WO2017133015A1 - 一种单级三相电源转换装置及输电装置 - Google Patents

一种单级三相电源转换装置及输电装置 Download PDF

Info

Publication number
WO2017133015A1
WO2017133015A1 PCT/CN2016/073714 CN2016073714W WO2017133015A1 WO 2017133015 A1 WO2017133015 A1 WO 2017133015A1 CN 2016073714 W CN2016073714 W CN 2016073714W WO 2017133015 A1 WO2017133015 A1 WO 2017133015A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
source
connection end
conversion
power
Prior art date
Application number
PCT/CN2016/073714
Other languages
English (en)
French (fr)
Inventor
陈威伦
陈迪夫
Original Assignee
陈威伦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈威伦 filed Critical 陈威伦
Priority to PCT/CN2016/073714 priority Critical patent/WO2017133015A1/zh
Priority to EP16888839.4A priority patent/EP3413453A4/en
Priority to CN201680081164.9A priority patent/CN108604868B/zh
Publication of WO2017133015A1 publication Critical patent/WO2017133015A1/zh
Priority to US16/054,876 priority patent/US10389267B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a three-phase switching power supply circuit, in particular to a single-stage three-phase power conversion device and a power transmission device.
  • FIG. 1 is a schematic diagram of a mainstream three-phase high frequency AC/DC switching power supply topology circuit application in the prior art.
  • the three-phase power supply 100 passes through a three-phase power factor correction unit of a "Vienna" structure composed of a high frequency inductor 101, a diode 102, a triode 103 and a storage capacitor 104, and a DC/DC power conversion unit 105, which constitutes a three-phase two-stage High frequency switching power supply topology circuit application program.
  • a three-phase power factor correction unit of a "Vienna" structure composed of a high frequency inductor 101, a diode 102, a triode 103 and a storage capacitor 104, and a DC/DC power conversion unit 105, which constitutes a three-phase two-stage High frequency switching power supply topology circuit application program.
  • a three-phase power factor correction unit of a "Vienna" structure composed of a high frequency inductor 101, a
  • three high frequency switching transistors 103 will also significantly increase the overall cost of the power supply.
  • the two high voltage storage capacitors 104 will hinder the further improvement of the service life of the power supply, and the fifth is the "Vienna" preamplifier with power factor correction.
  • Can not be used for buck can only be used in boost mode, so the output voltage is too high, the processing pressure for subsequent circuits is very high.
  • the control loop algorithm strategy of the three-phase high frequency switch is highly complex.
  • FIG. 2 shows another topology circuit application scheme of the three-phase high-frequency inverter switching power supply in the prior art.
  • the three-phase power supply 200 passes through twelve high frequency switching transistors 201 and six high frequency switching diodes 202 to form a three-phase power frequency rectification or commutation unit, and two filter storage capacitors 203 and two DC/DC power supplies.
  • the conversion unit constitutes a three-phase single-stage high-frequency switching power supply topology circuit, which can be a three-phase AC/DC application scheme, or a DC/AC three-phase application scheme, or a three-phase power bidirectional converter application scheme.
  • the embodiment of the invention provides a single-stage three-phase power conversion device for implementing AC/DC or DC/AC conversion between a three-phase AC source and a DC source, the single-stage three
  • the phase power conversion device comprises: a three-phase rectifier converter module and a DC/DC conversion module;
  • the three-phase rectifier converter module has a three-phase AC connection terminal, a DC source first connection end, a DC source second connection end, and a DC source third connection end, and the DC/DC conversion module has a first connection end and a second connection end. a connection end, a third connection end, a DC source connection positive end, and a DC source connection negative end;
  • the three-phase AC source is connected to the three-phase AC connection end of the three-phase rectification converter module, and the first connection end of the DC source of the three-phase rectification converter module is connected to the first connection end of the DC/DC conversion module,
  • the second connection end of the DC source is connected to the second connection end of the DC/DC conversion module,
  • the third connection end of the DC source is connected to the third connection end of the DC/DC conversion module, and the positive end of the DC source is connected to the DC/DC
  • the DC source of the conversion module is connected to the positive terminal, and the negative terminal of the DC source is connected to the DC source connection negative terminal of the DC/DC converter module.
  • the DC/AC power inverter conversion, the power conversion scheme provided by the invention further improves the power conversion efficiency while having complete power factor correction.
  • the present invention further provides a power transmission device for transmitting power of a first three-phase AC power grid to a second three-phase AC power grid, wherein the power transmission device includes: two three-phase rectifier converter modules;
  • the two three-phase rectification converter modules respectively have a three-phase AC connection end, a DC source first connection end, a DC source second connection end, and a DC source third connection end;
  • the three-phase AC connection end of the three-phase rectification converter module is connected to the first three-phase AC power grid, and the first connection end of the DC source of the three-phase rectification converter module is connected to the DC source of another three-phase rectification converter module
  • the first connection end, the second connection end of the DC source is connected to the second connection end of the DC source of the other three-phase rectification converter module, and the third connection end of the DC source is connected to the DC source of the third three-phase rectification converter module.
  • the three-phase AC connection of the other three-phase rectifier converter module is connected to the second three-phase AC grid.
  • FIG. 2 is another topology circuit of a three-phase high frequency inverter switching power supply in the prior art
  • FIG. 3 is a structural block diagram of a single-stage three-phase power conversion device according to the present disclosure
  • FIG. 4 is a block diagram of a single-stage three-phase power conversion device according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a single-stage switching power supply disclosed by the present invention.
  • FIG. 6 is a structural block diagram of a three-phase single-stage bidirectional switching power supply circuit according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing the circuit structure of an embodiment of a three-phase single-stage unidirectional switching power supply according to the present invention.
  • Figure 8 is a schematic view of a power transmission device according to the present invention.
  • FIG. 9 is a circuit structural diagram of a three-phase single-stage two-level switching power supply transmission embodiment according to the present invention.
  • FIG. 10 is a circuit structural diagram of a three-phase single-stage three-level switching power supply transmission embodiment according to the present invention.
  • FIG. 3 it is a structural block diagram of a single-stage three-phase power conversion device disclosed for realizing AC/DC or DC/AC conversion between a three-phase AC source and a DC source, and a single-stage three-phase
  • the power conversion device includes: a three-phase rectification converter module 301 and a DC/DC conversion module 302; the three-phase rectification converter module 301 has a three-phase AC connection terminal, a DC source first connection end 3011, a DC source second connection end 3012, and The DC source third connection end 3013, the DC/DC conversion module has a first connection end 3021, a second connection end 3022, a third connection end 3023, a DC source connection positive end, and a DC source connection negative end;
  • the three-phase AC source is connected to the three-phase AC connection end of the three-phase rectifier converter module, and the DC source first connection end 3011 of the three-phase rectifier converter module is connected to the first connection end 3021 of the DC/DC conversion module, the DC source Two connection end 3012 Connected to the second connection end 3022 of the DC/DC converter module, the DC source third connection end 3013 is connected to the third connection end 3023 of the DC/DC conversion module, and the positive end of the DC source is connected to the DC source of the DC/DC conversion module Connect the positive terminal, and the negative terminal of the DC source is connected to the DC source connection negative terminal of the DC/DC converter module.
  • FIG. 4 it is a block diagram of a single-stage three-phase power conversion device disclosed in an embodiment of the present invention.
  • the three-phase rectification converter module is configured to convert three-phase alternating current input from a three-phase alternating current source into a first direct current source and a second direct current source, and the DC/DC conversion module pairs
