WO2017133318A1 - 基于逻辑开关控制的双馈风机多回路切换控制系统 - Google Patents

基于逻辑开关控制的双馈风机多回路切换控制系统 Download PDF

Info

Publication number
WO2017133318A1
WO2017133318A1 PCT/CN2016/109193 CN2016109193W WO2017133318A1 WO 2017133318 A1 WO2017133318 A1 WO 2017133318A1 CN 2016109193 W CN2016109193 W CN 2016109193W WO 2017133318 A1 WO2017133318 A1 WO 2017133318A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
doubly
fed fan
voltage
reactive power
Prior art date
Application number
PCT/CN2016/109193
Other languages
English (en)
French (fr)
Inventor
吴青华
刘洋
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/759,344 priority Critical patent/US10447190B2/en
Priority to JP2018504894A priority patent/JP6449520B2/ja
Publication of WO2017133318A1 publication Critical patent/WO2017133318A1/zh

Links

Images

Classifications

    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the invention relates to the technical field of power system automation, in particular to a multi-loop switching control system of a doubly-fed fan based on logic switch control.
  • the tuning of the traditional PI control system needs to comprehensively consider the rapidity and steady-state error of the system response, and then determine a compromised control parameter.
  • the doubly-fed fan deviates from the original operating point.
  • the traditional vector control system cannot use the maximum control energy of the fan converter to return the fan to the original equilibrium point at the fastest speed to continue operation. Therefore, when there is a small probability of major failure in the power system, the traditional vector control system cannot guarantee the stable operation of the doubly-fed fan.
  • the switch control method based on logic operation avoids the problem that the traditional switch control method relies on the Hamiltonian equation of the system to obtain the control law, and on the other hand maintains the time optimality of the traditional switch control method. . Therefore, the application of the logic-based switching control method to the control of the doubly-fed wind turbine will greatly improve the robustness of the doubly-fed wind turbine after the power system is greatly disturbed. At the same time, since the design of the logic control based switch control system only requires the relative order information of the system and does not require the precise parameters of the system, the resulting switch control system exhibits strong robustness to changes in system operating conditions.
  • the object of the present invention is to overcome the shortcomings and shortcomings of the prior art, and provide a multi-loop switching control system for a doubly-fed fan based on logic switch control, which enhances the ability of the doubly-fed fan to maintain stable operation after being subjected to large disturbances.
  • the potential of the double-fed fan converter is fully utilized, so that the output of the doubly-fed fan, ie the rotor speed of the generator, the reactive power output of the stator, the reactive power output of the grid-side converter, The voltage at the capacitor terminal converges to the equilibrium point at the fastest speed, and then the system is asymptotically stabilized at the original equilibrium point by a conventional vector control system.
  • a multi-loop switching control system for doubly-fed wind turbine based on logic switch control the control object is a double-fed fan converter
  • the control system comprises four input signals, respectively, the rotor speed deviation of the double-fed fan Doubly-fed fan stator reactive power output deviation Doubly-fed fan converter capacitance voltage deviation Reactive power output error of grid side converter of doubly fed fan
  • the control system includes four output signals, respectively, a q-axis control voltage of the rotor-side converter of the doubly-fed fan Doubly-fed fan rotor-side converter d-axis control voltage Doubly-fed fan grid-side converter d-axis control voltage And doubly-fed fan grid-side converter q-axis control voltage
  • the four output signals and the four input signals respectively correspond to four feedback control channels.
  • the control system comprises a dual-feeder rotor speed control loop based on a traditional vector control method, a double-feeder rotor speed switch control loop based on a second-order logic switch controller, and a stator-reactive power control of a doubly-fed fan based on a conventional vector control method
  • Circuit doubly-fed fan stator reactive power control loop based on first-order logic switch controller, converter-voltage control loop of double-fed fan converter based on traditional vector control method, and double-fed fan commutation based on second-order logic switch controller
  • Capacitor voltage control loop reactive power control loop of grid-side converter based on traditional vector control method, double-feeder based on first-order logic switch controller, grid-side converter reactive power control loop and doubly-fed Fan rotor speed control loop switching control unit, doubly-fed fan stator reactive power control loop switching unit, doubly-fed fan converter capacitor voltage control loop switching control unit, doubly-fed fan grid side reactive power control loop switching unit, wherein Rotor speed deviation of the
  • the doubly-fed rotor rotor speed control loop switching control unit is configured to control the dual-feeder rotor speed control loop based on the traditional vector control method and the double-feeder rotor speed switch based on the second-order logic switch controller Switching action between control loops;
  • the doubly-fed rotor speed control loop based on the traditional vector control method is used to switch the control signal to the doubly-fed rotor speed control loop based on the traditional vector control method when the doubly-fed rotor rotor speed control loop switching control unit switches the control signal Doubly-fed rotor rotor speed deviation to provide the corresponding control voltage
  • the doubly-fed rotor rotor speed switch control loop based on the second-order logic switch controller is configured to switch the control signal to the double-feed based on the second-order logic switch controller in the doubly-fed rotor speed control loop switching control unit
  • the corresponding control voltage is provided according to the deviation of the rotor speed of the doubly-fed fan
  • the doubly-fed stator reactive power control loop switching unit is configured to control the doubly-fed fan stator reactive power control loop based on the traditional vector control method and the doubly-fed fan stator reactive power based on the first-order logic switch controller Switching action between power control loops;
  • the doubly-fed wind turbine stator reactive power control loop based on the traditional vector control method is used to switch the control signal to the doubly-fed fan stator based on the traditional vector control method when the doubly-fed fan stator reactive power control loop switching unit
  • the reactive power control loop provides the corresponding control voltage according to the stator reactive power output error of the doubly-fed fan
  • the doubly-fed wind turbine stator reactive power control loop based on the first-order logic switch controller is configured to switch a control signal to the first-order logic switch controller when the doubly-fed fan stator reactive power control loop switching unit When the doubly-fed fan stator reactive power control loop is used, the corresponding control voltage is provided according to the stator reactive power output error of the doubly-fed fan
  • the doubly-fed fan converter voltage control loop switching control unit is configured to control the dual-supply fan inverter voltage control loop based on the traditional vector control method and the double-feeder based on the second-order logic switch controller Switching action between the converter capacitor voltage control loops;
  • the dual-supply fan inverter voltage control loop based on the traditional vector control method is used to switch the control signal to the double control based on the traditional vector control method when the doubly-fed inverter voltage control loop switching control unit
  • the inverter fan capacitor voltage control loop is used, the corresponding control voltage is provided according to the voltage deviation of the converter capacitor voltage of the doubly-fed fan
  • the doubly-fed fan converter voltage control loop based on the second-order logic switch controller is configured to switch a control signal to the second-order logic switch when the doubly-fed fan converter voltage control loop switching control unit
  • the controller's doubly-fed fan converter capacitor voltage control loop provides the corresponding control voltage according to the doubly-fed fan converter capacitor voltage deviation.
  • the grid-side reactive power control loop switching unit of the doubly-fed fan is configured to control the dual-feeder grid-side converter reactive power control loop based on the traditional vector control method and the double-step based logic switch controller Switching action between reactive power control loops of the grid side converter of the feed fan;
  • the dual-feeder grid-side inverter reactive power control loop based on the traditional vector control method is used to switch the control signal to the traditional-based control when the dual-feeder grid-side converter reactive power control loop switching unit
  • the vector control method of the doubly-fed fan grid-side converter reactive power control loop provides the corresponding control voltage according to the reactive power output error of the grid-side converter of the doubly-fed fan
  • the doubly-fed fan-side grid-side inverter reactive power control loop based on the first-order logic switch controller is configured to switch the control signal to the first-order based on the grid-side reactive power control loop switching unit of the doubly-fed fan
  • the reactive power control loop of the grid-side converter of the doubly-fed fan of the logic switch controller is based on the reactive power output error of the grid-side converter of the doubly-fed fan, the corresponding control voltage is provided.
  • the first-order logic switch controller generates a control signal based on a logic operation, and the control logic is:
  • q(t) is the output of the control logic
  • e is the tracking error of the system output
  • e is the lower boundary of the tracking error
  • q old is the logical value of the corresponding time step of the logical variable
  • is the logical AND operation
  • is the logical OR operation.
  • the second-order logic switch controller generates a control signal based on a logic operation, and the control logic is:
  • control law of the second-order logic switch controller in the rotor speed control circuit of the doubly-fed rotor based on the second-order logic switch controller is:
  • V qr wherein q-axis component of the voltage converter on the rotor side, v qr_max change the maximum q-axis component of the voltage of the rotor side converter, v qr_min minimum voltage change of the q-axis component of the rotor side converter.
  • control law of the first-order logic switch controller in the stator reactive power control loop of the doubly-fed fan based on the first-order logic switch controller is:
  • v dr_max change the maximum d-axis component of the voltage of the rotor side converter
  • v dr_min transducer voltage d-axis component current in the rotor-side minimum.
  • control law of the first-order logic switch controller in the converter voltage control loop of the doubly-fed fan based on the traditional vector control method is:
  • v dg_max change the maximum d-axis component of the voltage of the grid side converter
  • v dg_min minimum voltage change of the d-axis component of the grid side converter
  • control system further includes a switching excitation controller, and the switching strategy is:
  • Switching condition 2 ⁇ Switching excitation controller switching frequency reaches the maximum value that the device can withstand ⁇ ⁇ ( ⁇ s - ⁇ j )/ ⁇ s ⁇ e(t) converges to among them, And ⁇ are parameters for switching the excitation controller.
  • the present invention fully exerts the maximum performance of the double-fed fan converter.
  • the four output variables of the doubly-fed fan are converge to the vicinity of the equilibrium point at the fastest speed through the switch control system. Within the territory. Then switch to the conventional vector control system to exert the optimality of the conventional vector control system near the equilibrium point, and make the system asymptotically stabilize to the original equilibrium point.
  • the switch control system proposed in the present invention only contains logic operations such that its output and input are The phase lag is less than that of a conventional vector control system, so the switch control system can respond more quickly to the oscillation of the output variable of the doubly-fed fan.
  • the control signal of the switch control system has only two values, which facilitates the transmission of the control signal.
  • the application of the invention in the coordinated control of the doubly-fed wind turbine can greatly improve the transient stability of the operation of the power system containing large-scale wind power.
  • FIG. 1 is a schematic structural diagram of a multi-loop switching control system for a doubly-fed wind turbine based on logic switch control according to the present invention
  • FIG. 2 is a block diagram of a multi-loop switching control system of a doubly-fed fan based on logic switch control proposed in the present invention
  • FIG. 3 is a double-feeder rotor speed control loop based on a conventional vector control method for a multi-loop switching control system of a doubly-fed wind turbine based on a logic switch control according to the present invention
  • FIG. 4 is a second-step logic switch controller-based double-feeder rotor speed switch control loop of a multi-loop switching control system for a doubly-fed fan based on a logic switch control according to the present invention
  • FIG. 5 is a stator reactive power control loop of a doubly-fed fan based on a conventional vector control method for a multi-loop switching control system of a doubly-fed fan based on a logic switch control according to the present invention
  • FIG. 6 is a stator reactive power switch control loop of a doubly-fed fan based on a first-order logic switch controller for a multi-loop switching control system of a doubly-fed fan based on a logic switch control according to the present invention
  • FIG. 7 is a converter voltage control loop of a double-fed fan converter based on a traditional vector control method for a multi-loop switching control system of a doubly-fed fan based on a logic switch control according to the present invention
  • FIG. 8 is a multi-loop switching control system for a doubly-fed fan based on logic switch control proposed in the present invention
  • FIG. 9 is a reactive power control loop of a grid-side converter of a doubly-fed fan based on a conventional vector control method for a multi-loop switching control system of a doubly-fed fan based on a logic switch control according to the present invention
  • 10 is a reactive power switch control loop of a grid-side converter of a doubly-fed wind turbine based on a first-order logic switch controller for a multi-loop switching control system of a doubly-fed fan based on a logic switch control according to the present invention
  • FIG. 11 is a rotational speed curve of a doubly-fed wind turbine after a three-circuit short-circuit fault occurs in an external power grid by a multi-loop switching control system of a doubly-fed wind turbine based on a logic switch control according to the present invention
  • FIG. 13 is an active power output curve of a doubly-fed wind turbine after a three-phase short-circuit fault occurs in an external power grid by a multi-loop switching control system for a doubly-fed wind turbine based on a logic switch control according to the present invention
  • FIG. 14 is a reactive power curve of a doubly-fed wind turbine after a three-circuit short-circuit fault occurs in an external power grid by a multi-loop switching control system for a doubly-fed wind turbine controlled by a logic switch control according to the present invention.
  • FIG. 1 is a structural schematic diagram and a block diagram of a multi-loop switching control system of a doubly-fed fan based on a logic switch control. Including 8 control loops, respectively: based on traditional vector control The double-feed fan rotor speed control loop of the method, the double-feeder rotor speed switch control loop based on the second-order logic switch controller, the stator reactive power control loop of the doubly-fed fan based on the traditional vector control method, based on the first-order logic switch control Doubly-fed fan stator reactive power control loop, double-fed fan converter capacitor voltage control loop based on traditional vector control method, double-fed fan converter capacitor voltage control loop based on second-order logic switch controller, based on tradition Vector control method for the doubly-fed fan grid-side converter reactive power control loop, based on the first-order logic switch controller, the doubly-fed fan grid-side converter reactive power control loop.
  • switching units namely: doubly-fed rotor rotor speed control loop switching control unit, doubly-fed fan stator reactive power control loop switching unit, doubly-fed fan converter capacitor voltage control loop switching control unit, doubly-fed fan Grid side reactive power control loop switching unit.
  • the parameters are defined as follows: i dr rotor current d-axis component, i qr rotor current q-axis component, i dg grid-side converter current d-axis component, i qg grid-side converter current q-axis component, V dc converter capacitor terminal voltage, Q s stator reactive power output, Q g grid side converter reactive power output, ⁇ r generator rotor speed, ⁇ ref generator rotor speed reference value, Q sref stator reactive Reference value of power output, Q gref grid side converter reactive power output reference value, V dcref converter capacitor terminal voltage reference value, L m rotor side winding mutual inductance, v s doubly-fed fan terminal voltage, L s stator The inductance value of the winding.
  • the double-feeder rotor speed control loop switching control unit is used for controlling the switching action between the double-feeder rotor speed control loop based on the traditional vector control method and the double-feeder rotor speed switch control loop based on the second-order logic switch controller. .
  • the doubly-fed rotor speed control loop based on the traditional vector control method is used to switch the control signal to the doubly-fed rotor speed control loop based on the traditional vector control method when the double-feeder rotor speed control loop switching control unit switches the control signal according to the double-fed rotor Speed deviation to provide the corresponding control voltage
  • the double-feeder rotor speed switch control loop based on the second-order logic switch controller is used to switch the control signal to the double-feeder rotor speed switch based on the second-order logic switch controller in the double-feeder rotor speed control loop switching control unit
  • the control loop When the control loop is used, the corresponding control voltage is provided according to the deviation of the rotor speed of the doubly-fed fan
  • the doubly-fed fan stator reactive power control loop switching unit is used to control the stator reactive power control loop of the doubly-fed fan based on the traditional vector control method and the stator reactive power control loop of the doubly-fed fan based on the first-order logic switch controller. Switching action between.
  • stator reactive power control loop of the doubly-fed fan based on the traditional vector control method is used to switch the control signal to the stator reactive power control of the doubly-fed fan based on the traditional vector control method when the doubly-fed stator reactive power control loop switching unit
  • the corresponding control voltage is provided according to the stator reactive power output error of the doubly-fed fan during the loop
  • the stator reactive power control loop of the doubly-fed fan based on the first-order logic switch controller is used to switch the control signal to the doubly-fed fan stator based on the first-order logic switch controller when the doubly-fed stator reactive power control loop switching unit
  • the reactive power control loop provides the corresponding control voltage according to the stator reactive power output error of the doubly-fed fan
  • the double-fed fan converter capacitor voltage control loop switching control unit is used for controlling the double-supply fan converter voltage control loop based on the traditional vector control method and the double-fed fan converter capacitor based on the second-order logic switch controller. Switching action between voltage control loops.
  • the converter voltage control loop of the double-fed fan based on the traditional vector control method is used to switch the control signal to the doubly-fed fan commutation based on the traditional vector control method when the converter voltage control loop switching control unit of the double-fed fan converter
  • the capacitor voltage control loop provides the corresponding control voltage according to the voltage deviation of the converter capacitor voltage of the doubly-fed fan
  • the converter voltage control loop of the double-fed fan based on the second-order logic switch controller is used to switch the control signal to the double-based logic switch controller when the double-fed fan converter voltage control loop switching control unit switches
