WO2017133372A1 - 一种复合地基及其施工方法 - Google Patents

一种复合地基及其施工方法 Download PDF

Info

Publication number
WO2017133372A1
WO2017133372A1 PCT/CN2017/000140 CN2017000140W WO2017133372A1 WO 2017133372 A1 WO2017133372 A1 WO 2017133372A1 CN 2017000140 W CN2017000140 W CN 2017000140W WO 2017133372 A1 WO2017133372 A1 WO 2017133372A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
soil
construction
cement
concrete
Prior art date
Application number
PCT/CN2017/000140
Other languages
English (en)
French (fr)
Inventor
王继忠
Original Assignee
王继忠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王继忠 filed Critical 王继忠
Publication of WO2017133372A1 publication Critical patent/WO2017133372A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/08Improving by compacting by inserting stones or lost bodies, e.g. compaction piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/50Piles comprising both precast concrete portions and concrete portions cast in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/62Compacting the soil at the footing or in or along a casing by forcing cement or like material through tubes

Definitions

  • the application relates to the field of civil engineering, in particular to a composite foundation form and a construction method thereof.
  • the composite foundation is widely used in the foundation treatment engineering in the field of construction engineering.
  • the deep mixing pile and the high pressure jet grouting pile are traditional treatment methods.
  • the advantages of these two methods are not unearthed and can be utilized.
  • Original soil but it also has its limitations.
  • deep mixing piles have higher requirements on soil and organic matter content.
  • High-pressure jet-jet piles are strictly controlled and easily cause slurry waste and environmental pollution, and the strength of the piles constructed by these two methods is not strong. High, so the overall bearing capacity of its composite foundation is limited.
  • the cast-in-place concrete pile is often used as the reinforcement of the composite foundation.
  • the long spiral is often used in the construction of such piles in China.
  • the construction of pressure-filled concrete is carried out, such as CFG piles.
  • CFG piles use the method of excavation when forming holes. It is necessary to clear the soil on site and easily cause problems such as virtual soil at the bottom of the hole and environmental pollution.
  • most of the bearing capacities of the above three methods are derived from the pile side resistance, so the pile length has to be increased in order to increase the bearing capacity, resulting in an increase in construction cost.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a composite foundation form with high pile strength, large force area, improved pile-soil replacement rate, and sufficient mobilization of soil at the pile end.
  • the method can also improve work efficiency and environmental protection.
  • a composite foundation according to the present invention is characterized in that it comprises a pile foundation and an upper cushion layer thereof, the pile foundation is composed of a cement soil pile body at the outer periphery, and an inner concrete pile body and a pile top expansion portion and a pile The end carrier portion is composed.
  • the diameter of the enlarged diameter portion of the pile top is greater than or equal to the diameter of the cement soil pile, and the purpose and function thereof are to improve the replacement rate of the pile and soil.
  • the present invention also includes a construction method of the composite foundation as described above, comprising the following steps: (1) agitating the pile soil by means of unearthing and spraying the cement slurry to form a cement soil pile; 2) Before the strength of the cement-soil pile reaches the initial setting, the hole is formed by squeezing the soil in the middle part of the cement-soil pile, and the hole-forming depth is greater than or equal to the depth of the cement-soil pile; (3) Carrying the pile end carrier part (4) Carrying out the construction of the concrete pile and the enlarged section of the pile top; (5) laying the cushion layer on the top of the pile.
  • the casing body when the hole forming in the step (2) is performed, the casing body is expanded into the cement soil pile by the casing expansion device with the upper opening diameter, and the cement soil pile body is extruded at the pile top to form an expansion space, thereby
  • the above step (4) is carried out, the concrete pile body and the enlarged portion of the pile top are cast at one time.
  • the concrete pile body described in the step (4) includes a cast-in-place concrete pile body and a precast concrete pile body.
