WO2017134885A1 - 軸流送風機 - Google Patents

軸流送風機 Download PDF

Info

Publication number
WO2017134885A1
WO2017134885A1 PCT/JP2016/082797 JP2016082797W WO2017134885A1 WO 2017134885 A1 WO2017134885 A1 WO 2017134885A1 JP 2016082797 W JP2016082797 W JP 2016082797W WO 2017134885 A1 WO2017134885 A1 WO 2017134885A1
Authority
WO
WIPO (PCT)
Prior art keywords
front edge
auxiliary
blades
axial
air
Prior art date
Application number
PCT/JP2016/082797
Other languages
English (en)
French (fr)
Inventor
文庸 渡邉
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017134885A1 publication Critical patent/WO2017134885A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing

Definitions

  • This disclosure relates to an axial blower that blows air along the axis of a rotation shaft.
  • Patent Document 1 in an axial blower, a configuration is known in which a portion advanced in the rotational direction is provided at the front edge of a blade in order to reduce noise (see, for example, Patent Document 1).
  • Patent Document 1 by installing a V-shaped cut shape on the outer peripheral side of the front edge of the blade, vortices generated at the outer peripheral end of the blade and from the inner peripheral side to the outer peripheral side generated on the surface of the blade.
  • the structure which suppresses interference with the airflow which heads is disclosed.
  • This disclosure is intended to provide an axial blower capable of reducing noise during rotation of an impeller.
  • An impeller that generates an airflow by rotating about an axis is provided.
  • a plurality of blades are formed with auxiliary wings that advance in the rotational direction of the rotary shaft at the intersections of the circular virtual circumferential line connecting the outer peripheral side ends of the plurality of blades and the leading edge of the blades. .
  • the auxiliary wing portion has an auxiliary front edge portion that extends from a root portion that intersects the front edge portion to a tip portion that intersects the virtual circumferential line.
  • the auxiliary front edge portion has a shape that is bent so that at least a part thereof is closer to the virtual circumferential line than a virtual straight line that linearly connects the root portion and the tip portion.
  • the shape of the auxiliary front edge portion is bent so as to be close to the virtual circumferential line connecting the outer peripheral side ends of the plurality of blades, the vortex generated at the outer peripheral side ends of the plurality of blades Interference with the auxiliary front edge can be suppressed.
  • blade is suppressed, it becomes possible to aim at reduction of the noise of an axial flow fan at the time of rotation of an impeller.
  • an axial-flow fan that blows air along the axis of the rotating shaft has a plurality of blades arranged radially with respect to the axis of the rotating shaft.
  • An impeller that generates an airflow by rotating about an axis is provided.
  • the plurality of blades are formed with triangular auxiliary wings that move forward in the rotational direction of the rotary shaft and are recessed on the outer peripheral side.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is a typical front view which shows the braid
  • the illustrated arrow DR1, arrow DR2, and arrow DR3 indicate directions when the axial blower 1 is mounted on a vehicle. That is, the arrow DR1 indicates the vehicle vertical direction, the arrow DR2 indicates the vehicle left-right direction (that is, the vehicle width direction), and the arrow DR3 indicates the vehicle front-rear direction. Moreover, AR shown in each drawing has shown the rotation direction of the impeller 20 mentioned later.
  • the axial blower 1 is a blower that blows air along the axis SC of the rotary shaft 11.
  • the axial blower 1 is applied to a device that supplies air to a radiator 2 such as a radiator mounted on a vehicle.
  • the radiator 2 is indicated by a one-dot chain line in order to display the axial blower 1 in an easily viewable manner.
  • the axial blower 1 is disposed behind the radiator 2 relative to the radiator 2. Specifically, the axial blower 1 is provided on the downstream side of the air flow passing through the radiator 2 so that the air that has passed through the radiator 2 is blown out to the rear of the vehicle.
  • the axial blower 1 includes an electric motor 10, an impeller 20 that generates an airflow by rotating together with the rotating shaft 11 of the electric motor 10, and a shroud 30 that holds the electric motor 10.
  • the electric motor 10 is an electric motor that rotationally drives the impeller 20.
  • the electric motor 10 is fixed to the shroud 30 via a stay (not shown).
  • the stay is a support member that supports the electric motor 10.
  • the impeller 20 is connected to the rotating shaft 11 and rotates around the axis SC as the rotating shaft 11 rotates.
  • the impeller 20 includes a boss portion 22 connected to rotate integrally with the rotary shaft 11 of the electric motor 10, a plurality of blades 24 extending radially with respect to the axis SC of the rotary shaft 11, and a plurality of blades 24. It has the ring part 28 provided in the outer peripheral part.
  • the boss 22 is a cylindrical member with the rotating shaft 11 of the electric motor 10 attached to the center.
  • the boss portion 22 has an inner peripheral side end portion of each of the plurality of blades 24 connected to the outer peripheral side of the side wall thereof.
  • the plurality of blades 24 extend radially from the boss portion 22.
  • the plurality of blades 24 are arranged around the boss portion 22 with a predetermined interval.
  • Each of the plurality of blades 24 of the present embodiment is a retracted wing.
  • FIG. 3 shows the impeller 20 shown with the ring portion 28 omitted.
  • the rotation direction of the rotating shaft 11 is provided at a portion where the virtual circumferential line VCL connecting the outer peripheral side ends of the plurality of blades 24 and the front edge portion 24 a of the blade 24 intersect each other.
  • An auxiliary wing 25 that has advanced to the AR is formed. The details of the blade 24 of the impeller 20 will be described later.
  • the ring portion 28 is formed in an annular shape around the axis SC of the rotating shaft 11 so as to connect the outer peripheral side ends of the plurality of blades 24 in the circumferential direction.
  • the ring portion 28 is configured by an annular member extending along a virtual circumferential line VCL connecting the outer peripheral side ends of the plurality of blades 24.
  • the boss portion 22, the plurality of blades 24, and the ring portion 28 are each made of a resin such as polypropylene. And the boss
  • the shroud 30 is a member that functions as a duct that guides the air that has passed through the radiator 2 to the impeller 20.
  • the shroud 30 of this embodiment is being fixed to the heat radiator 2 with fastening members, such as a volt
  • the shroud 30 of this embodiment is comprised with resin, such as a polypropylene.
  • the shroud 30 is formed with an air inlet 31 for introducing air and an air outlet 32 for blowing air from the air inlet 31.
  • a space from the air inlet 31 to the air outlet 32 in the shroud 30 constitutes an air ventilation path 30a.
  • the air inlet 31 is opened in a direction along the axis of the rotary shaft 11 so as to face the radiator 2.
  • the air inlet 31 has a rectangular shape in which the dimension in the vehicle width direction DR2 is longer than the dimension in the vehicle vertical direction DR1 in accordance with the outer shape of the radiator 2.
  • the impeller 20 is disposed inside the air outlet 32.
  • the air outlet 32 has a circular shape in accordance with the outer shape of the impeller 20.
  • the air outlet 32 is formed such that a predetermined gap is formed between the air blower 32 and the ring portion 28 of the impeller 20 so that the impeller 20 can rotate therein.
  • the shapes of the air inlet 31 and the air outlet 32 are different.
  • the shroud 30 includes a wide portion and a narrow portion between the peripheral edges of the air inlet 31 and the air outlet 32. That is, in the shroud 30, the distance between the peripheral edges of the air inlet 31 and the air outlet 32 varies depending on the circumferential position around the axis SC of the rotating shaft 11.
  • the air inlet 31 has a rectangular shape in which the dimension in the vehicle width direction DR2 is longer than the dimension in the vehicle vertical direction DR1. For this reason, in the shroud 30 of the present embodiment, among the peripheral edges of the air inlet 31 and the air outlet 32, the vicinity of the center in the vehicle left-right direction DR2 is the peripheral edges of the air inlet 31 and the air outlet 32.
  • the narrow portion 30b has a small interval.
  • the axial blower 1 configured in this way, as shown in FIG. 1, in the ventilation path 30 a of the shroud 30, the lateral air flow is dominant as indicated by the broken line arrow ARair. For this reason, in the narrow part 30b of the shroud 30, vortices are likely to occur due to the collision of the lateral air flows as indicated by the broken arrow ARair. For this reason, the axial blower 1 of the present embodiment has a configuration in which vortices are likely to occur particularly near the outer peripheral side end of the impeller 20 as compared with the one without the narrow portion 30b.
  • the blade 24 of the impeller 20 of the present embodiment will be described with reference to FIGS. 4 and 5.
