preferably applied. That is, in this embodiment, the fermentation inhibitor to be treated mainly forms a mixed solution with at least one of cellulose, hemicellulose, monosaccharide and oligosaccharide, and is usually It cannot be separated by solid-liquid separation, or it is difficult to separate.
  • the fermentation inhibitor to be treated mainly forms a mixed solution with at least one of cellulose, hemicellulose, monosaccharide and oligosaccharide, and is usually It cannot be separated by solid-liquid separation, or it is difficult to separate.
  • Examples of such a fermentation inhibitor include acetic acid, formic acid, levulinic acid, furfural which is a hyperdegradation product of sugar, 5-hydroxymethylfurfural (5-HMF), vanillin and acetovanillin which are aromatic compounds derived from lignin. , Guaiacol and the like.
  • acetic acid formic acid
  • levulinic acid furfural which is a hyperdegradation product of sugar
  • 5-hydroxymethylfurfural (5-HMF) 5-hydroxymethylfurfural
  • vanillin acetovanillin which are aromatic compounds derived from lignin.
  • Guaiacol and the like are typical fermentation inhibitors.
  • FIG. 1 is a schematic diagram showing a route of detoxification of furfural in yeast. Under aerobic conditions, oxygen and water change to 2-fluoroic acid, which is a kind of carboxylic acid, and further change to 2-floryl-CoA by ATP, which is utilized in the TCA circuit. On the other hand, NADH is required to detoxify furfural under anaerobic conditions (see the following formula [3]).
  • the inventors of the present invention have reached the present invention by inoculating the fermentation inhibition mechanism and inoculating the amount of yeast corresponding to the concentration of the fermentation inhibition substance.
  • a method for measuring the concentration of the fermentation inhibitor for example, before saccharification is started in the saccharification apparatus, during saccharification, or after saccharification, the liquid is extracted and a color reaction using high-performance liquid chromatograph or nitrophenylhydrazine and an alkaline solution
  • Examples thereof include a method for measuring a fermentation inhibitory substance (when the fermentation inhibitory substance is furfural), a method for calculating the concentration of the fermentation inhibitory substance based on pretreatment conditions on the line, and the like.
  • the reference value is preset as follows. First, pretreated lignocellulosic biomass having different pretreatment conditions is prepared on a small scale. About pre-processing conditions, what changed the pre-processing method, temperature, time, the kind and density
  • the yeast cell concentration at this time is critical for the yeast cell concentration that does not undergo fermentation inhibition according to the concentration of the fermentation inhibitor. It can be judged as a value.
  • the preset reference value may be a yeast cell concentration above the critical value, for example, 1.0 to 3.0 times the critical value, and preferably 1.0 to the critical value. Double to 2.5 times, more preferably 1.0 to 1.5 times the critical value is set as a preset reference value.
  • a is a number of 1.0 ⁇ 10 7 or more and 4.0 ⁇ 10 7 or less, and b is 2.0 ⁇ 10 6.
  • the furfural concentration X and the critical value Y can be expressed in a linear relationship.
  • the slope a is preferably 1.0 ⁇ 10 7 or more and 4.0 ⁇ 10 7 or less, more preferably 1.5 ⁇ 10 7 or more and 3.5 ⁇ 10 7 or less. More preferably, it is 2.0 ⁇ 10 7 or more and 3.0 ⁇ 10 7 or less.
  • the slope a is within the above range, the target lignocellulosic biomass-derived compound can be efficiently obtained at the target fermentation yield in the presence of furfural.
  • the intercept b may be 2.0 ⁇ 10 6 or more.
  • the above value is the minimum number of yeast cells necessary for obtaining the target lignocellulosic biomass-derived compound up to the target fermentation yield when no furfural is contained in the saccharified solution.
  • the above critical value may be expressed by the dry cell weight of yeast.
  • the number of yeast cells contained in 1 g of dried yeast cells varies slightly depending on the type of yeast, but is usually 0.75 ⁇ 10 10 to 3.0 ⁇ 10 10 CFU, and 1.5 ⁇ 10 10 CFU is preferred.
  • the slope c is preferably a number of 0.5 or more and 2.5 or less, more preferably a number of 0.75 or more and 2.25 or less, and 1.0 or more and 1.5 or less. More preferably, the number is as follows.
  • the slope c is within the above range, the target lignocellulosic biomass-derived compound can be efficiently obtained at the target fermentation yield in the presence of furfural.
  • the intercept d may be 0.13 or more.
  • the above value is the minimum dry cell weight necessary for obtaining the target lignocellulosic biomass-derived compound up to the target fermentation yield when no furfural is contained in the saccharified solution.
  • the above critical value may be expressed as a ratio of the solution containing yeast to be used to the saccharified solution.
  • concentration of yeast cells in the solution containing yeast may be adjusted as appropriate, but is usually 1 ⁇ 10 8 to 3 ⁇ 10 8 CFU / mL and 2 ⁇ 10 8 CFU / mL. Is preferred.
  • the slope e is preferably a number of 4.5 or more and 20.0 or less, more preferably 5.0 or more and 15.0 or less, and 7.5 or more and 10.0. More preferably, the number is as follows.
  • the target lignocellulosic biomass-derived compound can be obtained up to the target fermentation yield in the presence of furfural.
  • the intercept f may be 1.0 or more.
  • the above value is the ratio of the solution containing the yeast to be used to the required saccharified liquid in order to obtain the target lignocellulosic biomass-derived compound up to the target fermentation yield when no furfural is contained in the saccharified liquid. The lowest value.
  • yeast is inoculated into the saccharified solution and saccharification residue obtained in the above step (A) and fermented. At this time, the yeast is inoculated so as to achieve the cell concentration determined in the above step (M).
  • the fermentation temperature is preferably 25 ° C. or more and 50 ° C. or less, more preferably 28 ° C. or more and 35 ° C. or less, and particularly preferably 32 ° C.
  • the fermentation time is preferably 24 hours or longer and 120 hours or shorter, more preferably 24 hours or longer and 96 hours or shorter, and further preferably 24 hours or longer and 72 hours or shorter.
  • the yeast is not particularly limited as long as the target lignocellulose-based biomass-derived compound can be produced.
  • a culture solution containing yeast may be used as it is, or a culture solution containing yeast concentrated by centrifugation or a dry one may be appropriately used.
  • a culture solution containing yeast concentrated by centrifugation or a dry one may be appropriately used.
  • what is necessary is just to calculate the quantity to inoculate from the relationship between said critical value and a fermentation inhibitory substance according to the state of yeast.
