WO2017133152A1 - 线性振动马达 - Google Patents

线性振动马达 Download PDF

Info

Publication number
WO2017133152A1
WO2017133152A1 PCT/CN2016/084794 CN2016084794W WO2017133152A1 WO 2017133152 A1 WO2017133152 A1 WO 2017133152A1 CN 2016084794 W CN2016084794 W CN 2016084794W WO 2017133152 A1 WO2017133152 A1 WO 2017133152A1
Authority
WO
WIPO (PCT)
Prior art keywords
push
pull
vibrator
magnet
block
Prior art date
Application number
PCT/CN2016/084794
Other languages
English (en)
French (fr)
Inventor
祖峰磊
刘春发
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US16/075,221 priority Critical patent/US11469656B2/en
Publication of WO2017133152A1 publication Critical patent/WO2017133152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • H02K33/14Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems wherein the alternate energisation and de-energisation of the two coil systems are effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • H04M19/047Vibrating means for incoming calls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets

Definitions

  • the present invention relates to the field of consumer electronics, and more particularly to a linear vibration motor for use in portable consumer electronics.
  • micro-vibration motors are generally used for system feedback, such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • system feedback such as incoming call prompts of mobile phones, vibration feedback of game machines, and the like.
  • various internal components also need to adapt to this trend, and micro-vibration motors are no exception.
  • the existing miniature vibration motor generally includes an upper cover, a lower cover that forms a vibration space with the upper cover, a vibrator (including a weight and a permanent magnet) that linearly reciprocates in the vibration space, connects the upper cover, and reciprocates the vibrator A vibrating elastic support and a coil located a distance below the vibrator.
  • a vibrator including a weight and a permanent magnet
  • the force for driving the vibrator is entirely derived from the magnetic force between the vibrator and the coil, and the vibration of the vibrator is relatively small due to the limited magnetic field force between the vibrator and the coil, and
  • the change of the position of the vibrator relative to the position of the coil causes the force of the vibrator to change, and the response speed of the linear vibration is not uniform, which causes the vibration of the vibrator to produce a nonlinear change, which affects the vibration balance of the electronic product.
  • an object of the present invention is to provide a linear vibration motor that uses an push-pull structure to provide an initial driving force for vibrator vibration, thereby pushing the vibrator to reciprocate in a direction parallel to the plane of the stator, and by changing the present
  • the position of the push-pull structure design can not only realize the multiplexing of the magnetic field, but also enhance the push-pull force, and can also avoid a larger design space for the elastic support members at both ends of the mass block.
  • a linear vibration motor includes a housing, a vibrator, and a stator fixed to the housing and disposed in parallel with the vibrator.
  • the vibrator includes a mass and a vibration block embedded in a middle portion of the mass, the vibration block including a permanent magnet;
  • the two ends of the vibrating block are respectively adjacent to the push-pull structure;
  • the push-pull structure includes a push-pull magnet embedded in the mass, and a push-pull coil fixed on the outer casing; and an enhanced between the push-pull magnet and the adjacent permanent magnet
  • the interaction force of the magnetic field; the push-pull coil generates a push-pull force in the horizontal direction with the push-pull magnet after energization, and provides a push-pull force for the reciprocating motion of the vibrator in a direction parallel to the plane of the stator.
  • the stator comprises a magnetic conductive block, and the magnetic conductive block is disposed opposite to the vibrator, and the magnetic conductive block is fixed on the outer casing, and the magnetic conductive block is subjected to the same magnetic field force as the vibrating direction of the vibrator and/or opposite.
  • At least one pair of push-pull magnet fixing grooves are symmetrically disposed on the mass; two push-pull magnets vertically distributed and two push-pull magnets are accommodated in each push-pull magnet fixing groove.
  • Magnetic yoke
  • the push-pull magnet is vertically magnetized, the permanent magnet is horizontally magnetized, and the permanent magnet is opposite to the adjacent end magnetic pole of the adjacent push-pull magnet.
  • four pairs of push-pull magnet fixing slots are symmetrically arranged on the mass, and two push-pull magnets vertically distributed are accommodated in each push-pull magnet fixing slot, and four push-pull magnets are fixed on the outer casing.
  • a magnetic fluid is filled between the push-pull coil and the adjacent push-pull magnet.
  • the push-pull coil is an irregularly wound coil, wherein the winding is increased at a position where the push-pull coil is concentrated corresponding to the magnetic line of the push-pull magnet.
  • the push-pull coil is a superimposed coil or a staggered coil.
  • the resultant force of the magnetic field force is zero; when the magnetic conductive block is subjected to the push-pull force generated by the push-pull structure and the relative displacement of the vibrator in the vibration direction of the vibrator, the resultant force of the magnetic field force The direction is the same as the direction of the relative displacement, and the resultant force of the magnetic field force is proportional to the magnitude of the relative displacement.
  • a relief structure corresponding to the push-pull coil and the magnetic conductive block is disposed in a middle portion of the mass; a groove for accommodating the vibration block is disposed in the mass; the vibration block is fixed in the groove by the glue.
  • the above linear vibration motor according to the present invention jumps out of the existing magnetic body only by the vibrator and the coil
  • the field force provides the driving motor design idea, and uses the push-pull structure to provide the initial driving force for the vibrator vibration, and pushes the vibrator to reciprocate in the direction parallel to the plane of the stator; in addition, in the present invention, the push-pull structure and the vibration block are adopted.
  • the adjacent arrangement method can not only realize the multiplexing of the magnetic field generated by the permanent magnet of the vibrator, but also enhance the vibration of the linear vibration motor, and can also avoid more space for the elastic support member.
  • FIG. 1 is a schematic exploded view of a linear vibration motor according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of a linear vibration motor according to an embodiment of the present invention
  • 3-1 is a schematic diagram 1 of a linear vibration motor according to an embodiment of the invention.
  • 3-2 is a schematic diagram 2 of a linear vibration motor according to an embodiment of the invention.
  • 4-1 is a cross-sectional structural view of a linear vibration motor according to a second embodiment of the present invention.
  • 4-2 is a schematic view showing the principle of a linear vibration motor according to a second embodiment of the present invention.
  • 5-1 is a cross-sectional structural view of a linear vibration motor according to a third embodiment of the present invention.
  • 5-2 is a schematic view of the principle of a linear vibration motor according to a third embodiment of the present invention.
  • 6-1 is a schematic exploded view of a linear vibration motor according to a fourth embodiment of the present invention.
  • 6-2 is a cross-sectional structural view of a linear vibration motor according to a fourth embodiment of the present invention.
  • 6-3 is a schematic diagram showing the principle of a linear vibration motor according to a fourth embodiment of the present invention.
  • 6-4 is a schematic view showing the structure of a push-pull coil of a linear vibration motor according to a fourth embodiment of the present invention.
  • weights used in the description of the following detailed description may also be referred to as "weights”, both of which refer to high quality, high density metal blocks that are fixed with vibration generating vibration blocks to enhance vibration balance.
  • the present invention is mainly applied to the improvement of the micro vibration motor, but does not exclude the application of the technique of the present invention to a large vibration motor.
  • linear vibration motor and “micro vibration motor” have the same meanings.
  • the linear vibration motor provided by the present invention replaces the stator coil with a magnetic conductive block, thereby overcoming the problem. Due to the change of the energization direction and the imbalance of the current caused by the instability of the current, the magnetic field generated by the vibration block enhances the magnetic field of the push-pull structure, realizing the magnetic field multiplexing of the linear vibration motor driving part, and Avoid more space for the design of the elastic support.
  • FIG. 1 shows an exploded structure of a linear vibration motor according to an embodiment of the present invention
  • FIG. 2 shows a sectional structure of a linear vibration motor according to an embodiment of the present invention
  • FIG. 3-1 shows an embodiment according to an embodiment of the present invention. The principle of a linear vibration motor.
  • a linear vibration motor includes a casing (including an upper casing 1 having a rectangular parallelepiped structure and a lower casing 11 of a plate-like structure fixedly coupled to the upper casing 1), and a vibrator. And a stator fixed on the outer casing and disposed parallel to the vibrator, the vibrator includes a mass 9 and a vibrating block embedded in the middle of the mass 9.
  • the vibrating block includes at least one permanent magnet; wherein the vibrating block is adjacent to each other at both ends of the vibrating block
  • the push-pull structure comprises a push-pull magnet embedded in the mass and a push-pull coil fixed on the outer casing, and the push-pull magnet and the push-pull coil cooperate to provide a push-pull force for vibration of the vibrator;
  • the push-pull magnet and the adjacent permanent magnet can generate an interaction force for enhancing the magnetic field, that is, the magnetic field generated by the permanent magnet can also act on the push-pull structure, thereby realizing the line.
  • the magnetic field of the drive part of the vibrating motor is multiplexed.
  • the provision of the push-pull structure adjacent to the two ends of the vibrating block can also avoid more space for the design of the elastic support members at both ends of the vibrating block, and the structure is more reasonable.
  • the push-pull coil generates a horizontal pulling force with the push-pull magnet after energization, and provides an initial driving force for the reciprocating motion of the vibrator in a direction parallel to the plane of the stator, and the magnetic field generated by the permanent magnet and the push-pull structure The interaction enhances the push-pull force and enhances the vibration of the linear vibration motor.
  • Figure 3-2 illustrates a second principle of a linear vibration motor in accordance with an embodiment of the present invention.
  • the push-pull structure is disposed on the adjacent sides of the vibrating block, and the elastic support members are disposed at both ends of the mass, which can be designed for the elastic support.
  • a sufficient space is reserved, and the interaction force between the vibration block magnetic field and the push-pull coil can be realized, the magnetic field generated by the permanent magnet can be reused, the structure is more optimized, and the vibration effect of the linear vibration motor is more remarkable.
  • At least one pair of push-pull magnet fixing grooves are symmetrically disposed on the mass, and two push-pull magnets vertically distributed and two blocks are accommodated in each push-pull magnet fixing groove.
  • the push-pull magnet is vertically magnetized
  • the permanent magnet is horizontally magnetized
  • the permanent magnet is opposite to the adjacent end magnetic pole of the adjacent push-pull magnet.
  • two pairs of (four) push-pull magnet fixing slots are symmetrically disposed on the mass, that is, two push-pull magnet fixing slots are respectively disposed on two sides of the vibrating block.
  • Two push-pull magnets vertically arranged are accommodated in each push-pull magnet fixing groove, and four push-pull coils corresponding to the positions of the push-pull magnets are fixed on the outer casing, and the push-pull coils are located on the corresponding push-pull magnets.
  • the upper and lower sides, and the winding direction of the push-pull coil are perpendicular to the magnetization direction of the push-pull magnet.
  • the push-pull magnet located on the side adjacent to the vibrating block comprises push-pull magnets 5a, 5a' located in the same push-pull magnet fixing groove, and a yoke 6a located between the push-pull magnets 5a, 5a';
  • the push-pull magnet 5a and the push-pull magnet 5a' are vertically distributed, and the polarities of the adjacent ends thereof are the same.
  • the magnetization direction of the push-pull magnet 5a is the vertical SN
  • the magnetization direction of the push-pull magnet 5a' is The vertical NS
  • the magnetization direction of the push-pull magnet 5a is the vertical NS
  • the magnetization direction of the push-pull magnet 5a' is the vertical SN.
  • the push-pull magnet located on the side adjacent to the vibrating block further includes push-pull magnets 5d and 5d fixed in another push-pull magnet fixing groove parallel to the push-pull magnet fixing groove in which the push-pull magnets 5a and 5a' are located.
  • the push-pull magnets 5a, 5a' and the push-pull magnets 5d, 5d' are parallel to each other and are located at the same level
  • the upward push-pull magnet 5d and the push-pull magnet 5a have opposite magnetization directions, that is, the magnetization direction of the push-pull magnet 5d is vertical NS, and the magnetization direction of the push-pull magnet 5d' is vertical SN; or push-pull
  • the magnetization direction of the magnet 5d is the vertical SN, and the magnetization direction of the push-pull magnet 5d' is the vertical NS.
  • the push-pull coil 2a is disposed on the upper side of the push-pull magnets 5a, 5d, and the push-pull coil is fixed on the outer casing and disposed in parallel with the push-pull magnet, and the winding direction of the push-pull coil and the corresponding push-pull magnet are charged.
  • the magnetic direction is perpendicular.
  • a push-pull coil 2a' is disposed on a lower side of the push-pull magnets 5a', 5d', and the push-pull coil is fixed on the outer casing and disposed in parallel with the corresponding push-pull magnet, and the winding direction of the push-pull coil and the charging of the push-pull magnet
  • the magnetic direction is perpendicular.
  • the push-pull magnet on the other side adjacent to the vibrating block includes push-pull magnets 5b, 5b', a magnetic block 6b between the push-pull magnets 5b, 5b', push-pull magnets 5c, 5c', and
  • the magnetic conductive block 6c located between the push-pull magnets 5c and 5c' is provided with a push-pull coil 2b on the upper side of the push-pull magnets 5b and 5c, and a push-pull coil on the lower side of the push-pull coils 5b' and 5c'. 2b'.
  • the magnetization directions and positional structures of the push-pull magnets 5b, 5b', 5c, and 5c' are similar to those of the push-pull magnets 5a, 5a', 5d, and 5d', and will not be described herein.
  • the interaction force between the push-pull magnet and the adjacent permanent magnet can be enhanced, that is, the magnetic field generated by the permanent magnet can also act on the push-pull structure, thereby realizing linear vibration.
  • the magnetic field multiplexing of the motor drive portion enhances the push-pull force of the push-pull structure.
  • the stator comprises magnetically permeable blocks 3a, 3b fixed to the outer casing, the magnetically permeable blocks 3a, 3b being subjected to the same and/or opposite magnetic field forces in the direction of vibration of the vibrator
  • the resultant force of the two magnetic field forces is zero
  • the magnetic conductive blocks 3a, 3b are subjected to the push-pull force generated by the push-pull structure, that is, the initial driving force acts on the vibrator in the vibration direction and the vibrator
  • the resultant force direction of the two magnetic field forces is the same as the direction of the relative displacement, and the resultant force of the two magnetic field forces is proportional to the magnitude of the relative displacement.
  • the vibration block comprises three permanent magnets which are adjacently arranged and magnetized in the horizontal direction, and the adjacent ends of the adjacent permanent magnets have the same polarity, and the magnetic conductive block has a sheet-like structure and is disposed at the middle of the central vibration block.
  • the upper and lower sides of the permanent magnet are symmetrical with respect to the center of the central vibration block.
  • the central vibration block includes a first permanent magnet 7a, a second permanent magnet 7b, and a third permanent magnet 7c which are sequentially arranged, and a first yoke 8a is disposed between the first permanent magnet 7a and the second permanent magnet 7b.
  • a second yoke 8b is disposed between the second permanent magnet 7b and the third permanent magnet 7c, a first magnetic permeable block 3a is disposed on the upper side of the second permanent magnet 7b, and a lower side of the second permanent magnet 7b is disposed on the lower side of the second permanent magnet 7b.
  • the first magnetically permeable block 3a and the second magnetically permeable block 3b are both fixed to the outer casing and have a certain gap with the second permanent magnet 7b.
  • the first magnetic conductive block 3a and the second magnetic conductive block 3b are symmetrically distributed with respect to the second permanent magnet 7b, and when the vibrator is in a balanced stationary state, the first magnetic conductive block 3a and the second magnetic conductive block 3b and the first The distance between the ends of the permanent magnet 7a and the third permanent magnet 7c is the same.
  • the magnetic conductive blocks may also be symmetrically or asymmetrically distributed with the upper and lower sides of the vibration block, and the latter may be disposed on one side of the vibration block.
  • the vibration block includes three adjacent permanent magnets; the three adjacent permanent magnets are horizontally magnetized, and the adjacent ends of the adjacent permanent magnets have the same polarity; and the magnetic block is provided with Two blocks, two magnet blocks are symmetrically disposed on the upper side and the lower side of the vibrating block, and both of the magnet blocks are disposed corresponding to the permanent magnets at the intermediate position of the vibrating block.
  • the vibration block comprises a permanent magnet
  • the magnetic block is provided with two pieces, and the two magnetic blocks are located on the upper side or the lower side of the vibration block; or, the two magnetic blocks respectively correspond to the left end and the right end of the permanent magnet, And it is symmetrical about the central axis of the permanent magnet.
  • the vibration block includes three permanent magnets disposed adjacent to each other, and the three adjacent permanent magnets are magnetized horizontally, and the adjacent ends of the adjacent permanent magnets have the same polarity, and the magnetic conductive blocks are six. Six magnetic blocks are symmetrically arranged on the upper and lower sides of three adjacent permanent magnets.
  • the vibrating block comprises three permanent magnets arranged adjacent to each other, and the three adjacent permanent magnets are magnetized horizontally, and the adjacent ends of the adjacent permanent magnets have the same polarity; the magnetic conducting block is provided with two blocks. Two magnetic conductive blocks are asymmetrically disposed on the upper and lower sides of the vibration block; and the magnetic conductive blocks asymmetrically disposed on the upper and lower sides of the vibration block are symmetric about the center of the vibration block.
  • the first magnetically permeable block 3a receives two magnetic force forces F1 and F2 of the same magnitude and opposite directions; when the first magnetic conductive block 3a is in the vibrator (including the permanent magnets 7a, 7b, 7c and disposed at When the relative displacement d of the yokes 8a, 8b) between the adjacent permanent magnets and the vibrator is rightward, the magnetic force F1 of the first magnetic block 3a is less than F2, that is, the first magnetic block
  • the displacement of 3a since the magnetic block is fixed to the outer casing, where the displacement is a relative displacement with the permanent magnet
  • f changes to d
  • FIG. 4-1 shows a cross-sectional structure of a linear vibration motor according to a second embodiment of the present invention
  • FIG. 4-2 shows a schematic structure of a linear vibration motor according to a second embodiment of the present invention.
  • the linear vibration motor of the second embodiment of the present invention is provided with three groups (six) and vibration blocks for increasing the magnetic permeability of the push-pull structure and increasing the vibration amplitude of the vibrator.
  • a push-pull structure fixing groove is disposed adjacent to each other, and two push-pull magnets and a magnetic yoke between the two push-pull magnets are respectively disposed in each push-pull structure fixing groove.
  • the push-pull magnets are vertically magnetized, and the adjacent ends of the push-pull magnets disposed adjacent to each other have the same polarity, and the corresponding end polarities of the push-pull magnets in the same horizontal direction in the adjacent push-pull magnet fixing slots are respectively provided. in contrast.
  • the number of push-pull magnets can be increased/decreased according to the actual product requirements, for example, the number of push-pull magnets of more than three blocks and above is used, and is pushed in each two groups or groups.
  • a corresponding push-pull coil is arranged on the pull magnet to enhance the push-pull force of the push-pull structure and enhance the vibration of the linear vibration motor.
  • FIG. 5-1 shows a sectional structure of a linear vibration motor according to a third embodiment of the present invention
  • Fig. 5-2 shows the principle of a linear vibration motor according to a third embodiment of the present invention.
  • the linear vibration motor of the third embodiment of the present invention is filled with magnetic fluid between the push-pull coil and the adjacent push-pull magnet.
  • a magnetic gap is formed between the push-pull magnet and the push-pull coil, and the magnetic gap is filled with a flexible magnetic conductive member, and the flexible magnetic conductive member may be a magnetic fluid 12, wherein the magnetic fluid 12 is a magnetic colloid
  • the magnetic fluid 12 is a magnetic colloid
  • the outer layer of the long-chain surfactant is uniformly dispersed in the base liquid of water, organic solvent, oil, etc., thereby forming a uniform and stable. Colloidal solution.
  • the push-pull structure corresponding to the push-pull structure can be fixed in the groove, and then the magnetic fluid is inserted into the magnetic gap between the push-pull magnet and the push-pull coil, due to itself.
  • the magnetic magnetic fluid is actively adsorbed on the surface of the push-pull magnet, and the magnetic permeability between the push-pull magnet and the push-pull coil can be enhanced by the magnetic fluid to provide a stronger push-pull force for the vibrating block.
  • FIG. 6-1 and 6-2 respectively show an exploded structure and a sectional structure of a linear vibration motor according to a fourth embodiment of the present invention
  • Fig. 6-3 shows the principle of a linear vibration motor according to a fourth embodiment of the present invention.
  • the push-pull coil is an irregularly wound coil, wherein the position of the magnetic induction line of the push-pull coil corresponding to the push-pull magnet is concentrated. Increase the winding.
  • the push-pull coil may be a superimposed coil or a flat-wound coil (as shown in FIG. 6-4).
  • the winding on the unit area is increased by superposing the coil, thereby enhancing the force between the push-pull coil and the push-pull magnet.
  • the magnetic induction strength that can be received is different at different positions of the push-pull coil, and the push-pull coil can be designed to be wound irregularly, and the push-pull coil can be pushed and received in a push-pull coil.
  • the position of the magnetic field of the magnet is increased by winding to increase the magnetic field utilization of the push-pull magnet.
  • a relief structure corresponding to the push-pull coil and the magnetic conductive block is disposed in a middle portion of the mass, and a groove for accommodating the vibration block is disposed in the mass, and the vibration block is The glue is fixed in the groove.
  • the push-pull coil may be symmetrically disposed on one side or the upper and lower sides of the push-pull magnet, and the structure of the push-pull magnet is not limited to the two pairs of structures shown in the drawings, and may also be two of the grooves of the fixed vibrating block.
  • a set of push-pull magnets and a push-pull coil corresponding to the push-pull magnets are respectively disposed on the side, and the initial driving force can be provided for the vibrator.
  • the linear vibration motor of the present invention further includes a flexible printed circuit board (PFCB) 4 and an elastic support member 10; wherein the flexible circuit board 4 is fixedly connected to the outer casing; and the push-pull coil passes through the flexible circuit board 4.
  • the circuit is in communication with an external circuit.
  • the elastic support members 10 are respectively disposed at the left and right ends of the mass block 9, and the push-pull structure is disposed between the elastic support member 10 and the vibration block, and the elastic support member 9 is fixed between the vibrator and the outer casing to vibrate the vibrator. Provides elastic resilience.
  • the vibrator moves toward one end of the linear vibration motor until the resultant force of the two magnetic fields is less than the elastic force of the elastic support at one end of the mass, thereby Moving in the opposite direction until the resultant force of the two magnetic forces is less than the elastic force of the elastic support at the other end of the mass, thereby achieving reciprocation of the vibrator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

一种线性振动马达,包括外壳(1,11)、振子以及固定在外壳(1,11)上并且与振子平行设置的定子,振子包括质量块(9)及嵌设在质量块(9)中部的振动块,振动块包括永磁铁(7a,7b,7c);其中,在振动块的两端分别邻接有推挽结构;推挽结构包括嵌设在质量块(9)内的推挽磁铁(5a,5a',5b,5b',5c,5c',5d,5d'),以及固定在外壳上的推挽线圈(2a,2a',2b,2b');推挽磁铁(5a,5a',5b,5b',5c,5c',5d,5d')与相邻的永磁铁(7a,7b,7c)之间产生增强磁场的相互作用力;推挽线圈(2a,2a',2b,2b')在通电后与推挽磁铁(5a,5a',5b,5b',5c,5c',5d,5d')产生水平方向上的推挽力,为振子沿与定子所在平面平行的方向上的往复运动提供初始驱动力。所述线性振动马达能够充分利用推挽线圈的磁场,增强推挽力,实现磁场复用。

Description

线性振动马达 技术领域
本发明涉及消费电子技术领域,更为具体地,涉及一种应用于便携式消费电子产品的线性振动马达。
背景技术
随着通信技术的发展,便携式电子产品,如手机、掌上游戏机或者掌上多媒体娱乐设备等进入人们的生活。在这些便携式电子产品中,一般会用微型振动马达来做系统反馈,例如手机的来电提示、游戏机的振动反馈等。然而,随着电子产品的轻薄化发展趋势,其内部的各种元器件也需适应这种趋势,微型振动马达也不例外。
现有的微型振动马达,一般包括上盖、与上盖形成振动空间的下盖、在振动空间内做直线往复振动的振子(包括配重块和永磁铁)、连接上盖并使振子做往复振动的弹性支撑件、以及位于振子下方一段距离的线圈。
在上述这种结构的微型振动马达中,驱动振子振动的力量全部来源于振子和线圈之间的磁场力,由于振子和线圈之间的磁场力有限,使得振子振动的振感比较小,并且由于振子振动过程中相对于线圈位置的改变,使得振子的受力大小发生变化,直线振动响应速度不均匀,从而导致振子的振动产生非线性的变化,影响到电子产品的振感平衡。
发明内容
鉴于上述问题,本发明的目的是提供一种线性振动马达,利用推挽结构,为振子振动提供一个初始驱动力,从而推动振子在与定子所在平面平行的方向上做往复运动,并且通过改变现有技术中推挽结构设计的位置,不仅能够实现磁场的复用,增强推挽力,也能够为质量块两端的弹性支撑件避让出更大的设计空间。
根据本发明提供的线性振动马达,包括外壳、振子以及固定在外壳上并且与振子平行设置的定子,振子包括质量块及嵌设在质量块中部的振动块,振动块包括永磁铁;其中,在振动块的两端分别邻接有推挽结构;推挽结构包括嵌设在质量块内的推挽磁铁,以及固定在外壳上的推挽线圈;推挽磁铁与相邻的永磁铁之间产生增强磁场的相互作用力;推挽线圈在通电后与推挽磁铁产生水平方向上的推挽力,为振子沿与定子所在平面平行的方向上的往复运动提供推挽力。
可选地,定子包括导磁块,导磁块与振子相对设置,导磁块固定于外壳上,导磁块受到与振子的振动方向相同和/或者相反的磁场力的作用。
可选地,在质量块上对称设置有至少一对推挽磁铁固定槽;在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁以及位于两块推挽磁铁之间的导磁轭。
可选地,推挽磁铁为竖向充磁,永磁铁为水平充磁,永磁铁与相邻推挽磁铁的相邻端磁极相反。
可选地,在质量块上对称设置四对推挽磁铁固定槽,在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁,在外壳上固定有四个与推挽磁铁位置对应的推挽线圈;推挽线圈位于对应的推挽磁铁的上下两侧,并且推挽线圈的绕线方向与推挽磁铁的充磁方向垂直。
可选地,在推挽线圈与邻近的推挽磁铁之间填充有磁液。
可选地,推挽线圈为不规则绕制线圈,其中,在推挽线圈对应推挽磁铁的磁感线集中的位置增加绕线。
可选地,推挽线圈为叠加绕制线圈或者交错绕制线圈。
可选地,当振子处于平衡状态时,磁场力的合力为零;当导磁块受到推挽结构产生的推挽力的作用在振子的振动方向上与振子发生相对位移时,磁场力的合力方向与相对位移的方向相同,且,磁场力的合力大小与相对位移的大小成正比例关系。
可选地,在质量块的中部设置有与推挽线圈和导磁块相对应的避让结构;在质量块中设置有容纳振动块的凹槽;振动块以涂胶方式固定在凹槽内。
上述根据本发明的线性振动马达,跳出了现有的仅仅由振子和线圈的磁 场力提供驱动的马达设计思路,利用推挽结构,为振子振动提供初始驱动力,推动振子在与定子所在平面平行的方向上做往复运动;另外,本发明中,采用推挽结构与振动块的邻近设置方式,不仅能够实现振子的永磁铁所产生的磁场的复用,增强线性振动马达的振感,还能够为弹性支撑件的涉及避让出更多的空间。
为了实现上述以及相关目的,本发明的一个或多个方面包括后面将详细说明并在权利要求中特别指出的特征。下面的说明以及附图详细说明了本发明的某些示例性方面。然而,这些方面指示的仅仅是可使用本发明的原理的各种方式中的一些方式。此外,本发明旨在包括所有这些方面以及它们的等同物。
附图说明
通过参考以下结合附图的说明及权利要求书的内容,并且随着对本发明的更全面理解,本发明的其它目的及结果将更加明白及易于理解。在附图中:
图1为根据本发明实施例的线性振动马达的分解结构示意图;
图2为根据本发明实施例的线性振动马达的剖面结构示意图;
图3-1为根据本发明实施例的线性振动马达的原理示意图一;
图3-2为根据本发明实施例的线性振动马达的原理示意图二;
图4-1为根据本发明实施例二的线性振动马达的剖面结构示意图;
图4-2为根据本发明实施例二的线性振动马达的原理示意图;
图5-1为根据本发明实施例三的线性振动马达的剖面结构示意图;
图5-2为根据本发明实施例三的线性振动马达的原理意图;
图6-1为根据本发明实施例四的线性振动马达的分解结构示意图
图6-2为根据本发明实施例四的线性振动马达的剖面结构示意图;
图6-3为根据本发明实施例四的线性振动马达的原理示意图;
图6-4为根据本发明实施例四的线性振动马达的推挽线圈结构示意图。
在所有附图中相同的标号指示相似或相应的特征或功能。
具体实施方式
在下面的描述中,出于说明的目的,为了提供对一个或多个实施例的全面理解,阐述了许多具体细节。然而,很明显,也可以在没有这些具体细节的情况下实现这些实施例。在其它例子中,为了便于描述一个或多个实施例,公知的结构和设备以方框图的形式示出。
在下述具体实施方式的描述中所用到的“质量块”也可以称作“配重块”,均指与产生振动的振动块固定以加强振动平衡的高质量、高密度金属块。
另外,本发明主要用于微型振动马达的改进,但是也不排除将本发明中的技术应用于大型振动马达。但是为了表述的方便,在以下的实施例描述中,“线性振动马达”和“微型振动马达”表示的含义相同。
为详细描述本发明的线性振动马达的结构,以下将结合附图对本发明的具体实施例进行详细描述。
为了解决现有的微型振动马达结构中由于振子的磁铁和定子线圈提供的驱动力不均衡而造成的振感不平衡问题,本发明提供的线性振动马达,以导磁块替代定子线圈,克服了定子线圈由于通电方向的改变和电流大小不稳定所导致的受力不均衡问题,通过振动块所产生的磁场增强推挽结构的磁场,实现线性振动马达驱动部分的磁场复用,此外,也能够为弹性支撑件的设计避让出更多的空间。
图1示出了根据本发明实施例的线性振动马达的分解结构;图2示出了根据本发明实施例的线性振动马达的剖面结构;图3-1示出了为根据本发明实施例的线性振动马达的原理。
如图1至图3-1所示,本发明实施例的线性振动马达,包括外壳(包括长方体结构的上壳1以及与上壳1适配连接固定的板状结构的下壳11)、振子以及固定在外壳上并且与振子平行设置的定子,振子包括质量块9及嵌设在质量块9中部的振动块,振动块包括至少一块永磁铁;其中,在振动块的两端分别邻接有推挽结构,推挽结构包括嵌设在质量块内的推挽磁铁,以及固定在外壳上的推挽线圈,通过推挽磁铁与推挽线圈的配合作用,为振子的振动提供推挽力;其中,推挽磁铁与相邻的永磁铁之间能够产生增强磁场的相互作用力,即永磁铁所产生的磁场也能够作用在推挽结构上,从而实现线 性振动马达驱动部分的磁场复用。
此外,将推挽结构邻接设置在振动块的两端也能够为振动块两端的弹性支撑件的设计避让出更多的空间,结构更加合理。推挽线圈在通电后与推挽磁铁产生水平方向上的推挽力,为振子沿与定子所在平面平行的方向上的往复运动提供初始驱动力,在永磁铁所产生的磁场与推挽结构的相互作用,能够增强推挽力,从而增强线性振动马达的振感。
具体地,图3-2示出了根据本发明实施例的线性振动马达的原理二。
如图3-2所示,由于质量块的宽度d1小于d2,将推挽结构设置在振动块的邻接两侧,将弹性支撑件设置在质量块的两端,能够为弹性支撑件的设计预留出足够的空间,并且能够实现振动块磁场与推挽线圈的相互作用力,实现永磁铁产生的磁场的重复利用,结构更加优化,线性振动马达的振动效果也更加显著。
在本发明的一个具体实施方式中,在质量块上对称设置有至少一对推挽磁铁固定槽,在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁以及位于两块推挽磁铁之间的导磁轭。其中,推挽磁铁为竖向充磁,永磁铁为水平充磁,永磁铁与相邻推挽磁铁的相邻端磁极相反。
具体地,如附图1至图3-1所示,在质量块上对称设置二对(四个)推挽磁铁固定槽,即在振动块的两侧分别设置有两个推挽磁铁固定槽,在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁,在外壳上固定有四个与推挽磁铁位置对应的推挽线圈,推挽线圈位于对应的推挽磁铁的上下两侧,并且推挽线圈的绕线方向与推挽磁铁的充磁方向垂直。
其中,位于振动块邻接一侧的推挽磁铁,包括位于同一个推挽磁铁固定槽内的推挽磁铁5a、5a’,以及位于推挽磁铁5a、5a’之间的导磁轭6a;其中,推挽磁铁5a与推挽磁铁5a’呈竖向分布,且其邻接端的极性相同,例如推挽磁铁5a的充磁方向为竖向的S-N,则推挽磁铁5a’的充磁方向为竖向的N-S;或者推挽磁铁5a的充磁方向为竖向的N-S,推挽磁铁5a’的充磁方向为竖向的S-N均可。
此外,位于振动块邻接一侧的推挽磁铁,还包括固定在与推挽磁铁5a、5a’所在的推挽磁铁固定槽相平行的另一推挽磁铁固定槽内的推挽磁铁5d、5d’,推挽磁铁5a、5a’和推挽磁铁5d、5d’相互平行,且其位于同一水平方 向上的推挽磁铁5d和推挽磁铁5a的充磁方向相反,即推挽磁铁5d的充磁方向为竖向的N-S,推挽磁铁5d’的充磁方向为竖向的S-N;或者推挽磁铁5d的充磁方向为竖向的S-N,推挽磁铁5d’的充磁方向为竖向的N-S。
其中,在推挽磁铁5a、5d的上侧设置有推挽线圈2a,该推挽线圈固定在外壳上并与推挽磁铁平行设置,推挽线圈的绕线方向与相应的推挽磁铁的充磁方向相垂直。在推挽磁铁5a’、5d’的下侧设置有推挽线圈2a’,该推挽线圈固定在外壳上并与相应推挽磁铁平行设置,推挽线圈的绕线方向与推挽磁铁的充磁方向相垂直。
同理,位于振动块邻接的另一侧的推挽磁铁,包括推挽磁铁5b、5b’,位于推挽磁铁5b、5b’之间的导磁块6b;推挽磁5c、5c’,以及位于推挽磁5c、5c’之间的导磁块6c,在推挽磁铁5b、5c的上侧设置有推挽线圈2b,在推挽线圈5b’、5c’的下侧设置有推挽线圈2b’。其中,推挽磁铁5b、5b’、5c、5c’的充磁方向及位置结构与推挽磁铁5a、5a’、5d、5d’相类似,此处不再赘述。
可知,在振动块振动的过程中,推挽磁铁与相邻的永磁铁之间能够产生增强磁场的相互作用力,即永磁铁所产生的磁场也能够作用在推挽结构上,从而实现线性振动马达驱动部分的磁场复用,增强推挽结构的推挽力度。
在本发明的另一个具体实施方式中,定子包括固定于外壳上的导磁块3a、3b,导磁块3a、3b在振子的振动方向受到两个方向相同和/或者相反的磁场力的作用;其中,当振子处于平衡状态时,两个磁场力的合力为零;当导磁块3a、3b受到上述推挽结构产生的推挽力即初始驱动力的作用在振子的振动方向上与振子发生相对位移时,两个磁场力的合力方向与相对位移的方向相同,并且,两个磁场力的合力大小与相对位移的大小成正比例关系。
其中,振动块包括三块邻接设置、水平方向充磁的永磁铁,并且相邻接设置的永磁铁的邻接端极性相同,导磁块为片状结构,设置在中心振动块的中间位置的永磁铁的上下两侧,并且相对于中心振动块的中心对称。
中心振动块包括依次排列的第一永磁铁7a、第二永磁铁7b和第三永磁铁7c,在第一永磁铁7a和第二永磁铁7b之间设置有第一导磁轭8a,在第二永磁铁7b与第三永磁铁7c之间设置有第二导磁轭8b,在第二永磁铁7b的上侧设置有第一导磁块3a,在第二永磁铁7b的下侧设置有第二导磁块3b, 第一导磁块3a和第二导磁块3b均固定在外壳上,且与第二永磁铁7b之间存在一定的间隙。其中,第一导磁块3a和第二导磁块3b关于第二永磁铁7b呈对称分布,并且在振子处于平衡静止状态时,第一导磁块3a和第二导磁块3b与第一永磁铁7a和第三永磁铁7c的端部之间的距离相同。
需要说明的是,导磁块也可以对称或者不对称分布与振动块的上下两侧,后者将导磁块设置在振动块的一侧。例如,振动块包括三块相邻接的永磁铁;三块相邻接的永磁铁均为水平方向充磁,且,相邻接的永磁铁的邻接端极性相同;而导磁块设有两块,两块导磁块对称设置在振动块的上侧和下侧,并且,两块导磁块均对应振动块的中间位置的永磁铁设置。
或者振动块包括一块永磁铁,导磁块设置有两块,并且两块导磁块均位于振动块的上侧或下侧;或者,两块导磁块分别对应永磁铁的左端和右端分布,并且关于永磁铁的中心轴线对称。
或者,振动块包括三块邻接设置的永磁铁,三块相邻接的永磁铁均为水平方向充磁,且,相邻接的永磁铁的邻接端极性相同,导磁块为六块,六块导磁块分别对称设置在三块相邻接的永磁铁的上下两侧。
其中,振动块包括三块邻接设置的永磁铁,三块相邻接的永磁铁均为水平方向充磁,且,相邻接的永磁铁的邻接端极性相同;导磁块设有两块;两块导磁块非对称设置在振动块的上下两侧;并且,非对称设置在振动块上下两侧的导磁块关于振动块的中心对称。
在振子处于平衡状态时,第一导磁块3a受到的两个大小相同、方向相反的磁场力F1、F2;当第一导磁块3a在振子(包括永磁铁7a、7b、7c以及设置在邻接设置的永磁铁之间的导磁轭8a、8b)的振动方向上与振子发生向右的相对位移d时,第一导磁块3a受到的磁场力F1小于F2,即第一导磁块3a的位移(由于导磁块是固定在外壳上的,此处的位移为与永磁铁之间的相对位移)变动为d时,第一导磁块3a所受到的磁场力dF=F2-F1=Kd>0,其中,K为导磁块受到磁场力的比例系数,K与导磁块、永磁铁的尺寸以及二者之间的位置有关。同理,第二导磁块3b受到的磁场力dF=F4-F3=Kd>0,第一导磁块3a和第二导磁块3b的共同作用下,驱动振动块沿与导磁块平行的方向振动。
可知,在导磁块在振子的振动方向上与振子发生相对位移时,两个磁场 力的合力方向与导磁块相对位移的方向相同,并且,两个磁场力的合力大小与相对位移的大小成正比例关系,从而实现导磁块的逆刚度变化,确保振子能够产生谐振,振感效果更加显著。
实施例二
图4-1示出了根据本发明实施例二的线性振动马达的剖面结构;图4-2示出了根据本发明实施例二的线性振动马达的原理结构。
如图4-1和图4-2共同所示,本发明实施例二的线性振动马达,为增加推挽结构的导磁强度,提高振子的振动幅度,设置有三组(六个)与振动块邻接设置的推挽结构固定槽,在每个推挽结构固定槽内,分别设置有两块推挽磁铁及位于两块推挽磁铁之间的导磁轭。
其中,推挽磁铁均为竖向充磁,且邻接设置的推挽磁体的邻接端极性相同,邻接设置的推挽磁铁固定槽内的位于同一水平方向上的推挽磁铁的对应端极性相反。
本发明在具体应用的过程中,也可以根据实际的产品需要增加/减少推挽磁铁的组数,比如,采用超过三块及以上的推挽磁铁组数,并在每两组或每组推挽磁铁上设置对应的推挽线圈,以增强推挽结构的推挽力,增强线性振动马达的振感。
实施例三
图5-1示出了根据本发明实施例三的线性振动马达的剖面结构;图5-2示出了根据本发明实施例三的线性振动马达的原理。
如图5-1和图5-2共同所示,本发明实施例三的线性振动马达,在推挽线圈与邻近的推挽磁铁之间填充有磁液。其中,推挽磁铁和推挽线圈之间形成磁间隙,在该磁间隙内填充有柔性导磁件,该柔性导磁件可以为磁液12,其中,磁液12为一种具有磁性的胶体物质,主要是指纳米级的磁性粒子(镍、钴、铁氧化物等)外层包裹长链的表面活性剂均匀的分散于水、有机溶剂、油等基液中,从而形成一种均匀稳定的胶体溶液。
由于磁液具有一定的磁性,装配时,可先将推挽结构相对应设置的推挽结构固定槽内,然后向推挽磁铁和推挽线圈之间的磁间隙内打入磁液,由于自身的磁性磁液会主动吸附于推挽磁铁的表面,能够通过磁液增强推挽磁铁与推挽线圈之间的导磁强度,为振动块提供更强的推挽力。
实施例四
图6-1和图6-2分别示出了根据本发明实施例四的线性振动马达的分解结构和剖面结构;图6-3示出了根据本发明实施例四的线性振动马达的原理。
如图6-1至图6-3所示,本发明实施例四的线性振动马达,推挽线圈为不规则绕制线圈,其中,在推挽线圈对应推挽磁铁的磁感线集中的位置增加绕线。具体地,推挽线圈可以为叠加绕制线圈或者偏平交错绕制线圈(如图6-4所示)。
在绕制推挽线圈的过程中,通过叠加绕制线圈来增加单位面积上的绕线,从而增强推挽线圈和推挽磁铁之间的作用力。另外,考虑到推挽磁铁的磁场分布,在推挽线圈的不同位置,能够接收到的磁感应强度也不同,也可以将推挽线圈设计为不规则绕制线圈,在推挽线圈集中接受推挽磁铁磁场的位置增加绕线,以提高推挽磁铁的磁场利用率。
需要说明的是,在上述各具体实施方式中,在质量块的中部设置有与推挽线圈和导磁块相对应的避让结构,在质量块中设置有容纳振动块的凹槽,振动块以涂胶方式固定在凹槽内。
此外,推挽线圈可以对称设置在推挽磁铁的一侧或者上、下两侧,推挽磁铁的结构不限于附图中所示的两对结构,也可以在固定振动块的凹槽的两侧分别设置一组推挽磁铁以及与推挽磁铁相对应的推挽线圈,能够为振子提供初始驱动力即可。
本发明的线性振动马达,还包括柔性线路板(PFCB,Flexible Printed Circuit Board)4和弹性支撑件10;其中,柔性线路板4与外壳固定连接;以及,推挽线圈通过柔性线路板4上的电路与外部电路连通。弹性支撑件10分别设置在质量块9的左右两端,推挽结构设置在弹性支撑件10与振动块之间,通过将弹性支撑件9限位固定在振子和外壳之间,为振子的振动提供弹性恢复力。
其中,在导磁块在振子的振动方向上与振子发生相对位移时,振子向线性振动马达的一端运动,直至其受到的两个磁场力的合力小于质量块一端的弹性支撑件的弹力,从而向相反的方向运动,直至其受到的两个磁场力的合力小于质量块另一端的弹性支撑件的弹力,从而实现振子的往复运动。
如上参照图附图以示例的方式描述根据本发明的线性振动马达。但是,本领域技术人员应当理解,对于上述本发明所提出的线性振动马达,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。

Claims (10)

  1. 一种线性振动马达,包括外壳、振子以及固定在所述外壳上并且与所述振子平行设置的定子,所述振子包括质量块及嵌设在所述质量块中部的振动块,所述振动块包括永磁铁;其特征在于,
    在所述振动块的两端分别邻接有推挽结构;
    所述推挽结构包括嵌设在所述质量块内的推挽磁铁,以及固定在所述外壳上的推挽线圈;
    所述推挽磁铁与相邻的所述永磁铁之间产生增强磁场的相互作用力;
    所述推挽线圈在通电后与所述推挽磁铁产生水平方向上的推挽力,为所述振子沿与所述定子所在平面平行的方向上的往复运动提供推挽力。
  2. 如权利要求1所述的线性振动马达,其特征在于,
    所述定子包括导磁块,所述导磁块与所述振子相对设置,所述导磁块固定于所述外壳上,所述导磁块受到与所述振子的振动方向相同和/或者相反的磁场力的作用。
  3. 如权利要求1或2所述的线性振动马达,其特征在于,
    在所述质量块上对称设置有至少一对推挽磁铁固定槽;
    在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁以及位于所述两块推挽磁铁之间的导磁轭。
  4. 如权利要求1-3任意之一所述的线性振动马达,其特征在于,
    所述推挽磁铁为竖向充磁,所述永磁铁为水平充磁,所述永磁铁与相邻所述推挽磁铁的相邻端磁极相反。
  5. 如权利要求1-4任意之一所述的线性振动马达,其特征在于,
    在所述质量块上对称设置四对推挽磁铁固定槽,在每个推挽磁铁固定槽内收容有竖向分布的两块推挽磁铁,
    在所述外壳上固定有四个与所述推挽磁铁位置对应的推挽线圈;
    所述推挽线圈位于对应的推挽磁铁的上下两侧,并且所述推挽线圈的绕线方向与所述推挽磁铁的充磁方向垂直。
  6. 如权利要求1-5任意之一所述的线性振动马达,其特征在于,
    在所述推挽线圈与邻近的推挽磁铁之间填充有磁液。
  7. 如权利要求1-6任意之一所述的线性振动马达,其特征在于,
    所述推挽线圈为不规则绕制线圈,其中,在所述推挽线圈对应所述推挽磁铁的磁感线集中的位置增加绕线。
  8. 如权利要求1-7任意之一所述的线性振动马达,其特征在于,
    所述推挽线圈为叠加绕制线圈或者交错绕制线圈。
  9. 如权利要求1-8任意之一所述的线性振动马达,其特征在于,
    当所述振子处于平衡状态时,所述磁场力的合力为零;
    当所述导磁块受到所述推挽结构产生的推挽力的作用在所述振子的振动方向上与所述振子发生相对位移时,所述磁场力的合力方向与相对位移的方向相同,且,所述磁场力的合力大小与所述相对位移的大小成正比例关系。
  10. 如权利要求1-9任意之一所述的线性振动马达,其特征在于,
    在所述质量块的中部设置有与所述推挽线圈和所述导磁块相对应的避让结构;
    在所述质量块中设置有容纳所述振动块的凹槽;
    所述振动块以涂胶方式固定在所述凹槽内。
PCT/CN2016/084794 2016-02-05 2016-06-03 线性振动马达 WO2017133152A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/075,221 US11469656B2 (en) 2016-02-05 2016-06-03 Linear vibrating motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610082045.7 2016-02-05
CN201610082045.7A CN105529896B (zh) 2016-02-05 2016-02-05 线性振动马达

Publications (1)

Publication Number Publication Date
WO2017133152A1 true WO2017133152A1 (zh) 2017-08-10

Family

ID=55771946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084794 WO2017133152A1 (zh) 2016-02-05 2016-06-03 线性振动马达

Country Status (3)

Country Link
US (1) US11469656B2 (zh)
CN (1) CN105529896B (zh)
WO (1) WO2017133152A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114807A (zh) * 2021-04-07 2021-07-13 Oppo广东移动通信有限公司 电子设备及其控制方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529896B (zh) * 2016-02-05 2019-01-11 歌尔股份有限公司 线性振动马达
CN105656274B (zh) * 2016-03-11 2018-09-07 歌尔股份有限公司 一种线性振动马达
CN105896870B (zh) * 2016-05-26 2018-01-26 歌尔股份有限公司 线性振动马达
CN106357082B (zh) * 2016-10-24 2019-01-04 歌尔股份有限公司 一种振动马达中的驱动结构及振动马达
CN106849587B (zh) * 2017-03-14 2022-04-05 歌尔股份有限公司 线性振动马达及电子设备
JP6818869B2 (ja) * 2017-03-21 2021-01-20 三菱電機株式会社 電動機および送風装置
CN114825841A (zh) * 2017-06-30 2022-07-29 日本电产三协株式会社 致动器
JP7156411B2 (ja) * 2019-02-05 2022-10-19 株式会社村田製作所 振動子支持構造、振動モータおよび電子機器
WO2020170927A1 (ja) * 2019-02-19 2020-08-27 株式会社村田製作所 リニア振動モータ及びリニア振動システム
JP7386062B2 (ja) * 2019-05-13 2023-11-24 アルプスアルパイン株式会社 振動発生装置
WO2020258265A1 (zh) * 2019-06-28 2020-12-30 瑞声声学科技(深圳)有限公司 一种振动电机
WO2021000184A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 振动电机
US11563364B2 (en) * 2019-09-05 2023-01-24 Foxconn (Kunshan) Computer Connector Co., Ltd. Shaftless linear resonant actuator with interface between magnets and masses having blind holes for glue
CN112954090B (zh) * 2019-12-10 2023-02-07 Oppo广东移动通信有限公司 屏幕发声设备
CN216649500U (zh) * 2020-06-12 2022-05-31 瑞声科技(南京)有限公司 线性马达
CN216356413U (zh) * 2020-07-10 2022-04-19 日本电产株式会社 振动马达及触觉器件
CN215772886U (zh) * 2020-07-10 2022-02-08 日本电产株式会社 振动马达及触觉器件
TWI755077B (zh) * 2020-09-28 2022-02-11 台睿精工股份有限公司 線性震動馬達
JP2022102876A (ja) * 2020-12-25 2022-07-07 日本電産株式会社 振動モータ、および、触覚デバイス
CN214314997U (zh) * 2020-12-25 2021-09-28 瑞声光电科技(常州)有限公司 振动马达
US11831215B2 (en) * 2021-05-06 2023-11-28 Aac Microtech (Changzhou) Co., Ltd. Linear vibration motor
CN113556018A (zh) * 2021-08-27 2021-10-26 中国船舶重工集团公司第七一一研究所 电磁式执行机构及电磁式振动控制装置
US11716003B1 (en) * 2022-03-08 2023-08-01 The United States Of America, As Represented By The Secretary Of The Navy Electromagnetic arrays
CN117412226A (zh) * 2023-02-21 2024-01-16 东莞市惟动智能科技有限公司 磁圈并联型推挽式非线性抵消的动圈振子及应用

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608373A1 (en) * 2011-12-22 2013-06-26 Young Jin Hitech Co., Ltd. Linear vibration device
CN105262310A (zh) * 2015-11-25 2016-01-20 歌尔声学股份有限公司 线性振动马达
CN105281527A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达
CN105281528A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达
CN105305764A (zh) * 2015-11-25 2016-02-03 歌尔声学股份有限公司 线性振动马达
CN105356710A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN105356711A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN105356712A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN205178827U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN205178826U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN205178828U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN105529898A (zh) * 2016-02-05 2016-04-27 歌尔声学股份有限公司 线性振动马达
CN105529896A (zh) * 2016-02-05 2016-04-27 歌尔声学股份有限公司 线性振动马达
CN205283369U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205283366U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205283368U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205283367U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205283365U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205430022U (zh) * 2015-11-25 2016-08-03 歌尔声学股份有限公司 线性振动马达
CN205490072U (zh) * 2016-02-05 2016-08-17 歌尔声学股份有限公司 线性振动马达
CN205490071U (zh) * 2016-02-05 2016-08-17 歌尔声学股份有限公司 线性振动马达
CN205566063U (zh) * 2016-02-05 2016-09-07 歌尔声学股份有限公司 线性振动马达
CN205566064U (zh) * 2016-02-05 2016-09-07 歌尔声学股份有限公司 线性振动马达
CN205583985U (zh) * 2016-02-05 2016-09-14 歌尔声学股份有限公司 线性振动马达
CN205583980U (zh) * 2016-02-05 2016-09-14 歌尔声学股份有限公司 线性振动马达
CN205595987U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN205595997U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN205595988U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN205622462U (zh) * 2016-02-05 2016-10-05 歌尔声学股份有限公司 线性振动马达

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585424A (en) * 1970-01-28 1971-06-15 Jaz Sa Electromechanical oscillator with frequency adjustment means
DE4222292C2 (de) * 1991-07-31 1996-03-07 Siemens Ag Wicklungsspule für eine elektrische Maschine
JPH11155274A (ja) * 1997-11-21 1999-06-08 Star Micronics Co Ltd 振動装置
JP2008220020A (ja) * 2007-03-02 2008-09-18 Jtekt Corp 可動磁石型リニアモータ
JP2012152028A (ja) * 2011-01-19 2012-08-09 Denso Corp 回転電機
KR101308317B1 (ko) * 2013-03-19 2013-10-04 장석호 분할 코일체를 갖는 코일판과 분할 자석을 갖는 왕복 이동형 자석판을 이용한 발전겸용 전동장치
US20150123507A1 (en) * 2013-11-05 2015-05-07 Vladimir Grigorievich Degtyar Electric Generator for Wind Power Installation
JP6086570B2 (ja) * 2014-03-19 2017-03-01 三菱電機エンジニアリング株式会社 振動発電機
CN104660106B (zh) * 2015-02-02 2017-04-12 瑞声精密电子沭阳有限公司 扁平线性振动电机
CN105281529B (zh) * 2015-11-25 2017-12-19 歌尔股份有限公司 线性振动马达

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2608373A1 (en) * 2011-12-22 2013-06-26 Young Jin Hitech Co., Ltd. Linear vibration device
CN205283366U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205178827U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN105281528A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达
CN105305764A (zh) * 2015-11-25 2016-02-03 歌尔声学股份有限公司 线性振动马达
CN105356710A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN105356711A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN105356712A (zh) * 2015-11-25 2016-02-24 歌尔声学股份有限公司 线性振动马达
CN205283365U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205178826U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN205178828U (zh) * 2015-11-25 2016-04-20 歌尔声学股份有限公司 线性振动马达
CN205283369U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN105262310A (zh) * 2015-11-25 2016-01-20 歌尔声学股份有限公司 线性振动马达
CN205283368U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN105281527A (zh) * 2015-11-25 2016-01-27 歌尔声学股份有限公司 线性振动马达
CN205430022U (zh) * 2015-11-25 2016-08-03 歌尔声学股份有限公司 线性振动马达
CN205283367U (zh) * 2015-11-25 2016-06-01 歌尔声学股份有限公司 线性振动马达
CN205595997U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN205490072U (zh) * 2016-02-05 2016-08-17 歌尔声学股份有限公司 线性振动马达
CN205622462U (zh) * 2016-02-05 2016-10-05 歌尔声学股份有限公司 线性振动马达
CN205490071U (zh) * 2016-02-05 2016-08-17 歌尔声学股份有限公司 线性振动马达
CN205566063U (zh) * 2016-02-05 2016-09-07 歌尔声学股份有限公司 线性振动马达
CN205566064U (zh) * 2016-02-05 2016-09-07 歌尔声学股份有限公司 线性振动马达
CN205583985U (zh) * 2016-02-05 2016-09-14 歌尔声学股份有限公司 线性振动马达
CN205583980U (zh) * 2016-02-05 2016-09-14 歌尔声学股份有限公司 线性振动马达
CN205595987U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN105529896A (zh) * 2016-02-05 2016-04-27 歌尔声学股份有限公司 线性振动马达
CN205595988U (zh) * 2016-02-05 2016-09-21 歌尔声学股份有限公司 线性振动马达
CN105529898A (zh) * 2016-02-05 2016-04-27 歌尔声学股份有限公司 线性振动马达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114807A (zh) * 2021-04-07 2021-07-13 Oppo广东移动通信有限公司 电子设备及其控制方法
CN113114807B (zh) * 2021-04-07 2023-09-01 Oppo广东移动通信有限公司 电子设备及其控制方法

Also Published As

Publication number Publication date
CN105529896A (zh) 2016-04-27
US11469656B2 (en) 2022-10-11
US20190044425A1 (en) 2019-02-07
CN105529896B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2017133152A1 (zh) 线性振动马达
US10079531B2 (en) Linear vibration motor
US10076771B2 (en) Linear vibration motor
KR101259683B1 (ko) 수평 진동 모터
US10819204B2 (en) Vibration motor
WO2017088359A1 (zh) 线性振动马达
CN205583985U (zh) 线性振动马达
CN105703593B (zh) 线性振动马达
WO2017133132A1 (zh) 线性振动马达
WO2017088366A1 (zh) 线性振动马达
US10384232B2 (en) Linear vibration motor
WO2017088367A1 (zh) 线性振动马达
US10931185B2 (en) Linear vibration motor
US20200412228A1 (en) Vibration motor
WO2017088421A1 (zh) 线性振动马达
WO2021000090A1 (zh) 振动电机
US20200212775A1 (en) Linear Vibration Motor
WO2021237786A1 (zh) 线性振动电机
WO2021174560A1 (zh) 线性马达
WO2021000087A1 (zh) 振动电机
US11309781B2 (en) Linear vibration motor
CN208675082U (zh) 线性振动电机
CN208589900U (zh) 线性振动电机
US11031855B2 (en) Linear vibration motor
CN208589890U (zh) 线性振动电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888973

Country of ref document: EP

Kind code of ref document: A1