  • the blade 24 is formed with an auxiliary wing portion 25 at the outer peripheral side end portion of the front edge portion 24a.
  • a serrated serration portion 26 is formed on the inner peripheral side of the auxiliary wing portion 25 in the front edge portion 24a in order to suppress separation of airflow on the surface of the blade 24.
  • the serration portion 26 includes a plurality of triangular projections 261 that generate vertical vortices.
  • the plurality of protrusions 261 are formed so as to be aligned in the direction in which the front edge 24a extends.
  • the auxiliary wing portion 25 is connected to the ring portion 28 at the outer peripheral portion. Further, the auxiliary wing part 25 has an auxiliary front edge part 251 extending from the root part 25 a intersecting with the front edge part 24 a to the virtual circumferential line VCL, that is, the tip part 25 b intersecting with the ring part 28.
  • the auxiliary front edge portion 251 is a portion on the inner peripheral side of the auxiliary wing portion 25.
  • one side of the protrusion 261 located on the outermost peripheral side of the front edge 24a and the auxiliary front edge 251 among the plurality of protrusions 261 constituting the serration portion 26 are V-shaped. It is provided in the front edge part 24a so that a recessed part may be formed.
  • the auxiliary front edge portion 251 of the present embodiment is a protrusion whose angle ⁇ formed with the circumferential line CL centering on the axis SC of the rotary shaft 11 passing through the root portion 25a is located on the outermost peripheral side of the front edge portion 24a. It is set to have a size equivalent to an angle ⁇ formed by one side of the portion 261 and the circumferential line CL.
  • the difference between the angle ⁇ formed between the auxiliary front edge 251 and the circumferential line CL and the angle ⁇ formed between one side of the projection 261 located on the outermost peripheral side of the front edge 24a and the circumferential line CL is, for example, , And is set to fall within a range of about ⁇ 5 °.
  • the auxiliary front edge 251 of the present embodiment has a virtual circumferential line VCL, that is, a part of the auxiliary front edge 251 compared to a virtual straight line VSL that partially connects the root part 25 a and the tip part 25 b.
  • VCL virtual circumferential line
  • VSL virtual straight line
  • the auxiliary front edge portion 251 of the present embodiment has a shape in which an intermediate portion between the root portion 25 a and the tip portion 25 b is depressed toward the virtual circumferential line VCL, that is, the ring portion 28.
  • the plurality of blades 24 of the present embodiment are provided with triangular auxiliary wing portions 251 that advance in the rotational direction AR of the rotary shaft 11 and are recessed toward the outer peripheral side.
  • the auxiliary front edge portion 251 of the present embodiment has a shape in which a portion recessed toward the ring portion 28 is curved in an arc shape.
  • assistant front edge part 251 may be the shape which combined the some straight line, ie, the bent shape, for example.
  • assistant front edge part 251 is not restricted to the intermediate part of the root part 25a and the front-end
  • the auxiliary wing portion 25 of the present embodiment is formed in a region TR surrounded by the virtual straight line VSL and the virtual circumferential line VCL.
  • the surface area of a wing surface is smaller than the surface area of the wing surface of the auxiliary wing
  • the impeller 20 rotates as the rotating shaft 11 of the electric motor 10 rotates. Thereby, as shown in FIG. 2, the air sucked into the impeller 20 from the radiator 2 side is blown out along the axis SC of the rotating shaft 11.
  • FIG. 6 is a schematic front view of the blade B of the axial blower CE as a comparative example of the present embodiment.
  • the axial blower CE of the comparative example is different from the axial blower 1 of the present embodiment in that the auxiliary blade portion Bs provided on the blade B is simply triangular. That is, in the axial blower CE of the comparative example, the auxiliary front edge Bsf of the auxiliary wing Bs provided on the blade B extends along a virtual straight line VSL that linearly connects the root portion 25a and the tip portion 25b.
  • VSL virtual straight line
  • the air sucked into the impeller 20 from the radiator 2 side is blown out along the axis SC of the rotary shaft 11 by the rotation of the impeller 20.
  • a vortex VR is generated by an airflow or the like that flows backward from the blowing side of the impeller 20 to the suction side.
  • the vortex VR collides with the auxiliary front edge Bsf of the auxiliary wing Bs provided on the blade B, periodic pressure fluctuations that cause noise are increased due to interference between the vortex VR and the blade B.
  • a part of the auxiliary front edge portion 251 of the auxiliary wing portion 25 is closer to the ring portion 28 than the virtual straight line VSL as shown in FIG. It has a bent shape.
  • the area which collides with the vortex VR generated in the vicinity of the outer peripheral side end portion of the blade 24 in the auxiliary wing portion 25 is small, and the impact when the vortex VR and the auxiliary wing portion 25 collide with each other. Is alleviated.
  • production factor of BPF noise can be suppressed.
  • FIG. 7 shows a measurement result of SPL (abbreviation of Sound Pressure Level) which is a sound pressure level when the impeller 20 is rotated in the axial blower 1 of the present embodiment and the axial blower CE of the comparative example. It is drawing which shows.
  • SPL abbreviation of Sound Pressure Level
  • FIG. 7 the measurement result in the range of the predetermined rotation angle in the impeller 20 is shown.
  • the SPL measurement result of the axial blower 1 of the present embodiment is indicated by a solid line A
  • the SPL measurement result of the centrifugal blower CE of the comparative example is indicated by a broken line B.
  • the axial blower 1 of the present embodiment has an SPL amplitude Am1 that is smaller than the SPL amplitude Am2 of the axial blower CE of the comparative example, and causes of BPF noise generation. It can be seen that the pressure fluctuation can be suppressed.
  • FIG. 8 shows the O.D. when the impeller 20 is rotated with respect to the axial fan CE of the comparative example in the axial fan 1 of the present embodiment.
  • A The amount of decrease in SPL (abbreviation of Over All) and the amount of decrease in SPL for each order component of rotation are shown.
  • the rotation first order component is displayed as BPF first order, the rotation second order component as BPF second order, and the rotation first order component as BPF third order.
  • O. A. Is the sum of products of SPLs of all frequencies.
  • the axial blower 1 of this embodiment is an SPL O.D. A. Is smaller than the SPL of the axial blower CE of the comparative example, and it can be seen that the noise reduction effect is obtained as a whole. Moreover, in the axial-flow fan 1 of this embodiment, it turns out that the reduction effect of the BPF primary noise and the BPF tertiary noise is large.
  • the axial blower 1 of the present embodiment described above has a shape in which a part of the auxiliary front edge portion 251 of the auxiliary wing portion 25 is bent so as to be closer to the ring portion 28 than the virtual straight line VSL. .
  • the shape of the auxiliary front edge portion 251 is a shape bent so as to be close to the virtual circumferential line VCL connecting the outer peripheral side ends of the plurality of blades 24, the outer peripheral side end portions of the plural blades 24
  • the interference between the vortex and the auxiliary front edge 251 can be suppressed. Thereby, since the pressure fluctuation of the air in the outer peripheral side of the some braid
  • the axial blower 1 of the present embodiment has a triangular auxiliary wing portion that is advanced in the rotational direction AR of the rotary shaft 11 and is recessed toward the outer peripheral side with the plurality of blades 24. 251 is formed. According to this, since interference between the vortex generated at the outer peripheral side end portions of the plurality of blades 24 and the auxiliary front edge portion 251 can be suppressed, the noise of the axial fan 1 can be reduced when the impeller 20 rotates. Is possible.
  • the axial blower 1 of the present embodiment is formed in a region TR in which the auxiliary wing portion 25 is surrounded by the virtual circumferential line VCL and the virtual straight line VSL.
  • the axial blower 1 of the present embodiment is provided with a plurality of triangular projections 261 that generate vertical vortices at the front edge 24a of the blade 24.
  • blade part 25 is set so that one side of the protrusion part 261 and the auxiliary
  • the auxiliary wing 25 is provided on the front edge 24a so that one side of the protrusion 261 located on the outermost peripheral side of the front edge 24a and the auxiliary front edge 251 form a V-shaped recess.
  • the auxiliary front edge 251 can function as a vertical vortex generating means.
  • the impeller 20 has an annular ring portion 28 that extends along the virtual circumferential line VCL.