  • the step after step (B) can be appropriately selected depending on the method of utilizing the fermentation broth.
  • a distillation step can be provided as a step of purifying the fermentation broth.
  • the lignocellulosic biomass-derived compound means a compound produced by ingestion of monosaccharides and oligosaccharides obtained by decomposing lignocellulosic biomass.
  • alcohols such as ethanol, butanol, 1,3-propanediol, 1,4-butanediol, glycerol, organic acids such as pyruvic acid, succinic acid, malic acid, itaconic acid, citric acid, lactic acid, inosine, guanosine, etc.
  • Nucleosides, nucleotides such as inosinic acid and guanylic acid, and diamine compounds such as cadaverine.
  • the compound obtained by fermentation is a monomer such as lactic acid, it may be converted into a polymer by polymerization.
  • FIG. 2 is a diagram showing a schematic configuration of a lignocellulose-based biomass-derived compound production apparatus in the present embodiment.
  • a pipe 2 is disposed between the saccharification apparatus 1 and the fermenter 3.
  • the saccharification apparatus 1 may be provided with a pipe 4 for extracting a part of the saccharified solution.
  • the fermenter 3 may be provided with a yeast supply tank 5 for supplying yeast via the pipe 6.
  • FIG. 2 although the aspect in which the saccharification apparatus 1 and the fermenter 3 were separately arrange
  • the saccharification apparatus 1 is an apparatus for mixing pretreated lignocellulosic biomass and enzyme to perform saccharification, and there is no particular limitation.
  • a stirring type an aeration stirring type, a bubble column type, a fluidized bed type, a packed bed type and the like can be mentioned.
  • the pipe 4 is a pipe for extracting a part of the saccharified liquid from the saccharification apparatus 1 and measuring the concentration of the fermentation inhibiting substance in the saccharified liquid, and is not particularly limited.
  • the pipe 4 may not be provided.
  • the saccharification apparatus when measuring the concentration of a fermentation inhibitor in a liquid containing pretreated lignocellulosic biomass before saccharification or saccharification and fermentation, contains pretreated lignocellulosic biomass.
  • a pipe for extracting a part of the liquid may be provided in the pipe for feeding the liquid. Thereby, the density
  • the pipe 2 is a pipe for sending the saccharified solution and saccharification residue obtained in the saccharification apparatus 1 to the fermenter 3, and is not particularly limited.
  • the fermenter 3 is a tank for inoculating and fermenting yeast to the saccharified solution and saccharification residue obtained by the saccharification apparatus 1, and there is no special limitation.
  • a stirring type, an aeration stirring type, a bubble column type, a fluidized bed type, a packed bed type and the like can be mentioned.
  • the yeast supply tank 5 is a tank for supplying yeast to the fermenter 3 and is not particularly limited. In addition, when the yeast in a dry state is directly inoculated into the fermentation tank 3, the yeast supply tank 5 may not be provided.
  • the pre-processing apparatus for pre-processing lignocellulosic biomass before the saccharification apparatus 1.
  • the pretreatment apparatus is not particularly limited, and examples thereof include a heating pressure apparatus having acid resistance or alkali resistance, or a form in which a container having acid resistance or alkali resistance is placed in a heating pressure apparatus such as an auto grab. It is done.
  • the equipment that follows the fermenter 3 can be appropriately selected according to the use of the fermentation broth.
  • Example 1 (1) Saccharification process Using 10 g-dry of pretreated lignocellulosic biomass as an enzyme substrate, water and 0.04 to 0.2 g of NaOH as a pH adjuster are added, and the pretreated biomass concentration is 10%. It diluted so that it might become mass%, and the substrate solution was prepared (total amount 100g). An enzyme derived from Trichoderma reesei was added to the substrate solution. The mixture was stirred at 50 ° C. for 48 hours. Immediately after the start of the saccharification process, 1.0 g each of samples was collected 24 hours and 48 hours later, and the furfural concentration and ethanol concentration were measured using a high performance liquid chromatograph (LC-20AD manufactured by Shimadzu Corporation).
  • LC-20AD high performance liquid chromatograph
  • yeast Saccharified solution obtained in (1), yeast (“Saccharomyces. Cereviviae” manufactured by Toyota Motor Corporation) is added at 1% by mass, 4.5% by mass, 10% with respect to the saccharified solution. It added so that it might become 20 mass% and 20 mass%, and it stirred by shaking at 32 degreeC for 48 hours. In addition, yeast was added in the state of a culture solution. The number of yeast cells contained in the culture solution was 2 ⁇ 10 8 CFU / mL. Samples of 1.0 g were collected 24 hours and 48 hours after the start of the fermentation process, and the furfural concentration and ethanol concentration were measured using a high performance liquid chromatograph (LC-20AD manufactured by Shimadzu Corporation).
  • LC-20AD high performance liquid chromatograph
  • samples were collected 1.0 g each 24 hours and 48 hours after the start of the fermentation process, using a high performance liquid chromatograph (manufactured by SHIMADZU, HPLC reducing sugar system) and an Asahipak MH2p-50 4E column (manufactured by shodex). Then, the glucose concentration and the xylose concentration were measured.
  • Example 2 (1) Preparation of saccharified solution
  • the concentration of furfural contained was 0 g / L, 0.44 g / L, 0.5 g / L, 0.54 g / L, 0.6 g / L, 0.62 g / L, and 1.
  • Saccharified solutions prepared to be 0 g / L, 1.15 g / L, 1.19 g / L, 1.37 g / L, and 1.4 g / L were prepared.
  • FIG. 5A is a graph showing the relationship between the critical value of the bacterial cell concentration and the furfural concentration of yeast not subject to fermentation inhibition according to the concentration of the fermentation inhibitor.
  • FIG. 5B is a graph showing the relationship between the critical value replaced with the number of yeast cells and the furfural concentration.
  • FIG. 5C is a graph showing the relationship between the critical value and the furfural concentration replaced with the dry weight of yeast.
  • a graph of a linear function as an approximate value was created using three points of critical values 0%, 4.5%, and 10%.
  • any of the ratio of the solution containing yeast to be used to the saccharified solution (mass%), the number of yeast cells (CFU / mL), and the dry weight of yeast (g / L) can be used.
  • the above critical value can be expressed.
  • the slopes of the respective linear graphs in FIGS. 5A to 5C are 0.5 to 2 times, preferably 0. If it is .75 times to 1.5 times, it is considered that it is within the critical value range of the yeast cell concentration that does not undergo fermentation inhibition according to the concentration of the fermentation inhibiting substance.