  • the construction of the pile end carrier portion described in the step (3) refers to slamming the pile end soil or the reinforcement material filled into the pile end by the lifting movement of the weight or the stern tube, after many times. After the slamming, the soil at a certain depth and range under the pile end is reinforced and compacted, and the pile end density is tested by the measured penetration degree or the set packing amount as the control standard, thereby forming the pile end carrier; Dry hard concrete, tamped reinforcement and compacted soil.
  • the reinforcing material filled into the pile end includes one or more of dry hard concrete or broken brick or gravel or muck or pebbles or steel slag or cement soil or ash soil.
  • the measured penetration degree or the set filler amount is taken as the control standard, and the measured penetration degree refers to the sinking value of the weight or the triple-strike 3 hits to 10 shots without the filler.
  • the amount of the filler is in the range of 0.1 to 1.8 m3.
  • the bearing capacity of the pile foundation through the following aspects: First, tamping and compacting the pile end soil or the filled reinforcement material, so that the depth of the pile end is 3 to 5 meters and the diameter is 2 to 3 meters.
  • the body is compacted to form a pile end carrier, which significantly increases the force area of the pile end; the second is to effectively treat the soil at the bottom of the pile during the compaction process; the third is that no matter how the soil of the foundation changes locally, all the piles are The same standard is used to control the compactness of the pile end, so the deviation of the settlement value is significantly reduced, thereby effectively avoiding uneven settlement.
  • the consolidation hardening effect further increases the strength of the pile. Based on the above four aspects, the bearing capacity provided by the pile foundation part is increased by more than 50% compared with the ordinary long screw pressure concrete technology.
  • Second Improve the bearing capacity of the composite foundation by the following aspects: First, increase the replacement area of the pile and soil, and increase the diameter of the pile top by expanding the diameter of the pile top, which can significantly increase the replacement rate of the pile soil.
  • the area replacement rate of the spiral pressure-filled concrete pile is increased by 2 to 4 times;
  • the second is that the whole construction process does not discharge the soil, and the concrete pile body is squeezing the soil inside the cement soil pile, and the soil compaction process expands the pile diameter and improves The soil density around the pile;
  • the third is the diameter and strength of the concrete pile combined with the concrete pile, which are significantly larger than the ordinary cement pile or the long spiral pressure-filled concrete pile; combining the above four aspects, the overall bearing capacity of the composite foundation, It is more than 40% higher than the conventional techniques described above.
  • Figure 1 is a schematic view showing the composition of an embodiment of a composite foundation of the present invention.
  • Figure 2 is a process diagram of the construction method of the embodiment of Figure 1.
  • the composite foundation includes a pile foundation and an upper cushion layer 8, and the pile foundation is composed of a cement soil pile body 1 and a cement soil pile body.
  • the outer cement soil pile 1 has a diameter of 600 mm and a length of 6000 m.
  • the concrete pile 7 has a diameter of 400 mm and a length of 8000 mm.
  • the tamped reinforcing material has a volume of 0.8 m 3 and the compacted dry hard concrete has a volume of 0.3 m 3 .
  • the diameter-enlarged portion has a diameter of 800 mm and a length of 1500 mm.
  • FIG. 2 is a process diagram of the construction method of the embodiment shown in FIG. 1.
  • the soil and the cement slurry are mixed and stirred to form a diameter by rotating and stirring while spraying the cement slurry. 600mm, length 6000m cement soil pile 1; then, as shown in b in Fig. 2, before the strength of the cement soil pile 1 reaches the initial setting, the diameter of the cement soil pile 1 is dampened into a diameter of 400 mm and a length of 8000 mm.
  • the cylinder 2 is formed into a hole, and the upper portion of the casing 2 is provided with an enlarged diameter portion 3 having a diameter of 800 mm and a length of 1500 mm.
  • the casing 2 After the casing 2 is sunk into the hole to a set depth, it exceeds the length of the cement soil pile 1 by 2000 mm, and is squeezed at the top of the pile.
  • the surrounding soil is formed to expand in diameter; then, as shown by c in Fig. 2, 0.1m 3 of reinforcing material 4 is filled in the casing 2, and a slender weight 5 having a weight of 3.5T is placed in the casing 4, Using the lifting movement of the weight 5 in the casing 2, the reinforcing material 4 is tapped; then, as shown by d in Fig.