  • the auxiliary wing portions 25 of the plurality of blades 24 are connected to the ring portion 28. In this way, if the annular ring portion 28 is used to connect the auxiliary blade portions 25 of the plurality of blades 24, it is possible to sufficiently ensure the strength of the auxiliary blade portions 25 of the plurality of blades 24.
  • the axial blower 1 capable of suppressing the interference between the vortex generated at the outer peripheral side end portions of the plurality of blades 24 and the auxiliary front edge portion 251 is provided with the narrow portion 30b in the shroud 30. This is suitable for the configuration described above.
  • the auxiliary front edge portion 251A of the present embodiment has a virtual circumferential line VCL, that is, a ring portion 28, as compared with a virtual straight line VSL that linearly connects the root portion 25a and the tip portion 25b.
  • the shape is bent so that
  • the auxiliary front edge 251A of the present embodiment has an angle formed by a reference tangent TLr at a position intersecting the auxiliary wing 25 on the virtual circumferential line VCL and a tangent TL at the auxiliary front edge 251, that is, a tangent angle ⁇ t.
  • the tip part 25b side is smaller than the root part 25a side.
  • the auxiliary front edge 251 of the present embodiment has a shape obtained by combining two straight lines, that is, a bent shape. That is, the auxiliary front edge portion 251 of the present embodiment is configured by a portion extending linearly from the root portion 25a toward the tip portion 25b side and a portion extending linearly from the tip portion 25b toward the root portion 25a side. ing.
  • the tangent angle ⁇ t1 formed between the tangent line TL1 and the reference tangent line TLr on the tip portion 25b side is formed between the tangent line TL2 and the reference tangent line TLr on the root portion 25a side. It is smaller than the tangent angle ⁇ t2.
  • the auxiliary front edge 251 of the present embodiment is a position where the distal end portion 25b has advanced in the rotational direction from the intersection IP of the tangent line TL2 and the virtual circumferential line VCL in the portion on the root portion 25a side. .
  • the tangent angle ⁇ t1 of the auxiliary front edge portion 251 on the distal end portion 25b side is smaller than the tangential angle ⁇ t2 of the root portion 25a side portion.
  • the region that interferes with the vortex generated at the outer peripheral side ends of the plurality of blades 24 on the tip portion 25b side in the auxiliary wing portion 25 is smaller than the root portion 25a side. That is, the auxiliary wing portion 25 has an area that interferes with vortices generated at the outer peripheral side end portions of the plurality of blades 24 decreases on the distal end portion 25b side and gradually expands toward the root portion 25a side. According to this, since the impact generated when the vortex generated at the outer peripheral end portions of the plurality of blades 24 collides with the auxiliary wing portion 25 is further mitigated, the air pressure fluctuation on the outer peripheral side of the plurality of blades 24 is sufficiently reduced. Can be suppressed.
  • FIG. 10 shows an O.D. for the axial fan CE of the comparative example in the axial fan 1 of the present embodiment.
  • FIG. 10 corresponds to FIG. 8 described above.
  • the axial blower 1 of this embodiment is an SPL O.D. A. Is smaller than the SPL of the axial blower CE of the comparative example, and it can be seen that the noise reduction effect is obtained as a whole. Further, in the axial blower 1 of the present embodiment, the noise reduction effect of each of the BPF primary to the BPF tertiary is greater, and the noise reduction effect can be expected than the axial blower 1 of the first embodiment. .
  • the auxiliary front edge 251 has a shape formed by combining two straight lines
  • the present invention is not limited to this.
  • the auxiliary front edge portion 251A may be curved in an arc shape.
  • the auxiliary front edge 251A may have a shape in which three or more straight lines are combined. Also in the auxiliary front edge portion 251A having these shapes, the same effects as those of the second embodiment can be obtained.
  • axial flow fan 1 of this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
  • the impeller 20 of the axial blower 1 is desirably provided with the serration portions 26 for the plurality of blades 24.
  • the configuration is not limited thereto, and the configuration may be such that the serration portions 26 are not provided. .
  • the impeller 20 of the axial blower 1 is preferably configured to connect the outer peripheral sides of the plurality of blades 24 with the ring portion 28, but is not limited to this, It is good also as a structure which does not connect an outer peripheral side with the ring part 28.
  • the axial blower 1 described in each of the above embodiments is suitable for a configuration in which the narrow portion 30b is provided in the shroud 30, but is applicable to a configuration in which the narrow portion 30b is not provided in the shroud 30.
  • the blade 24 of the impeller 20 is configured by the trailing edge blade.
  • the present invention is not limited thereto, and for example, the blade 24 of the impeller 20 is configured by the forward blade or the straight blade. May be.
  • the axial blower 1 is applied to a device that supplies air to a radiator 2 such as a radiator mounted on a vehicle.
  • the present invention can also be applied to an air supply device in an air conditioner or a ventilator.
  • the axial blower 1 is applicable not only to an air conditioner but also to various devices.
  • the axial blower has a plurality of auxiliary front edge portions of the auxiliary wing portions provided on the front edge portions of the plurality of blades. It has a bent shape so as to be close to a virtual circumferential line connecting the outer peripheral side ends of the blade.
  • the axial blower is formed in a region where the auxiliary wing portion is surrounded by the virtual circumferential line and the virtual straight line.
  • the auxiliary front edge portion has a tangent angle on the tip portion side smaller than a tangential angle on the root portion side.
  • the tangent angle is an angle formed by a tangent at a position intersecting the auxiliary wing portion on the virtual circumferential line and a tangent at the auxiliary front edge.
  • the axial blower is provided with a plurality of triangular protrusions that generate vertical vortices at the front edge.
  • the auxiliary wing portion is provided at the front edge portion so that one side of the protrusion portion located on the outermost peripheral side of the front edge portion and the auxiliary front edge portion forms a V-shaped recess among the plurality of protrusion portions. It has been.
  • separation of the airflow on the blade surface can be suppressed by the vertical vortex generated by the plurality of protrusions provided on the front edge.
  • the auxiliary front edge The portion can function as a vertical vortex generating means.
  • the axial blower includes a shroud in which an air inlet for introducing air and an air outlet for blowing air from the air inlet are formed.
  • the shroud is provided with a narrow portion in which the distance between the peripheral edges of the air inlet and the air outlet is small in the circumferential direction of the rotating shaft.
  • the axial blower capable of suppressing the interference between the vortex generated at the outer peripheral end portions of the plurality of blades and the auxiliary front edge portion is suitable for the configuration in which the shroud is provided with a narrow portion.
  • the impeller in the axial blower, has an annular ring portion extending along the virtual circumferential line.
  • the auxiliary wing portions of the plurality of blades are connected to the ring portion.
  • triangular auxiliary wing portions are formed in a plurality of blades so as to advance in the rotation direction of the rotating shaft and to be recessed on the outer peripheral side.
  • the axial blower is provided with a plurality of triangular protrusions that generate vertical vortices on the front edge of the blade.
  • the auxiliary wing portion of the plurality of protrusions, one side of the protrusion located on the outermost peripheral side of the front edge and the auxiliary front edge serving as the front edge of the auxiliary wing form a V-shaped recess. It is provided in the front edge part.
  • separation of the airflow on the blade surface can be suppressed by the vertical vortex generated by the plurality of protrusions provided on the front edge.
  • the auxiliary front edge The portion can function as a vertical vortex generating means.
  • the axial blower includes a shroud in which an air inlet for introducing air and an air outlet for blowing air from the air inlet are formed.
  • the shroud is provided with a narrow portion in which the distance between the peripheral edges of the air inlet and the air outlet is small in the circumferential direction of the rotating shaft.
  • the axial blower capable of suppressing the interference between the vortex generated at the outer peripheral end portions of the plurality of blades and the auxiliary front edge portion is suitable for the configuration in which the shroud is provided with a narrow portion.
  • the auxiliary blade portions of each of the plurality of blades are connected to an annular ring portion provided in the impeller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