  • the yield of the lignocellulosic biomass-derived compound can be improved stably and efficiently in the presence of a fermentation inhibitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明のエタノールの製造方法は、(A)前処理済リグノセルロース系バイオマス及び酵素を混合し糖化する工程と、(B)前記工程(A)で得られた糖化液及び糖化残渣に、酵母を植菌し発酵する工程と、を備え、前記酵母がサッカロミセス・セレビシエ(Saccharomyces Cerevisiae)であり、前記工程(A)の前又は工程(A)の後であって、工程(B)の前に、(M)前記工程(A)前の前記前処理済リグノセルロース系バイオマスを含む液中、又は前記工程(A)で得られた糖化液中のフルフラールの濃度に応じて、予め設定された基準値となるように前記工程(B)における酵母の菌体濃度を決定する工程を備え、前記予め設定された基準値がフルフラールの濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値以上の酵母の菌体濃度であって、前記工程(B)において前記工程(M)で決定された前記菌体濃度となるように酵母を植菌する。

Description

エタノールの製造方法
 本発明は、エタノールの製造方法に関する。
 本願は、2016年2月3日に、日本に出願された特願2016-019048号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球温暖化対策や、廃棄物の有効活用の観点から、植物資源を原料とするバイオマスの利用が注目されている。一般に、バイオマスからエタノール等の化合物を製造するための原料としては、サトウキビ等の糖質やトウモロコシ等のデンプン質が多く用いられている。しかしながら、これらの原料はもともと食料又は飼料として用いられており、長期的に工業用利用資源として活用することは、食料又は飼料用途との競合を引き起こし、原料価格の高騰を招く危険性がある。
 従って、非食用バイオマスをエネルギー資源として活用する技術開発が進められている。非食用バイオマスとしては、地球上に最も多く存在するセルロースが挙げられるが、その大部分は芳香族ポリマーのリグニンやヘミセルロースとの複合体であるリグノセルロースとして存在する。
 リグノセルロース系バイオマスから目的の化合物を製造する方法としては、水熱処理等の前処理を行う。このとき、必要に応じて、適宜酸又はアルカリを混合させてもよい。前処理工程では、リグノセルロースを構成するヘミセルロースやリグニンといったポリマーを分解し、後工程におけるセルロースの反応性を向上させる。しかしながら、酸強度や温度条件が強すぎると、セルロース及びヘミセルロースの分解で生成された単糖がさらに分解され、過分解物を生成してしまい、その後の発酵工程を阻害することが知られている。また、主にヘミセルロースが分解される際に副産物として、酢酸やギ酸等の有機酸が生成され、これらもその後の発酵工程を阻害することが知られている。
 特許文献1には、木質系炭化物により処理することで発酵阻害物質を除去する方法が開示されている。また、特許文献2には、ポリスチレン系の樹脂に吸着又は保持させることで、発酵阻害物質を除去する方法が開示されている。
特開2005-270056号公報 特開2011-78327号公報
 特許文献1では、発酵阻害物質を除去する為に木質系炭化物及び除去処理のための設備が必要となる。特許文献2では、発酵阻害物質を除去する為にポリスチレン系樹脂及び除去処理のための設備が必要となる。さらに、ポリスチレン系樹脂の脱着処理(再生処理)を行うための設備が必要となる。
 本発明は、上記事情に鑑みてなされたものであって、発酵阻害物質の存在下での、安定的で効率的なリグノセルロース系バイオマス由来化合物の製造方法を提供する。
 すなわち、本発明は、以下の態様を含む。
(1)エタノールの製造方法であって、
 (A)前処理済リグノセルロース系バイオマス及び酵素を混合し、糖化する工程と、
 (B)前記工程(A)で得られた糖化液及び糖化残渣に、酵母を植菌し、発酵する工程と、を備え、
 前記酵母がサッカロミセス・セレビシエ(Saccharomyces Cerevisiae)であり、
 前記工程(A)の前、又は、工程(A)の後であって、工程(B)の前に、
 (M)前記工程(A)前の前記前処理済リグノセルロース系バイオマスを含む液中、又は、前記工程(A)で得られた糖化液中のフルフラールの濃度に応じて、予め設定された基準値となるように、前記工程(B)における酵母の菌体濃度を決定する工程を備え、
 前記予め設定された基準値が、フルフラールの濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値以上の酵母の菌体濃度であって、
 前記工程(B)において、前記工程(M)において決定された前記菌体濃度となるように酵母を植菌することを特徴とする製造方法。
(2)前記予め設定された基準値が、前記臨界値の1.0~3.0倍である(1)に記載のエタノールの製造方法。
(3)前記臨界値が酵母の菌体数を用いた濃度(CFU(Colony forming unit)/mL)で表され、
 前記フルフラールの濃度がX(g/L)、前記臨界値がY(CFU/mL)であるとき、前記X及び前記Yは下記数式[1]で表される関係である(1)又は(2)に記載のエタノールの製造方法。
Figure JPOXMLDOC01-appb-M000003
(数式[1]中、aは、1.0×10以上4.0×10以下の数であり、bは、2.0×10である。)
(4)前記臨界値が酵母の乾燥菌体重量を用いた濃度(g/L)で表され、
 乾燥菌体1g当たりに含まれる酵母の菌体数が1.5×1010CFUであって、
 前記フルフラールの濃度がX(g/L)、前記臨界値がY’(g/L)であるとき、前記X及び前記Y’は下記数式[2]で表される関係である(1)又は(2)に記載のエタノールの製造方法。
Figure JPOXMLDOC01-appb-M000004
(数式[2]中、cは、0.5以上2.5以下の数であり、dは、0.13である。)
 本発明によれば、発酵阻害物質の存在下において、安定的且つ効率的にリグノセルロース系バイオマス由来化合物の収率を向上させることができる。
酵母内でのフルフラールの無毒化の経路を示した概略図である。 本実施形態におけるリグノセルロース系バイオマス由来化合物の製造装置の概略構成を示す図である。 実施例1における糖化工程及び発酵工程でのグルコース濃度の変化を示すグラフである。 実施例1における糖化工程及び発酵工程でのキシロース濃度の変化を示すグラフである。 実施例1における糖化工程及び発酵工程でのフルフラール濃度の変化を示すグラフである。 実施例1における糖化工程及び発酵工程でのエタノール濃度の変化を示すグラフである。 実施例2における発酵工程での発酵収率とフルフラール濃度の関係を示すグラフである。 実施例2における発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値とフルフラール濃度の関係を示すグラフである。 実施例2における酵母の菌体数に置き換えた発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値とフルフラール濃度の関係を示すグラフである。 実施例2における酵母の乾燥重量に置き換えた発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値とフルフラール濃度の関係を示すグラフである。