Abstract

一种复合地基,包括桩基及其上部褥垫层(9),桩基由外周的水泥土桩体(1)、内部的混凝土桩体(7)、桩顶扩径部(8)和桩端载体部组成,桩顶扩径部(8)直径大于或等于水泥土桩体(1)直径。还提供了一种复合地基的施工方法。

Description

一种复合地基及其施工方法 技术领域
本申请涉及土木工程领域,具体是一种复合地基形式及其施工方法。
背景技术
目前在建筑工程领域地基处理工程中复合地基的应用十分广泛,常用的复合地基处理方法中,深层搅拌桩和高压旋喷桩是传统的处理方法,这两种方法的优点是不出土,能够利用原土,但也有其局限性,比如深层搅拌桩对土质和有机质含量要求较高,高压旋喷桩工艺控制严格且易造成浆液浪费和环境污染,而且这两种方法施工的桩体本身强度不高,因此其复合地基的整体承载力有限。在高强度复合地基中,由于预制桩身施工时存在着穿越土层困难有时难以达到设计深度,因此多采用现浇混凝土桩作为复合地基的增强体,目前国内施工该类桩时多采用长螺旋压灌混凝土工艺进行施工,如CFG桩,但此类工法在成孔时采用排土法,需要现场清土且易造成孔底虚土、环境污染等问题。而且上述三种方法的承载力均大部分来自于桩侧阻力,因此为了增加承载力不得不加大桩身长度,造成了施工成本的增高。
发明内容
本发明是为了解决上述的问题而提出的,目的在于提供一种桩体强度高、受力面积大、提高桩土置换率,并且充分调动桩端土体参与受力的复合地基形式及其施工方法,同时能够提高工效、环保节约。
为了实现上述目的,本发明的一种复合地基,其特征在于,包括桩基及其上部褥垫层,桩基由外周的水泥土桩体和内部的混凝土桩体和桩顶扩径部和桩端载体部组成。
上述复合地基中,桩顶扩径部直径大于或等于水泥土桩体直径,其目的和作用是提高桩土置换率。
为了实现上述目的,本发明还包括一种如上述复合地基的施工方法,包括以下步骤:(1)采用不出土的方式对桩位土体进行搅拌并喷入水泥浆,形成水泥土桩体;(2)在水泥土桩体强度达到初凝之前,在水泥土桩体的中间部位采用挤土的方式成孔,成孔深度大于或者等于水泥土桩体的深度;(3)进行桩端载体部施工;(4)进行混凝土桩体和桩顶扩径部施工;(5)在桩顶铺设褥垫层。
上述施工方法中,在进行步骤(2)所述的成孔时,采用上口扩径的护筒装置沉入水泥土桩体,在桩顶挤压水泥土桩体形成扩径空间,从而在进行上述步骤(4)施工时,混凝土桩体和桩顶扩径部一次性浇注成形。
上述施工方法中,步骤(4)所述的混凝土桩体包括现浇混凝土桩体和预制混凝土桩体。
上述施工方法中,步骤(3)所述的桩端载体部施工,是指通过重锤或者夯管的升降运动对桩端土体或者向桩端填入的加固料进行夯击,经过多次夯击后使桩端下一定深度和范围内的土体被加固密实,并以实测贯入度或者设定的填料量为控制标准检验桩端密实度,从而形成桩端载体;桩端载体由干硬性混凝土、夯实的加固料和挤密土体组成。
上述施工方法中,向桩端填入的加固料,包括干硬性混凝土或碎砖或碎石或渣土或卵石或钢渣或水泥土或灰土中的一种或几种。
上述施工方法中,以实测贯入度或者设定的填料量为控制标准,实测贯入度是指在不填料的情况下重锤或者夯管空打3击~10击的下沉数值,设定的填料量在0.1~1.8m3范围内。
上述施工方法中,当地基土体的强度较高或者设计要求的承载力较低时,省略步骤(3)的桩端载体部施工直接进行步骤(4)的混凝土桩体和桩顶扩径部施工,或者省略步骤(3)的桩端载体部施工和步骤(4)的混凝土桩体施工,直接进行步骤(4)的桩顶扩径部施工。
本发明的复合地基及其施工方法的特点和优势在于:
①通过以下多个方面提高桩基的承载力:一是对桩端土体或者填入的加固料进行夯实挤密,使桩端以下深度3~5米、直径2~3米范围内的土体被挤密,形成桩端载体,使桩端受力面积显著增大;二是在夯实过程中对桩底虚土沉渣进行了有效处理;三是无论地基土体如何局部变化,全部桩均采用相同的标准控制桩端密实度,因此显著降低沉降值偏差,从而有效避免不均匀沉降;四是水泥土桩在达到终凝强度后,其固结硬化效果进一步提高桩体强度。综合以上四个方面,使得桩基部分提供的承载力,相比普通长螺旋压灌混凝土工艺提高50%以上。
②通过以下多个方面提高复合地基的承载力:一是增加桩土置换面积,通过制作桩顶扩径部,即扩大桩基顶部的直径,可显著提高桩土的置换率,相比普通长螺旋压灌混凝土桩的面积置换率提高了2~4倍;二是整个施工过程均不排土,混凝土桩体是在水泥土桩的内部挤土施工,挤土过程起到扩大桩径、提高桩周土密度作用;三是水泥土桩体结合混凝土桩体的直径和强度,均显著大于普通水泥土桩或者长螺旋压灌混凝土桩;综合以上四个方面,使得复合地基的整体承载力,相比上述的常规技术提高40%以上。
③提高工效,降低施工难度:一是先进行水泥土桩体的施工,在喷射水泥浆并搅拌 过程中,原本难以成孔穿透的较硬土层如砂层的硬度和密度得到降低;二是在水泥土初凝之前进行混凝土桩体施工,此时利用水泥土的润滑作用,得以快速高效的进行成孔或者成桩施工;因此,其工效的提高是显而易见的,特别是遇到较硬土层时的优势更为突出。
④节约造价,环保无污染:由于桩基部分和复合地基的整体承载力均有大幅度提高并能充分发挥,因此可显著降低桩基的设计使用数量,虽然相比普通长螺旋压灌混凝土桩增加了水泥土桩的施工费用,但由于桩基数量的减少,再加上无需渣土的外弃环节,其整体工程造价仍然可以降低20%以上,同时又避免了环境污染,具有极强的经济性和环保性。
附图说明
图1是本发明的复合地基的一个实施例的组成示意图。
图2是图1所述实施例的施工方法的工序图。
具体实施方式
下面通过具体实施例对本发明作进一步说明。
图1是本发明的复合地基的一个实施例的组成示意图,如图1所示,复合地基包括桩基及其上部褥垫层8,桩基由外周的水泥土桩体1,水泥土桩体1内部的混凝土桩体7,混凝土桩体7上部的桩顶扩径部8,以及混凝土桩体6下端的由被夯实的加固料4和干硬性混凝土5组成的桩端载体部四部分组成;其中外周的水泥土桩体1的直径600mm、长度6000m,混凝土桩体7的直径400mm、长度8000mm,被夯实的加固料4体积0.8m3,被夯实的干硬性混凝土体积0.3m3,桩顶扩径部的直径800mm、长度1500mm。
图2是图1所述实施例的施工方法的工序图,首先,如图2中a所示,采用边喷入水泥浆边旋转搅拌的方式使桩位处土体与水泥浆混合搅拌,形成直径600mm、长度6000m水泥土桩体1;然后,如图2中b所示,在水泥土桩体1的强度达到初凝之前,在水泥土桩体1的中间部位沉入直径400mm、长度8000mm护筒2成孔,护筒2的上部带有直径800mm、长度1500mm的扩径部3,护筒2沉入成孔至设定深度后,超出水泥土桩1长度2000mm,并在桩顶部挤扩周围土体形成扩径;然后,如图2中c所示,在护筒2内填入0.1m3加固料4,在护筒4内放入重量为3.5T的细长型重锤5,利用重锤5在护筒2内的升降运动,对加固料4进行夯击;然后,如图2中d所示,重复进行上述填料并夯击的操作,使桩端下一定深度和范围内的土体被加固密实,直至全部总量为0.8m3的加固料全部被夯填进桩端土体;然后,如图2中e所示,分次在护筒2内均填入总量为0.3m3的干硬性混凝土6并继续用重锤5夯实,从而形成由干硬性混凝土、夯实的加固料和挤密土体组成的桩端载体;然后,如图2中f所示,在护筒2中浇注混凝土,将护筒2提出并振捣密实混凝土,从而通过一次浇 注形成混凝土桩体7和桩顶扩径部8;最后,如图2中g所示,在桩顶表面铺设砂石褥垫层9,完成复合地基的施工。
以上实施例只是描述性的,而非限定性的,不能以此限定本发明的保护范围,在上述说明的基础上所引申出的其它不同形式的变化或变动,仍处于本发明的保护范围之中。