  • the first direct current source and the second direct current source perform power conversion, and are converted into direct current output to a direct current source
  • a three-phase rectifying unit is configured to convert three-phase alternating current into a first direct current source
  • a three-phase commutating unit is used for descending
  • the three-phase alternating current is converted to a second direct current source.
  • the DC/DC conversion module converts the DC source into a first DC source and a second DC source
  • the three-phase rectifier converter module converts the first DC source and the The two DC sources are converted into three-phase AC power outputs to the three-phase AC power source.
  • the three-phase rectifying unit converts the first direct current source into three-phase alternating current; the three-phase commutating unit converts the second direct current source into three-phase alternating current.
  • a three-phase single-stage switching power supply disclosed in the embodiment of the present invention, as shown in FIG. 5 is a structural principle block diagram of the single-stage switching power supply disclosed in the present invention.
  • the three-phase single-stage switching power supply disclosed in this embodiment includes: three-phase rectification Unit 401, which converts the power diode in the circuit rectifier bridge shown in FIG. 1 into a current bidirectional flow transistor, constitutes a three-phase rectifier bridge with a synchronous rectification circuit function, and three three-phase connection terminals of the three-phase rectifier bridge are connected.
  • the three-phase AC power supply 400, the other two connection ends of the three-phase rectifier bridge are connected to the DC source first connection end 412, and the DC source second connection end 413;
  • the three-phase single-stage switching power supply further includes a three-phase commutation unit 402,
  • the three-phase connection terminal is connected to the three-phase AC power supply 400, and the single-wire terminal is connected to the DC source third connection end 411.
  • the switch symbol in the three-phase commutation unit 402 is actually realized by a triode. .
  • the three-phase single-stage switching power supply further includes a DC conversion unit 403, which is composed of a first DC/DC DC conversion unit 404, and a first DC/DC DC conversion unit 405, and a third DC/DC DC conversion unit 406;
  • the positive input end of the /DC DC conversion unit 404 is connected to the first connection end 412 of the first DC power supply, the negative input end is connected to the second connection end 411 of the second DC power supply; the positive input of the second DC/DC DC conversion unit 405
  • the terminal is connected to the second DC power supply terminal 411, the negative input terminal is connected to the third DC terminal 413;
  • the third DC/DC DC conversion unit 406 is connected to the first DC power source.
  • the first connection end 412 and the negative input end are connected to the third connection end 411 of the third DC power supply; the output positive end and the negative end of the three topological subunits are respectively three or three.
  • the circuit topology in the embodiment of the present invention changes the synchronous rectification transistor 201 in FIG. 2 from 12 to the synchronous rectification 9 triode in FIG. 5, so that the control variables involved in the solution of the present invention are also reduced from twelve to nine. So that The complexity of three-phase power rectification or commutation control is significantly reduced; although the DC/DC topology circuit of the present invention is increased from three original units to three, it brings benefits in use. That is, the control of each of the three DC/DC topology circuits only needs to use a common current control single loop, and its third DC/DC DC conversion topology circuit 406 needs to bear 62% of the total power, and the rest is composed of two DCs.
  • the /DC DC conversion topology circuits 404, 405 can be assumed; however, the two topology circuits 203 of the prior art shown in FIG. 2 need to enable a dedicated nonlinear current and voltage double loop control strategy, in addition to its computational theory is complicated, And implementation is not an easy task.
  • the principle of the three-phase rectification commutation unit 401 and the three-phase bidirectional commutation unit 402 in the embodiment of the present invention is as follows.
  • a complete power frequency AC cycle is equally divided into six parts, and the three-phase rectification converter unit 401 and the three-phase bidirectional commutation unit 402 have six switching states at each corresponding time period, thereby becoming ⁇ S1,...,S6 ⁇ .
  • the six rectification switches of the commutation unit 401 can be replaced by six power diodes, and the triode of the three-phase bidirectional commutation unit 402 is Reserved, so that the twelve control variables can be further simplified into only three control variables, or bidirectional commutation variables, the principle of which is as follows.
  • a complete power frequency AC cycle is equally divided into six parts, and the three-phase bidirectional commutation unit 402 has six switching states at each corresponding time period, which becomes ⁇ S1,...,S6 ⁇ .
  • the principle of the three-topology DC/DC conversion unit 403 of the present invention is as follows.
  • the three-phase AC power supply 400 is converted into a pulsating DC power supply by the three-phase rectification unit 401 to be approximately three-phase. 62% of the total incoming power, and the power converted to the fluctuating DC power supply by the three-phase bidirectional commutation unit 402 is about 38% of the total power of the three-phase incoming line, that is, the power conversion capacity of the pulsating DC power supply and the fluctuating DC power supply.
  • the ratio of power conversion capacity is 65 to 40. Therefore, the main topology circuit DC/DC 403 in the three topology unit needs to consume 62% of the power, while the other two auxiliary topology circuits DC/DC404 and DC/DC405 need to absorb the remaining 38% of the power. .
  • the power of the pulsating DC power source converted by the three-phase commutation unit 401 is about 62% of the total power of the three-phase outgoing line, and passes through the three-phase bidirectional commutation unit 402.
  • Converting the fluctuating DC power supply the power supplied to the three-phase AC power supply 400 is about 38% of the total power of the three-phase incoming line, that is, the contribution of the power of the pulsating DC power supply to the output of the three-phase power supply and the power of the fluctuating DC power supply to the three-phase power supply The contribution of the contribution is also 65 to 40.
  • the main topology circuit DC/DC 406 in the three topology unit needs to supply the 62% power to the three-phase commutation unit 401, while the other two auxiliary topology circuits DC/DC 404 and DC/DC 405 need to be bidirectional to the three phases.
  • the commutation unit 402 provides this remaining 38% of the power.
  • Some embodiments are a three-phase single-stage bidirectional switching power supply circuit, as shown in FIG. 6, comprising: a three-phase rectification converter unit 501, whether in a three-phase AC/DC conversion mode or a three-phase DC/ In the AC inverter mode of operation, the operating states of the nine switching elements are based on the operating mechanism of the "six-state nine-variable" state machine described above; and further include: a DC/DC converting unit 502, wherein the sub-unit 503 is the primary DC/ The DC transform unit, subunits 504, 505 are auxiliary DC/DC transform units.
  • the switching devices used in the rectification converter unit are N-channel FETs, which may be implemented by other switching devices in practical applications.
  • the three-phase power rectifying unit 516 has three rectifying half bridges, and each half bridge is realized by two N-channel FETs which are connected in series in the same direction.
  • the three-phase power converter unit 517 also has three commutating half bridges, each of which is realized by two N-channel FETs which are connected in series in reverse.
  • the DC inverter power supply 506 When the circuit is in the DC/AC inverter operating state, the DC inverter power supply 506 is connected to the three-topology DC/DC conversion unit 502 as its input source.
  • the main topology in the three topology bears about 62% of the total converted power, transforming the input DC power into one power frequency pulsating DC power supply 512, 513, two auxiliary topologies 504 in the three topologies, 505 bears about 38% of the total
  • the power is converted, and the input DC power is converted into a power frequency fluctuation DC power supply 511.
  • the three-phase rectification converter unit 501 includes three unidirectional half-bridge switching circuits 516 for converting the above-mentioned power frequency pulsating DC power supply 512, 513 into a three-phase AC power supply 500, and three bidirectional commutation switching circuits 517. It is used to convert the above-mentioned power frequency fluctuation DC power source 511 into a three-phase AC power source 500.
  • the three-phase rectifying unit 501 When the circuit is in the AC/DC conversion working state, the three-phase rectifying unit 501 includes three unidirectional half-bridge switching circuits 510 for converting the alternating current input by the three-phase alternating current power source 500 into one power frequency pulsating direct current source 512, 513.
  • the method further includes three bidirectional commutating switch circuits 517 for converting alternating current input from the three-phase alternating current power source 500 into one power frequency fluctuation direct current source 511; and a three-topology DC/DC converting unit 502 including a main body DC/DC topology Unit 503, which occupies approximately 62% of the total converted power, is used to convert the above-mentioned one-way power-frequency pulsating DC source 512, 513 into a DC power source required for the load 406; two auxiliary DC/DC topology sub-units 504, 505, Approximately 38% of the total converted power is used to convert the above-described one-way power-frequency fluctuation DC source to the DC power required for the load 506.
  • Some embodiments are a three-phase single-stage AC/DC non-isolated step-down DC source and a high-voltage direct current (HVDC) lighting power system, as shown in FIG. 7, including a three-phase AC rectification conversion unit 601, which includes three controllable
  • the silicon half-bridge circuit 616 or the power diode half-bridge circuit 616 is configured to convert the alternating current input from the three-phase alternating current power source 600 into one power frequency pulsating direct current source 612, 613, and further includes three bidirectional commutating switch circuits 617.
  • the high frequency switching circuit can bear about 62% of the total converted power, and is used to convert the above-mentioned one-way power frequency pulsating DC power source 612, 613 into a DC power source required for the high voltage direct current (HVDC) transmission bus 619; two auxiliary DCs /DC topology sub-units 604, 605, they all use a step-down flyback high-frequency switching circuit, and adopted the published patent "a single-stage switching power supply and its control method" (PCT International Application, application number is PCT/CN2
  • the secondary lossless clamping method disclosed in 012/087128 which respectively bears about 19% of the total converted power, is used to convert the above-mentioned one-way power-frequency fluctuation DC power supply
  • the power supply wherein the output power of the auxiliary DC/DC sub-topology circuit 604 is carried by the storage capacitor 617, and the output power of the auxiliary DC/DC sub-topology circuit 605 is carried by the storage capacitor 617, which has the beneficial effect of reducing the flyback switch.
  • the implementation cost of the circuit improves the efficiency of the transfer switch circuit and enhances the practicability; and also includes a high-frequency switch drive circuit 606 for illuminating the luminaire, which will be straight from high voltage
  • the stream (HVDC) transmits the bus 619 or takes the required DC power, and is adapted to the gas discharge lamp HID, or the LED lamp.
  • the circuit topology of the present invention reduces the control variables involved in the prior art and can significantly reduce the complexity of three-phase power rectification or commutation control, each of the three DC/DC topology circuits employed in the present invention. Control only requires the use of common voltage control loops, eliminating the need for dedicated nonlinear current and voltage double loop control strategies, simplifying computational theory.
  • the present invention also discloses a power transmission device for transmitting power of a first three-phase AC power grid to a second three-phase AC power grid, wherein the power transmission device includes: two three-phase rectification Converter module 801;
  • the two three-phase rectification converter modules 801 respectively have a three-phase AC connection terminal 8014, a DC source first connection end 8011, a DC source second connection end 8012, and a DC source third connection end 8013;
  • the three-phase AC connection terminal 8014 of the three-phase rectifier converter module is connected to the first three-phase AC power grid, and the first connection end of the DC source of the three-phase rectifier converter module is connected to another three-phase rectifier converter module.
  • the first connection end of the direct current source, the second connection end of the direct current source is connected to the second connection end of the direct current source of the other three-phase rectification converter module, and the third connection end of the direct current source is connected to the direct current of the other three-phase rectification converter module
  • the third connection end of the source, the three-phase AC connection end of the other three-phase rectification converter module is connected to the second three-phase AC power grid.
  • Some embodiments are a circuit system structure of a three-phase single-stage two-level switching power supply transmission embodiment, as shown in FIG. 9, including a first three-phase AC power grid 810, a three-phase rectifier conversion unit 811, and a three-wire power transmission line 830.
  • the three-phase rectification conversion unit 811 includes a three-phase rectification or inverter unit 812 which is composed of three two-level half-bridge switching circuits XAH, XAL, XBH, XBL, XCH, XCL, and a three-phase commutation Unit 813, which is composed of three bidirectional commutating switch circuits XA, XB, XC;
  • the three-wire power line 830 includes a DC source first common connection end 831, a DC source second common connection end 832, and a DC source third common Connection end 833;
  • the circuit system further includes a second three-phase AC grid 820, a three-phase rectification conversion unit 821, and a three-wire transmission line 830; wherein the three-phase rectification conversion unit 821 includes a three-phase rectification or inverter unit 822, which is composed of three Two-level half-bridge switching circuits XAH', XAL', XBH', XBL', XCH', XCL', and a three-phase commutation unit 823, which consists of three bidirectional commutation switching circuits XA', XB', The XC' composition; the three-wire power line 830 includes a DC source first common connection end 831, a DC source second common connection end 832, and a DC source third common connection end 833.
  • the three-wire power line 830 includes a DC source first common connection end 831, a DC source second common connection end 832, and a DC source third common connection end 833.
  • the purpose of the circuit system is to deliver the power of the first three-phase AC grid 810 to the second three-phase AC grid 820 via DC transmission.
  • the working principle is that the power of the first three-phase AC power grid 810 is converted into a DC power source through the commutation of the three-phase rectification conversion unit 811, and the first common connection end 831 of the DC source is passed through, and the DC source is the second source.
  • the common connection terminal 832 and the DC source third common connection terminal 833 are loaded onto the three-wire power transmission line 830; after the DC power on the long-distance power transmission line 830 passes through the commutation of the three-phase rectification conversion unit 821, the restoration is resumed again.
  • the circuit structure and the control mode of the three-phase rectification conversion unit 811 are exactly the same as those of the three-phase rectification conversion unit 821, and are related to the three-phase rectification and commutation described in the first embodiment. Working principle is consistent.
  • Some embodiments are a circuit system structure of a three-phase single-stage three-level switching power supply transmission embodiment, as shown in FIG. 10, including a first three-phase AC power grid 910, a three-phase rectifier conversion unit 911, and a three-wire power transmission line 930.
  • the three-phase rectification conversion unit 911 is composed of three three-level half-bridge switching circuits;
  • the three-wire transmission line 930 includes a DC source first common connection terminal 931, a DC source second common connection terminal 932, and a DC source third. Public connection end 933;
  • the circuit system further comprises a second three-phase AC power grid 920, a three-phase rectifier conversion unit 921, and a three-wire power transmission line 930; wherein the three-phase rectifier conversion unit 921 is composed of three three-level half-bridge switching circuits;
  • the 930 includes a DC source first common connection end 931, a DC source second common connection end 932, and a DC source third common connection end 933.
  • the purpose of the circuit system is to deliver the power of the first three-phase AC grid 910 to the second three-phase AC grid 920 via direct current transmission.
  • the working principle is that the power of the first three-phase AC power grid 910 is converted by the three-phase rectification conversion unit 911, and becomes a DC power source including a DC source first common connection terminal 931, a DC source second common connection terminal 932, and a DC source.
  • the third common connection end 933 is then loaded onto the three-wire transmission line 930; the DC power transmitted by the long-distance power transmission line 930 is converted into a three-phase after being commutated by the three-phase rectification conversion unit 921.
  • the alternating current is transmitted to the second three-phase alternating current grid 920.

Abstract

一种单级三相电源转换装置及输电装置,转换装置包括:三相整流换流模块(301)、DC/DC变换模块(302);三相整流换流模块具有三相交流连接端、直流源第一连接端(3011)、直流源第二连接端(3012)以及直流源第三连接端(3013),DC/DC变换模块具有第一连接端(3021)、第二连接端(3022)、第三连接端(3023)、直流源连接正端以及直流源连接负端;三相交流源连接至三相整流换流模块(301)的三相交流连接端,三相整流换流模块(301)的直流源第一连接端(3011)连接至DC/DC变换模块的第一连接端(3021),直流源第二连接端(3012)连接至DC/DC变换模块的第二连接端(3022),直流源第三连接端(3013)连接至DC/DC变换模块的第三连接端(3023),直流源的正端连接至DC/DC变换模块的直流源连接正端,直流源的负端连接至DC/DC变换模块的直流源连接负端。该转换装置减少了涉及的控制变量,能够降低对于三相电源整流或换流控制的复杂性。

Description

一种单级三相电源转换装置及输电装置 技术领域
本发明涉及三相开关电源电路,具体的讲是一种单级三相电源转换装置及输电装置。
背景技术
电能在人类能源利用种类中是使用最广泛、最便利的能源。随着世界能源消耗的加快,对电能的利用效率,特别是对提升电力电子转换电源的工作效率,亦日益得到重视。作为用电设备的入口电源,其能效对设备总体的能效影响甚大,出入口电源转换的能效提不高,设备整体的电能效率只会比它低,而不会比它高。
图1为现有技术中主流的三相高频AC/DC开关电源拓扑电路应用方案。三相供电电源100通过高频电感101、二极管102、三极管103及储能电容104组成的“维也纳”结构的三相功率因素校正单元,与DC/DC电源转换单元105,构成了三相两级高频开关电源拓扑电路应用方案。其显著的缺点一是其特有的两级高频开关结构降低了电源总体的转换效率,二是其三个高频电感101会显著地增加电源总体的成本,三是十八个高频二极管102和三个高频开关三极管103也会显著地增加电源总体的成本,四是两个高压储能电容104会阻碍进一步地提升电源的使用寿命,五是处于功率因素校正的“维也纳”前级,不能用于降压只能用于升压方式工作,因此输出电压过高,给后续电路的处理压力很大,六是由于存在高压储能电容,使得上电的初始冲击电流非常大,七是三相高频开关的控制环路算法策略复杂度高。
图2所示的为现有技术中三相高频逆变开关电源的另一拓扑电路应用方案。三相供电电源200通过十二个高频开关三极管201和六个高频开关二极管202,构成了三相工频整流或换流单元,与两个滤波储能电容203和两个DC/DC电源转换单元,构成了三相单级高频开关电源拓扑电路,可以成为三相AC/DC应用方案,或成为DC/AC三相应用方案,或成为三相电源双向变流器应用方案。但其三相工频整流或换流单元的元件较多,增加了大电流通过时的导通损耗,DC/DC单元的电路,在DC/AC逆变器运行模式时,为非归零电流源DC/DC电路方案;在AC/DC转换器运行模式时,为非归零恒流源 DC/DC电路方案。但是,现有技术的这种非归零的电路方案,极大地限制了DC/DC拓扑电路选择的灵活性,使得一些高转换效率的拓扑电路难以在此发挥应用优势。
发明内容
为进一步提高电源转换效率,本发明实施例提供了一种单级三相电源转换装置,用于实现三相交流源与直流源之间的AC/DC或DC/AC转换,所述单级三相电源转换装置包括:三相整流换流模块、DC/DC变换模块;
三相整流换流模块具有三相交流连接端、直流源第一连接端、直流源第二连接端以及直流源第三连接端,所述的DC/DC变换模块具有第一连接端、第二连接端、第三连接端、直流源连接正端以及直流源连接负端;
所述三相交流源连接至三相整流换流模块的三相交流连接端,所述的三相整流换流模块的直流源第一连接端连接至DC/DC变换模块的第一连接端,直流源第二连接端连接至DC/DC变换模块的第二连接端,直流源第三连接端连接至DC/DC变换模块的第三连接端,所述直流源的正端连接至DC/DC变换模块的直流源连接正端,直流源的负端连接至DC/DC变换模块的直流源连接负端。三拓扑单级(Single Stage or Single Step)三相电源转换装置,用于实现三相交流电源与直流电源或直流负载之间的AC/DC电能转换,或实现直流电源与三相交流负载之间的DC/AC电能逆变转换,本发明提供的电源转换方案,在具有完整的功率因素校正的同时,进一步地提升了电源转换效率。
同时,本发明还提供一种输电装置,将第一三相交流电网的电力传输至第二三相交流电网,其中,所述的输电装置包括:两个三相整流换流模块;
两个三相整流换流模块分别具有三相交流连接端、直流源第一连接端、直流源第二连接端以及直流源第三连接端;
三相整流换流模块的三相交流连接端连接至第一三相交流电网,所述的三相整流换流模块的直流源第一连接端连接至另一三相整流换流模块的直流源第一连接端,直流源第二连接端连接至另一三相整流换流模块的直流源第二连接端,直流源第三连接端连接至另一三相整流换流模块的直流源第三连接端,另一三相整流换流模块的三相交流连接端连接至第二三相交流电网。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中的三相高频AC/DC开关电源拓扑电路;
图2为现有技术中三相高频逆变开关电源的另一拓扑电路;
图3为本发明公开的一种单级三相电源转换装置的结构框图;
图4为本发明实施例公开的单级三相电源转换装置的框图;
图5为本发明公开的单级开关电源的结构原理框图;
图6为本发明实施例公开的三相单级双向开关电源电路结构框图;
图7为本发明公开的三相单级单向开关电源一实施方式的电路结构框图。
图8为本发明公开的输电装置的示意图;
图9为本发明公开的三相单级两电平开关电源输电实施方式的电路结构图;
图10为本发明公开的三相单级三电平开关电源输电实施方式的电路结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图3所示,为本发明公开的一种单级三相电源转换装置的结构框图,用于实现三相交流源与直流源之间的AC/DC或DC/AC转换,单级三相电源转换装置包括:三相整流换流模块301、DC/DC变换模块302;三相整流换流模块301具有三相交流连接端、直流源第一连接端3011、直流源第二连接端3012以及直流源第三连接端3013,DC/DC变换模块具有第一连接端3021、第二连接端3022、第三连接端3023、直流源连接正端以及直流源连接负端;
三相交流源连接至三相整流换流模块的三相交流连接端,三相整流换流模块的直流源第一连接端3011连接至DC/DC变换模块的第一连接端3021,直流源第二连接端3012 连接至DC/DC变换模块的第二连接端3022,直流源第三连接端3013连接至DC/DC变换模块的第三连接端3023,直流源的正端连接至DC/DC变换模块的直流源连接正端,直流源的负端连接至DC/DC变换模块的直流源连接负端。
如图4所示,为本发明实施例公开的单级三相电源转换装置的框图。AC/DC转换时,所述的三相整流换流模块用于将三相交流源输入的三相交流电转换为第一直流源和第二直流源,所述DC/DC变换模块对所述第一直流源和第二直流源进行功率变换,转换为直流电输出至直流源;三相整流单元,用于将三相交流电转换为第一直流源;三相换流单元,用于降三相交流电转换为第二直流源。
DC/AC逆变时,所述DC/DC变换模块将所述直流源转换为第一直流源和第二直流源,所述三相整流换流模块将所述第一直流源和第二直流源转换为三相交流电输出给三相交流电源。三相整流单元,将第一直流源转换为三相交流电;三相换流单元,用于将第二直流源转换为三相交流电。
下面结合具体的实施方式对本发明技术方案做进一下详细说明:
本发明实施例公开的一种三相单级开关电源,如图5所示为本发明公开的单级开关电源的结构原理框图,本实施例公开的三相单级开关电源包括:三相整流单元401,它将图1所示电路整流桥中的功率二极管换为电流可双向流动的三极管,构成具有同步整流电路功能的三相整流桥,三相整流桥的三个三相连接端接入三相交流电源400,三相整流桥的另外两个连接端接入直流源第一连接端412,和直流源第二连接端413;三相单级开关电源还包括三相换流单元402,其三个三相连接端接入三相交流电源400,其单线端接入直流源第三连接端411,本发明实施例中,三相换流单元402中的开关符号实际是用三极管实现的。
三相单级开关电源还包括直流转换单元403,由第一DC/DC直流转换单元404,和第一DC/DC直流转换单元405,和第三DC/DC直流转换单元406组成;第一DC/DC直流转换单元404的正输入端连接第一直流电源的第一连接端412,负输入端接入第二直流电源第二连接端411;第二DC/DC直流转换单元405的正输入端接入第二直流电源第二连接端411,负输入端接入第三直流电源的第三连接端端413;第三DC/DC直流转换单元406的正输入端接入第一直流电源的第一连接端412,负输入端接入第三直流电源的第三连接端端411;三个拓扑子单元的输出正端与负端分别三三互联。
本发明实施例中的电路拓扑将图2中的同步整流三极管201由12个变为图5中的同步整流9个三极管,使得本发明方案中涉及的控制变量也由十二个减少到九个,从而能 够显著地降低了对于三相电源整流或换流控制的复杂性;虽然本发明中的DC/DC拓扑电路由原有的两个单元增加为了三个,但却带来了使用上的好处,即三个DC/DC拓扑电路中的每一个的控制只需使用常见的电流控制单一环路,其第三DC/DC直流转换拓扑电路406需要承担62%的功率总量,其余由两个DC/DC直流转换拓扑电路404、405承担即可;然而现有技术的图2所示原理的两个拓扑电路203需要启用专用的非线性电流、电压双环控制策略,除了其计算理论复杂之外,且实现也非为易事。
本发明实施例中的三相整流换流单元401以及三相双向换流单元402的原理如下。
现将一个完整的工频交流周期等分为六份,三相整流换流单元401以及三相双向换流单元402在每一份所对应的时段上的开关状态也因此有六个,成为{S1,…,S6}。
(1)当三相交流电源A,B线间电压VA-B由负变正时,即“VA-B→0+”出现时,称为状态S1。此时关闭双向整流开关TAL,开通双向整流开关TBL,即“TAL=’0’,TBL=’1’”,关闭双向换流开关XA,开通双向换流开关XC,即“XA=’0’,XC=’1’”;
(2)当三相交流电源C,A线间电压VC-A由正变负时,即“VC-A→0-”出现时,称为状态S2。此时关闭双向整流开关TCH,开通双向整流开关TAH,即“TCH=’0’,TAH=’1’”,关闭双向换流开关XC,开通双向换流开关XB,即“XC=’0’,XB=’1’”;
(3)当三相交流电源B,C线间电压VA-B由负变正时,即“VB-C→0+”出现时,称为状态S3。此时关闭双向整流开关TBL,开通双向整流开关TBL,即“TBL=’0’,TCL=’1’”,关闭双向换流开关XB,开通双向换流开关XA,即“XB=’0’,XA=’1’”;
(4)当三相交流电源A,B线间电压VA-B由正变负时,即“VA-B→0-”出现时,称为状态S4。此时关闭双向整流开关TAH,开通双向整流开关TBH,即“TAH=’0’,TBH=’1’”,关闭双向换流开关XA,开通双向换流开关XC,即“XA=’0’,XC=’1’”;
(5)当三相交流电源C,A线间电压VC-A由负变正时,即“VC-A→0+”出现时,称为状态S5。此时关闭双向整流开关TCL,开通双向整流开关TAL,即“TCL=’0’,TAL=’1’”,关闭双向换流开关XC,开通双向换流开关XB,即“XC=’0’,XB=’1’”;
(6)当三相交流电源B,C线间电压VB-C由正变负时,即“VB-C→0-”出现时,称为状态S6。此时关闭双向整流开关TBH,开通双向整流开关TCH,即“TBH=’0’,TCH=’1’”,关闭双向换流开关XB,开通双向换流开关XA,即“XB=’0’,XA=’1’”。
上述“六状态九变量”状态机的描述用表格显示如下。
Figure PCTCN2016073714-appb-000001
Figure PCTCN2016073714-appb-000002
当本发明的三相单级开关电源仅用于AC/DC整流转换的工作模式时,换流单元401的六个整流开关可由六个功率二极管来代替,三相双向换流单元402的三极管予以保留,如此可将所述的十二个控制变量进一步地简化成了仅有的三个控制变量,或称为双向换流变量,其中的原理如下。
现仍然将一个完整的工频交流周期等分为六份,三相双向换流单元402在每一份所对应的时段上的开关状态也因此有六个,成为{S1,…,S6}。
(1)当三相交流电源A,B线间电压VA-B由负变正时,即“VA-B→0+”出现时,称为状态S1。此时关闭双向换流开关XA,开通双向换流开关XC,即“XA=’0’,XC=’1’”;
(2)当三相交流电源C,A线间电压VC-A由正变负时,即“VC-A→0-”出现时,称为状态S2。此时关闭双向换流开关XC,开通双向换流开关XB,即“XC=’0’,XB=’1’”;
(3)当三相交流电源B,C线间电压VA-B由负变正时,即“VB-C→0+”出现时,称为状态S3。此时关闭双向换流开关XB,开通双向换流开关XA,即“XB=’0’,XA=’1’”;
(4)当三相交流电源A,B线间电压VA-B由正变负时,即“VA-B→0-”出现时,称为状态S4。此时关闭双向换流开关XA,开通双向换流开关XC,即“XA=’0’,XC=’1’”;
(5)当三相交流电源C,A线间电压VC-A由负变正时,即“VC-A→0+”出现时,称为状态S5。此时关闭双向换流开关XC,开通双向换流开关XB,即“XC=’0’,XB=’1’”;
(6)当三相交流电源B,C线间电压VB-C由正变负时,即“VB-C→0-”出现时,称为状态S6。此时关闭双向换流开关XB,开通双向换流开关XA,即“XB=’0’,XA=’1’”。
上述“六状态三变量”状态机的描述用表格显示如下。
Figure PCTCN2016073714-appb-000003
Figure PCTCN2016073714-appb-000004
本发明的三拓扑DC/DC转换单元403的原理如下。
通过较复杂的理论推导,仿真和实验表明,当本发明的电路应用于三相AC/DC转换电源时,三相交流电源400经过三相整流单元401转换为脉动直流电源的电力约为三相进线总电力的62%,而经过三相双向换流单元402转换为波动直流电源的电力约为三相进线总电力的38%,即脉动直流电源的电力转换承载量与波动直流电源的电力转换承载量的比例为65比40。因此,三拓扑单元中的主体拓扑电路DC/DC403,需要消纳这62%的功率,而其余两个辅助拓扑电路DC/DC404和DC/DC405,则需要消纳这所剩余的38%的功率。
当本发明的电路应用于三相DC/AC逆变电源时,经过三相换流单元401转换脉动直流电源的电力约为三相出线总电力的62%,而经过三相双向换流单元402转换波动直流电源,向三相交流电源400提供的电力约为三相进线总电力的38%,即脉动直流电源的电力对三相电源出力的贡献量与波动直流电源的电力对三相电源出力的贡献量的比例也为65比40。因此,三拓扑单元中的主体拓扑电路DC/DC406,需要向三相换流单元401提供这62%的功率,而其余两个辅助拓扑电路DC/DC404和DC/DC405,则需要向三相双向换流单元402提供这所剩余的38%的功率。如此一来,在这两种应用模式下,本发明的三相单级开关电源将工作在最佳状态,即具有最佳的三相功率因素校正能力和最佳的电源转换效率。
一些实施方式为一种三相单级双向开关电源电路,如图6所示,包括:三相整流换流单元501,无论是在三相AC/DC转换工作模式下,或是三相DC/AC逆变工作模式下,其中的九个开关元件的工作状态基于上述的“六状态九变量”状态机的运行机制;还包括:DC/DC变换单元502,其中的子单元503为主要DC/DC变换单元,子单元504,505为辅助DC/DC变换单元。整流换流单元中采用的开关器件均为N沟道场效应管,在实际的应用中可能还会有用其他的开关器件来实现的。
三相电源整流单元516有三个整流半桥,每个半桥由两个上下同向串联而成的N沟道场效应管来实现的。
三相电源换流单元517也有三个换流半桥,每个半桥由两个左右逆向串联而成的N沟道场效应管来实现的。
当该电路为DC/AC逆变工作状态时,直流逆变电源506连接于三拓扑DC/DC变换单元502,作为其输入源。三拓扑中的主体拓扑承担约62%的总变换功率,将所输入的直流电源变换为一路工频脉动直流电源512,513,三拓扑中的两个辅助拓扑504,505承担约38%的总变换功率,将所输入的直流电源变换为一路工频波动直流电源511。三相整流换流单元501,包括三个单向半桥开关电路516,用于将上述工频脉动直流电源512,513转换为三相交流电源500,还包括三个双向换流开关电路517,用于将上述的工频波动直流电源511转换为三相交流电源500。
当该电路为AC/DC变换工作状态时,三相整流单元501包括三个单向半桥开关电路510,用于将三相交流电源500输入的交流电转换为一路工频脉动直流源512,513,还包括三个双向换流开关电路517,用于将三相交流电源500输入的交流电转换为一路工频波动直流源511;三拓扑DC/DC转换单元502,包括一个主体DC/DC拓扑子单元503,承担约62%的总变换功率,用于将上述的一路工频脉动直流源512,513,变换为负载406所需的直流电源;两个辅助DC/DC拓扑子单元504,505,承担约38%的总变换功率,用于将上述的一路工频波动直流源变换为负载506所需的直流电源。
一些实施方式为一种三相单级AC/DC非隔离降压直流源及高压直流(HVDC)照明电源系统,如图7所示,包括三相交流整流变换单元601,其中包含三个可控硅半桥电路616,或是功率二极管半桥电路616,用于将三相交流电源600输入的交流电转换为一路工频脉动直流源612,613,还包括三个双向换流开关电路617,用于将三相交流电源600输入的交流电转换为一路工频波动直流源611;还包含三拓扑DC/DC转换单元602,其中包括一个主体DC/DC拓扑子单元603,他采用了多相位降压可高频开关电路,承担约62%的总变换功率,用于将上述的一路工频脉动直流电源612,613,变换为高压直流(HVDC)传输母线619所需的直流电源;两个辅助DC/DC拓扑子单元604,605,他们均采用了降压型反激式高频开关电路,并采用了已公开专利“一种单级开关电源及其控制方法”(PCT国际申请,申请号为PCT/CN2012/087128)中公开的次级无损钳位方法,分别承担约19%的总变换功率,用于将上述的一路工频波动直流电源611变换为高压直流(HVDC)传输母线619所需的直流电源,其中辅助DC/DC子拓扑电路604的输出功率由储能电容617来承载,辅助DC/DC子拓扑电路605的输出功率由储能电容617来承载,其有益效果是降低了反激开关电路的实施成本和提升了其转换开关电路的效率,增强实用性;还包含的一种灯具照明的高频开关驱动电路606,将从高压直 流(HVDC)传输母线619或取所需的直流电源功率,适配给气体放电灯HID,或LED灯。
本发明的电路拓扑减少了现有技术中涉及的控制变量,能够显著地降低对于三相电源整流或换流控制的复杂性,本发明中采用的三个DC/DC拓扑电路中的每一个的控制只需使用常见的电压控制环路,无需启用专用的非线性电流、电压双环控制策略,简化计算理论。
同时,如图8所示,本发明还公开了一种输电装置,将第一三相交流电网的电力传输至第二三相交流电网,其中,所述的输电装置包括:两个三相整流换流模块801;
两个三相整流换流模块801分别具有三相交流连接端8014、直流源第一连接端8011、直流源第二连接端8012以及直流源第三连接端8013;
所述三相整流换流模块的三相交流连接端8014连接至第一三相交流电网,所述的三相整流换流模块的直流源第一连接端连接至另一三相整流换流模块的直流源第一连接端,直流源第二连接端连接至另一三相整流换流模块的直流源第二连接端,直流源第三连接端连接至另一三相整流换流模块的直流源第三连接端,另一三相整流换流模块的三相交流连接端连接至第二三相交流电网。
一些实施方式为一种三相单级两电平开关电源输电实施方式的电路系统结构,如图9所示,包括第一三相交流电网810,三相整流变换单元811,三线制输电线830;其中三相整流变换单元811包含了一个三相整流或逆变单元812,它由三个两电平半桥开关电路XAH,XAL,XBH,XBL,XCH,XCL组成,和一个三相换流单元813,它由三个双向换流开关电路XA,XB,XC组成;三线制输电线830包含了直流源第一公共连接端831,直流源第二公共连接端832,以及直流源第三公共连接端833;
本电路系统还包含了第二三相交流电网820,三相整流变换单元821,三线制输电线830;其中三相整流变换单元821包含了一个三相整流或逆变单元822,它由三个两电平半桥开关电路XAH’,XAL’,XBH’,XBL’,XCH’,XCL’组成,和一个三相换流单元823,它由三个双向换流开关电路XA’,XB’,XC’组成;三线制输电线830包含了直流源第一公共连接端831,直流源第二公共连接端832,以及直流源第三公共连接端833。
本电路系统的目的是将第一三相交流电网810的电力,经过直流输电的方式,输送到第二三相交流电网820。其工作原理为第一三相交流电网810的电力经过三相整流变换单元811的换流后,成为直流电源,通过直流源第一公共连接端831,直流源第二公 共连接端832以及直流源第三公共连接端833加载到三线制输电线830上;经过了长距离输电线830上的直流电力,再经过三相整流变换单元821的换流后,再一次复原为三相交流电,传送给第二三相交流电网820。在这个电路系统中,三相整流变换单元811的电路结构和操控方式与三相整流变换单元821的电路结构和操控方式完全一模一样,都与实施例一所述的相关三相整流和换流的工作原理一致。
一些实施方式为一种三相单级三电平开关电源输电实施方式的电路系统结构,如图10所示,包括第一三相交流电网910,三相整流变换单元911,三线制输电线930;其中三相整流变换单元911由三个三电平半桥开关电路组成;三线制输电线930包含了直流源第一公共连接端931,直流源第二公共连接端932,以及直流源第三公共连接端933;
本电路系统还包含了第二三相交流电网920,三相整流变换单元921,三线制输电线930;其中三相整流变换单元921由三个三电平半桥开关电路组成;三线制输电线930包含了直流源第一公共连接端931,直流源第二公共连接端932,以及直流源第三公共连接端933。
本电路系统的目的是将第一三相交流电网910的电力,经过直流输电的方式,输送到第二三相交流电网920。其工作原理为第一三相交流电网910的电力经过三相整流变换单元911的换流后,成为直流电源包括直流源第一公共连接端931,直流源第二公共连接端932,以及直流源第三公共连接端933,然后加载到三线制输电线930之上;经过了长距离输电线930所输送的直流电力,再经过三相整流变换单元921的换流后,再一次复原为三相交流电,传送给第二三相交流电网920。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (11)

  1. 一种单级三相电源转换装置,用于实现三相交流源与直流源之间的AC/DC或DC/AC转换,其中,所述的单级三相电源转换装置包括:三相整流换流模块、DC/DC变换模块;其中,
    所述三相整流换流模块具有三相交流连接端、直流源第一连接端、直流源第二连接端以及直流源第三连接端,所述的DC/DC变换模块具有第一连接端、第二连接端、第三连接端、直流源连接正端以及直流源连接负端;
    所述三相交流源连接至三相整流换流模块的三相交流连接端,所述的三相整流换流模块的直流源第一连接端连接至DC/DC变换模块的第一连接端,直流源第二连接端连接至DC/DC变换模块的第二连接端,直流源第三连接端连接至DC/DC变换模块的第三连接端,所述直流源的正端连接至DC/DC变换模块的直流源连接正端,直流源的负端连接至DC/DC变换模块的直流源连接负端。
  2. 如权利要求1所述的单级三相电源转换装置,其中,所述的三相整流换流模块的三相交流连接端具有三个连接端子,分别连接到所述三相交流源的三相连接端。
  3. 如权利要求1所述的单级三相电源转换装置,其中,所述的三相整流换流模块包括:三相整流单元、三相换流单元;其中,所述的三相整流单元、三相换流单元通过各自的三个连接端子连接到三相整流换流模块的三相交流连接端与三相交流源的三个连接端子相连;
    所述三相整流单元通过所述直流源第一连接端连接到DC/DC变换模块的第一连接端,通过直流源第二连接端连接到DC/DC变换模块的第二连接端;
    所述三相换流单元通过所述直流源第三连接端连接到DC/DC变换模块的第三连接端。
  4. 如权利要求3所述的单级三相电源转换装置,其中,所述的DC/DC变换模块包括:第一DC/DC变换单元、第二DC/DC变换单元以及第三DC/DC变换单元;
    所述第一DC/DC变换单元、第二DC/DC变换单元以及第三DC/DC变换单元分别具有正输入端、负输入端、正输出端及负输出端;
    所述第一DC/DC变换单元的正输入端和第三DC/DC变换单元的正输入端均连接到DC/DC变换模块的第一连接端;
    所述第二DC/DC变换单元的负输入端和第三DC/DC变换单元的负输入端连接到DC/DC变换模块的第二连接端;
    所述第一DC/DC变换单元的负输入端和第二DC/DC变换单元的正输入端连接到DC/DC变换模块的第三连接端;所述第一DC/DC变换单元、第二DC/DC变换单元以及第三DC/DC变换单元的正输出端均连接到所述直流源的正端,所述第一DC/DC变换单元、第二DC/DC变换单元以及第三DC/DC变换单元的负输出端均连接到所述直流源的负端。
  5. 如权利要求4所述的单级三相电源转换装置,其中,
    AC/DC转换时,所述的三相整流换流模块用于将三相交流源输入的三相交流电转换为第一直流源和第二直流源,所述DC/DC变换模块对所述第一直流源和第二直流源进行功率变换,转换为直流电输出至直流源。
  6. 如权利要求5所述的单级三相电源转换装置,其中,
    所述三相整流单元,用于将三相交流电转换为第一直流源;
    所述三相换流单元,用于将三相交流电转换为第二直流源。
  7. 如权利要求4所述的单级三相电源转换装置,其中,
    DC/AC转换时,所述的所述DC/DC变换模块将所述直流源转换为第一直流源和第二直流源,所述三相整流换流模块将所述第一直流源和第二直流源转换为三相交流电输出给三相交流电源。
  8. 如权利要求7所述的单级三相电源转换装置,其中,
    所述三相整流单元,用于将第一直流源转换为三相交流电;
    所述三相换流单元,用于将第二直流源转换为三相交流电。
  9. 一种输电装置,将第一三相交流电网的电力传输至第二三相交流电网,其中,所述的输电装置包括:两个三相整流换流模块;其中,
    所述两个三相整流换流模块分别具有三相交流连接端、直流源第一连接端、直流源第二连接端以及直流源第三连接端;
    所述三相整流换流模块的三相交流连接端连接至第一三相交流电网,所述的三相整流换流模块的直流源第一连接端连接至另一三相整流换流模块的直流源第一连接端,直流源第二连接端连接至另一三相整流换流模块的直流源第二连接端,直流源第三连接端连接至另一三相整流换流模块的直流源第三连接端,另一三相整流换流模块的三相交流连接端连接至第二三相交流电网。
  10. 如权利要求9所述的输电装置,其中,所述的三相整流换流模块的三相交流连接端具有三个连接端子,分别连接到所述第一三相交流电网、第二三相交流电网的三相连接端。
  11. 如权利要求9所述的输电装置,其中,所述的三相整流换流模块包括:三相整流单元、三相换流单元;其中,所述的三相整流单元、三相换流单元通过各自的三个连接端子连接到三相交流交流电网络的三个连接端子相连;
    所述三相整流单元通过所述直流源第一连接端、直流源第二连接端连接至另一三相整流换流模块的直流源第一连接端、直流源第二连接端;
    所述三相换流单元通过所述直流源第三连接端连接到另一三相整流换流模块的直流源第三连接端。
PCT/CN2016/073714 2016-02-06 2016-02-06 一种单级三相电源转换装置及输电装置 WO2017133015A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/073714 WO2017133015A1 (zh) 2016-02-06 2016-02-06 一种单级三相电源转换装置及输电装置
EP16888839.4A EP3413453A4 (en) 2016-02-06 2016-02-06 DEVICE FOR SINGLE-STAGE THREE-PHASE CURRENT CONVERSION AND CURRENT TRANSMISSION DEVICE
CN201680081164.9A CN108604868B (zh) 2016-02-06 2016-02-06 一种单级三相电源转换装置及输电装置
US16/054,876 US10389267B2 (en) 2016-02-06 2018-08-03 Single-stage three-phase power supply conversion device and power line transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073714 WO2017133015A1 (zh) 2016-02-06 2016-02-06 一种单级三相电源转换装置及输电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/054,876 Continuation US10389267B2 (en) 2016-02-06 2018-08-03 Single-stage three-phase power supply conversion device and power line transmission device

Publications (1)

Publication Number Publication Date
WO2017133015A1 true WO2017133015A1 (zh) 2017-08-10

Family

ID=59500508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073714 WO2017133015A1 (zh) 2016-02-06 2016-02-06 一种单级三相电源转换装置及输电装置

Country Status (4)

Country Link
US (1) US10389267B2 (zh)
EP (1) EP3413453A4 (zh)
CN (1) CN108604868B (zh)
WO (1) WO2017133015A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141153B (zh) * 2015-08-13 2018-07-24 厦门科华恒盛股份有限公司 一种三相整流升压电路及其控制方法以及不间断电源
CN109183106A (zh) * 2018-11-12 2019-01-11 黑龙江科技大学 基于快速跟踪控制方法的微弧氧化电源装置
CN114448274B (zh) * 2022-04-12 2023-06-09 南京博兰得电子科技有限公司 三相单级式谐振型电能变换装置及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427684A (zh) * 2012-05-14 2013-12-04 台达电子企业管理(上海)有限公司 三相整流电路
US9236812B2 (en) * 2014-01-07 2016-01-12 Hamilton Sundstrand Corporation Universal AC to DC converter

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074067B2 (ja) * 1986-01-24 1995-01-18 株式会社明電舍 電流形gtoインバ−タの無効電力処理回路
JPH088778B2 (ja) * 1987-04-22 1996-01-29 株式会社日立製作所 電流形インバ−タ装置
US5574636A (en) * 1994-09-09 1996-11-12 Center For Innovative Technology Zero-voltage-transition (ZVT) 3-phase PWM voltage link converters
CA2184663A1 (en) * 1996-09-03 1998-03-04 John C. Salmon Harmonic correction of 3-phase rectifiers and converters
US7952896B2 (en) * 2008-08-20 2011-05-31 Hamilton Sundstrand Corporation Power conversion architecture with zero common mode voltage
US20120268976A1 (en) 2009-02-27 2012-10-25 Delta Electronics (Shanghai) Co., Ltd. Three-phase rectifier circuit
EP2534742B8 (en) * 2010-02-09 2016-02-24 General Electric Technology GmbH Converter for high voltage dc dc transmission
US8792254B2 (en) * 2011-06-28 2014-07-29 General Electric Company Multilevel power converter and methods of manufacturing and operation thereof
WO2013054567A1 (ja) * 2011-10-14 2013-04-18 三菱電機株式会社 電力変換装置
US9281756B2 (en) * 2011-11-11 2016-03-08 Varentec, Inc. Power flow controller with a fractionally rated back-to-back converter
CN103812314B (zh) * 2012-11-08 2016-09-14 上海儒竞电子科技有限公司 高功率因数三相整流电路
EP3068024B1 (de) * 2015-03-09 2018-01-31 Siemens Aktiengesellschaft Verfahren zur Ansteuerung eines Vienna-Gleichrichters

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427684A (zh) * 2012-05-14 2013-12-04 台达电子企业管理(上海)有限公司 三相整流电路
US9236812B2 (en) * 2014-01-07 2016-01-12 Hamilton Sundstrand Corporation Universal AC to DC converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413453A4 *

Also Published As

Publication number Publication date
EP3413453A4 (en) 2019-10-09
CN108604868A (zh) 2018-09-28
EP3413453A1 (en) 2018-12-12
US10389267B2 (en) 2019-08-20
CN108604868B (zh) 2021-11-26
US20180342962A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
Tang et al. Hybrid switched-inductor converters for high step-up conversion
WO2021232785A1 (zh) 三桥臂拓扑装置、控制方法、以及不间断电源系统
EP2706653B1 (en) Five-level power converter, controlling method and controlling device thereof
TWI477055B (zh) 中壓變頻驅動系統
WO2017076366A1 (zh) 五电平逆变器拓扑电路及三相五电平逆变器拓扑电路
US9203323B2 (en) Very high efficiency uninterruptible power supply
CN108235509B (zh) 一种集成降压Cuk和LLC电路的单级LED驱动电路
WO2013127230A1 (zh) 一种无桥逆变电路与太阳能无桥逆变器
CN212210538U (zh) 三桥臂拓扑装置及不间断电源系统
CN110401348A (zh) 一种双向谐振直流-直流变换电路及不间断电源
CN104410316B (zh) 一种高频链逆变器及其数字控制装置
CN104319999A (zh) 一种基于mmc的中高压变频调速电路
WO2017133015A1 (zh) 一种单级三相电源转换装置及输电装置
WO2017028776A1 (zh) 高电压增益的五电平逆变器拓扑电路
CN112865560A (zh) 一种多二极管串联型的背对背无桥三电平整流器
CN103888010A (zh) 基于推挽变换器的高频隔离式三电平逆变器
US10079557B2 (en) Efficient resonant topology for DC-AC inversion with minimal use of high frequency switches
WO2010139187A1 (zh) 直流电压转换成交流电压的电路
KR101993846B1 (ko) Ess용 전력 변환 장치
WO2017186030A1 (zh) 一种三相电路装置及其实现整流的方法、计算机存储介质
TW201931752A (zh) 具ac正向電橋及改良的dc/dc拓樸的逆變器
CN115441757A (zh) 一种五电平pwm整流器及供电设备
WO2022151126A1 (zh) 一种直流变换器、控制方法、直流汇流箱及光伏发电系统
WO2022110118A1 (zh) 模块化多电平变换器及其控制方法、不间断电源
CN104218809B (zh) 一种集成功率因数校正和直流-直流变换的电路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888839

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888839

Country of ref document: EP

Effective date: 20180906