 本明細書において、リグノセルロース系バイオマスとしては、主に、セルロース、ヘミセルロース及びリグニンを含有するものであり、例えば針葉樹、広葉樹、建築廃材、林地残材、剪定廃材、稲藁、籾殻、麦藁、木材チップ、木材繊維、化学パルプ、古紙、合板等の農林産物資源、サトウキビバガス、サトウキビ茎葉、コーンスト―バー等の農林産物廃棄物、農林産物加工品及び大型藻類、微細藻類等の植物組織である。これらのリグノセルロース系バイオマスは単独であってもよく、混合物であってもよい。
 本明細書において、ヘミセルロースは、キシロース等の5つの炭素を構成単位とする五炭糖とよばれるものやマンノース、アラビノース、ガラクツロン酸等の6つの炭素を構成単位とする六炭糖とよばれるもの、さらにグルコマンナンやグルクロノキシラン等のような複合多糖を有するので、加水分解を受けると、炭素5つからなる五炭糖の単糖やその単糖が複数個連結された五炭糖のオリゴ糖、炭素6つからなる六炭糖の単糖やその単糖が複数個連結された六炭糖のオリゴ糖、五炭糖の単糖と六炭糖の単糖が複数個連結されたオリゴ糖を生ずる。
 セルロースは、6つの炭素を構成単位として有するので、加水分解を受けると、炭素6つからなる六炭糖の単糖やその単糖が複数個連結された六炭糖のオリゴ糖を生ずる。一般に、単糖及びオリゴ糖の少なくともいずれかの糖の構成比率や生成量は、前処理方法や原料として用いた農林産物資源、農林産物廃棄物、農林産物加工品、及び大型藻類、微細藻類等の植物組織の種類によって異なる。
 以下、図面を参照しながら、本発明の実施形態について詳細に説明する、なお、各図において、説明に関連しない部分は図示を省略する場合がある。
<リグノセルロース系バイオマス由来化合物の製造方法>
 本実施形態のリグノセルロース系バイオマス由来化合物の製造方法は、
 (A)前処理済リグノセルロース系バイオマス及び酵素を混合し、糖化する工程と、
 (B)前記工程(A)で得られた糖化液及び糖化残渣に、酵母を植菌し、発酵する工程と、を備え、
 前記工程(A)の前、又は、工程(A)の後であって、工程(B)の前に、
 (M)前記工程(A)前の前記前処理済リグノセルロース系バイオマスを含む液中、又は、前記工程(A)で得られた糖化液中の発酵阻害物質の濃度に応じて、予め設定された基準値となるように、前記工程(B)における酵母の菌体濃度を決定する工程を備え、
 前記予め設定された基準値が、発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値以上の酵母の菌体濃度であって、
 前記工程(B)において、前記工程(M)において決定された前記菌体濃度となるように酵母を植菌するものである。
 本実施形態の製造方法によれば、発酵阻害物質の存在下において、安定的且つ効率的にリグノセルロース系バイオマス由来化合物の収率を向上させることができる。
≪工程(A):糖化工程≫
 本実施形態の製造方法において、まず、前処理済リグノセルロース系バイオマス及び酵素を混合し、糖化する。糖化温度は、45℃以上70℃以下が好ましく、45℃以上55℃以下がより好ましく、50℃が特に好ましい。また、糖化時間は12時間以上120時間以下が好ましく、24時間以上96時間以下がより好ましく、24時間以上72時間以下がさらに好ましい。
 本明細書において、酵素とは、リグノセルロース系バイオマスを単糖又はオリゴ糖単位に分解する酵素を意味し、リグノセルロース系バイオマスを単糖又はオリゴ糖にまで分解するものであればよく、セルラーゼ及びヘミセルラーゼの各活性を持つものであればよい。
 セルラーゼは、セルロースをグルコース等の単糖又はオリゴ糖に分解するものであればよく、エンドグルカナーゼ(EG)、セロビオハイドロラーゼ(CBH)及びβ-グルコシダーゼ(BGL)の各活性の少なくとも1つの活性を有するものを挙げることができ、これらの各活性を有する酵素混合物であることが、酵素活性の観点から好ましい。
 同じくヘミセルラーゼは、ヘミセルロースをキシロース等の単糖又はオリゴ糖に分解するものであればよく、キシラナーゼ、キシロシダーゼ、マンナナーゼ、ペクチナーゼ、ガラクトシダーゼ、グルクロニダーゼ、及びアラビノフラノシダーゼの各活性の少なくとも1つの活性を有するものを挙げることができ、これらの各活性を有する酵素混合物であることが、酵素活性の観点から好ましい。
 これらセルラーゼ及びヘミセルラーゼの起源は限定されることはなく、糸状菌、担子菌、細菌類等のセルラーゼ及びヘミセルラーゼを用いることができる。
 本明細書において、前処理済リグノセルロース系バイオマスとは、糖化反応を効率的に行うために事前処理を行ったリグノセルロース系バイオマスを意味する。事前処理方法としては、例えば、蒸気のみでの蒸煮法、イオン液体を用いる方法、ミルを用いる粉砕法等が挙げられる。また、事前処理において、必要に応じて、適宜酸又はアルカリを混合させてもよい。酸としては、例えば、硫酸、塩酸、硝酸、リン酸等の中から選ばれ、これらを単独で又は組み合わせて用いてもよい。中でも工業利用には安価で手に入りやすい硫酸が特に好ましい。アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、炭酸カルシウム、炭酸ナトリウム、亜硫酸ナトリウム等が挙げられ、これらを単独で又は組み合わせて用いてもよい。事前処理に用いる反応容器には特に限定はないが、耐酸性若しくは耐アルカリ性を有する加熱圧力容器、又は耐酸性若しくは耐アルカリ性を有する容器をオートクレーブのような加熱圧力装置に入れて処理する形態が考えられる。
 前処理済リグノセルロース系バイオマス中には、セルロース、ヘミセルロース、単糖及びオリゴ糖の少なくともいずれかの糖以外にも、種々の副生成物が含まれている。それら副生成物が後工程の糖化工程、発酵工程等に悪影響を及ぼさない物質であれば、最後の精製工程において除去すればよいので大きな問題とはならない。しかしながら、悪影響を及ぼす発酵阻害物質であれば、糖化工程又は発酵工程の前工程で、各工程に悪影響を及ぼさないようにする必要性が生じる。
 本明細書において、発酵阻害物質とは、発酵工程で発酵反応を妨害する物質のことである。代表的な発酵阻害物質としては、糖の過分解物、リグニン又はリグニン由来の芳香族化合物、接着剤又は塗料由来の化合物が挙げられる。この中で、接着剤又は塗料等の人工的な薬品に由来する化合物は、それらの処理が施されていない自然由来のリグノセルロース系バイオマスを使用することにより、ある程度回避可能である。しかし、リグノセルロース系バイオマスを原料とする限り、糖の過分解物やリグニン由来の芳香族化合物の生成は回避することが困難である。
ここで、発酵阻害物質がリグニンのような不溶性固体であり、セルロース、ヘミセルロース、単糖及びオリゴ糖の少なくともいずれかの糖が可溶性である場合には、通常の固液分離によって除去することが可能な場合もある。しかしながら、発酵阻害物質も有用物も可溶性である場合には、通常の固液分離が適用できないため、後述の発酵阻害物質の濃度に応じた酵母の菌体濃度を決定し、植菌する方法が好ましく適用される。すなわち、本実施形態において、主に処理対象とする発酵阻害物質は、実質的にセルロース、ヘミセルロース、単糖及びオリゴ糖の少なくともいずれかの糖との混合溶液を形成しているものであり、通常の固液分離では分離できない、又は、分離し難い状態のものを指す。そのような発酵阻害物質としては、例えば、酢酸、ギ酸、レブリン酸、糖の過分解物であるフルフラール、5-ヒドロキシメチルフルフラール(5-HMF)、リグニン由来の芳香族化合物であるバニリン、アセトバニリン、グアヤコール等が挙げられる。これら発酵阻害物質のうち、代表的な発酵阻害物質はフルフラール及び5-HMFである。