回転軸(11)の軸心(SC)に沿って空気を送風する軸流送風機は、回転軸の軸心に対して放射状に配置された複数のブレード(24)を有し、回転軸の軸心を中心として回転することで気流を発生させる羽根車(20)を備える。複数のブレードには、複数のブレードの外周側端部を結ぶ円形状の仮想円周線(VCL)とブレードの前縁部(24a)とが交わる部位に回転軸の回転方向(AR)に前進した補助翼部(25、25A)が形成されている。また、補助翼部は、前縁部と交差する根元部位(25a)から仮想円周線と交差する先端部位(25b)に延びる補助前縁部(251、251A)を有している。そして、補助前縁部は、少なくとも一部が根元部位と先端部位とを直線的に結ぶ仮想直線(VSL)に比べて仮想円周線に近くなるように曲がった形状となっている。

Description

軸流送風機 関連出願への相互参照
 本出願は、2016年2月2日に出願された日本出願番号2016-18266号に基づくものであって、ここにその記載内容を援用する。
 本開示は、回転軸の軸心に沿って空気を送風する軸流送風機に関する。
 従来、軸流送風機において、騒音の低減を図るために、ブレードの前縁部に回転方向に前進した部位を設ける構成が知られている(例えば、特許文献1参照)。特許文献1には、ブレードの前縁部の外周側にV字型の切り込み形状を設置することで、ブレードの外周側端部に生ずる渦と、ブレードの表面に生ずる内周側から外周側へ向かう気流との干渉を抑える構成が開示されている。
特開2014-62534号公報
 本発明者らの検討によれば、単にブレードの前縁部の外周側にV字型の切り込み形状を設置すると、ブレードの前縁部の外周側における回転方向に前進した部位と、ブレードの外周側に生ずる渦とが干渉することで、騒音が生ずることが判った。
 本開示は、羽根車の回転時における騒音の低減を図ることが可能な軸流送風機を提供することを目的とする。
 本開示の1つの観点によれば、回転軸の軸心に沿って空気を送風する軸流送風機は、回転軸の軸心に対して放射状に配置された複数のブレードを有し、回転軸の軸心を中心として回転することで気流を発生させる羽根車を備える。複数のブレードには、複数のブレードの外周側端部を結ぶ円形状の仮想円周線とブレードの前縁部とが交わる部位に回転軸の回転方向に前進した補助翼部が形成されている。補助翼部は、前縁部と交差する根元部位から仮想円周線と交差する先端部位に延びる補助前縁部を有している。そして、補助前縁部は、少なくとも一部が根元部位と先端部位とを直線的に結ぶ仮想直線に比べて仮想円周線に近くなるように曲がった形状となっている。
 このように、補助前縁部の形状を、複数のブレードの外周側端部を結ぶ仮想円周線に近くなるように曲がった形状とすれば、複数のブレードの外周側端部に生ずる渦と補助前縁部との干渉を抑えることができる。これにより、複数のブレードの外周側における空気の圧力変動が抑制されるので、羽根車の回転時における軸流送風機の騒音の低減を図ることが可能となる。
 本開示の別の観点によれば、回転軸の軸心に沿って空気を送風する軸流送風機は、回転軸の軸心に対して放射状に配置された複数のブレードを有し、回転軸の軸心を中心として回転することで気流を発生させる羽根車を備える。そして、複数のブレードには、回転軸の回転方向に前進し、外周側に凹む形状となる三角形状の補助翼部が形成されている。
 これによっても、複数のブレードの外周側端部に生ずる渦と補助前縁部との干渉を抑えることができるので、羽根車の回転時における軸流送風機の騒音の低減を図ることが可能となる。
第1実施形態の軸流送風機の模式的な正面図である。 図1のII-II断面図である。 第1実施形態の軸流送風機のブレードおよびボス部を示す模式的な正面図である。 第1実施形態の軸流送風機のブレードの模式的な正面図である。 第1実施形態の軸流送風機のブレードの詳細を説明するための模式的な正面図である。 第1実施形態の比較例となる軸流送風機のブレードにおける外周側端部付近の気流を示す模式的な正面図である。 第1実施形態の軸流送風機および比較例の軸流送風機の音圧レベルの測定結果を示す特性図である。 第1実施形態の軸流送風機における比較例の軸流送風機に対する音圧レベルの低下量を示す特性図である。 第2実施形態の軸流送風機のブレードの模式的な正面図である。 第2実施形態の軸流送風機における比較例の軸流送風機に対する音圧レベルの低下量を示す特性図である。 第2実施形態の軸流送風機のブレードの変形例を示す模式的な正面図である。
 以下、本開示を実施する形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。
 (第1実施形態)
 本実施形態の軸流送風機1について、図1~図8を参照して説明する。各図面において、図示した矢印DR1、矢印DR2、矢印DR3は、軸流送風機1を車両に搭載した際の方向を示している。すなわち、矢印DR1が車両上下方向を示し、矢印DR2が車両左右方向(すなわち、車両幅方向)を示し、矢印DR3が車両前後方向を示している。また、各図面において図示したARは、後述する羽根車20の回転方向を示している。
 図1および図2に示すように、軸流送風機1は、回転軸11の軸心SCに沿って空気を送風する送風機である。本実施形態では、軸流送風機1を車両に搭載されたラジエータ等の放熱器2に空気を供給する装置に適用した例について説明する。なお、図2では、軸流送風機1を見易く表示するために、放熱器2を一点鎖線で示している。
 本実施形態の軸流送風機1は、放熱器2よりも車両後方に配置されている。具体的には、軸流送風機1は、放熱器2を通過した空気が車両後方へ吹き出されるように、放熱器2を通過する空気流れの下流側に設けられている。
 本実施形態の軸流送風機1は、電動モータ10、電動モータ10の回転軸11と共に回転することで気流を発生させる羽根車20、および電動モータ10を保持するシュラウド30を備える。
 電動モータ10は、羽根車20を回転駆動する電動機である。電動モータ10は、図示しないステーを介してシュラウド30に固定されている。ステーは、電動モータ10を支持する支持部材である。
 羽根車20は、回転軸11に連結されており、回転軸11の回転に伴って軸心SCを中心に回転する。羽根車20は、電動モータ10の回転軸11と一体に回転するように連結されたボス部22、回転軸11の軸心SCに対して放射状に延びる複数のブレード24、および複数のブレード24の外周部分に設けられたリング部28を有する。
 ボス部22は、中心部に電動モータ10の回転軸11が取り付けられた円筒状の部材である。ボス部22は、その側壁の外周側に複数のブレード24それぞれの内周側端部が連結されている。
 複数のブレード24は、ボス部22から放射状に延びている。複数のブレード24は、ボス部22の周囲に所定の間隔をあけて配置されている。本実施形態の複数のブレード24それぞれは、後退翼となっている。
 ここで、図3は、リング部28を省略して図示した羽根車20を示している。図3に示すように、複数のブレード24には、複数のブレード24の外周側端部を結ぶ仮想円周線VCLとブレード24の前縁部24aとが交わる部位に、回転軸11の回転方向ARに前進した補助翼部25が形成されている。なお、羽根車20のブレード24の詳細については後述する。
 図1および図2に戻り、リング部28は、複数のブレード24の外周側端部を周方向につなぐように、回転軸11の軸心SCを中心とした円環状に形成されている。換言すれば、リング部28は、複数のブレード24の外周側端部を結ぶ仮想円周線VCLに沿って延びる環状の部材で構成されている。