  • the inverter fan capacitor voltage control loop is used, the corresponding control voltage is provided according to the voltage deviation of the converter capacitor voltage of the doubly-fed fan
  • the power-side reactive power control loop switching unit of the doubly-fed fan is used to control the reactive power control loop of the grid-side converter based on the traditional vector control method and the grid side of the doubly-fed fan based on the first-order logic switch controller. The switching action between the inverter reactive power control loops.
  • the reactive power control loop of the grid-side converter based on the traditional vector control method is used to switch the control signal to the doubly-fed fan based on the traditional vector control method when the grid-side reactive power control loop switching unit of the doubly-fed fan
  • the grid side converter reactive power control loop is used, the corresponding control voltage is provided according to the reactive power output error of the grid side converter of the doubly-fed fan.
  • the reactive power control loop of the grid-side converter based on the first-order logic switch controller is used to switch the control signal to the first-order logic switch controller when the grid-side reactive power control loop switching unit of the doubly-fed fan
  • the reactive power control loop of the grid-side converter of the doubly-fed wind turbine is based on the reactive power output error of the grid-side converter of the doubly-fed fan, the corresponding control voltage is provided.
  • the control object of the multi-loop switching control system of the doubly-fed fan based on the logic switch control is the doubly-fed fan converter, and the multi-loop switching control system of the doubly-fed fan based on the logic switch control has four input signals, including the doubly-fed rotor Speed deviation Doubly-fed fan stator reactive power output deviation Double-fed fan converter capacitor voltage deviation Reactive power output error of grid side converter of doubly fed fan
  • the four input signals respectively correspond to four control loops
  • the multi-loop switching control system based on the logic switch control has four output signals, including the q-axis control voltage of the rotor-side converter of the doubly-fed fan Doubly-fed fan rotor-side converter d-axis control voltage Doubly-fed fan grid-side converter d-axis control voltage
  • doubly-fed fan grid-side converter q-axis control voltage The four output signals correspond to four control loops, respectively.
  • Rotor speed deviation of the doubly-fed fan The signal passes through the double-feed fan rotor speed control loop based on the traditional vector control method, the double-feed fan rotor speed switch control loop based on the second-order logic switch controller, and the doubly-fed rotor rotor speed control loop switching control unit.
  • the voltage error of the converter capacitor voltage of the doubly-fed fan The converter voltage control loop of the double-fed fan converter based on the traditional vector control method, the converter voltage control loop of the double-fed fan based on the second-order logic switch controller, and the converter voltage control loop switching control unit of the double-fed fan converter Rear output doubly-fed fan grid-side converter d-axis control voltage
  • the double-fed fan grid side converter outputs reactive power error
  • ⁇ r is the rotor speed of the generator
  • ⁇ ref is the reference value of the rotor speed of the generator
  • i qr is the q-axis component of the rotor current.
  • i qrref is the reference value of the q-axis component of the rotor current
  • ⁇ s 2 ⁇ f is the synchronous speed
  • f(Hz) is the frequency of the system
  • L r is the inductance value of the rotor winding
  • L m is the mutual inductance of the induction generator winding
  • i dr is the d-axis component of the rotor current.
  • v s is the stator winding terminal voltage of the doubly-fed electric machine
  • R s is the resistance of the stator winding
  • Is the q-axis component of the stator current
  • L s is the inductance value of the stator winding
  • v qr_min is the minimum value of the q-axis control voltage of the rotor-side converter
  • v qr_max is the rotor-side converter
  • the doubly-fed rotor rotor speed control loop switching control unit is among them Rotor speed deviation for doubly-fed fan After the control signal of the double-feed fan rotor speed switch control loop based on the second-order logic switch controller, Rotor speed deviation for doubly-fed fan The control signal obtained after the rotor speed control loop of the doubly-fed fan based on the traditional vector control method, Switching control strategy for rotor speed control loop of doubly-fed fan
  • Fig. 5 the structure of the stator reactive power control loop of the doubly-fed fan based on the traditional vector control method is shown in Fig. 5, where Q s is the stator reactive power output, Q sref is the stator reactive power output reference value, PI 3 and PI 4
  • v dr_min is the minimum value of the d-axis control voltage of the rotor-side converter
  • v dr_max is the rotor side change
  • v dr_max 1.5
  • v dr_min -1.5
  • q 0 true.
  • the doubly-fed fan stator reactive power control loop switching control unit is among them Stator reactive power deviation for doubly-fed fan
  • V dc is the converter capacitor voltage
  • V dcref is the inverter capacitor voltage reference value
  • i dg is the grid Side converter current d-axis component
  • i qg is the grid side converter current q-axis component
  • L g is the inductive reactance of the grid side filter inductor
  • v dg_min is the minimum value of the d-axis control voltage of the grid-side converter
  • v dg_max is the grid side.
  • the doubly-fed fan converter capacitor voltage control loop switching control unit is among them Inverter capacitor voltage deviation for doubly-fed fan The control signal obtained after the control loop of the converter voltage switch of the doubly-fed fan based on the second-order logic switch controller, Inverter capacitor voltage deviation for doubly-fed fan After the control signal obtained by the converter voltage control loop of the doubly-fed fan based on the traditional vector control method, Switching control strategy for converter voltage control loop of double-fed fan
  • the reactive power control loop structure of the grid-side converter based on the traditional vector control method is shown in Figure 9, where Q gref is the reactive power output of the grid-side converter of the doubly-fed fan, and V s is the stator machine.
  • the amplitude of the terminal voltage, PI 5 is the proportional integral control system
  • i qg is the q-axis component of the grid-side converter filter current
  • L g is the filter inductance of the grid-side converter filter
  • i qgref is the grid side change
  • v qg_min is the minimum value of the q-axis control voltage of the grid side converter
  • v Qg_max is the maximum value of the q-axis control voltage of the grid-side converter.
  • the reactive power control loop switching control unit of the grid-side converter of the doubly-fed fan is among them Reactive power deviation for grid side converter of doubly fed fan
  • the switching strategy of each loop in the multi-loop switching controller is: when the switching condition 1 is satisfied, the switching controller is switched from the conventional vector controller to the switching controller When the switching condition 2 is satisfied, the switching controller is switched from the switching controller to the conventional vector controller, wherein the switching condition 1 and the switching condition 2 are
  • Switching condition 2 ⁇ Switching the excitation controller's switching frequency to the maximum value the device can withstand ⁇
  • are the parameters of the switching excitation controller that needs to be designed.
  • the multi-loop switching control system of the doubly-fed wind turbine based on the logic switch control applied to the doubly-fed wind turbine.
  • the speed curve of the doubly-fed wind turbine can be It can be seen that under the same disturbance, the doubly-fed fan controlled by the traditional vector control algorithm
  • the doubly-fed fan controlled by the multi-loop switching control system of the doubly-fed fan based on the logic switch control can return to the original equilibrium point and continue to operate after the system is disturbed.
  • FIG. 12 is a schematic diagram of a multi-loop switching control system of a doubly-fed fan based on a logic switch control applied to a doubly-fed fan, wherein a capacitor terminal voltage of a double-fed fan is generated after a three-phase ground short circuit fault occurs in an external power system. curve.
  • FIG. 13 is a diagram showing the active power output curve of the doubly-fed wind turbine after the three-phase ground short circuit fault occurs in the external power system by the multi-loop switching control system of the doubly-fed wind turbine based on the logic switch control.
  • the multi-loop switching controller of the doubly-fed fan based on the switch control proposed in this embodiment has the output variable of the doubly-fed fan selected as the generator rotor speed, the stator side reactive power output, and the grid side converter. Power output and back-to-back converter DC capacitor terminal voltage.
  • Four feedback control channels are formed using four inputs and output variables, each control channel switching between a switch controller and a conventional vector controller to form a four-loop switching controller.
  • the switching strategy is: when the power system of the doubly-fed fan is subjected to a large external disturbance, the state variable and the output variable of the fan will deviate from the original equilibrium point. At this time, the four control loops of the doubly-fed fan are controlled by the conventional vector controller.
  • the multi-loop control system proposed by the present invention is characterized in that the design of the switch controller does not depend on the accurate model of the system, but only needs to know the relative order of the system model; secondly, the controller signal of the switch controller The number has only two values, the maximum and minimum values of the corresponding control variables, so the switch controller can make full use of the maximum energy of the doubly-fed fan converter, so that the system can return to the original equilibrium point and continue to run at the fastest speed. Due to the role of the switch controller, the multi-loop switching controller has strong robustness to external disturbances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种基于逻辑开关控制的双馈风机多回路切换控制系统,其双馈风机的输出变量选取为发电机转子转速(ω r)、定子侧无功功率输出(Q s)、电网侧换流器无功功率输出(Q g)和背靠背换流器直流电容端电压(V dc)。利用四个输出变量形成四个输出反馈控制通道,每个控制通道在一个开关控制器和一个常规矢量控制器之间切换,进而形成一个四回路切换控制器。其切换策略为:当双馈风机所在电力系统受到一个大的外部扰动时,风机的状态变量以及输出变量将偏离原来的平衡点,此时双馈风机的四个控制回路由常规矢量控制器切换为开关控制器;在开关控制器的作用下,风机的状态变量和输出变量将会回到原平衡点附近,此时风机的四个控制回路由开关控制器切换为常规矢量控制器。