上記のフルフラール又は5-HMFによる酵母の発酵阻害の機構について、以下に説明する。フルフラール又は5-HMFは、酵母の解糖系やアルコール脱水素(ADH)を阻害することが知られている(Alemeida et al.,J Chem. Technol. Biotechnol.82:320-349(2007).参照)。さらに、図1は、酵母内でのフルフラールの無毒化の経路を示した概略図である。好気条件下では、酸素、水によりカルボン酸の一種である2-フロイック酸に変化し、さらにATPにより2-フロリル-CoAに変化することでTCA回路において活用される。一方、嫌気条件下でフルフラールを無毒化するためには、NADHが必要である(下記式[3]参照)。フルフラールはNADHによりフルフリルアルコールに還元され、さらにフルフリルアルコールを細胞外に排出されることが知られている(Nieces et al.Front.Bioeng.Biotechnol.18,Feb(2015).参照)。
そのため、酵母はNADHを合成するために、グルコースから酢酸の合成が優先的になされ(下記式[4]参照)、グルコースからエタノールの合成が抑制される。
Figure JPOXMLDOC01-appb-C000005
 本発明者らは、上記の発酵阻害機構に着目し、発酵阻害物質の濃度に応じた酵母量を植菌することにより、本発明に至った。
≪工程(M):決定工程≫
 続いて、前記工程(A)前の前記前処理済リグノセルロース系バイオマスを含む液中、又は、前記工程(A)で得られた糖化液中の発酵阻害物質の濃度を測定する。測定された発酵阻害物質の濃度に応じて、予め設定された基準値となるように、後述の工程(B)における酵母の菌体濃度を決定する。
 発酵阻害物質の濃度の測定方法としては、例えば、糖化装置で糖化が開始される前、糖化中又は糖化後に、液を抜き取り、高速液体クロマトグラフ又はニトロフェニルヒドラジン及びアルカリ溶液を用いた呈色反応(発酵阻害物質がフルフラールである場合)等により発酵阻害物質を測定する方法や、ライン上で事前処理の条件等により発酵阻害物質の濃度を算出する方法等が挙げられる。
 本実施形態の製造方法において、基準値は、次のようにして予め設定する。
 まず、スモールスケールにて、事前処理条件の異なる前処理済リグノセルロース系バイオマスを調製する。事前処理条件については、上述したとおり、事前処理方法、温度、時間、使用する触媒の種類及び濃度等を変えたものを準備する。続いて、前処理済リグノセルロース系バイオマスそれぞれと酵素とを混合し、糖化を行う。続いて、得られた糖化液中の発酵阻害物質の濃度を測定する。発酵阻害物質の濃度に対して、後述の実施例2に示すように、酵母の植菌量を変えて糖化液に含まれる酵母の菌体濃度が変わるように添加し、目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得られるか否かを評価する。
 目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得られた場合、このときの酵母の菌体濃度は、発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値と判断できる。予め設定された基準値は、上記の臨界値以上の酵母の菌体濃度とすればよく、例えば上記の臨界値の1.0倍~3.0倍、好ましくは上記の臨界値の1.0倍~2.5倍、さらに好ましくは上記の臨界値の1.0倍~1.5倍を予め設定された基準値とする。
 本実施形態の製造方法において、より具体的な例として、発酵阻害物質がフルフラールである場合の、上記の臨界値とフルフラール濃度の関係について、以下に説明する。
[臨界値:酵母の菌体数を用いた濃度]
 本実施形態の製造方法において、
 上記の臨界値が酵母の菌体数を用いた濃度(CFU/mL)で表され、
 フルフラールの濃度がX(g/L)、上記の臨界値がY(CFU/mL)であるとき、X及びYは下記数式[1]で表される関係である。
Figure JPOXMLDOC01-appb-M000006
(数式[1]中、aは、1.0×10以上4.0×10以下の数であり、bは、2.0×10である。)
 後述の実施例2のとおり、フルフラールの濃度X及び上記の臨界値Yは、線形関係で表すことができる。
 数式[1]中、傾きaは、1.0×10以上4.0×10以下であることが好ましく、1.5×10以上3.5×10以下であることがより好ましく、2.0×10以上3.0×10以下であることがさらに好ましい。傾きaが上記範囲内であることにより、フルフラール存在下において、効率的に目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率で得ることができる。
 数式[1]中、切片bは、2.0×10以上であればよい。上記の値は、糖化液中にフルフラールが含まれない場合に、目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得るために、必要な酵母の菌体数の最低値である。
[臨界値:酵母の乾燥菌体重量を用いた濃度]
 本実施形態の製造方法において、
 上記の臨界値が酵母の乾燥菌体重量を用いた濃度(g/L)で表され、
 乾燥菌体1g当たりに含まれる酵母の菌体数が1.5×1010CFUであって、
フルフラールの濃度がX(g/L)、上記の臨界値がY’(g/L)であるとき、X及びY’は下記数式[2]で表される関係である。
Figure JPOXMLDOC01-appb-M000007
(数式[2]中、cは、0.5以上2.5以下の数であり、dは、0.13である。)
 上記の臨界値は、酵母の乾燥菌体重量で表してもよい。酵母の乾燥菌体1gに含まれる酵母の菌体数は、酵母の種類により若干変動するが、通常、0.75×1010~3.0×1010CFUであって、1.5×1010CFUであることが好ましい。
 数式[2]中、傾きcは、0.5以上2.5以下の数であることが好ましく、0.75以上2.25以下の数であることがより好ましく、1.0以上1.5以下の数であることがさらに好ましい。傾きcが上記範囲内であることにより、フルフラール存在下において、効率的に目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率で得ることができる。
 数式[2]中、切片dは、0.13以上であればよい。上記の値は、糖化液中にフルフラールが含まれない場合に、目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得るために、必要な酵母の乾燥菌体重量の最低値である。
[臨界値:糖化液に対する使用する酵母を含む溶液の割合]
 本実施形態の製造方法において、
 上記の臨界値が糖化液に対する使用する酵母を含む溶液の割合で表され、
 酵母を含む溶液中の酵母の菌体濃度が2.0×108CFU/mLであって、
フルフラールの濃度がX(g/L)、上記の臨界値がY’ ’(g/L)であるとき、X及びY’ ’は下記数式[5]で表される関係である。
Figure JPOXMLDOC01-appb-M000008
(数式[5]中、eは、4.5以上20.0以下の数であり、fは、1.0である。)
 上記の臨界値は、糖化液に対する使用する酵母を含む溶液の割合で表してもよい。酵母を含む溶液中の酵母の菌体濃度は、適宜調整してもかまわないが、通常、1×10~3×10CFU/mLであって、2×10CFU/mLであることが好ましい。