 本実施形態の羽根車20は、ボス部22、複数のブレード24、およびリング部28が、それぞれポリプロピレン等の樹脂で構成されている。そして、ボス部22、複数のブレード24、およびリング部28は、一体成形物として構成されている。
 シュラウド30は、放熱器2を通過した空気を羽根車20に導くダクトとして機能する部材である。本実施形態のシュラウド30は、ボルト等の締結部材により放熱器2に固定されている。また、本実施形態のシュラウド30は、ポリプロピレン等の樹脂で構成されている。
 シュラウド30には、空気を導入する空気導入口31、および空気導入口31からの空気を吹き出す空気吹出口32が形成されている。シュラウド30における空気導入口31から空気吹出口32に至る空間が空気の通風路30aを構成している。
 空気導入口31は、放熱器2に対向して回転軸11の軸心に沿う方向に開口している。具体的には、空気導入口31は、放熱器2の外形状に合わせて、車両幅方向DR2の寸法が車両上下方向DR1の寸法よりも長い矩形状となっている。
 空気吹出口32は、その内部に羽根車20が配置されている。具体的には、空気吹出口32は、羽根車20の外形状に合わせて、円形状となっている。空気吹出口32は、その内部で羽根車20が回転可能なように、羽根車20のリング部28との間に所定の隙間が生ずるように形成されている。
 本実施形態のシュラウド30は、空気導入口31と空気吹出口32との形状が異なっている。このため、シュラウド30には、空気導入口31と空気吹出口32との周縁同士の間隔が、広い部分もあれば狭い部分もある。すなわち、シュラウド30は、空気導入口31と空気吹出口32との周縁同士の間隔が、回転軸11の軸心SCまわりの周方向の位置によって異なる大きさとなっている。
 本実施形態では、空気導入口31が、車両幅方向DR2の寸法が車両上下方向DR1の寸法よりも長い矩形状となっている。このため、本実施形態のシュラウド30では、空気導入口31と空気吹出口32との周縁のうち、車両左右方向DR2の中央付近の部位が、空気導入口31と空気吹出口32との周縁同士の間隔が小さい狭小部位30bとなっている。
 このように構成される軸流送風機1では、図1に示すように、シュラウド30の通風路30aにおいて、破線矢印ARairのように横方向の空気流れが支配的となる。このため、シュラウド30の狭小部位30bでは、破線矢印ARairのような横方向の空気流れが互いに衝突することで渦が生じ易い。このため、本実施形態の軸流送風機1は、狭小部位30bがないものに比べて、特に羽根車20の外周側端部付近に渦が生じ易い構成となっている。
 次に、本実施形態の羽根車20のブレード24の詳細について図4、図5を参照して説明する。図4に示すように、ブレード24には、前縁部24aにおける外周側端部に補助翼部25が形成されている。
 また、本実施形態のブレード24には、ブレード24の表面における気流の剥離を抑えるために、前縁部24aにおける補助翼部25の内周側に鋸歯状のセレーション部26が形成されている。セレーション部26は、縦渦を発生させる三角形状の複数の突起部261で構成されている。複数の突起部261は、前縁部24aが延びる方向に並ぶように形成されている。
 補助翼部25は、その外周側の部位がリング部28に連結されている。また、補助翼部25は、前縁部24aに交差する根元部位25aから仮想円周線VCL、すなわちリング部28に交差する先端部位25bに延びる補助前縁部251を有している。なお、補助前縁部251は、補助翼部25における内周側の部位である。
 本実施形態の補助翼部25は、セレーション部26を構成する複数の突起部261のうち、前縁部24aの最外周側に位置する突起部261の一辺と補助前縁部251とがV字状の凹部を形成するように前縁部24aに設けられている。
 本実施形態の補助前縁部251は、根元部位25aを通る回転軸11の軸心SCを中心とする円周線CLとのなす角度θαが、前縁部24aの最外周側に位置する突起部261の一辺と円周線CLとのなす角度θβと同等の大きさとなるように設定されている。補助前縁部251は、円周線CLとのなす角度θαと、前縁部24aの最外周側に位置する突起部261の一辺と円周線CLとのなす角度θβとの差が、例えば、±5°程度の範囲に収まるように設定されている。
 また、本実施形態の補助前縁部251は、図5に示すように、一部が根元部位25aと先端部位25bとを直線的に結ぶ仮想直線VSLに比べて、仮想円周線VCL、すなわちリング部28に近くなるように曲がった形状となっている。
 具体的には、本実施形態の補助前縁部251は、根元部位25aと先端部位25bとの中間部分が、仮想円周線VCL、すなわちリング部28に向かって窪んだ形状となっている。換言すれば、本実施形態の複数のブレード24には、回転軸11の回転方向ARに前進し、外周側に向かって凹む形状となる三角形状の補助翼部251が設けられている。
 本実施形態の補助前縁部251は、リング部28に向かって窪んだ部位が弧状に湾曲した形状となっている。なお、補助前縁部251における窪んだ部位は、例えば、複数の直線を組み合わせた形状、すなわち屈曲した形状となっていてもよい。また、補助前縁部251における窪んだ部位は、根元部位25aと先端部位25bとの中間部分に限らず、例えば、先端部位25b付近または根元部位25a付近に設けられていてもよい。
 さらに、本実施形態の補助翼部25は、仮想直線VSLと仮想円周線VCLとで囲まれる領域TRに形成されている。これにより、本実施形態の補助翼部25は、翼面の表面積が、仮想円周線VCLに沿う補助前縁部を有する補助翼部の翼面の表面積よりも小さくなっている。
 次に、本実施形態の軸流送風機1の作動を説明する。軸流送風機1は、電動モータ10の回転軸11の回転に伴って羽根車20が回転する。これにより、図2に示すように、放熱器2側から羽根車20に吸い込まれた空気が、回転軸11の軸心SCに沿って吹き出される。
 ここで、図6は、本実施形態の比較例となる軸流送風機CEのブレードBの模式的な正面図である。比較例の軸流送風機CEは、ブレードBに設けた補助翼部Bsが単に三角形状となっている点が本実施形態の軸流送風機1と異なっている。つまり、比較例の軸流送風機CEは、ブレードBに設けた補助翼部Bsの補助前縁部Bsfが根元部位25aと先端部位25bとを直線的に結ぶ仮想直線VSLに沿って延びている。なお、説明の便宜上、図6では、比較例の軸流送風機CEにおける本実施形態の軸流送風機1と同様の構成について同一の参照符号を付している。
 比較例の軸流送風機CEでは、羽根車20の回転により、放熱器2側から羽根車20に吸い込まれた空気が、回転軸11の軸心SCに沿って吹き出される。この際、ブレードBの外周側端部付近では、羽根車20の吹出側から吸込側へ逆流する気流等によって渦VRが生ずる。この渦VRがブレードBに設けた補助翼部Bsの補助前縁部Bsfに衝突すると、渦VRとブレードBとの干渉によって騒音の発生要因となる周期的な圧力変動が大きくなる。特に、比較例の軸流送風機CEの如く、ブレードBに設けた補助翼部Bsが単に三角形状となっていると、渦VRがブレードBに設けた補助翼部Bsの補助前縁部Bsfに衝突し易くなるので、聴覚上不快とされる周期音が大きくなってしまう。なお、周期音は、いわゆるBPF(Blade Passing Frequencyの略)騒音と呼ばれる。