Description

基于逻辑开关控制的双馈风机多回路切换控制系统 技术领域
本发明涉及电力系统自动化技术领域,特别涉及一种基于逻辑开关控制的双馈风机多回路切换控制系统。
背景技术
随着可再生能源的大规模发展,风电在电力系统的中所占比例越来越高,给传统电力系统的暂态稳定性控制带来了新的挑战。尤其是小概率重大故障的出现,对风力发电机的低电压穿越能力提出了更高的要求。双馈感应风力发电机在当前的风力发电中占有相当大的比重。双馈风机的传统矢量控制算法基于定子磁链或定子电压坐标系对有功和无功控制回路进行解耦,利用PI控制实现了双馈风机最大功率追踪、有功无功协调控制。传统PI控制系统的整定需要综合考虑系统响应的快速性与稳态误差,进而确定一种折中的控制参数。然而在电力系统受到大的扰动后,双馈风机偏离原来的运行点,传统的矢量控制系统无法发挥风机换流器的最大控制能量使风机以最快的速度回到原来的平衡点继续运行。因此,当电力系统中出现小概率重大故障时,传统的矢量控制系统无法保证双馈风机的稳定运行。
为了发掘双馈风机换流器的最大控制潜力,可以尝试将双馈风机的控制系统设计成开关控制系统。传统的开关控制方法是利用极大值原理通过求解系统的哈密顿方程来得到控制规律,开关控制系统可以最大限度发挥控制系统的性 能使被控系统的动态表现出时间最优性。但是,要建立一个大规模电力系统的哈密顿函数需要知道整个系统的参数已经所有状态变量,而且所得到的哈密顿函数将非常复杂。这就对求解其正则方程提出了极大的挑战。在最新的研究成果中,基于逻辑运算的开关控制方法一方面避免了传统开关控制方法依靠系统的哈密顿方程求取控制规律的问题,另一方面保持了传统开关控制方法时间最优性的优点。因此将基于逻辑运算的开关控制方法运用于双馈风机的控制中将极大的提高双馈风机在电力系统受到大扰动后的鲁棒性。同时,由于基于逻辑运算的开关控制系统的设计仅需要系统的相对阶数信息而不需要系统的精确参数,所得到的开关控制系统呈现出对系统运行条件变化的强鲁棒性。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种基于逻辑开关控制的双馈风机多回路切换控制系统,该控制系统增强双馈风机在受到大扰动后维持稳定运行的能力,在电力系统暂态振荡的初期,充分发挥双馈风机换流器的潜能,使双馈风机的各输出量,即发电机转子转速、定子无功功率输出、电网侧换流器无功功率输出、换流器电容端电压,以最快的速度收敛到平衡点附近,然后通过传统矢量控制系统使系统渐近稳定于原平衡点。
本发明的目的通过下述技术方案实现:
一种基于逻辑开关控制的双馈风机多回路切换控制系统,其控制对象为双馈风机换流器,所述控制系统包括四个输入信号,分别为双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000001
双馈风机定子无功功率输出偏差
Figure PCTCN2016109193-appb-000002
双馈风机换流器电容 电压偏差
Figure PCTCN2016109193-appb-000003
双馈风机电网侧换流器无功功率输出误差
Figure PCTCN2016109193-appb-000004
所述控制系统包括四个输出信号,分别为双馈风机转子侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000005
双馈风机转子侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000006
双馈风机电网侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000007
和双馈风机电网侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000008
所述四个输出信号以及四个输入信号分别对应于四个反馈控制通道,
所述控制系统包括基于传统矢量控制方法的双馈风机转子转速控制回路、基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路、基于传统矢量控制方法的双馈风机定子无功功率控制回路、基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路、基于传统矢量控制方法的双馈风机换流器电容电压控制回路、基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路、基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路以及双馈风机转子转速控制回路切换控制单元、双馈风机定子无功功率控制回路切换单元、双馈风机换流器电容电压控制回路切换控制单元、双馈风机电网侧无功功率控制回路切换单元,其中,所述双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000009
信号经过所述基于传统矢量控制方法的双馈风机转子转速控制回路、所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路和所述双馈风机转子转速控制回路切换控制单元后输出所述双馈风机转子侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000010
所述双馈风机定子无功功率输出偏差
Figure PCTCN2016109193-appb-000011
经过所述基于传统矢量控制方法的双馈风机定子无功功率控制回路、所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路和所述双馈风机定子无功功率控制回路切换单元输出所述双馈风机转子侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000012
所述双馈风机换流器电容电压误差
Figure PCTCN2016109193-appb-000013
经过所 述基于传统矢量控制方法的双馈风机换流器电容电压控制回路、所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路和所述双馈风机换流器电容电压控制回路切换控制单元后输出所述双馈风机电网侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000014
所述双馈风机电网侧换流器输出无功功率误差
Figure PCTCN2016109193-appb-000015
经过所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路和所述双馈风机电网侧无功功率控制回路切换单元后输出所述双馈风机电网侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000016
进一步地,所述双馈风机转子转速控制回路切换控制单元用于控制所述基于传统矢量控制方法的双馈风机转子转速控制回路和所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路之间的切换动作;
所述基于传统矢量控制方法的双馈转子转速控制回路用于在所述双馈风机转子转速控制回路切换控制单元将控制信号切换到所述基于传统矢量控制方法的双馈转子转速控制回路时根据双馈风机转子转速偏差来提供相应控制电压
Figure PCTCN2016109193-appb-000017
所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路用于在所述双馈风机转子转速控制回路切换控制单元将控制信号切换到所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路时根据双馈风机转子转速偏差来提供相应控制电压
Figure PCTCN2016109193-appb-000018
所述双馈风机定子无功功率控制回路切换单元用于控制所述基于传统矢量控制方法的双馈风机定子无功功率控制回路和所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路之间的切换动作;
所述基于传统矢量控制方法的双馈风机定子无功功率控制回路用于当所述双馈风机定子无功功率控制回路切换单元将控制信号切换到所述基于传统矢量控制方法的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
Figure PCTCN2016109193-appb-000019
所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路用于当所述双馈风机定子无功功率控制回路切换单元将控制信号切换到所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
Figure PCTCN2016109193-appb-000020
所述双馈风机换流器电容电压控制回路切换控制单元用于控制所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路和所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路之间的切换动作;
所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路用于当所述双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
Figure PCTCN2016109193-appb-000021
所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路用于当所述双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
Figure PCTCN2016109193-appb-000022
所述双馈风机电网侧无功功率控制回路切换单元用于控制所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路和所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路之间的切换动作;
所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路用于当所述双馈风机电网侧换流器无功功率控制回路切换单元将控制信号切换到所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
Figure PCTCN2016109193-appb-000023
所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路用于当所述双馈风机电网侧无功功率控制回路切换单元将控制信号切换到基于所述一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
Figure PCTCN2016109193-appb-000024
进一步地,所述一阶逻辑开关控制器基于逻辑运算产生控制信号,其控制逻辑为:
Figure PCTCN2016109193-appb-000025
其中q(t)为控制逻辑的输出,
Figure PCTCN2016109193-appb-000026
e是系统输出的跟踪误差,
Figure PCTCN2016109193-appb-000027
是跟踪误差的上边界,e是跟踪误差的下边界,qold是对应逻辑变量上一时步的逻辑值,∧为逻辑“与”运算,∨为逻辑“或”运算,
Figure PCTCN2016109193-appb-000028
Figure PCTCN2016109193-appb-000029
定义输出变量跟踪误差的误差区间即
Figure PCTCN2016109193-appb-000030
Figure PCTCN2016109193-appb-000031
定义F0内的安全距离,q(t-)是q(t)在上一时刻的逻辑值。
进一步地,所述二阶逻辑开关控制器基于逻辑运算产生控制信号,其控制逻辑为:
Figure PCTCN2016109193-appb-000032
Figure PCTCN2016109193-appb-000033
q(0-)=q0∈{true,false}
其中
Figure PCTCN2016109193-appb-000034
Figure PCTCN2016109193-appb-000035
定义输出变量一阶导数的误差区间即
Figure PCTCN2016109193-appb-000036
Figure PCTCN2016109193-appb-000037
Figure PCTCN2016109193-appb-000038
定义了F1内的安全距离,
Figure PCTCN2016109193-appb-000039
Figure PCTCN2016109193-appb-000040
是理想的e在F0内增加和减小的速度,q1(t-)是q1(t)在上一时刻的逻辑值。
进一步地,所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路中二阶逻辑开关控制器的控制规律为:
Figure PCTCN2016109193-appb-000041
其中vqr为转子侧换流器电压的q轴分量,vqr_max为转子侧换流器电压q轴分量的最大值,vqr_min为转子侧换流器电压q轴分量的最小值。
进一步地,所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路中一阶逻辑开关控制器的控制规律为:
Figure PCTCN2016109193-appb-000042
其中vdr为转子侧换流器电压的d轴分量,vdr_max为转子侧换流器电压d轴分量的最大值,vdr_min为转子侧换流器电压d轴分量的最小值。
进一步地,所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路中一阶逻辑开关控制器的控制规律为:
Figure PCTCN2016109193-appb-000043
其中vqg为电网侧换流器电压的q轴分量,vqg_max为电网侧换流器电压q轴分量的最大值,vqg_min为电网侧换流器电压q轴分量的最小值。
进一步地,所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制 回路中二阶逻辑开关控制器的控制规律为:
Figure PCTCN2016109193-appb-000044
其中vdg为电网侧换流器电压的d轴分量,vdg_max为电网侧换流器电压d轴分量的最大值,vdg_min为电网侧换流器电压d轴分量的最小值。
进一步地,所述控制系统还包括切换励磁控制器,其切换策略为:
假设在电力系统受到扰动后,双馈风机的输出变量的绝对值|e(t)|的振荡轨迹中的极值序列为Γ(t)={Γ12,...,Γj},其中Γs=(s∈{1,2,...,j})为序列Γ(t)中的最大值,所述控制系统中每个回路的切换策略为:当切换条件1满足时,切换控制系统由常规矢量控制器切换为开关控制器;当切换条件2满足时,切换控制系统由开关控制器切换为常规矢量控制器,其中,
切换条件1:
Figure PCTCN2016109193-appb-000045
切换条件2:{切换励磁控制器的切换频率达到设备可以承受的最大值}∨{{(Γsj)/Γs≥τ}∧{e(t)收敛到
Figure PCTCN2016109193-appb-000046
其中,
Figure PCTCN2016109193-appb-000047
和τ是切换励磁控制器的参数。
本发明相对于现有技术具有如下的优点及效果:
1、本发明充分发挥了双馈风机换流器的最大性能,在电力系统暂态振荡初期,通过开关控制系统使双馈风机的四个输出变量以最快的速度收敛到平衡点附近的某个临域内。然后切换为常规矢量控制系统,发挥常规矢量控制系统在平衡点附近的最优性,使系统渐近稳定到原平衡点。
2、本发明中提出的开关控制系统仅包含逻辑运算,使得其输出与输入之 间的相位滞后小于常规矢量控制系统,因此开关控制系统可以更快地对双馈风机的输出变量的振荡作出响应。同时开关控制系统的控制信号仅有两个值,方便了控制信号的传输。
3、本发明在双馈风机的协调控制中的应用可以极大的提高含有大规模风电的电力系统运行的暂态稳定性。
附图说明
图1为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的结构示意图;
图2为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的组成框图;
图3为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于传统矢量控制方法的双馈风机转子转速控制回路;
图4为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路;
图5为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于传统矢量控制方法的双馈风机定子无功功率控制回路;
图6为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于一阶逻辑开关控制器的双馈风机定子无功功率开关控制回路;
图7为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于传统矢量控制方法的双馈风机换流器电容电压控制回路;
图8为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统 的基于二阶逻辑开关控制器的双馈风机换流器电容电压开关控制回路;
图9为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路;
图10为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统的基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率开关控制回路;
图11为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统在外界电网发生三项接地短路故障后双馈风机的转速曲线;
图12为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统在外界电网发生三项接地短路故障后双馈风机的换流器电容电压曲线;
图13为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统在外界电网发生三项接地短路故障后双馈风机的有功功率输出曲线;
图14为本发明中提出的基于逻辑开关控制的双馈风机多回路切换控制系统在外界电网发生三项接地短路故障后双馈风机的无功功率曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例
请参见图1和图2,图1为基于逻辑开关控制的双馈风机多回路切换控制系统的结构示意图和组成框图。包括8个控制回路,分别是:基于传统矢量控 制方法的双馈风机转子转速控制回路、基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路、基于传统矢量控制方法的双馈风机定子无功功率控制回路、基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路、基于传统矢量控制方法的双馈风机换流器电容电压控制回路、基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路、基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路。另外有4个切换单元,分别是:双馈风机转子转速控制回路切换控制单元、双馈风机定子无功功率控制回路切换单元、双馈风机换流器电容电压控制回路切换控制单元、双馈风机电网侧无功功率控制回路切换单元。
附图1中,各参数定义如下:idr转子电流d轴分量,iqr转子电流q轴分量,idg电网侧换流器电流d轴分量,iqg电网侧换流器电流q轴分量,Vdc换流器电容端电压,Qs定子无功功率输出,Qg电网侧换流器无功功率输出,ωr发电机转子转速,ωref发电机转子转速参考值,Qsref定子无功功率输出的参考值,Qgref电网侧换流器无功功率输出参考值,Vdcref换流器电容端电压参考值,Lm转子侧绕组互感,vs双馈风机机端电压,Ls定子绕组的电感值。
其中,双馈风机转子转速控制回路切换控制单元用于控制基于传统矢量控制方法的双馈风机转子转速控制回路和基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路之间的切换动作。
其中,基于传统矢量控制方法的双馈转子转速控制回路用于在双馈风机转子转速控制回路切换控制单元将控制信号切换到基于传统矢量控制方法的双馈转子转速控制回路时根据双馈风机转子转速偏差来提供相应控制电压
Figure PCTCN2016109193-appb-000048
其中,基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路用于在双馈风机转子转速控制回路切换控制单元将控制信号切换到基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路时根据双馈风机转子转速偏差来提供相应控制电压
Figure PCTCN2016109193-appb-000049
其中,双馈风机定子无功功率控制回路切换单元用于控制基于传统矢量控制方法的双馈风机定子无功功率控制回路和基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路之间的切换动作。
其中,基于传统矢量控制方法的双馈风机定子无功功率控制回路用于当双馈风机定子无功功率控制回路切换单元将控制信号切换到基于传统矢量控制方法的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
Figure PCTCN2016109193-appb-000050
其中,基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路用于当双馈风机定子无功功率控制回路切换单元将控制信号切换到基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
Figure PCTCN2016109193-appb-000051
其中,双馈风机换流器电容电压控制回路切换控制单元用于控制基于传统矢量控制方法的双馈风机换流器电容电压控制回路和基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路之间的切换动作。
其中,基于传统矢量控制方法的双馈风机换流器电容电压控制回路用于当双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到基于传统矢量控制方法的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
Figure PCTCN2016109193-appb-000052
其中,基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路用于当双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
Figure PCTCN2016109193-appb-000053
其中,双馈风机电网侧无功功率控制回路切换单元用于控制基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路和基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路之间的切换动作。
其中,基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路用于当双馈风机电网侧无功功率控制回路切换单元将控制信号切换到基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
Figure PCTCN2016109193-appb-000054
其中,基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路用于当双馈风机电网侧无功功率控制回路切换单元将控制信号切换到基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
Figure PCTCN2016109193-appb-000055
基于逻辑开关控制的双馈风机多回路切换控制系统的控制对象为双馈风机换流器,所述基于逻辑开关控制的双馈风机多回路切换控制系统有四个输入信号,包括双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000056
双馈风机定子无功功率输出偏差
Figure PCTCN2016109193-appb-000057
双馈风机换流器电容电压偏差
Figure PCTCN2016109193-appb-000058
双馈风机电网侧换流器无功功率输出误差
Figure PCTCN2016109193-appb-000059
所述四个输入信号分别对应四个控制回路,所述基于逻辑开关控制的双馈风机多回路切换控制系统有四个输出信号,包括双馈风机转子侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000060
双馈风机转子侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000061
双 馈风机电网侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000062
和双馈风机电网侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000063
所述四个输出信号分别对应于四个控制回路。所述双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000064
信号经过基于传统矢量控制方法的双馈风机转子转速控制回路、基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路和双馈风机转子转速控制回路切换控制单元后输出双馈风机转子侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000065
所述双馈风机定子无功功率输出偏差
Figure PCTCN2016109193-appb-000066
经过基于传统矢量控制方法的双馈风机定子无功功率控制回路、基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路和双馈风机定子无功功率控制回路切换单元输出双馈风机转子侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000067
所述双馈风机换流器电容电压误差
Figure PCTCN2016109193-appb-000068
经过基于传统矢量控制方法的双馈风机换流器电容电压控制回路、基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路和双馈风机换流器电容电压控制回路切换控制单元后输出双馈风机电网侧换流器d轴控制电压
Figure PCTCN2016109193-appb-000069
所述双馈风机电网侧换流器输出无功功率误差
Figure PCTCN2016109193-appb-000070
经过基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路、双馈风机电网侧无功功率控制回路切换单元后输出双馈风机电网侧换流器q轴控制电压
Figure PCTCN2016109193-appb-000071
最终形成四个控制回路。
其中,基于传统矢量控制方法的双馈风机转子转速控制回路结构如图3所示,其中ωr为发电机转子转速,ωref为发电机转子转速参考值,iqr为转子电流q轴分量,iqrref为转子电流q轴分量的参考值,s=(ωsr)/ωs为感应发电机的滑差,ωs=2πf为同步转速,f(Hz)为系统的频率,Lr为转子绕组的电感值,Lm为感应发电机绕组互感,idr为转子电流d轴分量,
Figure PCTCN2016109193-appb-000072
为感应发电机的 磁化电流,其中vs为双馈电机定子绕组端电压,Rs为定子绕组的电阻,
Figure PCTCN2016109193-appb-000073
为定子电流的q轴分量,Ls为定子绕组的电感值,
Figure PCTCN2016109193-appb-000074
PI1和PI2为两个比例积分控制系统,其控制参数分别设置为:P1=5,I1=0.1,P2=10,I2=70。
其中,基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路结构如图4所示,其中vqr_min为转子侧换流器q轴控制电压的最小值,vqr_max为转子侧换流器q轴控制电压的最大值,
Figure PCTCN2016109193-appb-000075
基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路产生的控制信号,并且有
Figure PCTCN2016109193-appb-000076
其中q(t)为二阶逻辑开关控制器系统的输出,q(t)可由下式计算
Figure PCTCN2016109193-appb-000077
Figure PCTCN2016109193-appb-000078
q(0-)=q0∈{true,false}
其中
Figure PCTCN2016109193-appb-000079
是输出跟踪误差的上边界,e是输出跟踪误差的下边界,q(t-)是对应逻辑变量上一时步的逻辑值,∧为逻辑“与”运算,∨为逻辑“或”运算,
Figure PCTCN2016109193-appb-000080
Figure PCTCN2016109193-appb-000081
定义了输出变量跟踪误差的误差区间即
Figure PCTCN2016109193-appb-000082
Figure PCTCN2016109193-appb-000083
定义了F0内的安全距离,q1(t-)是q1(t)在上一时刻的逻辑值,
Figure PCTCN2016109193-appb-000084
是q1(t)在t=0时的初值,
Figure PCTCN2016109193-appb-000085
Figure PCTCN2016109193-appb-000086
定义了输出变量一阶导数的误差区间即
Figure PCTCN2016109193-appb-000087
Figure PCTCN2016109193-appb-000088
定义了F1内的安全距离,
Figure PCTCN2016109193-appb-000089
Figure PCTCN2016109193-appb-000090
是理想的e在F0内增加和减小的速度,q(t-)是q(t)在上一时刻的逻辑值,q0是q(t)在t=0时的初值。上述控制系统的参数设置为:
Figure PCTCN2016109193-appb-000091
Figure PCTCN2016109193-appb-000092
vqr_min=-5, vqr_max=5。
其中,双馈风机转子转速控制回路切换控制单元为
Figure PCTCN2016109193-appb-000093
其中
Figure PCTCN2016109193-appb-000094
为双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000095
经过基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000096
为双馈风机转子转速偏差
Figure PCTCN2016109193-appb-000097
经过基于传统矢量控制方法的双馈风机转子转速控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000098
为双馈风机转子转速控制回路切换控制策略
Figure PCTCN2016109193-appb-000099
其中,
Figure PCTCN2016109193-appb-000100
Figure PCTCN2016109193-appb-000101
其中,Γ(t)={Γ12,...,Γj}为
Figure PCTCN2016109193-appb-000102
的极值序列,其中Γs(s∈{1,2,...,j})为序列Γ(t)中的最大值,τ=0.5为Γj相对于Γs减小的比例。
其中,基于传统矢量控制方法的双馈风机定子无功功率控制回路结构如图5所示,其中Qs为定子无功功率输出,Qsref为定子无功功率输出参考值,PI3和PI4为两个比例积分控制系统,其控制参数选取为:P3=5,I3=0.5,P4=10,P5=5。
其中,基于一阶逻辑开关控制器的双馈风机定子无功功率开关控制回路结构如图6所示,其中vdr_min为转子侧换流器d轴控制电压的最小值,vdr_max为转子侧换流器d轴控制电压的最大值,
Figure PCTCN2016109193-appb-000103
基于二阶逻辑开关控制器的双馈风机定子无功功率开关控制回路产生的控制信号,并且有
Figure PCTCN2016109193-appb-000104
其中q(t)为一阶逻辑开关控制器系统的输出,q(t)可由下式计算
Figure PCTCN2016109193-appb-000105
其中
Figure PCTCN2016109193-appb-000106
控制系统的参数设置为:vdr_max=1.5,vdr_min=-1.5,
Figure PCTCN2016109193-appb-000107
Figure PCTCN2016109193-appb-000108
q0=true。
其中,双馈风机定子无功功率控制回路切换控制单元为
Figure PCTCN2016109193-appb-000109
其中
Figure PCTCN2016109193-appb-000110
为双馈风机定子无功功率偏差
Figure PCTCN2016109193-appb-000111
经过基于一阶逻辑开关控制器的双馈风机定子无功功率开关控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000112
为双馈风机定子无功功率偏差
Figure PCTCN2016109193-appb-000113
经过基于传统矢量控制方法的双馈风机定子无功功率控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000114
为双馈风机定子无功功率控制回路切换控制策略
Figure PCTCN2016109193-appb-000115
其中
Figure PCTCN2016109193-appb-000116
Figure PCTCN2016109193-appb-000117
其中Γ(t)={Γ12,...,Γj}为
Figure PCTCN2016109193-appb-000118
的极值序列,其中Γs(s∈{1,2,...,j})为序列Γ(t)中的最大值,τ=0.5为Γj相对于Γs减小的比例。
其中,基于传统矢量控制方法的双馈风机换流器电容电压控制回路结构如图7所示,其中Vdc为换流器电容电压,Vdcref为换流器电容电压参考值,idg为电网侧换流器电流d轴分量,iqg为电网侧换流器电流q轴分量,Lg为电网侧滤波电感的感抗,PI6和PI7为两个比例积分控制系统,其参数设置为:P6=10,I6=0.5,P7=11,I7=5。
其中,基于二阶逻辑开关控制器的双馈风机换流器电容电压开关控制回路结构如图8所示,其中vdg_min为电网侧换流器d轴控制电压的最小值,vdg_max为电 网侧换流器d轴控制电压的最大值,
Figure PCTCN2016109193-appb-000119
为基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路产生的控制信号,并且有
Figure PCTCN2016109193-appb-000120
其中q(t)为二阶逻辑开关控制器系统的输出,q(t)可由下式计算
Figure PCTCN2016109193-appb-000121
Figure PCTCN2016109193-appb-000122
q(0-)=q0∈{true,false}
其中
Figure PCTCN2016109193-appb-000123
,控制系统的参数选择为:
Figure PCTCN2016109193-appb-000124
Figure PCTCN2016109193-appb-000125
vdg_min=-1.5,vdg_max=1.5。
其中,双馈风机换流器电容电压控制回路切换控制单元为
Figure PCTCN2016109193-appb-000126
其中
Figure PCTCN2016109193-appb-000127
为双馈风机换流器电容电压偏差
Figure PCTCN2016109193-appb-000128
经过基于二阶逻辑开关控制器的双馈风机换流器电容电压开关控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000129
为双馈风机换流器电容电压偏差
Figure PCTCN2016109193-appb-000130
经过基于传统矢量控制方法的双馈风机换流器电容电压控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000131
为双馈风机换流器电容电压控制回路切换控制策略
Figure PCTCN2016109193-appb-000132
其中,
Figure PCTCN2016109193-appb-000133
Figure PCTCN2016109193-appb-000134
其中,Γ(t)={Γ12,...,Γj}为
Figure PCTCN2016109193-appb-000135
的极值序列,其中Γs(s∈{1,2,...,j})为序列Γ(t)中 的最大值,τ=0.5为Γj相对于Γs减小的比例。
其中,基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路结构如图9所示,其中Qgref为双馈风机电网侧换流器无功功率输出,Vs为定子机端电压的幅值,PI5为比例积分控制系统,iqg为电网侧换流器滤波器电流的q轴分量,Lg为电网侧换流器滤波器的滤波电感,iqgref为电网侧换流器滤波器电流q轴分量的参考值,PI5为比例积分控制系统,其参数设置为:P5=10,I5=5
其中,基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率开关控制回路结构如图10所示,其中vqg_min为电网侧侧换流器q轴控制电压的最小值,vqg_max为电网侧换流器q轴控制电压的最大值,
Figure PCTCN2016109193-appb-000136
基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率开关控制回路产生的控制信号,并且有
Figure PCTCN2016109193-appb-000137
其中q(t)为一阶逻辑开关控制器系统的输出,q(t)可由下式计算
Figure PCTCN2016109193-appb-000138
其中e(t)=eQg(t),控制系统的参数设置为:vqg_max=1.5,vqg_min=-1.5,
Figure PCTCN2016109193-appb-000139
Figure PCTCN2016109193-appb-000140
q0=true。
其中,双馈风机电网侧换流器无功功率控制回路切换控制单元为
Figure PCTCN2016109193-appb-000141
其中
Figure PCTCN2016109193-appb-000142
为双馈风机电网侧换流器无功功率偏差
Figure PCTCN2016109193-appb-000143
经过基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率开关控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000144
为双馈风机定子无功功率偏差
Figure PCTCN2016109193-appb-000145
经过基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路后得到的控制信号,
Figure PCTCN2016109193-appb-000146
为双馈风机定子无功功率控制回路切换控制策略
Figure PCTCN2016109193-appb-000147
其中
Figure PCTCN2016109193-appb-000148
Figure PCTCN2016109193-appb-000149
其中,Γ(t)={Γ12,...,Γj}为
Figure PCTCN2016109193-appb-000150
的极值序列,其中Γs(s∈{1,2,...,j})为序列Γ(t)中的最大值,τ=0.5为Γj相对于Γs减小的比例。
所述控制系统还包括切换励磁控制器,其切换策略为:
假设在电力系统受到扰动后,双馈风机的输出变量(在此选取为感应发电机转速、定子侧无功功率输出、电网侧换流器无功功率和换流器电容端电压)的绝对值|e(t)|的振荡轨迹中的极值序列为Γ(t)={Γ12,...,Γj},其中Γs=(s∈{1,2,...,j})为序列Γ(t)中的最大值,那么多回路切换控制器中每个回路的切换策略为:当切换条件1满足时,切换控制器由常规矢量控制器切换为开关控制器;当切换条件2满足时,切换控制器由开关控制器切换为常规矢量控制器,其中切换条件1和切换条件2为
切换条件1:
Figure PCTCN2016109193-appb-000151
切换条件2:{切换励磁控制器的切换频率达到设备可以承受的最大值}
Figure PCTCN2016109193-appb-000152
其中
Figure PCTCN2016109193-appb-000153
和τ是需要设计的切换励磁控制器的参数。
其中,图11为所述的基于逻辑开关控制的双馈风机多回路切换控制系统应用于双馈风机中,在外界电力系统中发生三相接地短路故障后,双馈风机的转速曲线,可以看出在同样的扰动下,基于传统矢量控制算法控制的双馈风机 已经失稳,而基于逻辑开关控制的双馈风机多回路切换控制系统控制的双馈风机能够在系统受到扰动后回到原平衡点继续运行。
图12为所述的基于逻辑开关控制的双馈风机多回路切换控制系统应用于双馈风机中,在外界电力系统中发生三相接地短路故障后,双馈风机的换流器电容端电压曲线。
图13为所述的基于逻辑开关控制的双馈风机多回路切换控制系统应用于双馈风机中,在外界电力系统中发生三相接地短路故障后,双馈风机的有功功率输出曲线。
图14为所述的基于逻辑开关控制的双馈风机多回路切换控制系统应用于双馈风机中,在外界电力系统中发生三相接地短路故障后,双馈风机的无功功率输出曲线。
综上所述,本实施例提出的基于开关控制的双馈风机多回路切换控制器,其双馈风机的输出变量选取为发电机转子转速、定子侧无功功率输出、电网侧换流器无功功率输出和背靠背换流器直流电容端电压。利用四个输入以及输出变量形成四个反馈控制通道,每个控制通道在一个开关控制器和一个常规矢量控制器之间切换,进而形成一个四回路切换控制器。其切换策略为:当双馈风机所在电力系统受到一个大的外部扰动时,风机的状态变量以及输出变量将会偏离原来的平衡点,此时双馈风机的四个控制回路由常规矢量控制器切换为开关控制器;在开关控制器的作用下,风机的状态变量和输出变量将会回到原平衡点附近,此时风机的四个控制回路由开关控制器切换为常规矢量控制器。本发明提出的多回路控制系统的特点是:开关控制器的设计不依赖于系统的精确模型,而仅需要知道系统模型的相对阶数即可;其次,开关控制器的控制器信 号仅有两个值,即相应控制变量的最大值和最小值,因此开关控制器可以充分发挥双馈风机换流器的最大能量,使得系统以最快的速度回到原来的平衡点继续运行;由于开关控制器的作用,多回路切换控制器具有对外界扰动的强鲁棒性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种基于逻辑开关控制的双馈风机多回路切换控制系统,其控制对象为双馈风机换流器,所述控制系统包括四个输入信号,分别为双馈风机转子转速偏差
    Figure PCTCN2016109193-appb-100001
    双馈风机定子无功功率输出偏差
    Figure PCTCN2016109193-appb-100002
    双馈风机换流器电容电压偏差
    Figure PCTCN2016109193-appb-100003
    双馈风机电网侧换流器无功功率输出误差
    Figure PCTCN2016109193-appb-100004
    所述控制系统包括四个输出信号,分别为双馈风机转子侧换流器q轴控制电压
    Figure PCTCN2016109193-appb-100005
    双馈风机转子侧换流器d轴控制电压
    Figure PCTCN2016109193-appb-100006
    双馈风机电网侧换流器d轴控制电压
    Figure PCTCN2016109193-appb-100007
    和双馈风机电网侧换流器q轴控制电压
    Figure PCTCN2016109193-appb-100008
    所述四个输出信号以及四个输入信号分别对应于四个反馈控制通道,其特征在于,
    所述控制系统包括基于传统矢量控制方法的双馈风机转子转速控制回路、基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路、基于传统矢量控制方法的双馈风机定子无功功率控制回路、基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路、基于传统矢量控制方法的双馈风机换流器电容电压控制回路、基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路、基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路以及双馈风机转子转速控制回路切换控制单元、双馈风机定子无功功率控制回路切换单元、双馈风机换流器电容电压控制回路切换控制单元、双馈风机电网侧无功功率控制回路切换单元,其中,所述双馈风机转子转速偏差
    Figure PCTCN2016109193-appb-100009
    信号经过所述基于传统矢量控制方法的双馈风机转子转速控制回路、所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路和所述双馈风机转子转速控制回路切换控制单元后输出所述双馈风机转子侧换流器q轴控制电压
    Figure PCTCN2016109193-appb-100010
    所述双馈风机定子 无功功率输出偏差
    Figure PCTCN2016109193-appb-100011
    经过所述基于传统矢量控制方法的双馈风机定子无功功率控制回路、所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路和所述双馈风机定子无功功率控制回路切换单元输出所述双馈风机转子侧换流器d轴控制电压
    Figure PCTCN2016109193-appb-100012
    所述双馈风机换流器电容电压误差
    Figure PCTCN2016109193-appb-100013
    经过所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路、所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路和所述双馈风机换流器电容电压控制回路切换控制单元后输出所述双馈风机电网侧换流器d轴控制电压
    Figure PCTCN2016109193-appb-100014
    所述双馈风机电网侧换流器输出无功功率误差
    Figure PCTCN2016109193-appb-100015
    经过所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路、所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路和所述双馈风机电网侧无功功率控制回路切换单元后输出所述双馈风机电网侧换流器q轴控制电压
    Figure PCTCN2016109193-appb-100016
  2. 根据权利要求1所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,
    所述双馈风机转子转速控制回路切换控制单元用于控制所述基于传统矢量控制方法的双馈风机转子转速控制回路和所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路之间的切换动作;
    所述基于传统矢量控制方法的双馈转子转速控制回路用于在所述双馈风机转子转速控制回路切换控制单元将控制信号切换到所述基于传统矢量控制方法的双馈转子转速控制回路时根据双馈风机转子转速偏差来提供相应控制电压
    Figure PCTCN2016109193-appb-100017
    所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路用于在 所述双馈风机转子转速控制回路切换控制单元将控制信号切换到所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路时根据双馈风机转子转速偏差来提供相应控制电压
    Figure PCTCN2016109193-appb-100018
    所述双馈风机定子无功功率控制回路切换单元用于控制所述基于传统矢量控制方法的双馈风机定子无功功率控制回路和所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路之间的切换动作;
    所述基于传统矢量控制方法的双馈风机定子无功功率控制回路用于当所述双馈风机定子无功功率控制回路切换单元将控制信号切换到所述基于传统矢量控制方法的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
    Figure PCTCN2016109193-appb-100019
    所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路用于当所述双馈风机定子无功功率控制回路切换单元将控制信号切换到所述基于一阶逻辑开关控制器的双馈风机定子无功功率控制回路时根据双馈风机定子无功功率输出误差来提供相应控制电压
    Figure PCTCN2016109193-appb-100020
    所述双馈风机换流器电容电压控制回路切换控制单元用于控制所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路和所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路之间的切换动作;
    所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路用于当所述双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到所述基于传统矢量控制方法的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
    Figure PCTCN2016109193-appb-100021
    所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路用于 当所述双馈风机换流器电容电压控制回路切换控制单元将控制信号切换到所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路时根据双馈风机换流器电容电压偏差来提供相应的控制电压
    Figure PCTCN2016109193-appb-100022
    所述双馈风机电网侧换流器无功功率控制回路切换单元用于控制所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路和所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路之间的切换动作;
    所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路用于当所述双馈风机电网侧换流器无功功率控制回路切换单元将控制信号切换到所述基于传统矢量控制方法的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
    Figure PCTCN2016109193-appb-100023
    所述基于一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路用于当所述双馈风机电网侧换流器无功功率控制回路切换单元将控制信号切换到基于所述一阶逻辑开关控制器的双馈风机电网侧换流器无功功率控制回路时根据双馈风机电网侧换流器无功功率输出误差来提供相应的控制电压
    Figure PCTCN2016109193-appb-100024
  3. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述一阶逻辑开关控制器基于逻辑运算产生控制信号,其控制逻辑为:
    Figure PCTCN2016109193-appb-100025
    其中q(t)为控制逻辑的输出,
    Figure PCTCN2016109193-appb-100026
    e是系统输出的跟踪误差,
    Figure PCTCN2016109193-appb-100027
    是跟踪误差的上边界,e是跟踪误差的下边界,qold是对应逻 辑变量上一时步的逻辑值,∧为逻辑“与”运算,∨为逻辑“或”运算,
    Figure PCTCN2016109193-appb-100028
    Figure PCTCN2016109193-appb-100029
    定义输出变量跟踪误差的误差区间即
    Figure PCTCN2016109193-appb-100030
    Figure PCTCN2016109193-appb-100031
    Figure PCTCN2016109193-appb-100032
    定义F0内的安全距离,q(t-)是q(t)在上一时刻的逻辑值。
  4. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述二阶逻辑开关控制器基于逻辑运算产生控制信号,其控制逻辑为:
    Figure PCTCN2016109193-appb-100033
    Figure PCTCN2016109193-appb-100034
    q(0-)=q0∈{true,false}
    其中
    Figure PCTCN2016109193-appb-100035
    Figure PCTCN2016109193-appb-100036
    定义输出变量一阶导数的误差区间即
    Figure PCTCN2016109193-appb-100037
    Figure PCTCN2016109193-appb-100038
    Figure PCTCN2016109193-appb-100039
    定义了F1内的安全距离,
    Figure PCTCN2016109193-appb-100040
    Figure PCTCN2016109193-appb-100041
    是理想的e在F0内增加和减小的速度,q1(t-)是q1(t)在上一时刻的逻辑值。
  5. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述基于二阶逻辑开关控制器的双馈风机转子转速开关控制回路中二阶逻辑开关控制器的控制规律为:
    Figure PCTCN2016109193-appb-100042
    其中vqr为转子侧换流器电压的q轴分量,vqr_max为转子侧换流器电压q轴分量的最大值,vqr_min为转子侧换流器电压q轴分量的最小值。
  6. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述基于一阶逻辑开关控制器的双馈风机定子无功 功率控制回路中一阶逻辑开关控制器的控制规律为:
    Figure PCTCN2016109193-appb-100043
    其中vdr为转子侧换流器电压的d轴分量,vdr_max为转子侧换流器电压d轴分量的最大值,vdr_min为转子侧换流器电压d轴分量的最小值。
  7. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述基于一阶逻辑开关控制方法的双馈风机电网侧换流器无功功率控制回路中一阶逻辑开关控制器的控制规律为:
    Figure PCTCN2016109193-appb-100044
    其中vqg为电网侧换流器电压的q轴分量,vqg_max为电网侧换流器电压q轴分量的最大值,vqg_min为电网侧换流器电压q轴分量的最小值。
  8. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述基于二阶逻辑开关控制器的双馈风机换流器电容电压控制回路中二阶逻辑开关控制器的控制规律为:
    Figure PCTCN2016109193-appb-100045
    其中vdg为电网侧换流器电压的d轴分量,vdg_max为电网侧换流器电压d轴分量的最大值,vdg_min为电网侧换流器电压d轴分量的最小值。
  9. 根据权利要求1或者2所述的基于逻辑开关控制的双馈风机多回路切换控制系统,其特征在于,所述控制系统还包括切换控制器,其切换策略为:
    假设在电力系统受到扰动后,双馈风机的输出变量的绝对值|e(t)|的振荡轨迹中的极值序列为Γ(t)={Γ12,...,Γj},其中Γs=(s∈{1,2,...,j})为序列Γ(t)中的最大值,所述控制系统中每个回路的切换策略为:当切换条件1满足时,切换控制系统由常规矢量控制器切换为开关控制器;当切换条件2满足时,切换控制系统由开关控制器切换为常规矢量控制器,其中,
    切换条件1:
    Figure PCTCN2016109193-appb-100046
    切换条件2:{切换励磁控制器的切换频率达到设备可以承受的最大值}∨{{(Γsj)/Γs≥τ}∧{e(t)收敛到
    Figure PCTCN2016109193-appb-100047
    其中,
    Figure PCTCN2016109193-appb-100048
    和τ是切换励磁控制器的参数。
PCT/CN2016/109193 2016-02-01 2016-12-09 基于逻辑开关控制的双馈风机多回路切换控制系统 WO2017133318A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/759,344 US10447190B2 (en) 2016-02-01 2016-12-09 Multi-loop switching control system for doubly-fed wind turbine based on logic switch control
JP2018504894A JP6449520B2 (ja) 2016-02-01 2016-12-09 二重給電風力発電機の論理的スイッチング制御に基づいた多重切替制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610073358.6 2016-02-01
CN201610073358.6A CN105591403B (zh) 2016-02-01 2016-02-01 基于逻辑开关控制的双馈风机多回路切换控制系统