 数式[5]中、傾きeは、4.5以上20.0以下の数であることが好ましく、5.0以上15.0以下の数であることがより好ましく、7.5以上10.0以下の数であることがさらに好ましい。傾きeが上記範囲内であることにより、フルフラール存在下において、目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得ることができる。
 数式[5]中、切片fは、1.0以上であればよい。上記の値は、糖化液中にフルフラールが含まれない場合に、目的のリグノセルロース系バイオマス由来化合物を目的の発酵収率まで得るために、必要な糖化液に対する使用する酵母を含む溶液の割合の最低値である。
≪工程(B):発酵工程≫
 続いて、上記の工程(A)で得られた糖化液及び糖化残渣に、酵母を植菌し、発酵する。このとき、上記の工程(M)において決定された前記菌体濃度となるように酵母を植菌する。発酵温度は、25℃以上50℃以下が好ましく、28℃以上35℃以下がより好ましく、32℃が特に好ましい。また、発酵時間は24時間以上120時間以下が好ましく、24時間以上96時間以下がより好ましく、24時間以上72時間以下がさらに好ましい。
本実施形態の製造方法において、酵母としては、目的のリグノセルロース系バイオマス由来化合物を生成できるものであれば、特別な限定はない。植菌する酵母は、酵母を含む培養液をそのまま使用してもよく、又は、酵母を含む培養液を遠心分離により濃縮したもの、乾燥状態のもの等を適宜使用してよい。また、酵母の状態に合わせて、上記の臨界値と発酵阻害物質の関係から、植菌する量を算出すればよい。
 工程(B)後の工程については、発酵液の活用方法によって、適宜選択できる。例えば、エタノールを得ることを目的とした場合は、発酵液を精製する工程として蒸留工程を設けることができる。
 本実施形態において、リグノセルロース系バイオマス由来化合物とは、リグノセルロース系バイオマスを分解して得られた単糖及びオリゴ糖を、酵母が摂取することにより生成された化合物を意味する。例えば、エタノール、ブタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロール等のアルコール、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸、乳酸等の有機酸、イノシン、グアノシン等のヌクレオシド、イノシン酸、グアニル酸等のヌクレオチド、カダベリン等のジアミン化合物等が挙げられる。発酵によって得られた化合物が乳酸等のモノマーである場合は、重合によりポリマーに変換することもある。
<リグノセルロース系バイオマス由来化合物の製造装置>
 図2は、本実施形態におけるリグノセルロース系バイオマス由来化合物の製造装置の概略構成を示す図である。本実施形態のリグノセルロース系バイオマス由来化合物の製造装置10は、糖化装置1と発酵槽3との間に配管2が配設されている。
 さらに、糖化装置1に、糖化液を一部抜き出すための配管4が配設されていてもよい。
また、発酵槽3には、配管6を介して酵母を供給するための酵母供給槽5が配設されていてもよい。
 また、図2において、糖化装置1と発酵槽3が別々に配設された態様を例示しているが、同時に糖化反応及び発酵反応を行う1つの糖化発酵槽としてもよい。
 糖化装置1は、前処理済リグノセルロース系バイオマス及び酵素を混合し、糖化を行うための装置であり、特別な限定はない。例えば、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等を挙げることができる。
 配管4は、糖化装置1から糖化液を一部抜き出し、糖化液中の発酵阻害物質の濃度を測定するための配管であって、特別な限定はない。また、糖化前若しくは糖化発酵前の前処理済リグノセルロース系バイオマスを含む液中の発酵阻害物質の濃度を測定する場合、又は、事前処理の条件等から含まれる発酵阻害物質の濃度が算出できる場合には、配管4を備えていなくてもよい。
 本実施形態の製造装置において、糖化前又は糖化発酵前の前処理済リグノセルロース系バイオマスを含む液中の発酵阻害物質の濃度を測定する場合において、糖化装置へ前処理済リグノセルロース系バイオマスを含む液を送液する配管に液を一部抜き出すための配管を備えていてもよい。これにより、発酵阻害物質の濃度を測定することができる。
 配管2は、糖化装置1において得られた糖化液及び糖化残渣を発酵槽3へ送役するための配管であって、特別な限定はない。
 発酵槽3は、糖化装置1で得られた糖化液及び糖化残渣に、酵母を植菌し、発酵するための槽であって、特別な限定はない。例えば、撹拌型、通気撹拌型、気泡塔型、流動層型、充填層型等を挙げることができる。
 酵母供給槽5は、発酵槽3へ酵母を供給するための槽であって、特別な限定はない。また、乾燥状態の酵母を発酵槽3へ直接植菌する場合には、酵母供給槽5を備えていなくてもよい。
 さらに、糖化装置1の前に、リグノセルロース系バイオマスを事前処理するための事前処理装置を有していてもよい。事前処理装置は、特に限定はなく、例えば、耐酸性若しくは耐アルカリ性を有する加熱圧力装置、又は耐酸性若しくは耐アルカリ性を有する容器をオートグレーブのような加熱圧力装置に入れて処理する形態等が挙げられる。
 また、発酵槽3の後に続く設備は、発酵液の用途に応じて、適宜選択することができる。
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。
[実施例1]
(1)糖化工程
 酵素の基質として前処理済リグノセルロース系バイオマス10g-dryを使用して、水と、pH調整剤としてNaOH0.04~0.2gとを加え、前処理済バイオマス濃度が10%質量%となるように希釈し、基質溶液を調製した(全量100g)。基質溶液にTrichoderma reesei由来酵素を投入した。50℃で48時間振盪撹拌した。糖化工程開始直後、24時間後、48時間後にサンプルを1.0gずつ採取し、高速液体クロマトグラフ(島津製作所製LC-20AD)を用いてフルフラール濃度及びエタノール濃度を測定した。また、糖化工程開始直後、24時間後、48時間後にサンプルを1.0gずつ採取し、高速液体クロマトグラフィー(SHIMADZU社製、HPLC還元糖システム)及びAsahipak MH2p-50 4Eカラム(shodex社製)を用いて、グルコース濃度及びキシロース濃度を測定した。
(2)発酵工程
 (1)で得られた糖化液に、酵母(トヨタ自動車製「サッカロミセス・セルビシエ(Saccharomyces.Cereviviae)」)を糖化液に対して、1質量%、4.5質量%、10質量%、20質量%となるように添加し、32℃で48時間振盪撹拌した。なお、酵母は培養液の状態で添加した。培養液中の含まれる酵母の菌体数は2×10CFU/mLであった。発酵工程開始から24時間後、48時間後にサンプルを1.0gずつ採取し、高速液体クロマトグラフ(島津製作所製LC-20AD)を用いてフルフラール濃度及びエタノール濃度を測定した。また、発酵工程開始から24時間後、48時間後にサンプルを1.0gずつ採取し、高速液体クロマトグラフ(SHIMADZU社製、HPLC還元糖システム)及びAsahipak MH2p-50 4Eカラム(shodex社製)を用いて、グルコース濃度及びキシロース濃度を測定した。
(3)結果
 糖化工程及び発酵工程でのグルコース濃度(図3A参照)、キシロース濃度(図3B参照)、フルフラール濃度(図3C参照)、及びエタノール濃度(図3D参照)の変化を図3A~図3Dに示した。図3A~図3Dから、糖化液に対する使用する酵母を含む溶液の割合が20%である場合では、フルフラール濃度が約1.3g/Lであっても、安定的に発酵し、エタノールが得られることが明らかとなった。
[実施例2]
(1)糖化液の調製
 あらかじめ、含まれるフルフラール濃度を0g/L、0.44g/L、0.5g/L、0.54g/L、0.6g/L、0.62g/L、1.0g/L、1.15g/L、1.19g/L、1.37g/L、及び1.4g/Lとなるように調製した糖化液を準備した。
(2)発酵工程
 (1)で得られた糖化液それぞれに、酵母(トヨタ自動車製「サッカロミセス・セルビシエ(Saccharomyces.Cereviviae)」)を糖化液に対して、1質量%、4.5質量%、10質量%、20質量%となるようにそれぞれ添加し、32℃で48時間振盪撹拌した。なお、酵母は培養液の状態で添加した。培養液中の含まれる酵母の菌体数は2×10CFU/mLであった。実施例1の(2)と同様の方法により、フルフラール濃度及びエタノール濃度を測定した。
(3)結果
 発酵工程での発酵収率とフルフラール濃度の関係を図4に示した。図4から、フルフラール濃度が0.54g/Lである場合、発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値は4.5%であり、フルフラール濃度が0.98g/Lである場合、上記の臨界値は10%であり、フルフラール濃度が1.37g/Lである場合、上記の臨界値は20%であった。
 さらに、図5Aは、発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値とフルフラール濃度の関係を示すグラフである。図5Bは、酵母の菌体数に置き換えた上記の臨界値とフルフラール濃度の関係を示すグラフである。図5Cは、酵母の乾燥重量に置き換えた上記の臨界値とフルフラール濃度の関係を示すグラフである。また、グラフは、臨界値0%、4.5%、10%の3点を使用し、近似値としての線形関数のグラフを作成した。
 以上のことから、糖化液に対する使用する酵母を含む溶液の割合(質量%)、酵母の菌体数(CFU/mL)、及び酵母の乾燥重量(g/L)のうちいずれを使用しても上記の臨界値を表すことができる。
 また、実際の臨界値とフルフラール濃度との関係は曲線のグラフであることから、誤差を鑑みて、図5A~図5Cのそれぞれの線形グラフの傾きが0.5倍~2倍、好ましくは0.75倍~1.5倍であれば、発酵阻害物質の濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値の範囲内であると考えられる。
 本発明によれば、発酵阻害物質の存在下において、安定的且つ効率的にリグノセルロース系バイオマス由来化合物の収率を向上させることができる。
 1…糖化装置、2,4,6…配管、3…発酵槽、5…酵母供給槽、10…リグノセルロース系バイオマス由来化合物の製造装置。

Claims (4)

  1.  エタノールの製造方法であって、
     (A)前処理済リグノセルロース系バイオマス及び酵素を混合し、糖化する工程と、
     (B)前記工程(A)で得られた糖化液及び糖化残渣に、酵母を植菌し、発酵する工程と、を備え、
     前記酵母がサッカロミセス・セレビシエ(Saccharomyces Cerevisiae)であり、
     前記工程(A)の前、又は、工程(A)の後であって、工程(B)の前に、
     (M)前記工程(A)前の前記前処理済リグノセルロース系バイオマスを含む液中、又は、前記工程(A)で得られた糖化液中のフルフラールの濃度に応じて、予め設定された基準値となるように、前記工程(B)における酵母の菌体濃度を決定する工程を備え、
     前記予め設定された基準値が、フルフラールの濃度に応じた発酵阻害を受けない酵母の菌体濃度の臨界値以上の酵母の菌体濃度であって、
     前記工程(B)において、前記工程(M)において決定された前記菌体濃度となるように酵母を植菌することを特徴とする製造方法。
  2.  前記予め設定された基準値が、前記臨界値の1.0~3.0倍である請求項1に記載のエタノールの製造方法。
  3.  前記臨界値が酵母の菌体数を用いた濃度(CFU(Colony forming unit)/mL)で表され、
     前記フルフラールの濃度がX(g/L)、前記臨界値がY(CFU/mL)であるとき、前記X及び前記Yは下記数式[1]で表される関係である請求項1又は2に記載のエタノールの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (数式[1]中、aは、1.0×10以上4.0×10以下の数であり、bは、2.0×10である。)
  4.  前記臨界値が酵母の乾燥菌体重量を用いた濃度(g/L)で表され、
     乾燥菌体1g当たりに含まれる酵母の菌体数が1.5×1010CFUであって、
     前記フルフラールの濃度がX(g/L)、前記臨界値がY’(g/L)であるとき、前記X及び前記Y’は下記数式[2]で表される関係である請求項1又は2に記載のエタノールの製造方法。
    Figure JPOXMLDOC01-appb-M000002
    (数式[2]中、cは、0.5以上2.5以下の数であり、dは、0.13である。)
PCT/JP2017/000099 2016-02-03 2017-01-05 エタノールの製造方法 WO2017134975A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12018501629A PH12018501629A1 (en) 2016-02-03 2018-08-01 Method for producing ethanol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019048A JP6026026B1 (ja) 2016-02-03 2016-02-03 エタノールの製造方法
JP2016-019048 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017134975A1 true WO2017134975A1 (ja) 2017-08-10

Family

ID=57326630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000099 WO2017134975A1 (ja) 2016-02-03 2017-01-05 エタノールの製造方法

Country Status (3)

Country Link
JP (1) JP6026026B1 (ja)
PH (1) PH12018501629A1 (ja)
WO (1) WO2017134975A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
JP2011167096A (ja) * 2010-02-17 2011-09-01 Kobe Univ バイオマスからのエタノールの生産方法
JP2012235729A (ja) * 2011-05-11 2012-12-06 Nippon Steel Engineering Co Ltd アルコール発酵性酵母及びこれを用いたエタノール製造方法
JP2014176351A (ja) * 2013-03-15 2014-09-25 Cosmo Oil Co Ltd エタノールの生産方法
JP2015107088A (ja) * 2013-12-05 2015-06-11 秋田県 酵母変異株を用いたエタノール製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