 これに対して、本実施形態の軸流送風機1では、補助翼部25の補助前縁部251の一部が、図5に示すように、仮想直線VSLに比べて、リング部28に近くなるように曲がった形状となっている。このため、本実施形態の軸流送風機1では、補助翼部25におけるブレード24の外周側端部付近に生ずる渦VRと衝突する面積が小さく、渦VRと補助翼部25との衝突時の衝撃が緩和される。これにより、本実施形態の軸流送風機1では、BPF騒音の発生要因となる圧力変動を抑えることができる。
 ここで、図7は、本実施形態の軸流送風機1および比較例の軸流送風機CEにおいて、羽根車20を回転させた際の音圧レベルであるSPL(Sound Pressure Levelの略)の測定結果を示す図面である。図7では、羽根車20における所定の回転角度の範囲での測定結果を示している。なお、図7では、本実施形態の軸流送風機1のSPLの測定結果を実線Aで示し、比較例の遠心送風機CEのSPLの測定結果を破線Bで示している。
 図7に示す測定結果によれば、本実施形態の軸流送風機1は、SPLの振幅Am1が比較例の軸流送風機CEのSPLの振幅Am2に比べて小さくなっており、BPF騒音の発生要因となる圧力変動を抑制可能であることが判る。
 また、図8は、本実施形態の軸流送風機1における比較例の軸流送風機CEに対する羽根車20を回転させた際のO.A.(Over Allの略)のSPLの低下量、および回転の次数成分毎のSPLの低下量を示している。図8では、回転の1次数成分をBPF1次、回転の2次数成分をBPF2次、回転の1次数成分をBPF3次として表示している。なお、O.A.は、全周波数のSPLの積和である。
 図8に示すように、本実施形態の軸流送風機1は、SPLのO.A.が比較例の軸流送風機CEのSPLに比べて小さくなっており、全体として騒音の低減効果が得られていることが判る。また、本実施形態の軸流送風機1では、BPF1次の騒音、およびBPF3次の騒音の低減効果が大きいことが判る。
 以上説明した本実施形態の軸流送風機1は、補助翼部25の補助前縁部251の一部が、仮想直線VSLに比べて、リング部28に近くなるように曲がった形状となっている。このように、補助前縁部251の形状を、複数のブレード24の外周側端部を結ぶ仮想円周線VCLに近くなるように曲がった形状とすれば、複数のブレード24の外周側端部に生ずる渦と補助前縁部251との干渉を抑えることができる。これにより、複数のブレード24の外周側における空気の圧力変動が抑制されるので、羽根車20の回転時における軸流送風機1の騒音の低減を図ることが可能となる。
 ここで、別の観点では、本実施形態の軸流送風機1は、複数のブレード24に、回転軸11の回転方向ARに前進し、外周側に向かって凹む形状となる三角形状の補助翼部251が形成されている。これによると、複数のブレード24の外周側端部に生ずる渦と補助前縁部251との干渉を抑えることができるので、羽根車20の回転時における軸流送風機1の騒音の低減を図ることが可能となる。
 また、本実施形態の軸流送風機1は、補助翼部25が仮想円周線VCLと仮想直線VSLとで囲まれる領域TRに形成されている。このような構成とすれば、比較例の如く、補助前縁部Bsfが仮想直線VSLに沿って延びる構成に比べて、補助翼部25における複数のブレード24の外周側端部に生ずる渦と干渉する領域を小さくすることができる。これにより、複数のブレード24の外周側における空気の圧力変動を充分に抑えることができる。
 さらに、本実施形態の軸流送風機1は、ブレード24の前縁部24aに縦渦を発生させる三角形状の複数の突起部261が設けられている。そして、補助翼部25は、複数の突起部261のうち、前縁部24aの最外周側に位置する突起部261の一辺と補助前縁部251とがV字状の凹部を形成するように前縁部24aに設けられている。
 これによれば、前縁部24aに設けた複数の突起部261で生じた縦渦によりブレード24の表面における気流の剥離を抑えることができる。特に、前縁部24aの最外周側に位置する突起部261の一辺と補助前縁部251とがV字状の凹部を形成するように前縁部24aに補助翼部25を設ける構成とすれば、補助前縁部251を縦渦の発生手段として機能させることができる。これにより、補助翼部25の表面における気流の剥離を抑えることができるので、軸流送風機1における騒音をより一層低減させることが可能となる。
 さらにまた、本実施形態の軸流送風機1は、羽根車20が仮想円周線VCLに沿って延びる環状のリング部28を有している。そして、複数のブレード24それぞれの補助翼部25が、リング部28に連結されている。このように、環状のリング部28で複数のブレード24の補助翼部25を連結する構成とすれば、複数のブレード24の補助翼部25における強度を充分に確保することが可能となる。
 ここで、シュラウド30に対して、空気導入口31と空気吹出口32との周縁同士の間隔が小さい狭小部位30bが設けられた構成は、羽根車20の外周側端部付近に渦が生じ易い。このため、本実施形態の如く、複数のブレード24の外周側端部に生ずる渦と補助前縁部251との干渉を抑えることが可能な軸流送風機1は、シュラウド30に狭小部位30bが設けられている構成に対して好適である。
 (第2実施形態)
 次に、第2実施形態について、図9および図10を参照して説明する。本実施形態では、第1実施形態に対してブレード24の補助翼部25における補助前縁部251Aの形状を変更した例について説明する。
 本実施形態の補助前縁部251Aは、図9に示すように、全体が根元部位25aと先端部位25bとを直線的に結ぶ仮想直線VSLに比べて、仮想円周線VCL、すなわちリング部28に近くなるように曲がった形状となっている。そして、本実施形態の補助前縁部251Aは、仮想円周線VCLにおける補助翼部25に交差する位置の基準接線TLrと補助前縁部251における接線TLとのなす角度、すなわち接線角度θtが、根元部位25a側よりも先端部位25b側の方が小さくなっている。
 具体的には、本実施形態の補助前縁部251は、2つの直線を組み合わせた形状、すなわち屈曲した形状となっている。すなわち、本実施形態の補助前縁部251は、根元部位25aから先端部位25b側に向かって直線状に延びる部位と先端部位25bから根元部位25a側に向かって直線状に延びる部位とで構成されている。
 さらに、本実施形態の補助前縁部251は、先端部位25b側の部位における接線TL1と基準接線TLrとのなす接線角度θt1が、根元部位25a側の部位における接線TL2と基準接線TLrとのなす接線角度θt2よりも小さくなっている。
 これにより、本実施形態の補助前縁部251は、先端部位25bが、根元部位25a側の部位における接線TL2と仮想円周線VCLとの交点IPよりも回転方向に前進した位置となっている。
 その他の構成は、第1実施形態と同様である。本実施形態の軸流送風機1では、第1実施形態と共通する構成について、第1実施形態と同様の作用効果を得ることができる。
 特に、本実施形態の軸流送風機1では、補助前縁部251における先端部位25b側の部位の接線角度θt1が、根元部位25a側の部位の接線角度θt2よりも小さくなっている。
 これによると、補助翼部25における先端部位25b側における複数のブレード24の外周側端部に生ずる渦と干渉する領域が根元部位25a側よりも小さくなる。すなわち、補助翼部25は、複数のブレード24の外周側端部に生ずる渦と干渉する面積が、先端部位25b側で小さくなり、根元部位25a側に向かって徐々に拡大する。これによれば、複数のブレード24の外周側端部に生ずる渦が補助翼部25に衝突する際の衝撃が一層緩和されるので、複数のブレード24の外周側における空気の圧力変動を充分に抑えることができる。