Claims (9)

  1. 一种复合地基,其特征在于,包括桩基及其上部褥垫层,桩基由外周的水泥土桩体和内部的混凝土桩体和桩顶扩径部和桩端载体部组成。
  2. 如权利要求1所述的复合地基,其特征在于,桩顶扩径部直径大于或等于水泥土桩体直径。
  3. 一种如权利要求1或2所述的复合地基的施工方法,其特征在于,包括以下步骤:(1)采用不出土的方式对桩位土体进行搅拌并喷入水泥浆,形成水泥土桩体;(2)在水泥土桩体强度达到初凝之前,在水泥土桩体的中间部位采用挤土的方式成孔,成孔深度大于或者等于水泥土桩体的深度;(3)进行桩端载体部施工;(4)进行混凝土桩体和桩顶扩径部施工;(5)在桩顶铺设褥垫层。
  4. 如权利要求3所述的施工方法,其特征在于,在进行步骤(2)所述的成孔时,采用上口扩径的护筒装置沉入水泥土桩体,在桩顶挤压水泥土桩体形成扩径空间,从而在进行步骤(4)施工时,混凝土桩体和桩顶扩径部一次性浇注成形。
  5. 如权利要求3所述的施工方法,其特征在于,步骤(4)所述的混凝土桩体包括现浇混凝土桩体和预制混凝土桩体。
  6. 如权利要求3所述的施工方法,其特征在于,步骤(3)所述的桩端载体部施工,是指通过重锤或者夯管的升降运动对桩端土体或者向桩端填入的加固料进行夯击,经过多次夯击后使桩端下一定深度和范围内的土体被加固密实,并以实测贯入度或者设定的填料量为控制标准检验桩端密实度,从而形成桩端载体。
  7. 如权利要求6所述的施工方法,其特征在于,上述的向桩端填入的加固料,包括干硬性混凝土或碎砖或碎石或渣土或卵石或钢渣或水泥土或灰土中的一种或几种。
  8. 如权利要求6所述的施工方法,其特征在于,上述的以实测贯入度或者设定的填料量为控制标准,实测贯入度是指在不填料的情况下重锤或者夯管空打3击~10击的下沉数值,设定的填料量在0.1~1.8m3范围内。
  9. 如权利要求3所述的施工方法,其特征在于,当地基土体的强度较高或者设计要求的承载力较低时,省略步骤(3)的桩端载体部施工直接进行步骤(4)的混凝土桩体和桩顶扩径部施工,或者省略步骤(3)的桩端载体部施工和步骤(4)的混凝土桩体施工,直接进行步骤(4)的桩顶扩径部施工。
PCT/CN2017/000140 2016-02-05 2017-01-25 一种复合地基及其施工方法 WO2017133372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610080461.3 2016-02-05
CN201610080461.3A CN105625294A (zh) 2016-02-05 2016-02-05 一种复合地基及其施工方法

Publications (1)

Publication Number Publication Date
WO2017133372A1 true WO2017133372A1 (zh) 2017-08-10

Family

ID=56040604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000140 WO2017133372A1 (zh) 2016-02-05 2017-01-25 一种复合地基及其施工方法

Country Status (2)

Country Link
CN (1) CN105625294A (zh)
WO (1) WO2017133372A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326765A (zh) * 2017-08-25 2017-11-07 中铁西北科学研究院有限公司 处理岛状冻土地基石灰桩及其施工方法
CN109371962A (zh) * 2018-10-31 2019-02-22 浙江华东建设工程有限公司 岩溶地区桩基防护装置
CN109571740A (zh) * 2019-01-28 2019-04-05 重庆固力建筑工程质量检测有限公司 混凝土全自动贯入阻力仪
CN109763390A (zh) * 2019-01-18 2019-05-17 广西交通设计集团有限公司 一种加强型刚性桩复合地基结构
CN113221207A (zh) * 2021-04-02 2021-08-06 中铁第四勘察设计院集团有限公司 刚性桩复合地基的稳定性确定方法及装置
CN113860809A (zh) * 2018-02-08 2021-12-31 沙焕焕 水泥固化材料、人造泥岩及其制造方法
CN114169064A (zh) * 2021-12-28 2022-03-11 中国铁道科学研究院集团有限公司 潜孔冲击水泥土复合预制桩尺寸优化组合方法及其应用
CN115146368A (zh) * 2022-08-08 2022-10-04 贵州正业工程技术投资有限公司 一种强夯表层加固碎石桩的复合地基设计方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105625294A (zh) * 2016-02-05 2016-06-01 王继忠 一种复合地基及其施工方法
CN106480878A (zh) * 2016-12-05 2017-03-08 周同和 一种上、下部扩大型水泥土复合管桩
CN114875886B (zh) * 2022-06-09 2023-04-28 中国电建集团成都勘测设计研究院有限公司 扩径型振冲碎石桩的施工方法
CN116290003B (zh) * 2023-05-11 2023-09-01 江苏华岩建设有限公司 复合承载式斜支撑方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424468A (zh) * 2003-01-21 2003-06-18 王继忠 复合地基的施工方法
CN101608448A (zh) * 2009-07-28 2009-12-23 武汉高铁桩工科技有限公司 水泥浆喷射多向加芯搅拌桩成桩方法
CN101798809A (zh) * 2010-03-16 2010-08-11 朱建新 非取土复合扩底桩的施工方法
CN102644269A (zh) * 2012-05-04 2012-08-22 朱建新 非取土复合桩及其施工方法
JP5040699B2 (ja) * 2008-02-12 2012-10-03 Jfeスチール株式会社 合成摩擦杭
CN105625294A (zh) * 2016-02-05 2016-06-01 王继忠 一种复合地基及其施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424468A (zh) * 2003-01-21 2003-06-18 王继忠 复合地基的施工方法
JP5040699B2 (ja) * 2008-02-12 2012-10-03 Jfeスチール株式会社 合成摩擦杭
CN101608448A (zh) * 2009-07-28 2009-12-23 武汉高铁桩工科技有限公司 水泥浆喷射多向加芯搅拌桩成桩方法
CN101798809A (zh) * 2010-03-16 2010-08-11 朱建新 非取土复合扩底桩的施工方法
CN102644269A (zh) * 2012-05-04 2012-08-22 朱建新 非取土复合桩及其施工方法
CN105625294A (zh) * 2016-02-05 2016-06-01 王继忠 一种复合地基及其施工方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326765B (zh) * 2017-08-25 2023-03-28 中铁西北科学研究院有限公司 处理岛状冻土地基石灰桩及其施工方法
CN107326765A (zh) * 2017-08-25 2017-11-07 中铁西北科学研究院有限公司 处理岛状冻土地基石灰桩及其施工方法
CN113860809A (zh) * 2018-02-08 2021-12-31 沙焕焕 水泥固化材料、人造泥岩及其制造方法
CN109371962A (zh) * 2018-10-31 2019-02-22 浙江华东建设工程有限公司 岩溶地区桩基防护装置
CN109763390A (zh) * 2019-01-18 2019-05-17 广西交通设计集团有限公司 一种加强型刚性桩复合地基结构
CN109571740A (zh) * 2019-01-28 2019-04-05 重庆固力建筑工程质量检测有限公司 混凝土全自动贯入阻力仪
CN109571740B (zh) * 2019-01-28 2024-04-05 北京东方建宇混凝土科学技术研究院有限公司 混凝土全自动贯入阻力仪
CN113221207A (zh) * 2021-04-02 2021-08-06 中铁第四勘察设计院集团有限公司 刚性桩复合地基的稳定性确定方法及装置
CN113221207B (zh) * 2021-04-02 2022-05-13 中铁第四勘察设计院集团有限公司 刚性桩复合地基的稳定性确定方法及装置
CN114169064A (zh) * 2021-12-28 2022-03-11 中国铁道科学研究院集团有限公司 潜孔冲击水泥土复合预制桩尺寸优化组合方法及其应用
CN114169064B (zh) * 2021-12-28 2022-09-16 中国铁道科学研究院集团有限公司 潜孔冲击水泥土复合预制桩尺寸优化组合方法及其应用
CN115146368A (zh) * 2022-08-08 2022-10-04 贵州正业工程技术投资有限公司 一种强夯表层加固碎石桩的复合地基设计方法
CN115146368B (zh) * 2022-08-08 2024-03-12 清华大学 一种强夯表层加固碎石桩的复合地基设计方法

Also Published As

Publication number Publication date
CN105625294A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017133372A1 (zh) 一种复合地基及其施工方法
CN105887837B (zh) 一种现场地面搅拌水泥土桩的施工方法
CN101532290B (zh) 加固软土地基的带孔波纹塑料套管粒料注浆桩及加固方法
CN103184734B (zh) 一种植入注浆组合桩的施工方法
CN105821836B (zh) 一种载体桩的施工方法
CN104988907A (zh) 一种混凝土桩的施工方法
CN105714773B (zh) 一种地基处理方法
CN100441781C (zh) 盐渍土地区强夯加排水桩地基处理方法
US10844567B2 (en) Soil densification system and method
CN106192999A (zh) 抗拔桩的施工方法
CN104294818A (zh) 混凝土桩的施工方法
CN101575852A (zh) 护壁式扩底沉管灌注桩施工方法
CN111794216A (zh) 抗拔载体桩的施工方法
CN108677912A (zh) 一种cfg芯砂石组合桩、其构成的复合地基及施工方法
CN105625302B (zh) 一种变截面劲芯增强活性材料复合桩结构及施工方法
CN104988913B (zh) 一种大直径长桩的载体桩的施工方法
WO2017133373A1 (zh) 一种用于桩基的小直径桩簇及其施工方法
CN102251514A (zh) 多段式变截面强夯法
CN105926621A (zh) 一种静压载体桩的施工方法
CN106337408A (zh) 一种碎石挤密桩复合地基的施工方法
CN205776209U (zh) 混凝土桩的施工设备
CN104294817B (zh) 混凝土桩的施工方法
CN112144516A (zh) 一种混凝土桩的施工方法
CN106065608B (zh) 一种预拌高强度水泥土地基基础
CN105970919B (zh) 一种取土压灌混凝土桩的施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746692

Country of ref document: EP

Kind code of ref document: A1