Publications (1)

Publication Number Publication Date
WO2017133318A1 true WO2017133318A1 (zh) 2017-08-10

Family

ID=55930739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109193 WO2017133318A1 (zh) 2016-02-01 2016-12-09 基于逻辑开关控制的双馈风机多回路切换控制系统

Country Status (4)

Country Link
US (1) US10447190B2 (zh)
JP (1) JP6449520B2 (zh)
CN (1) CN105591403B (zh)
WO (1) WO2017133318A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591403B (zh) 2016-02-01 2018-07-10 华南理工大学 基于逻辑开关控制的双馈风机多回路切换控制系统
CN106650062B (zh) * 2016-12-09 2020-07-28 华南理工大学 一种真空断路器分闸暂态仿真模型的构建方法
CN108512470B (zh) * 2018-04-10 2019-10-18 华南理工大学 基于开关控制的同步发电机切换励磁控制方法
CN109617474A (zh) * 2018-12-25 2019-04-12 三重能有限公司 一种不平衡电网电压下变流器转子侧控制方法及装置
CN110890769B (zh) * 2019-10-14 2022-03-04 中国电力科学研究院有限公司 一种确定新能源调频的电力系统频率偏差的方法及系统
CN110912152B (zh) * 2019-10-14 2022-03-25 中国电力科学研究院有限公司 一种用于确定电力系统新能源最大占比的方法及系统
CN110867890B (zh) * 2019-10-29 2021-05-14 国网四川省电力公司经济技术研究院 一种双馈风机直流母线电压降阶砰-砰控制方法
CN110957761B (zh) * 2019-12-09 2022-07-19 太原理工大学 一种基于改进的磁链跟踪控制方法的无刷双馈风力发电机对称高电压骤升故障穿越方法
CN111864744B (zh) * 2020-07-31 2021-11-23 国网四川省电力公司电力科学研究院 高比例水电系统调速器控制模式在线切换方法及系统
CN113489045B (zh) * 2021-07-20 2023-06-16 华南理工大学 Mmc-hvdc的混合控制器切换故障穿越控制方法
CN114362224B (zh) * 2021-12-07 2023-09-26 南方电网科学研究院有限责任公司 一种用于电池储能系统的频率控制方法和装置
CN116402017B (zh) * 2023-06-02 2023-08-22 华北电力大学 一种用于电力系统频率动态分析的双馈风机简化建模方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592026A (zh) * 2012-01-12 2012-07-18 甘肃省电力公司风电技术中心 一种双馈风机等效模拟的仿真建模方法
US20130009610A1 (en) * 2011-07-08 2013-01-10 Abb Oy Control system for doubly-fed induction machine
CN105591403A (zh) * 2016-02-01 2016-05-18 华南理工大学 基于逻辑开关控制的双馈风机多回路切换控制系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125397A (ja) * 2000-08-09 2002-04-26 Fukuoka Institute Of Technology 風力発電装置
JP4998885B2 (ja) * 2007-10-04 2012-08-15 国立大学法人 琉球大学 風力発電装置の最大電力追従制御装置
JP5190879B2 (ja) * 2008-07-22 2013-04-24 国立大学法人 琉球大学 風力発電機の出力電力変動抑制装置
JP5409335B2 (ja) * 2009-12-25 2014-02-05 株式会社日立製作所 風力発電システムおよびその制御方法
WO2012000507A1 (en) * 2010-06-29 2012-01-05 Vestas Wind Systems A/S Permanent magnet generator inductance profile identification
US9391554B2 (en) * 2010-08-25 2016-07-12 University Of Alabama Control of a permanent magnet synchronous generator wind turbine
JP5822697B2 (ja) * 2011-12-02 2015-11-24 大阪瓦斯株式会社 発電システム及びその運転制御方法
JP5664589B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生コンバータおよび電力変換装置
JP6207427B2 (ja) * 2014-03-04 2017-10-04 大阪瓦斯株式会社 好適回転速度の決定方法、発電システムの制御方法及びその制御方法を使用する発電システム
GB2560195B (en) * 2017-03-03 2020-01-08 Ge Energy Power Conversion Technology Ltd Electric circuits and power systems incorporating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130009610A1 (en) * 2011-07-08 2013-01-10 Abb Oy Control system for doubly-fed induction machine
CN102592026A (zh) * 2012-01-12 2012-07-18 甘肃省电力公司风电技术中心 一种双馈风机等效模拟的仿真建模方法
CN105591403A (zh) * 2016-02-01 2016-05-18 华南理工大学 基于逻辑开关控制的双馈风机多回路切换控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO, WEI ET AL.: "Study on AC-excited Control System of VSCF Doubly-fed Wind Power Generation System", ELECTRIC DRIVE, vol. 40, no. 1, 31 January 2010 (2010-01-31), pages 27 - 32, XP055406981, ISSN: 1001-2095 *
LI, HONG ET AL.: "Double-fed Wind Power Generation Technologies Based on Vector Control", EAST CHINA ELECTRIC POWER, vol. 37, no. 3, 31 March 2009 (2009-03-31), pages 0456 - 0460, ISSN: 1001-9529 *

Also Published As

Publication number Publication date
CN105591403B (zh) 2018-07-10
US20180254725A1 (en) 2018-09-06
US10447190B2 (en) 2019-10-15
CN105591403A (zh) 2016-05-18
JP6449520B2 (ja) 2019-01-09
JP2018523461A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2017133318A1 (zh) 基于逻辑开关控制的双馈风机多回路切换控制系统
CN108683198A (zh) 双馈风力发电机组的电压控制型虚拟同步方法
Wu et al. An improved repetitive control of DFIG-DC system for torque ripple suppression
EP3464889B1 (en) Operating a wind turbine generator during an abnormal grid event
Oğuz et al. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator
CN105790297A (zh) 基于内电势响应的全功率风力发电机的惯量控制方法及装置
Zhu et al. Second-order sliding-mode control of DFIG-based wind turbines
Roy et al. Nonlinear adaptive direct power controllers of DFIG-based wind farms for enhancing FRT capabilities
Okedu et al. Enhancing the performance of DFIG wind turbines considering excitation parameters of the insulated gate bipolar transistors and a new PLL scheme
Howlader et al. A fuzzy control strategy for power smoothing and grid dynamic response enrichment of a grid‐connected wind energy conversion system
Loucif et al. Nonlinear sliding mode power control of DFIG under wind speed variation and grid connexion
CN104993759B (zh) 双馈风力发电机快速弱磁控制方法
Azeem et al. Levenberg-Marquardt SMC control of grid-tied Doubly Fed Induction Generator (DFIG) using FRT schemes under symmetrical fault
Ren et al. Grid fault ride through of a medium-voltage three-level full power wind power converter
KR101333828B1 (ko) 발전 시스템 제어 방법 및 장치
CN107196335B (zh) 一种双馈风机系统以及抑制电网电压快速波动的方法
Hu et al. A vector control strategy of grid-connected brushless doubly fed induction generator based on the vector control of doubly fed induction generator
KR101048312B1 (ko) 이중 권선형유도발전기용 전류제어기
Upadhvay et al. Voltage quality compensation of DFIG with series DVR (SDVR) under three phase fault
Dewangan et al. Grid connected doubly fed induction generator wind energy conversion system using fuzzy controller
Reddak et al. Nonlinear control strategy for wind turbine based on DFIG to enhance the LVRT capability
Dinesh et al. Independent operation of DFIG-based WECS using resonant feedback compensators under unbalanced grid voltage conditions
CN104993514A (zh) 电网电压跌落时双馈风力发电机转子磁链无差拍控制方法
Simon et al. Transient modeling and control of dfig with fault ride through capability
Khazaei et al. Small-signal stability evaluation of DFIG wind farms with on-site battery energy storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018504894

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15759344

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16889125

Country of ref document: EP

Kind code of ref document: A1