 ここで、図10は、本実施形態の軸流送風機1における比較例の軸流送風機CEに対するO.A.のSPLの低下量、および回転の次数成分毎のSPLの低下量を示している。なお、図10は、前述の図8に対応する図面である。
 図10に示すように、本実施形態の軸流送風機1は、SPLのO.A.が比較例の軸流送風機CEのSPLに比べて小さくなっており、全体として騒音の低減効果が得られていることが判る。また、本実施形態の軸流送風機1では、BPF1次~BPF3次それぞれの騒音の低減効果が大きくなっており、第1実施形態の軸流送風機1よりも騒音の低減効果を期待することができる。
 (第2実施形態の変形例)
 上述の第2実施形態では、補助前縁部251を2つの直線を組み合わせた形状とする例について説明したが、これに限定されない。例えば、図11に示すように、補助前縁部251Aを弧状に湾曲させた形状としてもよい。また、図示しないが、補助前縁部251Aは、3つ以上の直線が組み合わされた形状としてもよい。これらの形状を有する補助前縁部251Aにおいても、第2実施形態と同様の作用効果を得ることができる。
 (他の実施形態)
 以上、本開示の実施形態について説明したが、本開示の軸流送風機1は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
 上述の各実施形態の如く、軸流送風機1の羽根車20は、複数のブレード24に対してセレーション部26を設けることが望ましいが、これに限らず、セレーション部26を設けない構成としてもよい。
 上述の各実施形態の如く、軸流送風機1の羽根車20は、複数のブレード24の外周側をリング部28で連結する構成とすることが望ましいが、これに限らず、複数のブレード24の外周側をリング部28で連結しない構成としてもよい。
 上述の各実施形態で説明した軸流送風機1は、シュラウド30に狭小部位30bが設けられた構成に好適であるが、シュラウド30に狭小部位30bが設けられていない構成に適用可能である。
 上述の各実施形態では、羽根車20のブレード24が後縁翼で構成された例について説明したが、これに限らず、例えば、羽根車20のブレード24が前進翼または直線翼で構成されていてもよい。
 上述の各実施形態では、軸流送風機1を、車両に搭載されたラジエータ等の放熱器2に対して空気を供給する装置に適用した例について説明したが、これに限らず、例えば、定置型の空調装置や換気装置における空気の供給装置にも適用可能である。また、軸流送風機1は、空調装置に限らず、様々な装置に適用可能である。
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、軸流送風機は、複数のブレードの前縁部に設けた補助翼部の補助前縁部の形状が、複数のブレードの外周側端部を結ぶ仮想円周線に近くなるように曲がった形状となっている。
 また、第2の観点によれば、軸流送風機は、補助翼部が仮想円周線と仮想直線とで囲まれる領域に形成されている。このように、補助翼部を仮想円周線と仮想直線とで囲まれる領域に形成する構成とすれば、補助前縁部が仮想直線に沿って延びる補助翼部に比べて、補助翼部における複数のブレードの外周側端部に生ずる渦と干渉する領域を小さくすることができる。これにより、複数のブレードの外周側における空気の圧力変動を充分に抑えることができる。
 また、第3の観点によれば、軸流送風機は、補助前縁部は、根元部位側の接線角度よりも先端部位側の接線角度の方が小さくなっている。なお、接線角度は、仮想円周線における補助翼部に交差する位置の接線と補助前縁部における接線とのなす角度である。
 これによれば、補助翼部における先端部位側における複数のブレードの外周側端部に生ずる渦と干渉する領域が根元部位側よりも小さくなるので、複数のブレードの外周側における空気の圧力変動を充分に抑えることができる。
 また、第4の観点によれば、軸流送風機は、前縁部には、縦渦を発生させる三角形状の複数の突起部が設けられている。そして、補助翼部は、複数の突起部のうち、前縁部の最外周側に位置する突起部の一辺と補助前縁部とがV字状の凹部を形成するように前縁部に設けられている。
 これによれば、前縁部に設けた複数の突起部で生じた縦渦によりブレードの表面における気流の剥離を抑えることができる。特に、前縁部の最外周側に位置する突起部の一辺と補助前縁部とがV字状の凹部を形成するように前縁部に補助翼部を設ける構成とすれば、補助前縁部を縦渦の発生手段として機能させることができる。これにより、補助翼部の表面における気流の剥離を抑えることができるので、軸流送風機における騒音をより一層低減させることが可能となる。
 また、第5の観点によれば、軸流送風機は、空気を導入する空気導入口、空気導入口からの空気を吹き出す空気吹出口が形成されたシュラウドを備える。そして、シュラウドには、回転軸の周方向において、空気導入口と空気吹出口との周縁同士の間隔が小さい狭小部位が設けられている。このように、シュラウドに対して、空気導入口と空気吹出口との周縁同士の間隔が小さい狭小部位が設けられた構成では、羽根車の外周側端部付近に渦が生じ易い。このため、複数のブレードの外周側端部に生ずる渦と補助前縁部との干渉を抑えることが可能な軸流送風機は、シュラウドに狭小部位が設けられている構成に対して好適となる。
 また、第6の観点によれば、軸流送風機は、羽根車は、仮想円周線に沿って延びる環状のリング部を有している。そして、複数のブレードそれぞれの補助翼部は、リング部に連結されている。このように、環状のリング部で複数のブレードの補助翼部を連結する構成とすれば、複数のブレードの補助翼部における強度を充分に確保することが可能となる。
 第7の観点によれば、軸流送風機は、複数のブレードに、回転軸の回転方向に前進し、外周側に凹む形状となる三角形状の補助翼部が形成されている。
 また、第8の観点によれば、軸流送風機は、ブレードの前縁部に、縦渦を発生させる三角形状の複数の突起部が設けられている。そして、補助翼部は、複数の突起部のうち、前縁部の最外周側に位置する突起部の一辺と補助翼部の前縁となる補助前縁部とがV字状の凹部を形成するように前縁部に設けられている。
 これによれば、前縁部に設けた複数の突起部で生じた縦渦によりブレードの表面における気流の剥離を抑えることができる。特に、前縁部の最外周側に位置する突起部の一辺と補助前縁部とがV字状の凹部を形成するように前縁部に補助翼部を設ける構成とすれば、補助前縁部を縦渦の発生手段として機能させることができる。これにより、補助翼部の表面における気流の剥離を抑えることができるので、軸流送風機における騒音をより一層低減させることが可能となる。
 また、第9の観点によれば、軸流送風機は、空気を導入する空気導入口、空気導入口からの空気を吹き出す空気吹出口が形成されたシュラウドを備える。そして、シュラウドには、回転軸の周方向において、空気導入口と空気吹出口との周縁同士の間隔が小さい狭小部位が設けられている。
 このように、シュラウドに対して、空気導入口と空気吹出口との周縁同士の間隔が小さい狭小部位が設けられた構成では、羽根車の外周側端部付近に渦が生じ易い。このため、複数のブレードの外周側端部に生ずる渦と補助前縁部との干渉を抑えることが可能な軸流送風機は、シュラウドに狭小部位が設けられている構成に対して好適となる。
 また、第10の観点によれば、軸流送風機は、複数のブレードそれぞれの補助翼部が、羽根車に設けられた環状のリング部に連結されている。このように、環状のリング部で複数のブレードの補助翼部を連結する構成とすれば、複数のブレードの補助翼部における強度を充分に確保することが可能となる。