JP2011167096A (ja) * 2010-02-17 2011-09-01 Kobe Univ バイオマスからのエタノールの生産方法
JP2012235729A (ja) * 2011-05-11 2012-12-06 Nippon Steel Engineering Co Ltd アルコール発酵性酵母及びこれを用いたエタノール製造方法
JP2014176351A (ja) * 2013-03-15 2014-09-25 Cosmo Oil Co Ltd エタノールの生産方法
JP2015107088A (ja) * 2013-12-05 2015-06-11 秋田県 酵母変異株を用いたエタノール製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OLIVA JM. ET AL.: "Effects of acetic acid, furfural and catechol combinationson ethanol fermentation of Kluyveromyces marxianus", PROCESS BIOCHEMISTRY, vol. 41, no. 5, 2006, pages 1223 - 1228, XP027984141 *
TAHERZADEH MJ. ET AL.: "Inhibition Effects of Furfural on Aerobic Batch Cultivation of Saccharomyces cerevisiae Growing on Ethanol and/or Acetic Acid", J. BIOSCI. BIOENG., vol. 90, no. 4, 2000, pages 374 - 380, XP055404259 *
TOFIGHI A. ET AL.: "Inhibitory Effect of High Concentrations of Furfural onIndustrial Strain of Saccharomyces cerevisiae", INT. J. ENVIRON. RES., vol. 4, no. 1, 2010, pages 137 - 142, XP055404256 *

Also Published As

Publication number Publication date
JP2017136016A (ja) 2017-08-10
PH12018501629B1 (en) 2019-06-03
JP6026026B1 (ja) 2016-11-16
PH12018501629A1 (en) 2019-06-03

Similar Documents

Publication Publication Date Title
Kim et al. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment
Geddes et al. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases
Cardona et al. Production of bioethanol from sugarcane bagasse: status and perspectives
Martin et al. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production
Lee et al. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol
Ma et al. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth
Singh et al. Comparative study of various pretreatment techniques for ethanol production from water hyacinth
US8563277B1 (en) Methods and systems for saccharification of biomass
US20220090156A1 (en) Methods and Systems For Saccharification of Biomass
US20100279361A1 (en) Two-stage method for pretreatment of lignocellulosic biomass
Kim Evaluation of alkali-pretreated soybean straw for lignocellulosic bioethanol production
Kresnowati et al. Production of xylitol from oil palm empty friuts bunch: A case study on bioefinery concept
Wang et al. Study on inhibitors from acid pretreatment of corn stalk on ethanol fermentation by alcohol yeast
CN106544370B (zh) 一种降低木质纤维素碱法预处理液中副产物抑制效应的方法及基于此方法制备纤维素乙醇
EP2836602B1 (en) Methods and systems for saccharification of biomass
WO2014190294A1 (en) Sugar separation and purification from biomass
López-Abelairas et al. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations
Monavari et al. Influence of impregnation with lactic acid on sugar yields from steam pretreatment of sugarcane bagasse and spruce, for bioethanol production
WO2018131653A1 (ja) リグノセルロース系バイオマスを糖化するための糖化酵素の製造方法及び製造装置、並びにそれらの使用
JP5976185B1 (ja) リグノセルロース系バイオマス由来化合物の製造装置及び製造方法
Burhan et al. Evaluation of simultaneous saccharification and fermentation of oil palm empty fruit bunches for xylitol production
Seo et al. Study on the possibility of waste mushroom medium as a biomass resource for biorefinery
JP2015139380A (ja) 草本系バイオマス又は木質系バイオマスから糖を製造する方法及び生成された糖からエタノールを製造する方法
JP6026026B1 (ja) エタノールの製造方法
JP6097869B1 (ja) エタノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747139

Country of ref document: EP

Kind code of ref document: A1