Claims (10)

  1.  回転軸(11)の軸心(SC)に沿って空気を送風する軸流送風機であって、
     前記回転軸の軸心に対して放射状に配置された複数のブレード(24)を有し、前記回転軸の軸心を中心として回転することで気流を発生させる羽根車(20)を備え、
     前記複数のブレードには、前記複数のブレードの外周側端部を結ぶ円形状の仮想円周線(VCL)と前記ブレードの前縁部(24a)とが交わる部位に前記回転軸の回転方向(AR)に前進した補助翼部(25、25A)が形成されており、
     前記補助翼部は、前記前縁部と交差する根元部位(25a)から前記仮想円周線と交差する先端部位(25b)に延びる補助前縁部(251、251A)を有しており、
     前記補助前縁部は、少なくとも一部が前記根元部位と前記先端部位とを直線的に結ぶ仮想直線(VSL)に比べて前記仮想円周線に近くなるように曲がった形状となっている軸流送風機。
  2.  前記補助翼部は、前記仮想円周線と前記仮想直線とで囲まれる領域(TR)に形成されている請求項1に記載の軸流送風機。
  3.  前記仮想円周線における前記補助翼部に交差する位置の接線(TLr)と前記補助前縁部における接線(TL)とのなす角度を接線角度(θt)としたとき、
     前記補助前縁部は、前記根元部位側の前記接線角度(θt2)よりも前記先端部位側の前記接線角度(θt1)の方が小さくなっている請求項1または2に記載の軸流送風機。
  4.  前記前縁部には、縦渦を発生させる三角形状の複数の突起部(261)が設けられており、
     前記補助翼部は、前記複数の突起部のうち、前記前縁部の最外周側に位置する突起部の一辺と前記補助前縁部とがV字状の凹部を形成するように前記前縁部に設けられている請求項1ないし3のいずれか1つに記載の軸流送風機。
  5.  空気を導入する空気導入口(31)、前記空気導入口からの空気を吹き出す空気吹出口(32)が形成されたシュラウド(30)を備え、
     前記シュラウドには、前記回転軸の周方向において、前記空気導入口と前記空気吹出口との周縁同士の間隔が小さい狭小部位(30b)が設けられている請求項1ないし4のいずれか1つに記載の軸流送風機。
  6.  前記羽根車は、前記仮想円周線に沿って延びる環状のリング部(28)を有しており、
     前記複数のブレードそれぞれの前記補助翼部は、前記リング部に連結されている請求項1ないし5のいずれか1つに記載の軸流送風機。
  7.  回転軸(11)の軸心(SC)に沿って空気を送風する軸流送風機であって、
     前記回転軸の軸心に対して放射状に配置された複数のブレード(24)を有し、前記回転軸の軸心を中心として回転することで気流を発生させる羽根車(20)を備え、
     前記複数のブレードには、前記回転軸の回転方向(AR)に前進し、外周側に向かって凹む形状となる三角形状の補助翼部(251、251A)が形成されている軸流送風機。
  8.  前記ブレードの前縁部(24a)には、縦渦を発生させる三角形状の複数の突起部(261)が設けられており、
     前記補助翼部は、前記複数の突起部のうち、前記前縁部の最外周側に位置する突起部の一辺と前記補助翼部の前縁となる補助前縁部とがV字状の凹部を形成するように前記前縁部に設けられている請求項7に記載の軸流送風機。
  9.  空気を導入する空気導入口(31)、前記空気導入口からの空気を吹き出す空気吹出口(32)が形成されたシュラウド(30)を備え、
     前記シュラウドには、前記回転軸の周方向において、前記空気導入口と前記空気吹出口との周縁同士の間隔が小さい狭小部位(30b)が設けられている請求項7または8に記載の軸流送風機。
  10.  前記複数のブレードそれぞれの前記補助翼部は、前記羽根車に設けられた環状のリング部(18)に連結されている請求項7ないし9のいずれか1つに記載の軸流送風機。
PCT/JP2016/082797 2016-02-02 2016-11-04 軸流送風機 WO2017134885A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016018266A JP2019052539A (ja) 2016-02-02 2016-02-02 軸流送風機
JP2016-018266 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017134885A1 true WO2017134885A1 (ja) 2017-08-10

Family

ID=59500743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082797 WO2017134885A1 (ja) 2016-02-02 2016-11-04 軸流送風機

Country Status (2)

Country Link
JP (1) JP2019052539A (ja)
WO (1) WO2017134885A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740693U (ja) * 1980-08-19 1982-03-04
US5961289A (en) * 1995-11-22 1999-10-05 Deutsche Forshungsanstalt Fur Luft-Und Raumfahrt E.V. Cooling axial flow fan with reduced noise levels caused by swept laminar and/or asymmetrically staggered blades
KR20110137547A (ko) * 2010-06-17 2011-12-23 한라공조주식회사 팬과, 이를 포함하는 팬 및 쉬라우드 조립체
JP2013249762A (ja) * 2012-05-31 2013-12-12 Denso Corp 送風機
DE102014212561A1 (de) * 2013-08-21 2015-02-26 Ford Global Technologies, Llc Leiser Lüfter für ein Kraftfahrzeug
JP2015140741A (ja) * 2014-01-29 2015-08-03 株式会社デンソー 軸流ファン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740693U (ja) * 1980-08-19 1982-03-04
US5961289A (en) * 1995-11-22 1999-10-05 Deutsche Forshungsanstalt Fur Luft-Und Raumfahrt E.V. Cooling axial flow fan with reduced noise levels caused by swept laminar and/or asymmetrically staggered blades
KR20110137547A (ko) * 2010-06-17 2011-12-23 한라공조주식회사 팬과, 이를 포함하는 팬 및 쉬라우드 조립체
JP2013249762A (ja) * 2012-05-31 2013-12-12 Denso Corp 送風機
DE102014212561A1 (de) * 2013-08-21 2015-02-26 Ford Global Technologies, Llc Leiser Lüfter für ein Kraftfahrzeug
JP2015140741A (ja) * 2014-01-29 2015-08-03 株式会社デンソー 軸流ファン

Also Published As

Publication number Publication date
JP2019052539A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5549772B2 (ja) プロペラファン及びこれを備える空気調和機
JP6551173B2 (ja) 遠心送風機
WO2014034950A1 (ja) 遠心送風機
JP2004360670A (ja) 遠心送風機
WO2012039092A1 (ja) 軸流送風機
CA2940267A1 (en) Blower shroud and blade ring
JP5952801B2 (ja) 遠心式ファン
KR20160090617A (ko) 원심팬
WO2015146007A1 (ja) 送風装置
JP6222804B2 (ja) プロペラファン
JP6583551B2 (ja) 送風装置
JP2008157117A (ja) 送風機および該送風機を具備した空気調和機用室外機
WO2017122406A1 (ja) 遠心送風機
US10495114B2 (en) Blower
JP2017110555A (ja) 送風機
WO2017134885A1 (ja) 軸流送風機
JP4910809B2 (ja) 遠心式送風機
WO2015122134A1 (ja) 送風装置
JP6917545B2 (ja) 送風装置
JP6486459B2 (ja) 遠心送風機
JP2012017750A (ja) 軸流ファン及び空調機用の室外機
JP7235996B2 (ja) 送風装置及びそれを備えた空気調和システム
JP4994406B2 (ja) 軸流ファン
JP6685433B2 (ja) 送風機及び空気調和装置
JP7069406B2 (ja) プロペラファンおよび送風装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP