WO2017131235A1 - Biomass power generation system, and return system for thermal decomposition furnace - Google Patents

Biomass power generation system, and return system for thermal decomposition furnace Download PDF

Info

Publication number
WO2017131235A1
WO2017131235A1 PCT/JP2017/003223 JP2017003223W WO2017131235A1 WO 2017131235 A1 WO2017131235 A1 WO 2017131235A1 JP 2017003223 W JP2017003223 W JP 2017003223W WO 2017131235 A1 WO2017131235 A1 WO 2017131235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbide
furnace
combustion
carbonization furnace
Prior art date
Application number
PCT/JP2017/003223
Other languages
French (fr)
Japanese (ja)
Inventor
光幸 飯嶋
佐藤 秀雄
Original Assignee
株式会社高橋製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高橋製作所 filed Critical 株式会社高橋製作所
Publication of WO2017131235A1 publication Critical patent/WO2017131235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products

Definitions

  • the present invention relates to a biomass power generation system and a pyrolysis furnace return system, and in particular, thermally decomposes and gasifies biomass (organic waste such as waste wood), and efficiently generates power using a gas engine or the like using the obtained water gas.
  • the present invention relates to a biomass power generation system, and also relates to a return system in a pyrolysis furnace.
  • pyrolysis gasification of woody materials containing a large amount of biomass, particularly lignin has great potential as a source of new energy resources, and attempts have been made to effectively use it.
  • the raw wood biomass is recovered at a carbonization furnace temperature of 1000 to 1200 ° C., and then the carbides are heated to a high temperature in a pyrolysis furnace, so that high-temperature steam and aqueous React to produce water gas.
  • thermochemical techniques As an alternative energy resource to replace fossil fuels, a method of recovering energy from biomass and waste by thermochemical techniques has attracted attention.
  • a gas engine with high power generation efficiency using generated gas as fuel gas The power generation efficiency is over 35%.
  • the synthesis gas obtained by gasification also becomes a raw material for liquid fuels such as methanol, synthetic light oil, and mixed alcohols, gasification technology is attracting attention as one of petroleum alternative combustion technologies.
  • a gas engine In biomass power generation, a gas engine, a gas turbine engine, a steam turbine engine, or the like is used.
  • the structure of a gas engine is the same as that of a gasoline engine, and it is more compact (about 50 to 4000 kW) than other engines, has high power generation efficiency, and is suitable for biomass power generation.
  • the heat generation amount of the pyrolysis gas water gas is determined by the content ratio of the combustible gas (CO, H 2 ) in the gas. That is, if the composition ratio of hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) in the water gas varies, the amount of generated heat changes, which affects the number of revolutions of the engine that rotates the generator.
  • the applicant of the present invention does not reduce the temperature of the gasification region by heating the steam generated in the boiler and supplying the high-temperature superheated steam to the gasification region of the pyrolysis gasifier, and the high temperature of the carbonization furnace.
  • Patent application 1 has been filed.
  • a solid content containing a large amount of carbides is carbonized above a region formed between a substantially circular main body and a cylindrical body accommodated in the main body.
  • the carbonized part is formed, and the incombustible part that extinguishes the carbide is formed below, but the amount of air supplied to the upper combustion part fluctuates and the air suitable for burning the combustible gas If not, the combustion efficiency of combustible gas will deteriorate.
  • a pyrolysis gasification furnace pyrolysis furnace
  • an outer cylinder and an inner cylinder are provided, carbide and a gasifying agent are supplied to the inner peripheral side of the inner cylinder, and a gap between the outer cylinder and the inner cylinder
  • the combustion gas generated in the carbonization furnace is supplied to the cylinder, but the length varies along the vertical direction due to the thermal expansion of the inner cylinder. If there is a difference in thermal expansion between the inner cylinder and the outer cylinder, the combustion gas may flow out from the portion where the inner cylinder, the outer cylinder and the upper surface are in contact with each other.
  • the composition ratio of the water gas supplied to the downstream equipment may fluctuate, causing malfunctions in each device and system balance, resulting in a decrease in efficiency of the entire power generation system. Resulting in.
  • the present invention provides a carbonization furnace for carbonizing biomass, a pyrolysis furnace for generating pyrolysis gas from the carbide and combustion gas obtained in the carbonization furnace, and cleaning the pyrolysis gas. And a power generation device that obtains electric power using the obtained water gas, and is provided with an air supply control unit that controls the supply amount of air supplied to the carbonization furnace, and the combustion gas whose temperature is controlled by the supply amount of air.
  • a biomass power generation system characterized in that the is supplied to a pyrolysis furnace.
  • an appropriate amount of air can be controlled, combustion efficiency can be maintained stably at a high level, and it can contribute to stabilization to a downstream apparatus.
  • the present invention also includes a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas using the carbide and combustion gas obtained in the carbonization furnace, and a water gas obtained by washing the pyrolysis gas.
  • the pyrolysis furnace includes a cylindrical main body part, a reaction tube protruding from the upper end of the main body part inside the main body part, and an inner wall of the main body part, A space between the outer peripheral surfaces of the reaction tubes is used as a heating flow path, the inside of the reaction tube is used as a reaction part of a carbide and a gasifying agent, and the water gas is supplied to a power supply device using the obtained decomposition gas.
  • a biomass power generation system is provided.
  • the water gas (reactive gas) from the pyrolysis furnace does not flow out to the outside, and the system can be stabilized.
  • the present invention also includes a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas using the carbide and combustion gas obtained in the carbonization furnace, and a water gas obtained by washing the pyrolysis gas. And a power generation device that obtains electric power by using an air supply control unit that controls a supply amount of air supplied to the carbonization furnace, and the pyrolysis furnace includes a cylindrical main body part and an inner part of the main body part.
  • the cracked gas It is intended to provide a biomass power generation system characterized by supplying gas to the power supply.
  • water gas can be stably supplied using biomass as a raw material.
  • the pyrolysis furnace includes a cylindrical main body portion, and a reaction tube protruding from the upper end of the main body portion inside the main body portion, and an inner wall of the main body portion and an outer peripheral surface of the reaction tube.
  • a system for obtaining a water gas by using the obtained cracked gas wherein the inside of the reaction tube is a reaction part of a carbide and a gasifying agent, and the inside of the reaction tube is a reaction part of the heating tube.
  • the present invention provides a return system for a pyrolysis furnace characterized in that it can be charged.
  • the reaction efficiency of carbides can be increased, the amount of water gas to be purified can be increased, and the power generation system can be stably operated. Furthermore, further power generation efficiency can be achieved by applying the pyrolysis furnace of the present invention to a biomass power generation system.
  • FIG. 4 is an end view of the carbonization furnace according to the embodiment of the present invention shown in FIG. 3, (a) is an end view taken along arrow AA, and (b) is an end view taken along arrow BB.
  • FIG. 10 It is a longitudinal cross-sectional view of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. It is sectional drawing of the reaction tube of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. 10, (a) is DD arrow sectional drawing, (b) is EE arrow end elevation. It is a principal part enlarged view of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. It is a block diagram which shows the pyrolysis furnace, temperature reducer, cyclone, steam generator, and steam superheater which concern on one Embodiment of this invention shown in FIG. It is a block diagram of the return system of the pyrolysis furnace which concerns on other embodiment of this invention. It is a block diagram which shows the dryer which concerns on one Embodiment of this invention shown in FIG. It is a block diagram of the biomass power generation system which concerns on other embodiment of this invention.
  • a biomass power generation system is carbonized waste biomass (organic waste), carbonized to produce carbide by carbonization, and then superheated steam (hereinafter also referred to as “steam”). .)
  • a gasifying agent to produce a water gas (mixed gas mainly composed of hydrogen gas, carbon monoxide gas and carbon dioxide gas) by pyrolyzing the carbide, and this water gas is supplied to a gas engine or This is a system that supplies power to a gas turbine engine to obtain electric power.
  • Biomass is, for example, food waste, construction waste, shredder dust, livestock waste, wood waste such as thinned wood and pruned branches, sludge, and general waste discharged from households.
  • Various organic wastes as exemplified above can be used as a raw material for generating water gas.
  • FIG. 1 shows a block diagram of a biomass power generation system according to an embodiment of the present invention
  • FIG. 2 shows a schematic configuration diagram of the biomass power generation system according to an embodiment of the present invention. Note that, in contrast to the block diagram of FIG. 1, the schematic configuration diagram of FIG.
  • the biomass power generation system A is an organic material in which biomass (organic waste) that is a raw material is crushed into chips by a raw material crusher or the like and is fed into a dryer. Hopper 11 for storing waste, dryer 10 for drying the crushed organic waste, carbonization furnace 20 for generating carbide from the dried organic waste, and carbonization and gasification generated in the carbonization furnace 20 A pyrolysis furnace 30 that thermally decomposes the agent, a temperature reducer 40 that cools the water gas generated in the pyrolysis furnace 30, and a char recovery device 41 that collects unburned carbide discharged from the carbonization furnace 20.
  • a water gas cooling device 60 that cools the water, a flare stack 71 that incinerates surplus water gas, and the like, and a power generation facility 72 that obtains electric power by supplying water gas to a gas engine, a gas turbine engine, or the like as fuel are provided. .
  • a steam generator 80 that generates saturated steam from water
  • a steam superheater 81 that superheats steam generated by the steam generator 80
  • a water supply device 82 that supplies water to the steam generator
  • a biomass power generation system A A control device 90 for controlling the whole is provided.
  • the dryer 10 is an apparatus that dries organic waste with combustion gas and supplies the dried organic waste to a carbonization furnace.
  • the dryer 10 is supplied with organic waste from a hopper 11 that stores the organic waste through a raw material supply path 11a.
  • emitted from the steam generator 80 is supplied to the dryer 10 through the combustion gas flow path 200d as a heat source which dries organic waste.
  • the organic waste supplied from the hopper 11 to the dryer 10 is, for example, a wooden chip having a length of 5 mm or more and 60 mm or less.
  • organic waste for example, reduces moisture contained in organic waste to a weight ratio of about 15% by heating and drying wood chips containing water at a weight ratio of about 55%. is there.
  • the dryer 10 supplies the organic waste dried by the heat of the combustion gas to the metering feeder 12 through the raw material supply path 10a. Further, the dryer 10 supplies the combustion gas used as a heat source for drying the organic waste to the exhaust gas cooling and cleaning device 13 through the combustion gas channel 200e.
  • the temperature of the combustion gas supplied from the dryer 10 to the exhaust gas cooling and cleaning device 13 is adjusted to be 150 ° C. or higher and 210 ° C. or lower.
  • the exhaust gas cooling and cleaning device 13 is a scrubber, for example, and is adjusted so that the temperature of the combustion gas discharged into the atmosphere is 120 ° C. or higher and 180 ° C. or lower.
  • an example of the exhaust gas cooling and cleaning device 13 includes a heat exchanger 13 a, an exhaust gas facility (bug dust collector) 13 b, a waste tower 13 c, and the like.
  • the carbonization furnace 20 is an apparatus that generates carbide and combustion gas by partially burning dry organic waste. The carbonized furnace 20 is supplied with the dried organic waste through the raw material supply path 12a from the quantitative feeder 12 that supplies the organic waste to the carbonized furnace 20 while measuring the supply amount per unit time.
  • the carbonization furnace 20 supplies the carbide generated by the combustion of the organic waste to the pyrolysis furnace 30 through the carbide supply path 101.
  • the carbide supply path 101 is provided with a clinker removing device (101b described later), a magnetic separator (101d described later), and the like.
  • the carbonization furnace 20 supplies the combustion gas generated by the combustion of the organic waste to the pyrolysis furnace 30 through the combustion gas flow path 200a.
  • the pyrolysis furnace 30 is a device that generates water gas by heating the carbide generated by the carbonization furnace 20 together with superheated steam with a combustion gas to cause a thermal decomposition reaction.
  • the pyrolysis furnace 30 is supplied with the carbide generated by the carbonization furnace 20 through the carbide supply path 101.
  • the pyrolysis furnace 30 is supplied with superheated steam heated by the steam superheater 81 as a gasifying agent.
  • the pyrolysis furnace 30 is supplied with combustion gas from the combustion gas channel 200a as a heat source for promoting the pyrolysis reaction.
  • the pyrolysis furnace 30 causes a pyrolysis reaction of the carbide and superheated steam to generate a water gas mainly composed of hydrogen gas, carbon monoxide gas, and carbon dioxide gas.
  • the thermal decomposition reaction between carbide and superheated steam is a reaction mainly represented by the following formulas (1) and (2).
  • the water gas reaction shown in Formula (1) is an endothermic reaction
  • the water gas shift reaction shown in Formula (2) is an exothermic reaction.
  • the endothermic amount of the endothermic reaction shown in formula (1) is larger than the exothermic amount of the exothermic reaction shown in formula (2). Therefore, the thermal decomposition reaction between the carbide and the superheated steam is an endothermic reaction as a whole.
  • the temperature of the carbide supplied to the pyrolysis furnace 30 is adjusted to be normal temperature (for example, 25 ° C.) or higher and 350 ° C. or lower. Moreover, the temperature of the superheated steam supplied to the pyrolysis furnace 30 is adjusted to be 730 ° C. or more and 830 ° C. or less. The temperature of the combustion gas supplied to the pyrolysis furnace 30 is adjusted to be 900 ° C. or higher and 1300 ° C. or lower. Moreover, the temperature of the water gas which the pyrolysis furnace 30 produces
  • the pyrolysis furnace 30 supplies unreacted components and residues of the water gas and carbide generated by the pyrolysis reaction to the temperature reducer 40 via the water gas supply path 102. Further, the pyrolysis furnace 30 supplies the combustion gas used as a heat source for the pyrolysis reaction to the steam superheater 81 through the combustion gas channel 200b. The temperature of the combustion gas supplied to the steam superheater 81 is adjusted to be 820 ° C. or more and 920 ° C. or less.
  • the temperature reducer 40 is a device that lowers the temperature of the water gas supplied from the water gas supply path 102 by spraying liquid water. Water is supplied to the temperature reducer 40 from a water supply device 82 by a water supply pump (not shown). The temperature reducer 40 supplies the temperature-reduced water gas to the cyclone 50 through the water gas supply path 103. The temperature reducer 40 supplies unreacted carbide residues and residues supplied from the water gas supply path 102 to the char recovery device 41.
  • the temperature reducer 40 adjusts the amount of water sprayed so that the water gas adjusted in the thermal decomposition furnace 30 is 750 ° C. or higher and 900 ° C. or lower, and is 220 ° C. or higher and 280 ° C. or lower.
  • the char recovery device 41 is a device that recovers an unreacted portion of the carbide and supplies it to the pyrolysis furnace 30 again.
  • the cyclone 50 is a device that removes residues contained in the water gas supplied via the water gas supply path 103.
  • the cyclone 50 turns the water gas supplied through the water gas supply path 103 inside to centrifuge the residue contained in the water gas, guide it downward, and supply it to the residue collecting device 51. Further, the cyclone 50 guides the water gas from which the residue has been removed upward and supplies the water gas to the water gas cooling device 60 through the water gas supply path 104.
  • the water gas cooling device 60 is a device that lowers the temperature of the water gas supplied from the water gas supply path 104 by spraying liquid water.
  • the water gas cooling device 60 circulates the cooling water so that the cooling water sprayed in the water gas is recovered and sprayed again into the water gas by a circulation pump (not shown).
  • the water gas cooling device 60 supplies the cooled water gas to the water gas holder 70.
  • the water gas cooling device 60 is provided with a temperature sensor (not shown) for detecting the temperature of the water gas supplied to the water gas holder 70 and is circulated by a circulation pump (not shown) so that the detected temperature matches the target temperature. Control the amount of cooling water.
  • the water gas cooling device 60 adjusts the spray amount of water so that the water gas adjusted by the temperature reducer 40 is 220 ° C. or more and 280 ° C. or less, and the water gas is 30 ° C. or more and 50 ° C. or less.
  • the water gas holder 70 is a device that stores the water gas supplied from the water gas cooling device 60.
  • the water gas holder 70 can supply the stored water gas individually to the flare stack 71, the power generation facility 72, and the hydrogen purifier 73.
  • the hydrogen purifier 73 is not directly related to the power generation facility, and may be provided as appropriate.
  • the flare stack 71 is an apparatus for incineration when excess water gas is generated, such as when the amount of water gas holder 70 stored becomes excessive.
  • the flare stack 71 is always combusted by a fuel such as liquefied natural gas. Therefore, when water gas is supplied to the flare stack 71, the water gas is incinerated.
  • the power generation facility 72 is a facility that obtains a power generation output by driving a generator by operating water gas as a fuel.
  • a gas engine that operates by burning water gas is used.
  • the hydrogen purifier 73 is an apparatus that purifies high-purity hydrogen gas (for example, hydrogen gas having a purity of 99.995% or more) by removing components such as carbon monoxide gas and carbon dioxide cord gas contained in the water gas. It is.
  • the hydrogen purifier 73 is an adsorption tower filled with an adsorbent (suitable for removing components such as carbon monoxide gas and carbon dioxide gas) by pressurizing water gas to a predetermined pressure with a compressor (not shown). (Not shown).
  • the hydrogen purifier 73 opens and closes a valve (not shown) for controlling the conduction with the outside air provided in the adsorption tower and depressurizes the adsorption tower to atmospheric pressure, so that the carbon monoxide gas is removed from the adsorbent. Then, components such as carbon dioxide gas are removed, and high purity hydrogen gas is purified.
  • the steam generator 80 is an apparatus that generates saturated steam by vaporizing water by heating with combustion gas. Water is supplied to the steam generator 80 from the water supply device 82 via a water supply pump (not shown). Further, the combustion gas discharged from the steam superheater 81 is supplied to the steam generator 80 via the combustion gas flow path 200c. The temperature of the combustion gas supplied to the steam generator 80 is adjusted to be 750 ° C. or higher and 850 ° C. or lower.
  • the saturated steam generated by the steam generator 80 is supplied to the steam superheater 81.
  • the combustion gas used as a heat source for vaporizing water in the steam generator 80 is supplied to the dryer 10 through the combustion gas flow path 200d.
  • the temperature of the combustion gas supplied to the dryer 10 is adjusted to be 540 ° C. or higher and 640 ° C. or lower.
  • the steam superheater 81 is a device that generates superheated steam from saturated steam by heating the saturated steam with combustion gas.
  • the steam superheater 81 is supplied with saturated steam generated by the steam generator 80. Further, the combustion gas discharged from the pyrolysis furnace 30 is supplied to the steam superheater 81 through the combustion gas flow path 200b.
  • the temperature of the combustion gas supplied to the steam superheater 81 is adjusted to be 820 ° C. or more and 920 ° C. or less.
  • the superheated steam generated by the steam superheater 81 is supplied to the pyrolysis furnace 30 as a gasifying agent. Further, the combustion gas used as a heat source for generating superheated steam in the steam superheater 81 is supplied to the steam generator 80 via the combustion gas flow path 200c.
  • the control device 90 is a device that controls the biomass power generation system A.
  • the control device 90 can communicate with a control unit (not shown) included in each unit constituting the biomass power generation system A.
  • the control device 90 can control each unit by transmitting a control command to a control unit included in each unit constituting the biomass power generation system A.
  • the control apparatus 90 can receive the signal which shows the state of each part, such as temperature and pressure, from each part which comprises the biomass power generation system A.
  • the control device 90 can cause each unit constituting the biomass power generation system A to execute a desired operation by reading and executing a control program stored in a storage unit (not shown).
  • the combustion gas generated in the carbonization furnace 20 circulates as follows through the combustion gas flow path including the combustion gas flow paths 200a, 200b, 200c, 200d, and 200e.
  • generated is supplied to the thermal decomposition furnace 30 by the combustion gas flow path 200a.
  • the combustion gas discharged from the pyrolysis furnace 30 is supplied to the steam superheater 81 through the combustion gas channel 200b.
  • the combustion gas discharged from the steam superheater 81 is supplied to the steam generator 80 through the combustion gas flow path 200c.
  • the combustion gas discharged from the steam generator 80 is supplied to the dry operation machine 10 through the combustion gas flow path 200d.
  • the combustion gas discharged from the dryer 10 is supplied to the exhaust gas cooling and cleaning device 13 through the combustion gas flow path 200e.
  • the flue gas detoxified by the exhaust gas cooling and cleaning device 13 is discharged into the atmosphere by the exhaust gas cooling and cleaning device 13.
  • the exhaust gas cooling and cleaning device 13 includes, for example, a heat exchanger 13a, a bag dust collector 13b, an exhaust tower 13c, and the like.
  • the combustion gas generated by the carbonization furnace 20 is supplied to the pyrolysis furnace 30 without performing heat exchange with other heat medium.
  • the reason is that the combustion gas maintained at a high temperature is used for the pyrolysis furnace. This is because the thermal decomposition reaction at 30 is promoted to improve the yield of water gas from the carbide.
  • the inside of the pyrolysis furnace 30 can be maintained at a high temperature. The reaction is accelerated and the yield of water gas from the carbide is improved.
  • FIG. 3 is a longitudinal sectional view of the carbonization furnace according to one embodiment of the present invention shown in FIG. 2, and FIG. 4 is a view showing a clinker crusher of the carbonization furnace according to one embodiment of the present invention shown in FIG. (A) is a plan view and (b) is an end view taken along the line CC of (a).
  • 5 is an end view of the carbonization furnace according to one embodiment of the present invention shown in FIG. 3, wherein (a) is an end view taken along the line AA, and (b) is an end view taken along the line BB. is there.
  • an axis X indicates a vertical direction (gravity direction) orthogonal to an installation surface (not shown) on which the carbonization furnace 20 is installed.
  • the carbonization furnace 20 includes a main body part 21, a cylindrical part 22 (cylinder part), an organic waste input part 23 (input part), a carbide discharge part 24, and a primary air supply part 25.
  • Secondary air supply unit 26 combustion gas discharge unit 27, temperature sensor 28a (temperature detection unit), temperature sensor 28b (temperature detection unit), temperature sensor 28c (temperature detection unit), and level sensor 28d ( A deposition amount detection unit), an ignition burner 20c, and a carbonization furnace control unit 29 (control unit).
  • the main body 21 is a member that is formed in a substantially cylindrical shape extending along the axis X and is an exterior of the carbonization furnace 20.
  • the main body 21 forms a primary combustion region R2 in which organic waste is partially combusted and a secondary combustion region R4 in which combustible gas contained in the combustion gas generated from the organic waste is combusted. Yes.
  • the main body 21 is attached to a metal (for example, iron) housing 21a that forms the exterior of the carbonization furnace 20, a heat insulating material 21b that is attached to the inner peripheral surface of the housing 21a, and an inner peripheral surface of the heat insulating material 21b.
  • Refractory material 21c Refractory material
  • the cylindrical portion 22 is a member formed in a substantially cylindrical shape extending along the axis X.
  • the cylindrical portion 22 has an outer peripheral surface 22a that forms a gap 20a between the inner peripheral surface 21d of the main body portion 21 and combusting organic waste to generate carbides. Since the cylindrical part 22 becomes high temperature by combustion of organic waste, it is preferable to form the cylindrical part 22 from a heat-resistant material (for example, a metal material such as stainless steel).
  • the inside of the cylindrical portion 22 is a hollow closed space, and this closed space is not in communication with other spaces. Therefore, the cylindrical portion 22 can store a certain amount of heat and is not easily affected by an external temperature change.
  • the cylindrical portion 22 is attached to a turntable 24a, which will be described later, and rotates around the axis X in response to the turntable 24a rotating around the axis X. As the cylindrical portion 22 rotates about the axis X, the gap 20a and the organic waste existing above the gap 20a are guided along the gap 20a from above to below.
  • the organic waste supplied to the gap 20a is partially combusted by the primary combustion air supplied from the primary air supply unit 25 in the primary combustion region R2, and burns containing solids containing a large amount of carbides and combustible gas. Gas is generated.
  • the solid content containing a large amount of carbide is guided to the lower carbide refining / cooling region R1 along the gap 20a, and the combustion gas containing combustible gas is guided to the secondary combustion region R4.
  • the carbide refining / cooling region R1 is a region where the upper portion is closed with organic waste and the primary combustion air from the primary air supply unit 25 is not supplied. Therefore, the carbide is refined while being cooled in the carbide refinement / cooling region R1.
  • the organic waste input unit 23 is an opening that is provided in the main body 21 and inputs organic waste (not shown) supplied from the quantitative supply device 12 via the raw material supply path 12 a into the main body 21. .
  • An inclined surface 23a is formed below the organic waste throwing portion 23.
  • the inclined surface 23a is inclined downward from above as it approaches the axis X.
  • the organic waste supplied from the organic waste input part 23 is guided to the upper surface 22b of the cylindrical part 22 and the gap 20a along the inclined surface 23a.
  • the region where the organic waste charging unit 23 is disposed is a raw material charging region R3.
  • an inspection window 20b is provided on the side opposite to the organic waste charging unit 23 with respect to the axis X.
  • the inspection window 20b makes the inside of the carbonization furnace 20 visible.
  • the carbide discharge unit 24 is a mechanism for discharging carbide generated by partial combustion of organic waste in the gap 20 a to the carbide supply path 101.
  • the carbide discharged from the carbide discharge unit 24 to the carbide supply path 101 is supplied to the pyrolysis furnace 30.
  • the carbide discharge part 24 has a turntable 24a (rotary body), a drive part 24b, and a carbide discharge port 24c.
  • the turntable 24a is a member provided at a position facing the lower end in the axis X direction of the gap 20a, and is an annular rotator extending in the circumferential direction around the axis X.
  • the turntable 24a rotates around the axis X by the driving force transmitted from the driving unit 24b.
  • the surface of the turntable 24a facing the lower end of the gap 20a is an inclined surface that is inclined downward as it differs from the axis X. Therefore, a gap is formed between the lower end of the gap 20a and the inclined surface of the turntable 24a.
  • Carbide (not shown) existing at the lower end of the gap 20a moves downward along the inclined surface of the turntable 24a as the turntable 24a rotates about the axis X, and is guided to the carbide discharge port 24c. . Therefore, as the rotational speed of the turntable 24a increases, the amount of carbide guided from the lower end of the gap 20a to the carbide discharge port 24c increases. Similarly, as the rotational speed of the turntable 24a decreases, the amount of carbide guided from the lower end of the gap 20a to the carbide discharge port 24c decreases.
  • the driving unit 24b is a device that transmits driving force to the turntable 24c and rotates the turntable 24b about the axis X.
  • the drive unit 24b includes a drive motor 24e, a speed reducer 24f, a drive belt 24g, and a drive shaft 24h.
  • the drive motor 24e is an inverter motor whose rotation speed is controlled by a control signal transmitted from the carbonization furnace control unit 29.
  • the rotational power of the drive motor 24e is transmitted to the speed reducer 24f by the drive belt 24g.
  • the speed reducer 24f is a device that increases the torque while reducing the rotational speed of the rotational power transmitted from the drive motor 24e by the drive belt 24g.
  • the speed reducer 24f transmits the rotational power with increased torque to the drive shaft 24h extending around the axis X.
  • the turntable 24a is connected to the drive shaft 24h. Therefore, the turntable 24a rotates about the axis X as the drive shaft 24h rotates about the axis X.
  • the carbide discharge port 24 c is an opening for discharging carbide to the carbide supply path 101.
  • the carbide discharged from the carbide discharge port 24 c to the carbide supply path 101 is supplied to the pyrolysis furnace 30 through the carbide supply path 101.
  • the clinker crusher 24d is a member for crushing a clinker that is a lump larger than a gap formed between the lower end of the gap 20a and the inclined surface of the turntable 24a.
  • the clinker is obtained by melting the combustion ash generated by the combustion of the organic waste in the primary combustion region R2 into a lump.
  • the clinker crusher 24d is a substantially annular member arranged around the axis X, and claws 24i protruding radially inward at a plurality of positions in the circumferential direction. Is provided.
  • the claw 24i has a shape bent upward along the inclined surface of the turntable 24a.
  • the clinker crusher 24d is attached to the main body 21 by fastening bolts.
  • the clinker crusher 24d remains fixed to the main body 21 even when the turntable 24a rotates about the axis X. Therefore, when the clinker moves as the turntable 24a rotates, the clinker collides with the claws 24i of the clinker crusher and is crushed.
  • the primary air supply unit 25 is a device that supplies primary combustion air that partially burns organic waste toward the organic waste accumulated in the gap 20a.
  • the primary air supply unit 25 includes a primary combustion fan 25a (air blowing unit), a cover unit 25b, and an air supply port 25c.
  • the primary combustion fan 25a is a device that blows air (atmosphere) introduced from the outside, and includes an inverter motor (not shown) and a fan (not shown) driven by the inverter motor.
  • the primary combustion fan 25a can adjust the air volume to blow by controlling the rotation speed of the inverter motor.
  • the cover portion 25b is a member that forms a closed space 25d in which air blown from the primary combustion fan 25a is introduced and air is supplied to the air supply port 25c.
  • FIG. 5A shows an end view of the carbonization furnace 20 shown in FIG. 3 along the line AA.
  • the cover portion 25b is disposed around the axis X between the outer peripheral surface 21e of the main body portion 21 and the cover portion 25b.
  • An extended closed space 25d is formed.
  • the air supply port 25c is a flow path for supplying air blown from the primary combustion fan 25a to the closed space 25d to the primary combustion region R2 inside the main body 21 from the closed space 25d.
  • the air supply ports 25c are provided at a plurality of locations in the vertical direction along the axis X in the primary combustion region R2 where the organic waste is partially combusted by the primary combustion air.
  • the air supply ports 25c are provided in the main body 21 at equal intervals along the circumferential direction around the axis X (30 ° intervals in FIG. 5A). . As shown in FIG. 5A, the air supply port 25c is a linear flow path extending from the outer peripheral surface 21e of the main body 21 toward the axis X.
  • the air supply ports 25c are arranged at intervals of 30 ° along the circumferential direction around the axis X, but other intervals (for example, 20 °, 45 °, etc.) Alternatively, they may be arranged at arbitrary intervals instead of at equal intervals.
  • the primary air supply unit 25 shown in FIG. 3 has a heating unit (not shown) for heating the air blown from the primary combustion fan 25a.
  • the air supply port 25c supplies the air heated by the heating unit to the air supply port 25c. Therefore, compared with the case where the air blown from the primary combustion fan 25a is not heated, the atmospheric temperature of the primary combustion region R2 can be maintained at a high temperature.
  • FIGS. 6 and 7 are longitudinal sectional views showing a first modification of the primary air supply unit of the carbonization furnace according to the embodiment of the present invention shown in FIG. 3, and FIG. 7 is a second modification of the primary air supply unit. It is a longitudinal cross-sectional view which shows an example.
  • the modification of the primary air supply part 25 shown in FIG.6 and FIG.7 uses the air transmitted from the gap
  • the heat dissipating fins 25e are provided.
  • the heat radiation fin 25e is an annular member that contacts the outer peripheral surface 21e of the main body 21 and extends around the axis X along the outer peripheral surface 21e.
  • the radiation fins 25e are provided at a plurality of locations along the axis X.
  • the radiation fin 25e is attached to the outer peripheral surface 21e of the main body 21 by welding or the like.
  • the cover part 25b of the primary air supply part 25 shown in FIG. 3 is provided only at substantially the same position in the axis X direction as the air supply port 25c.
  • the cover portion 25b of the primary air supply unit 25 supplies air in addition to substantially the same position in the axis X direction as the air supply port 25c. It is provided so as to include a position below the opening 25c.
  • the heat transfer member 6 is a heat transfer member to which the ambient temperature of the gap 20a is transferred through the outer peripheral surface 21e of the main body 21.
  • the outer peripheral surface 21e of the main body 21 is heated to about 50 ° C. to 70 ° C., although the housing 21a is protected by the refractory material 21c and the heat insulating material 21b so as not to be overheated. Therefore, the air (atmosphere) blown from the primary combustion fan 25a can be heated by the radiation fin 25e.
  • the primary combustion fan 25a blows air introduced from the outside toward the outer peripheral surface 21e of the main body portion 21 located on the outer peripheral side below the gap 20a. This is because the outer peripheral surface 21e of the main body 21 located on the outer peripheral side below the gap 20a is cooled by air introduced from the outside.
  • the carbide refining / cooling region R1 is a region in which the carbide generated in the primary combustion region R2 is refined while being cooled, and therefore it is desirable to maintain the temperature at a certain low level. Therefore, in the present embodiment, the position where the primary combustion fan 25a blows air is set so that the carbide refining / cooling region R1 is cooled.
  • the distance from the inner peripheral surface 21d of the main body 21 to the outer peripheral surface 21e at the position where the air supply port 25c is arranged is a distance D1.
  • the distance from the inner peripheral surface 21d of the main body 21 to the outer peripheral surface 21e at the position where the radiation fin 25e is disposed is the distance D2.
  • the distance D2 is shorter than the distance D1.
  • the temperature is easily transmitted to the outer peripheral surface 21e. Therefore, according to the second modification, the radiating fins 25e are heated to a higher temperature than in the first modification. Therefore, according to the primary air supply unit 25 of the second modification, the air blown by the primary combustion fan 25a can be supplied to the air supply port 25c while being heated to a higher temperature.
  • the radiation fin 25e shown to FIG. 6 and FIG. 7 shall be the cyclic
  • another aspect may be sufficient.
  • the heat dissipating fin 25e may be in contact with the outer peripheral surface 21e of the main body 21 and may be configured to form a spiral flow path that pivots from below to above around the axis X along the outer peripheral surface 21e. Good.
  • the secondary air supply unit 26 is a device that supplies secondary combustion air for burning the combustible gas contained in the combustion gas generated by the combustion of the organic waste in the primary combustion region R2 to the inside of the main body 21. is there. As shown in FIG. 3, the secondary air supply unit 26 is provided in the secondary combustion region R4 and supplies secondary combustion air toward the secondary combustion region R4.
  • the secondary air supply unit 26 includes a secondary combustion fan 26a, a cover unit 26b, and an air supply port 26c.
  • the secondary combustion fan 26a is a device that blows air (atmosphere) introduced from the outside, and includes an inverter motor (not shown) and a fan (not shown) driven by the inverter motor.
  • the secondary combustion fan 26a can adjust the air volume to blow by controlling the rotation speed of the inverter motor.
  • the cover portion 26b is a member that forms a closed space 26d that introduces air blown from the secondary combustion fan 26a and supplies air to the air supply port 26c.
  • the cover portion 26b is a closed space extending around the axis X between the outer peripheral surface 21e of the main body portion 21. 26d is formed.
  • the air supply port 26c is a flow path for supplying air blown from the secondary combustion fan 26a to the closed space 26d to the secondary combustion region R4 inside the main body 21 from the closed space 26d.
  • the air supply ports 26 c are provided at a plurality of locations in the vertical direction along the axis X in the secondary combustion region R ⁇ b> 4 where the combustible gas contained in the combustion gas is combusted by the secondary combustion air. ing.
  • the air supply ports 26c are provided in the main body portion 21 at equal intervals along the circumferential direction around the axis X (30 ° intervals in FIG. 5B). . Further, as shown in FIG. 5B, the air supply port 26 c is a linear flow path extending from the outer peripheral surface 21 e of the main body 21 toward the axis X.
  • the air supply ports 26c are arranged at intervals of 30 ° along the circumferential direction around the axis X, but other intervals (for example, 20 °, 45 °, etc.) Or may be arranged at an arbitrary interval instead of at equal intervals.
  • the combustion gas discharge unit 27 is an exhaust port that discharges the combustion gas generated in the primary combustion region R2 and combusted with the combustible gas component in the secondary combustion region R4 to the combustion gas channel 200a.
  • the combustion gas discharged to the combustion gas flow path 200a is supplied to the pyrolysis furnace 30 for use as a heat source for the pyrolysis reaction.
  • the temperature sensor 28 a is a sensor that detects the temperature of the combustion gas discharged from the combustion gas discharge unit 27.
  • the temperature sensor 28 a transmits a temperature detection signal indicating the detected temperature to the carbonization furnace control unit 29.
  • the temperature sensor 28a is disposed in a region close to the combustion gas flow path 200a in the secondary combustion region R4. Therefore, the combustion gas temperature Tg detected by the temperature sensor 28a is substantially the same as the temperature of the combustion gas discharged to the combustion gas flow path 200a.
  • the temperature sensor 28b is a sensor that detects the ambient temperature of the primary combustion region R2.
  • the temperature sensor 28 b transmits a temperature detection signal indicating the detected temperature to the carbonization furnace control unit 29.
  • the temperature sensor 28c is a sensor that detects a carbide temperature Tc that is a temperature of carbide deposited on the lower end side of the gap 20a.
  • the temperature sensor 28 b transmits a temperature detection signal indicating the detected carbide temperature Tc to the carbonization furnace control unit 29.
  • the level sensor 28d is a sensor that detects the amount of organic waste deposited in the gap 20a.
  • the level sensor 28d detects the amount of organic waste accumulated in the direction of the axis Y shown in FIG. 3 by obtaining an output signal corresponding to the amount of accumulation in the primary combustion region R2.
  • the level sensor 28d may be a reflective sensor that detects the amount of deposition by receiving reflection of emitted light, ultrasonic waves, or the like. Further, the level sensor 28d may be a transmission type sensor in which a receiving part for receiving emitted X-rays or the like is provided in the cylindrical part 22.
  • the level sensor 28d detects that the amount of organic waste deposited in the gap 20a has decreased, such as when the introduction of new organic waste from the organic waste input unit 23 is stopped. Sensor. Therefore, the level sensor 28d detects the amount of deposition along the axis Y directed downward from the mounting position in the vertical direction.
  • the carbonization furnace control unit 29 outputs a detection signal indicating that the deposition amount Ao, which is the deposition amount of the organic waste detected by the level sensor 28d, is 0 (zero), the deposition amount of the organic waste present in the gap 20a. Is determined to have decreased to a predetermined first deposition amount Ao1 or less.
  • the ignition burner 20c is a device used to ignite organic waste when starting combustion of organic waste in the carbonization furnace 20. As shown in FIG. 3, the ignition burner 20c is provided on the lower end side of the gap 20a. In addition, as shown in FIG. 3, the ignition burners 20 c are arranged at two locations facing the axis X.
  • the ignition burner 20c burns organic waste accumulated on the lower end side of the gap 20a by generating a flame using ignition fuel such as kerosene.
  • the ignition burner 20c generates a flame when starting combustion of organic waste in the carbonization furnace 20 in accordance with a control command from the carbonization furnace control unit 29. Further, the ignition burner 20c stops the generation of flame at a predetermined timing in accordance with a control command from the carbonization furnace control unit 29.
  • the carbonization furnace control unit 29 is a device that controls each part by receiving a detection signal indicating the state of each part from each part of the carbonization furnace 20 and transmitting the control signal to each part based on the detection signal.
  • the carbonization furnace control unit 29 is a device that transmits a signal indicating the state of the carbonization furnace 20 to the control device 90 and controls the carbonization furnace 20 in response to a control signal transmitted from the control device 90.
  • the carbonization furnace control unit 29 receives a temperature detection signal indicating the temperature detected by each of the temperature sensors 28a, 28b, and 28c, and a deposition amount detection signal indicating the deposition amount Ao of the organic waste detected by the level sensor 28d. . Further, the carbonization furnace control unit 29 transmits a control signal for controlling the blown amount of the primary combustion fan 25 a to the primary air supply unit 25. Further, the carbonization furnace control unit 29 transmits a control signal for controlling the blown amount of the secondary combustion fan 26 a to the secondary air supply unit 26.
  • the carbonization furnace control unit 29 transmits a control signal to the ignition burner 20c to start combustion of organic waste, it generates a flame and transmits a control signal at a predetermined timing to stop the generation of the flame. Let Moreover, the carbonization furnace control unit 29 transmits a control signal for controlling the rotation speed of the turntable 24a to the drive motor 24e.
  • the carbonization furnace control unit 29 controls the amount of air blown by the primary combustion fan 25a based on the atmospheric temperature of the primary combustion region R2 detected by the temperature sensor 28b.
  • the amount of air blown by the primary combustion fan 25a coincides with the amount of primary combustion air supplied from the air supply port 25c to the primary combustion region R2 of the carbonization furnace 20. Therefore, the carbonization furnace control unit 29 can adjust the amount of primary combustion air blown to the primary combustion region R2 by controlling the amount of air blown by the primary combustion fan 25a. .
  • the carbonization furnace control unit 29 performs primary combustion based on the atmospheric temperature in the primary combustion region R2 detected by the temperature sensor 28b so that the combustion state suitable for carbonizing the organic waste accumulated in the gap 20a is maintained.
  • the amount of air blown by the fan 25a is controlled.
  • the carbonization furnace control unit 29 controls the amount of air blown by the primary combustion fan 25a so that the ambient temperature of the primary combustion region R2 is within the range of 1000 ° C. or more and 1200 ° C. or less.
  • the carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a based on the combustion gas temperature Tg detected by the temperature sensor 28a.
  • the amount of air blown by the secondary combustion fan 26a matches the amount of air for secondary combustion supplied to the secondary combustion region R4 of the carbonization furnace 20 from the air supply port 26c. Therefore, the carbonization furnace control unit 29 can adjust the air amount of the secondary combustion air blown to the secondary fuel burner region R4 by controlling the amount of air blown by the secondary combustion fan 26a.
  • the carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a according to the flowchart shown in FIG.
  • Each process in the flowchart shown in FIG. 8 is a process performed when a calculation unit (not shown) included in the carbonization furnace control unit 29 executes a control program stored in a storage unit (not shown).
  • the carbonization furnace control unit 29 Prior to the processing shown in the flowchart of FIG. 8, when the carbonization furnace control unit 29 starts combustion of the organic waste in the carbonization furnace 20, the organic waste is generated by the ignition burner 20 c and accumulated in the gap 20 a. Start burning. Thereafter, the carbonization furnace control unit 29 starts blowing external air (atmosphere) by the secondary combustion fan 26a. The carbonization furnace control unit 29 controls the secondary combustion fan 26a so that the air flow rate is constant until the combustion gas temperature Tg detected by the temperature sensor 28a becomes equal to or higher than the first combustion gas temperature Tg1. After the combustion gas temperature Tg detected by the temperature sensor 28a becomes equal to or higher than the first combustion gas temperature Tg1, the processes shown in the flowchart of FIG. 8 are started.
  • the amount of secondary combustion air blown by the secondary combustion fan 26a before the combustion gas temperature Tg becomes equal to or higher than the first combustion gas temperature Tg1 is assumed to exist in the secondary combustion region R4. It is an amount obtained by adding a certain surplus amount to the amount necessary to completely burn the fuel.
  • step S800 the carbonization furnace control unit 29 receives the temperature detection signal transmitted from the temperature sensor 28a, and thereby detects the combustion gas temperature Tg that is the temperature of the combustion gas discharged from the combustion gas discharge unit 27.
  • step S801 the carbonization furnace control unit 29 determines whether or not the combustion gas temperature Tg detected by the temperature sensor 28a is lower than the first combustion gas temperature Tg1.
  • the carbonization furnace control unit 29 advances the process to step S802, and otherwise advances the process to step S803.
  • step S802 the carbonization furnace control unit 29 transmits a control signal for reducing the blown amount of the secondary combustion fan 26a to the secondary combustion fan 26a.
  • the secondary combustion fan 26a reduces the blown air volume in response to receiving the control signal from the carbonization furnace control unit 29.
  • the blowing amount of the secondary combustion fan 26a is decreased for the following reason.
  • the amount of secondary combustion air supplied by the secondary air supply unit 26 to the secondary combustion region R4 is a constant amount than the amount of combustible gas contained in the combustion gas existing in the secondary combustion region R4.
  • the amount is preferably as large as possible. That is, the excess air ratio in the secondary combustion region R4 is preferably set to a constant value larger than 1.0.
  • the amount of combustible gas present in the secondary combustion region R4 generally varies depending on factors such as the properties of the organic waste and the combustion state of the organic waste in the primary combustion region R2. Therefore, if the amount of secondary combustion air supplied from the secondary air supply unit 26 to the secondary combustion region R4 is kept constant, an air amount suitable for complete combustion of the combustible gas cannot be maintained.
  • the combustible gas contains polymer hydrocarbons which are components that solidify to become tar. Therefore, if a large amount of components that solidify into combustible gas and become tar is contained, the carbonization furnace 20 and equipment installed downstream thereof may be damaged. For this reason, it is desirable that a large amount of components that solidify into the combustion gas and become tar are not included, and damage to the carbonization furnace 20 and equipment installed downstream thereof is desirably suppressed.
  • the carbonization furnace control unit 29 determines that the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, the secondary combustion is performed in order to reduce the amount of surplus air supplied to the secondary combustion region R4. The air volume of the fan 26a is reduced.
  • step S803 the carbonization furnace control unit 29 determines whether or not the combustion gas temperature Tg detected by the temperature sensor 28a is higher than the second combustion gas temperature Tg2.
  • the carbonization furnace control unit 29 advances the process to step S804, and if not, advances the process to step S801.
  • step S804 the carbonization furnace control unit 29 transmits a control signal for increasing the blowing amount of the secondary combustion fan 26a to the secondary combustion fan 26a.
  • the secondary combustion fan 26a increases the blown air volume in response to receiving the control signal from the carbonization furnace control unit 29.
  • the carbonization furnace control unit 29 starts execution of the process shown in FIG. 8 again when the process of the flowchart shown in FIG. 8 is completed.
  • the blowing amount of the secondary combustion fan 26a is increased for the following reason.
  • the combustion gas temperature Tg be equal to or lower than a predetermined upper limit temperature.
  • the carbonization furnace control unit 29 increases the blowing amount of the secondary combustion fan 26a when it is determined that the combustion gas temperature Tg is higher than the second combustion gas temperature Tg2. As described above, when a large amount of surplus air is supplied to the secondary combustion region R4 by increasing the amount of air blown from the secondary combustion fan 26a, the atmospheric temperature in the secondary combustion region R4 is lowered.
  • the carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a based on the combustion gas temperature Tg detected by the temperature sensor 28a, so that the combustion gas temperature Tg becomes the first value.
  • the first combustion gas temperature Tg1 or higher and the second combustion gas temperature Tg2 or lower are set.
  • the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2 for example, the first combustion gas temperature Tg1 can be set to 900 ° C., and the second combustion gas temperature Tg2 can be set to 1300 ° C.
  • the reason why the first combustion gas temperature Tg1 is set to 900 ° C. is that most of the polymer hydrocarbons can be removed from the combustion gas by maintaining the temperature of the secondary combustion region R4 at 900 ° C. or higher. .
  • the polymer hydrocarbon is a component that solidifies into a tar in the combustible gas contained in the combustion gas. Therefore, by removing most of the polymer hydrocarbon from the combustion gas, damage to the carbonization furnace 20 and equipment installed downstream thereof can be suppressed.
  • the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2 may be set to 1000 ° C.
  • the second combustion gas temperature Tg2 may be set to 1200 ° C.
  • both the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2 may be set to 1100 ° C.
  • the carbonization furnace control unit 29 decreases the blowing amount when the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, and increases the blowing amount when the combustion gas temperature Tg is higher than the second combustion gas temperature Tg2.
  • the secondary combustion fan 26a is controlled so as to cause this to occur.
  • Each process in the flowchart shown in FIG. 9 is a process performed when a calculation unit (not shown) included in the carbonization furnace control unit 29 executes a control program stored in a storage unit (not shown).
  • the carbonization furnace control unit 29 controls the discharge amount of the carbide discharged by the carbide discharge unit 24.
  • the amount of carbide discharged by the carbide discharge unit 24 is controlled because the input of the organic waste from the organic waste input unit 23 to the gap 20a is stopped. This is to prevent the temperature of the carbide discharged from 24 from rising.
  • the carbide refining / cooling region R1 for extinguishing the carbide gradually decreases.
  • the rotation speed of the turntable 24a is maintained constant, the carbide is discharged from the lower end of the gap 20a in a state where the carbide is not sufficiently cooled. This is because the carbide that has been carbonized in the primary combustion region R2 to a high temperature is not sufficiently cooled in the carbide refining / cooling region R1.
  • the carbonization furnace control unit 29 adjusts the temperature of the carbide discharged by the carbide discharge unit 24 by controlling the discharge amount of the carbide discharged by the carbide discharge unit 24.
  • the carbonization furnace control unit 29 adjusts the temperature of the carbide discharged by the carbide discharge unit 24 using both the temperature sensor 28c and the level sensor 28d.
  • the former is a sensor that directly detects the temperature of the carbide
  • the latter is a sensor that indirectly detects a state in which the temperature of the carbide is high from the amount of deposited carbide.
  • step S900 the carbonization furnace control unit 29 receives the temperature detection signal transmitted from the temperature sensor 28c, thereby detecting the carbide temperature Tc, which is the temperature of the carbide deposited on the lower end side of the gap 20a.
  • step S901 the carbonization furnace control unit 29 receives the accumulation amount detection signal transmitted from the level sensor 28d, and thereby detects the accumulation amount Ao that is the accumulation amount of the organic waste accumulated in the gap 20a.
  • step S902 the carbonization furnace control unit 29 determines whether the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1. When determining that the detected carbide temperature Tc is equal to or higher than the first carbide temperature Tc1, the carbonization furnace control unit 29 proceeds to step S903, and otherwise proceeds to step S904.
  • the first carbide temperature Tc1 for example, an arbitrary temperature in the range of 250 ° C. or higher and 300 ° C. or lower can be set.
  • step S903 the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the second rotation speed Rs2.
  • the second rotation speed Rs2 is lower than the first rotation speed Rs1 described later.
  • the first rotation speed Rs1 is a speed for discharging the amount of carbide necessary for the carbonization furnace 20 to maintain the normal operation state from the carbide discharge section 24.
  • the rotational distance of the turntable 24a is set so that the temperature of the carbide discharged by the carbide discharge unit 24 decreases when the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1.
  • the second rotational speed Rs2 is lower than the first rotational speed Rs1.
  • step S904 the carbonization furnace control unit 29 determines whether or not the deposition amount Ao detected by the level sensor 28d is equal to or less than the first deposition amount Ao1.
  • the carbonization furnace control unit 29 advances the process to step S905, and otherwise advances the process to step S906.
  • step S905 the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the second rotation speed Rs2.
  • the second rotation speed Rs2 is lower than the first rotation speed Rs1 described later.
  • the rotation speed of the turntable 24a is set to the first speed so that the temperature of the carbide discharged by the carbide discharge unit 24 is lowered when the accumulation amount Ao detected by the level sensor 28d is equal to or less than the first accumulation amount Ao1.
  • the second rotation speed Rs2 is lower than the rotation speed Rs1.
  • step S906 the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the first rotation speed Rs1.
  • the first rotation speed Rs1 is a speed for discharging the amount of carbide necessary for the carbonization furnace 20 to maintain the normal operation state from the carbide discharge section 24. Since the carbide temperature Tc is lower than the first carbide temperature Tc1 and the deposition amount Ao is larger than the first deposition amount Ao1 in step S906, the carbonization furnace control unit 29 has an amount necessary for maintaining the operation state.
  • the drive unit 24b is controlled to discharge the carbide from the carbide discharge unit 24.
  • the carbonization furnace control unit 29 starts execution of the process shown in FIG. 9 again when the process of the flowchart shown in FIG. 9 is completed.
  • the carbonization furnace control unit 29 is configured so that the drive unit 24b rotates the turntable 24a based on the carbide temperature Tc detected by the temperature sensor 28c and the organic waste accumulation amount Ao detected by the level sensor 28d. To control.
  • the rotation speed of the turntable 24a is switched between two stages depending on whether or not the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1.
  • Other embodiments may be used.
  • the rotation speed of the turntable 24c may be switched in two or more stages according to the carbide temperature Tc.
  • the rotational speed of the turntable 24a may be controlled so as to be in inverse proportion to the carbide temperature Tc detected by the temperature sensor 28c without switching the rotational speed of the turntable 24a stepwise.
  • the rotation speed of the turntable 24a is switched in two steps depending on whether or not the accumulation amount Ao detected by the level sensor 28d is equal to or more than the first accumulation amount Ao1.
  • the accumulation amount Ao detected by the level sensor 28d is equal to or more than the first accumulation amount Ao1.
  • other embodiments may be used.
  • the rotational speed of the turntable 24a may be switched in two or more stages according to the accumulation amount Ao.
  • the rotational speed of the turntable 24a may be controlled so that the rotational speed of the turntable 24a is proportional to the deposition amount Ao detected by the level sensor 28d without switching the rotational speed of the turntable 24a stepwise. .
  • the rotational speed of the turntable 24a is controlled using both the carbide temperature Tc detected by the temperature sensor 28c and the accumulation amount Ao detected by the repel sensor 28d. May be other embodiments.
  • the rotational speed of the turntable 24a may be controlled using either the carbide temperature Tc detected by the temperature sensor 28c or the deposition amount Ao detected by the level sensor 28d.
  • FIG. 10 is a longitudinal sectional view of the pyrolysis furnace according to one embodiment of the present invention shown in FIG. 2
  • FIG. 11 is a sectional view of the reaction tube of the pyrolysis furnace shown in FIG. DD is a sectional view taken along the arrow D
  • (b) is an end view taken along the arrow EE.
  • FIG. 12 is an enlarged view of a main part of the pyrolysis furnace shown in FIG.
  • the axis Z indicates the vertical direction (gravity direction) orthogonal to the installation surface (not shown) on which the pyrolysis furnace 30 is installed.
  • the pyrolysis furnace 30 of the present embodiment includes a main body 31, a reaction tube 32, a reaction tube head 33 (supply portion), a water gas outlet nozzle 34 (water gas outlet portion), Combustion gas supply part 35 (heating gas supply part), combustion gas discharge part 36 (heating gas discharge part), gland packing 37 (first seal part), gland packing 38 (second seal part), And a gland packing 39 (third seal portion).
  • the main body 31 is a member formed in a substantially cylindrical shape extending along the axis Z.
  • the main body 31 forms a space for accommodating the reaction tube 32 therein.
  • the main body 31 is a metal (for example, iron) housing 31a that forms the exterior of the pyrolysis furnace 30, a heat insulating material 31b that is attached to the inner peripheral surface of the housing 31a, and an inner peripheral surface of the heat insulating material 31b. And a heat-resistant material 31c to be attached.
  • a metal for example, iron
  • the upper surface of the substantially cylindrical main body 31 is composed of an upper plate 31d that is annular in plan view, and the bottom surface of the main body 31 is composed of a bottom plate 31e that is annular in plan view.
  • An upper end flange 31g (first flange portion) is provided at the upper end of the side surface 31f of the main body 31, and a lower end flange 31i (second flange portion) is provided at the lower end of the side surface 31f of the main body 31. Yes.
  • the upper plate 31d and the upper end flange portion 31g are a fastening bolt 31h (fastening member) in a state where a gasket (fourth seal portion) (not shown) is sandwiched between the upper plate 31d and the upper end flange portion 31g at a plurality of positions around the axis Z. ).
  • the bottom plate 31e and the lower end flange 31i are a fastening bolt 31j (fastening member) in a state where a gasket (fifth seal portion) (not shown) is sandwiched between the bottom plate 31e and the lower end flange 31i at a plurality of locations around the axis Z. It is concluded by
  • the reaction tube 32 is a mechanism formed in a substantially cylindrical shape extending along the axis Z.
  • the reaction tube 32 has an outer peripheral surface 32 d that forms a combustion gas flow path 30 a for allowing a combustion gas (heating gas) to flow between the inner peripheral surface of the main body 31.
  • the reaction tube 32 includes a center pipe 32a (tubular member), an upper end flange 32b (third flange portion), a plurality of first inclined plates 32f, a plurality of second inclined plates 32g, and a plurality of holding rods 32h (holding portions). ).
  • the upper end flange 32b of the reaction tube 32 and the end of the center pipe 32a on the upper end flange 32b side protrude upward from the upper plate 31d (upper surface) of the main body 31.
  • the lower end 32c of the reaction tube 32 protrudes downward from the bottom plate 31e (bottom surface) of the main body 31.
  • the center pipe 32a is a member formed in a cylindrical shape extending along the axis Z. Inside the center pipe 32a is housed a thermal decomposition promotion mechanism including a plurality of first inclined plates 32f, a plurality of second inclined plates 32g, and a plurality of holding rods 32h (holding portions).
  • the thermal decomposition promotion mechanism promotes the thermal decomposition reaction of the carbide and superheated steam (gasification agent) by guiding the carbide stepwise from the upper end side to the lower end side of the center pipe 32a and retaining the carbide in the reaction tube 32. It is a mechanism to make.
  • the plurality of first inclined plates 32f and the plurality of second inclined plates 32g are held by four holding bars 32h at a plurality of locations along the axis Z. Further, the first inclined plates 32f and the second inclined plates 32g are alternately arranged along the axis Z.
  • the upper ends of the four holding rods 32 h are attached to the lower surface of the lower end flange 33 a of the reaction tube head 33.
  • the thermal decomposition promoting mechanism can be removed (detached) upward from the center pipe 32a.
  • the first inclined plate 32f shown in FIG. 11 (a) is configured such that the carbide is changed from one end of the inner peripheral surface 32e of the reaction tube 32 (the left end in FIG. 11 (a)) to the other end ((a) of FIG. ) Are arranged so as to form a first inclined surface that is inclined so as to be led to the first opening 32i provided at the right end).
  • the second inclined plate 32f shown in FIG. 11 (b) has one end portion (in FIG. 11) from the other end portion (the right end portion in FIG. 11 (b)) of the carbide to the carbide.
  • the second inclined surface is formed so as to be inclined so as to be led to the second opening 32j provided at the left end portion in (b).
  • the first inclined surface formed by the first inclined plate 32f is inclined so as to guide the carbide falling from the second opening 32j downward, and the second inclined plate 32g forms the second inclined surface.
  • the inclined surface is inclined so as to guide the carbide falling from the first opening 32i downward.
  • the thermal decomposition promoting mechanism guides the carbide stepwise from the upper end side to the lower end side of the center pipe 32a using the first inclined plates 32f and the second inclined plates 32g that are alternately arranged along the axis Z. be able to.
  • the inclination angle of the first inclined surface and the second inclined surface with respect to the plane orthogonal to the axis Z can be arbitrarily set according to the properties of the carbide, but in order to reliably move the carbide along the inclined surface, the carbide It is preferable that the angle be equal to or greater than the angle of repose. On the other hand, if the inclination angle is too large, the residence time of the carbide in the reaction tube 32 is shortened, and the thermal decomposition reaction is not sufficiently promoted.
  • the inclination angle of the first inclined surface and the second inclined surface with respect to the plane orthogonal to the axis Z is determined to be equal to or greater than the repose angle of the carbide in the range of 20 ° to 60 °.
  • the reaction tube head 33 is attached to the reaction tube 32 and supplies carbide and superheated steam (gasification agent) to the inside of the reaction tube 32 to generate water gas inside the reaction tube 32.
  • the reaction tube head 33 includes a lower end flange 33a (fourth flange) attached to the reaction tube 32, an upper end flange 33b attached to the carbide supply passage 101, and a flow path (not shown) through which superheated steam is supplied from the steam superheater 81. ) And a side flange 33c attached thereto.
  • the lower end flange 33a of the reaction tube head 33 and the upper end flange 32b of the reaction tube 32 are fastened by fastening bolts 33d with a gasket (sixth seal portion) (not shown) sandwiched between them at a plurality of locations around the axis Z. ing.
  • the water gas outlet nozzle 34 is a substantially cylindrical member attached to the lower end portion 32 c of the reaction tube 32.
  • the water gas outlet nozzle 34 is used to reduce the temperature of the water gas generated by the pyrolysis reaction of the carbide in the reaction tube 32, the unreacted part of the carbide, the ash, and the like through the water gas supply path 102. Lead to.
  • the combustion gas supply unit 35 is an opening that is provided above the main body 31 and supplies the combustion gas guided from the combustion gas channel 200a to the combustion gas channel 30a.
  • the combustion gas discharge unit 36 is an opening that is provided below the main body 31 and discharges the combustion gas from the combustion gas channel 30a to the combustion gas channel 200b.
  • the combustion gas supplied from the combustion gas supply part 35 to the combustion gas flow path 30a flows from the upper end side to the lower end side of the center pipe 32a while heating the outer peripheral surface 32d of the center pipe 32a, and is discharged from the combustion gas discharge part 36. Is done.
  • the gland packing 37 is a member that blocks the combustion gas in the combustion gas flow path 30a from flowing out from the upper plate 31d of the main body 31 to the outside.
  • the gland packing 37 is an annular member that is provided in contact with the lower surface of the upper plate 31 d of the main body 31 and has an inner peripheral surface 37 d that contacts the outer peripheral surface 32 d of the reaction tube 32.
  • the gland packing 37 is configured in a state where the ceramic board 37a, the ceramic board 37b, and the ceramic fiber 37c are in close contact with each other.
  • the ceramic fiber 37c which is a woven material that can be deformed relatively easily, the sealing performance at the portion in contact with the heat insulating material 31b and the heat resistant material 31c is enhanced.
  • the gland packing 38 is a member that blocks combustion gas in the combustion gas passage 30a from flowing out from the bottom surface 31e of the main body 31 to the outside.
  • the gland packing 38 is an annular member that is provided in contact with the upper surface of the bottom plate 31 e of the main body 31 and has an inner peripheral surface 38 d that contacts the outer peripheral surface 32 d of the reaction tube 32.
  • the gland packing 38 is configured in a state where the ceramic board 38a, the ceramic board 38b, and the ceramic fiber 38c are in close contact with each other.
  • the ceramic fiber 38c which is a fibrous material that can be deformed relatively easily, the sealing performance at the portion in contact with the heat insulating material 31b and the heat resistant material 31c is enhanced.
  • the gland packing 39 is a member that blocks outflow of water gas from the mounting position at the mounting position of the lower end portion 32 c of the reaction tube 32 and the water gas outlet nozzle 34.
  • the gland packing 39 is an annular member in plan view having an inner peripheral surface 39d that contacts each of the outer peripheral surface 32d of the reaction tube 32 and the outer peripheral surface 34a of the water gas outlet nozzle 34.
  • the gland packing 39 includes an annular packing member 39a, an annular packing member 39b, and a packing pressing member 39c.
  • the packing member 39a and the packing member 39b contract in the axis Z direction and expand in the radial direction perpendicular to the axis Z.
  • the gland packing 39 expands in the radial direction, the inner circumferential surface 39d of the gland packing 39 comes into contact with the outer circumferential surface 32d of the reaction tube 32 and the outer circumferential surface 34a of the water gas outlet nozzle 34 to form a sealing region.
  • the carbide supply path 101 includes a screw conveyor 101a, a clinker removing device 101b, a belt conveyor 101c, a magnetic separator 101d, a screw conveyor 101e, and a screw conveyor 101f.
  • the screw conveyor 101a is a device that conveys the carbide discharged from the carbonization furnace 20.
  • the screw conveyor 101a accommodates a screw in a linearly extending cylindrical body.
  • the screw conveyor 101a conveys the carbide along the extending direction of the cylinder by rotating the screw inside the cylinder by the driving force of the motor.
  • the clinker removing device 101b is a device that removes a clinker having a particle size of a certain size or more from the carbide discharged from the screw conveyor 101a with a net or the like.
  • the carbide from which the clinker has been removed is transported to the magnetic separator 101d by the belt conveyor 101c.
  • the magnetic separator 101d is a device that removes an iron layer such as a nail contained in the carbide with a magnet, and the carbide from which the iron scrap has been removed is supplied to the screw conveyor 101e.
  • the screw conveyor 101e and the screw conveyor 101f are apparatuses for conveying carbides, respectively.
  • the screw conveyor 101f supplies the carbide to the nitrogen replacement unit 30b included in the pyrolysis furnace 30.
  • description is abbreviate
  • the screw conveyor 101e and the screw conveyor 101f carry the carbide to the upper side of the pyrolysis furnace 30 because the carbide is supplied from above the pyrolysis furnace 30 and in the reaction tube 32 of the pyrolysis furnace 30 by its own weight. This is to allow carbide to pass through.
  • the entire region from the upper end to the lower end of the reaction tube 32 can be used as a region for promoting the pyrolysis reaction. Further, since the carbide is passed through the reaction tube 32 by its own weight, no special power for moving the carbide is required.
  • Carbide is transported in two stages, screw conveyor 101e and screw conveyor 101f, because each screw conveyor requires an expensive motor with a large driving force by reducing the power required to rotate the screw. This is to avoid the above.
  • the nitrogen replacer 30b is a device that constitutes the pyrolysis furnace 30, and is a device for replacing oxygen contained in the air supplied from the screw conveyor 101f together with the carbide with inert nitrogen gas.
  • the nitrogen purger 30b is disposed on each of an upper side connected to the screw conveyor 101f and a lower side connected to the reaction tube head 33, and an electric control valve (for example, an open / closed state is controlled by the control device 90) Ball valve).
  • an electric control valve for example, an open / closed state is controlled by the control device 90
  • Ball valve for example, an open / closed state is controlled by the control device 90
  • the control device 90 supplies carbide to the inside of the nitrogen purger 30b by opening the upper control valve and closing the lower control valve.
  • the control device 90 stops the transportation of the carbide by the screw conveyor 101f and closes the control valve above the nitrogen purger 30b. .
  • Nitrogen gas is always supplied to the nitrogen replacer 30b from a device that generates nitrogen gas such as an air separation device. Therefore, when a certain amount of time has elapsed with the control valves above and below the nitrogen purger 30b being opened, the air supplied to the interior of the nitrogen purger 30b together with the carbide is discharged to the outside and the interior is replaced with nitrogen gas. It becomes a state.
  • control device 90 switches the control valve below the nitrogen purger 30b to the open state and transfers the nitrogen purger 30b to the reaction tube head 33. Supply carbide.
  • the controller 90 supplies carbide to the reaction tube head 33 from the nitrogen purger 30b, and then closes the control valve below the nitrogen purger 30b. Further, the control device 90 then opens the control valve above the nitrogen purger 30b and supplies new carbide into the nitrogen purger 30b.
  • control device 90 controls the opening and closing of the control valves above and below the nitrogen purger 30b, so that the gas supplied to the reaction tube head 33 together with the carbide is nitrogen gas.
  • This nitrogen gas is an inert gas that does not react with the water gas generated in the reaction tube 32. Therefore, it is possible to suppress the air containing oxygen together with the carbide from being supplied to the reaction tube 32 and causing the reaction between oxygen and the water gas to reduce the yield of the water gas.
  • the char collection device 41 includes a nitrogen purger 41a and a char collection unit 41b.
  • the nitrogen replacer 41a is a device for replacing the water gas supplied from the temperature reducer 40 together with the unreacted portion of the carbide with inert nitrogen gas.
  • the char recovery unit 41b is a device that recovers an unreacted portion of the carbide and supplies it to the nitrogen replacement device 30b from a supply path (not shown). Details of this will be described later as a return system.
  • the chamber replacer 41a is disposed on the upper side connected to the temperature reducer 40 and the lower side connected to the char recovery unit 41b, and is an electric control valve (open / close state controlled by the control device 90). For example, a ball valve).
  • the control device 90 opens the upper control valve and closes the lower control valve to supply unreacted carbide to the inside of the nitrogen purger 41a. When the unreacted amount of the carbide supplied into the nitrogen purger 41a reaches a certain amount, the control device 90 closes the control valve above the nitrogen purger 41a.
  • Nitrogen gas is always supplied to the nitrogen replacer 41a from a device that generates nitrogen gas such as an air separation device. Therefore, when the upper and lower control valves of the nitrogen purger 41a are closed and a certain time elapses, the water gas supplied into the nitrogen purger 41a together with the unreacted portion of the carbide is discharged to the outside, and the interior is filled with nitrogen. The gas is replaced. The water gas discharged from the nitrogen purger 41a is supplied to the flare stack 71.
  • control device 90 switches the control valve below the nitrogen purger 41a to the open state, and the carbide is transferred from the nitrogen purger 41a to the char recovery unit 41b. The unreacted portion is supplied.
  • the control device 90 closes the control valve below the nitrogen purger 41a after supplying the unreacted portion of the carbide from the nitrogen purger 41a to the char recovery unit 41b. In addition, the control device 90 then opens the control valve above the nitrogen purger 41a and supplies new unreacted carbon carbide into the nitrogen purger 41a.
  • control device 90 controls the opening and closing of the control valves above and below the nitrogen purger 41a, so that the water gas supplied to the char recovery unit 41b together with the unreacted carbide is supplied to the char recovery unit 41b. It is prevented from being supplied.
  • the residue collection device 51 has a nitrogen purger 51a and a residue collection unit 51b.
  • the nitrogen replacer 51a is a device for replacing the water gas supplied from the cyclone 50 together with the residue with inert nitrogen gas.
  • the residue collection unit 51b is a device that collects the residue discharged from the nitrogen purger 51a.
  • the nitrogen purger 51a is disposed on each of an upper side connected to the cyclone 50 and a lower side connected to the residue collecting unit 51b, and an electric control valve (for example, a ball valve) whose opening / closing state is controlled by the control device 90 is provided. Valve). Nitrogen gas is always supplied to the nitrogen replacer 51a from a device that generates nitrogen gas such as an air separation device.
  • the control device 90 controls the control valve of the nitrogen purger 51a in the same manner as the control valve of the nitrogen purger 41a, and prevents water gas from being supplied to the residue recovery unit 51b. .
  • the method by which the control device 90 controls the control valve of the nitrogen purger 51a is the same as the method by which the control device 90 controls the control valve of the nitrogen purger 41a, and the description thereof is omitted.
  • the steam generator 80 includes a steam generation unit 80a and a steam circulation tank 80b.
  • the steam generating unit 80a is provided in a heat transfer tube (not shown) that circulates water that exchanges heat with combustion gas, and a jacket (not shown) that circulates water inside the tube formed to cover the heat transfer tube. ). Water is supplied to the heat transfer tube and the jacket from the steam circulation tank 80b.
  • the steam circulation tank 80b is supplied with water from the water supply device 82 and supplies water to the heat transfer tube and the jacket of the steam generation unit 80a.
  • the hot water heated by the jacket and the steam generated by heating the heat transfer tube with the combustion gas are respectively collected in the steam circulation tank 80b.
  • the steam circulation tank 80b supplies the steam (saturated steam) supplied from the heat transfer tube of the steam generation unit 80a to the steam superheater 81.
  • FIG. 14 is a configuration diagram of a return system for a pyrolysis furnace according to another embodiment of the present invention.
  • This return system is related to the char recovery device 41 described with reference to FIG. 1, and a part of the return system has been described, but is configured in cooperation with the char recovery device.
  • the pyrolysis furnace 30 shown in FIG. 14 is basically the same as the configuration of FIG. 10 shown as an embodiment of the pyrolysis furnace 30 of FIGS. The same applies to each device described in FIG. 13 as the peripheral equipment of the pyrolysis furnace 30 of the present embodiment. Accordingly, in FIG. 14, the same reference numerals as those used in the respective drawings described above have the same functions.
  • the present invention focuses on the unreacted portion of the carbide discharged from the pyrolysis furnace 30 and will be described in detail below with reference to FIG.
  • a temperature reducer 40 and a char recovery device 41 are arranged at the lower stage of the pyrolysis furnace 30, and a carbide receiving hopper 30 c and a nitrogen purger 30 b are arranged at the upper stage of the pyrolysis furnace 30.
  • the char recovery device 41 includes a nitrogen purger 41a, a char recovery unit 41b, a carbide transport unit 41c, a carbide recovery unit 41d, and the like.
  • An unreacted material conveyance path 30d is provided between the carbide conveyance unit 41c and the receiving hopper 30c.
  • the transport unit 41c, the transport path 30d, and the like can be configured by a conveyor, a lifter, or the like and literally become a transport path.
  • This collection / conveyance means constitutes a return system for the pyrolysis furnace.
  • the unreacted portion of the carbide can be repeatedly charged into the pyrolysis furnace 30, and the residence time in the reaction tube 33 can be lengthened.
  • the residence time in the reaction tube is increased several times by adopting the return system of the pyrolysis furnace of the present invention, so that the aqueous reaction rate is 75% to 80% to 90% to Increased to 95%.
  • the amount of water gas increased from 1.19 times to 1.27 times.
  • FIG. 15 is a block diagram of the dryer according to the embodiment of the present invention shown in FIG.
  • the dryer 10 is a dry kiln of a type called a rotary kiln, and includes a combustion gas introduction unit 10b, a rotating body 10c, and a discharge unit 10d.
  • the combustion gas introduction unit 10b introduces the combustion gas supplied from the combustion gas passage 200d into the dryer 10 and guides the introduced combustion gas into the rotating body 10c.
  • the rotating body 10c is a cylindrical member formed in a direction extending along the axis W, and rotates around the axis W when it receives rotational power from a drive motor.
  • organic waste is supplied into the rotating body 10c from the raw material supply path 11a.
  • the organic waste supplied to the inside of the rotating body 10c is guided toward the discharge unit 10d while being dried by the combustion gas guided from the combustion gas introduction unit 10b.
  • the organic waste is directly heated by the combustion gas while being stirred by the rotation of the rotating body 10c, and is conveyed by the flow of the combustion gas from one end to the other end of the rotating body 10c.
  • the discharge unit 10d collects the dried organic waste while being conveyed by the rotating body 10c, and supplies it to the raw material supply path 10a.
  • the organic waste supplied to the raw material supply path 10 a is supplied to the carbonization furnace 20 via the fixed amount supply device 12.
  • the discharge unit 10d supplies the combustion gas introduced from the combustion gas introduction unit 10b through the inside of the rotating body 10c to the combustion gas channel 200e.
  • the combustion gas supplied to the combustion gas flow path 200e is supplied to the exhaust gas cooling and cleaning device 13.
  • the biomass power generation system shown in FIG. 16 has the same basic configuration as the biomass power generation system using water gas via the carbonization furnace and the pyrolysis furnace according to the present invention shown in FIG. 1, and a part of the description is omitted.
  • the raw material biomass crusher 10 a, the dryer 10, the carbonization furnace 20, the pyrolysis furnace 30, the temperature reducer 40, the char recovery device 41, the water gas holder 70, and the power generation facility 72 are aqueous.
  • the series leading to the first power supply for generating power by supplying gas is substantially the same as the biomass power generation system A of the first embodiment described above.
  • the second embodiment of the present invention differs from the first embodiment in that the combustion gas generated in the carbonization furnace 20 is supplied in the order of the pyrolysis furnace 30, the steam generator 80, and the boiler 76, and the heat source of each device.
  • saturated steam is recovered by the boiler 76, supplied to the steam turbine power generation facility 75, generated, and transmitted to the second power supply, and part of the steam recovered by the boiler 76 is supplied to the steam generator 80 and overheated.
  • the steam is generated and supplied to the pyrolysis furnace 30.
  • the first power supply for generating power by supplying to the power generation facility 72 by the gas engine or the like using the original pyrolysis gas and the second power supply for generating power by supplying to the steam turbine power generation facility 75 by the saturated steam recovered from the boiler 76. It is excellent in thermal efficiency in terms of combined cycle power generation, so-called hybrid power generation.
  • the saturated steam generated in the process boiler 76 of the second power supply system is supplied to the steam turbine power generation facility 75, and the steam used in the steam turbine power generation facility 75 is returned to the soft water tank 78 by the condenser 77 and is pumped by the pump 79.
  • the waste water discharged to the outside is reduced as much as possible, and the use efficiency of water is improved.
  • the biomass power generation system B supplies combustion exhaust gas generated in the carbonization furnace 20 to the pyrolysis furnace 30, and promotes the pyrolysis reaction between the carbide and superheated steam in the pyrolysis furnace 30. By using it as a heat source, it has a feature in improving the thermal efficiency of the biomass power generation system B as a whole.
  • the combustion gas generated in the carbonization furnace 20 is supplied in the order of the pyrolysis furnace 30, the superheated steam generator 80, and the boiler 76, and the heat source of each device. Therefore, the thermal efficiency of the biomass power generation system B as a whole can be improved.
  • the biomass power generation system increases the combustion efficiency by controlling the temperature of the carbonization furnace, enables the pyrolysis furnace to be sealed, increases the gasification efficiency, and keeps the composition ratio of the generated water gas constant. Impurities such as nitrogen, sulfur and tar are removed by the carbonization furnace and the pyrolysis gasifier, so that high power generation efficiency can be obtained, and safe and efficient power can be supplied. Effective use of biomass is extremely useful for energy saving, natural environment protection and economics.

Abstract

Provided is a safe and efficient biomass power generation system that improves the combustion efficiency of biomass and makes stable thermal decomposition possible, that prevents outflow of combustion gas, etc., and with which the composition ratio of water gas to be supplied to a downstream device does not vary. The system is provided with: a carbonization furnace for carbonizing biomass; a thermal decomposition furnace for generating thermal decomposition gas from combustion exhaust gas and carbides obtained in the carbonization furnace; and a power generation device for obtaining electric power using the water gas obtained by washing the thermal decomposition gas. The system is provided with an air supply control unit for controlling the amount of air to be supplied to the carbonization furnace. Combustion gas that is temperature-controlled by the supply amount of air is supplied to the thermal decomposition furnace.

Description

バイオマス発電システムおよび熱分解炉のリターンシステムBiomass power generation system and pyrolysis furnace return system
 本発明は、バイオマス発電システムおよび熱分解炉のリターンシステムに関し、特に、バイオマス(廃木材等有機廃棄物)を熱分解・ガス化し、得られた水性ガスを用いてガスエンジン等で効率よく発電するバイオマス発電システムに関し、また、熱分解炉におけるリターンシステムに関する。 The present invention relates to a biomass power generation system and a pyrolysis furnace return system, and in particular, thermally decomposes and gasifies biomass (organic waste such as waste wood), and efficiently generates power using a gas engine or the like using the obtained water gas. The present invention relates to a biomass power generation system, and also relates to a return system in a pyrolysis furnace.
 近年、バイオマス特にリグニンを多く含む木質系材料の熱分解ガス化は新規なエネルギー資源の供給源として大きな可能性を有しており有効利用する試みが行われている。木質系材料を熱分解ガス化するには、原料となる木質バイオマスを炭化炉温度1000~1200℃で、炭化物を回収し、次に前記炭化物を熱分解炉にて高温加熱して高温水蒸気と水性反応させ水性ガスを生成する。 In recent years, pyrolysis gasification of woody materials containing a large amount of biomass, particularly lignin, has great potential as a source of new energy resources, and attempts have been made to effectively use it. In order to pyrolyze and convert wood-based materials into pyrolysis gas, the raw wood biomass is recovered at a carbonization furnace temperature of 1000 to 1200 ° C., and then the carbides are heated to a high temperature in a pyrolysis furnace, so that high-temperature steam and aqueous React to produce water gas.
 化石燃料に代わる代替えエネルギー資源としてバイオマスや廃棄物から熱化学的手法によってエネルギーを回収する方法が注目されボイラー設備を用いたスチームタービン発電の他に生成ガスを燃料ガスとして発電効率の高いガスエンジンで発電し35%を超える発電効率が得られている。また、ガス化で得られる合成ガスはメタノールや合成軽油、混合アルコールといった液体燃料の原料ともなることから石油代替燃化技術の一つとしてガス化技術が注目されている。 As an alternative energy resource to replace fossil fuels, a method of recovering energy from biomass and waste by thermochemical techniques has attracted attention. In addition to steam turbine power generation using boiler facilities, a gas engine with high power generation efficiency using generated gas as fuel gas The power generation efficiency is over 35%. In addition, since the synthesis gas obtained by gasification also becomes a raw material for liquid fuels such as methanol, synthetic light oil, and mixed alcohols, gasification technology is attracting attention as one of petroleum alternative combustion technologies.
 バイオマス発電においては、ガスエンジン、ガスタービンエンジン、スチームタービンエンジン等が用いられる。中でもガスエンジンはエンジンの構造がガソリンエンジンと同様であり、他のエンジンに比較してコンパクト(50~4000kW程度)で発電効率が高くバイオマス発電に適する。しかし、熱分解ガス(水性ガス)はガス中の可燃ガス(CO、H)の含有割合によって発熱量が決まる。即ち、水性ガス中の水素(H)、一酸化炭素(CO)及び二酸化炭素(CO)の組成比にブレがあると発熱量が変化し、発電機を回転するエンジンの回転数に影響するために安定した電力が得られないばかりでなくオーバーヒート等で故障の原因ともなり問題であった。また、従来のボイラーで発生した水蒸気を直接熱分解ガス化装置に供給することも考えられるが、熱量過不足によりガス化領域の温度分布にブレが生じ或いはメタンガス等余分なガスが発生する可能性が生じる問題がある。 In biomass power generation, a gas engine, a gas turbine engine, a steam turbine engine, or the like is used. Among them, the structure of a gas engine is the same as that of a gasoline engine, and it is more compact (about 50 to 4000 kW) than other engines, has high power generation efficiency, and is suitable for biomass power generation. However, the heat generation amount of the pyrolysis gas (water gas) is determined by the content ratio of the combustible gas (CO, H 2 ) in the gas. That is, if the composition ratio of hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) in the water gas varies, the amount of generated heat changes, which affects the number of revolutions of the engine that rotates the generator. As a result, not only stable power is not obtained, but also overheating causes a failure, which is a problem. In addition, it is conceivable to supply steam generated in a conventional boiler directly to the pyrolysis gasifier, but there is a possibility that the temperature distribution in the gasification region may be blurred due to excess or shortage of heat or excessive gas such as methane gas may be generated. There is a problem that occurs.
 そこで、本出願人は、ボイラーで発生した水蒸気を加熱して高温の過熱蒸気を熱分解ガス化装置のガス化領域に供給することによってガス化領域の温度を低下させることなく且つ炭化炉の高温排ガスの輻射熱との相乗効果によって領域内の温度分布をより安定化させ、水性ガスの組成比を更に均一化すると共に水性ガス成分中のメタンガス等の発生を防止できるバイオマス発電システムを先に提案し特許文献1として出願している。 Therefore, the applicant of the present invention does not reduce the temperature of the gasification region by heating the steam generated in the boiler and supplying the high-temperature superheated steam to the gasification region of the pyrolysis gasifier, and the high temperature of the carbonization furnace. Proposed a biomass power generation system that can stabilize the temperature distribution in the region by synergistic effects with the radiant heat of the exhaust gas, make the composition ratio of the water gas more uniform, and prevent the generation of methane gas, etc. in the water gas component. Patent application 1 has been filed.
特開2015-165019号公報Japanese Patent Laying-Open No. 2015-165019
 先に発明し提案したバイオマス発電システムに使用して好適な炭化炉として、略円形の本体と本体に収容された円筒体との間に形成された領域の上方に炭化物を多く含む固形分を炭化させる炭化部を形成し、下方に炭化物を消火する不燃部を形成したものであるが、この上方の燃焼部に供給される空気量が変動したり、可燃性ガスを燃焼させるのに適切な空気量とならない場合、可燃性ガスの燃焼効率の悪化をまねく。 As a carbonization furnace suitable for use in the biomass power generation system invented and proposed earlier, a solid content containing a large amount of carbides is carbonized above a region formed between a substantially circular main body and a cylindrical body accommodated in the main body. The carbonized part is formed, and the incombustible part that extinguishes the carbide is formed below, but the amount of air supplied to the upper combustion part fluctuates and the air suitable for burning the combustible gas If not, the combustion efficiency of combustible gas will deteriorate.
 また、熱分解ガス化炉(熱分解炉)として、外筒と内筒とを備え、内筒の内周側に炭化物とガス化剤とを供給し、外筒と内筒との間の空隙に炭化炉で生成された燃焼ガスを供給するようにしたものであるが、内筒の熱膨張によって鉛直方向に沿った長さの変動がある。この内筒と外筒との間の熱膨張に差があると、内筒と外筒と上面の接触する部分から燃焼ガスが外部へ流出してしまう可能性もある。 Also, as a pyrolysis gasification furnace (pyrolysis furnace), an outer cylinder and an inner cylinder are provided, carbide and a gasifying agent are supplied to the inner peripheral side of the inner cylinder, and a gap between the outer cylinder and the inner cylinder The combustion gas generated in the carbonization furnace is supplied to the cylinder, but the length varies along the vertical direction due to the thermal expansion of the inner cylinder. If there is a difference in thermal expansion between the inner cylinder and the outer cylinder, the combustion gas may flow out from the portion where the inner cylinder, the outer cylinder and the upper surface are in contact with each other.
 燃焼効率の低下や、燃焼ガスの流出等により、下流側の装置へ供給する水性ガスとして組成比率の変動にもなりかねず、各機器の不具合やシステムバランスが崩れ、発電システム全体として効率も低下してしまう。 Due to a decrease in combustion efficiency or outflow of combustion gas, the composition ratio of the water gas supplied to the downstream equipment may fluctuate, causing malfunctions in each device and system balance, resulting in a decrease in efficiency of the entire power generation system. Resulting in.
 本発明はかかる問題点を解消し安全且つ効率の良いバイオマス発電システムを提供すること、さらには、バイオマス発電等に使用する水性ガスを生成するための熱分解炉におけるリターンシステムを提供することを目的とする。 It is an object of the present invention to solve such problems and provide a safe and efficient biomass power generation system, and further to provide a return system in a pyrolysis furnace for generating water gas used for biomass power generation and the like. And
 上記の課題を解決するために、本発明は、バイオマスを炭化させる炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、前記炭化炉に供給する空気の供給量を制御する空気供給制御部を設け、前記空気の供給量により温度制御された燃焼ガスを熱分解炉に供給することを特徴とするバイオマス発電システムを提供するものである。 In order to solve the above-described problems, the present invention provides a carbonization furnace for carbonizing biomass, a pyrolysis furnace for generating pyrolysis gas from the carbide and combustion gas obtained in the carbonization furnace, and cleaning the pyrolysis gas. And a power generation device that obtains electric power using the obtained water gas, and is provided with an air supply control unit that controls the supply amount of air supplied to the carbonization furnace, and the combustion gas whose temperature is controlled by the supply amount of air The present invention provides a biomass power generation system characterized in that the is supplied to a pyrolysis furnace.
 本発明によれば、適切な空気量を制御でき燃焼効率を高く安定して維持でき、下流側の装置への安定化に寄与できる。 According to the present invention, an appropriate amount of air can be controlled, combustion efficiency can be maintained stably at a high level, and it can contribute to stabilization to a downstream apparatus.
 また、本発明は、バイオマスを炭化させる炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、前記熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、反応管内部を炭化物とガス化剤の反応部とし、得られた分解ガスを用いて前記水性ガスを電源装置に供給することを特徴とするバイオマス発電システムを提供するものである。 The present invention also includes a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas using the carbide and combustion gas obtained in the carbonization furnace, and a water gas obtained by washing the pyrolysis gas. The pyrolysis furnace includes a cylindrical main body part, a reaction tube protruding from the upper end of the main body part inside the main body part, and an inner wall of the main body part, A space between the outer peripheral surfaces of the reaction tubes is used as a heating flow path, the inside of the reaction tube is used as a reaction part of a carbide and a gasifying agent, and the water gas is supplied to a power supply device using the obtained decomposition gas. A biomass power generation system is provided.
 本発明によれば、熱分解炉からの水性ガス(反応ガス)が外部へ流出することもなく、システムとして安定化できる。 According to the present invention, the water gas (reactive gas) from the pyrolysis furnace does not flow out to the outside, and the system can be stabilized.
 また、本発明は、バイオマスを炭化させる炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、前記炭化炉に供給する空気の供給量を制御する空気供給制御部を設け、前記熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、前記炭化炉において、前記空気の供給量により温度制御された燃焼ガスを熱分解炉に供給し、前記熱分解炉において、前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、前記炭化炉からの燃焼排ガスを入力するとともに、前記炭化炉からの炭化物を反応管内部に入力しガス化剤との反応により、得られた分解ガスを用いて前記水性ガスを電源装置に供給することを特徴とするバイオマス発電システムを提供するものである。 The present invention also includes a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas using the carbide and combustion gas obtained in the carbonization furnace, and a water gas obtained by washing the pyrolysis gas. And a power generation device that obtains electric power by using an air supply control unit that controls a supply amount of air supplied to the carbonization furnace, and the pyrolysis furnace includes a cylindrical main body part and an inner part of the main body part. A reaction tube protruding from the upper end of the main body, and supplying a combustion gas whose temperature is controlled by the amount of air supplied to the pyrolysis furnace in the carbonization furnace; in the pyrolysis furnace, the inner wall of the main body And the outer peripheral surface of the reaction tube as a heating flow path, the combustion exhaust gas from the carbonization furnace is input, and the carbide from the carbonization furnace is input into the reaction tube and obtained by reaction with the gasifying agent. Using the cracked gas It is intended to provide a biomass power generation system characterized by supplying gas to the power supply.
 本発明によれば、バイオマスを原料として、水性ガスを安定して供給できる。 According to the present invention, water gas can be stably supplied using biomass as a raw material.
 また、本発明は、熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、反応管内部を炭化物とガス化剤の反応部とし、得られた分解ガスを用いて水性ガスを得るシステムであって、前記熱分解炉にて炭化物とガス化剤との反応後の未反応物を回収する回収手段と、前記回収手段から未反応物を前記熱分解炉の反応管上部へ搬送する搬送手段を備え、前記未反応物を前記熱分解炉へ再度投入可能とすることを特徴とする熱分解炉のリターンシステムを提供するものである。 In the present invention, the pyrolysis furnace includes a cylindrical main body portion, and a reaction tube protruding from the upper end of the main body portion inside the main body portion, and an inner wall of the main body portion and an outer peripheral surface of the reaction tube. A system for obtaining a water gas by using the obtained cracked gas, wherein the inside of the reaction tube is a reaction part of a carbide and a gasifying agent, and the inside of the reaction tube is a reaction part of the heating tube. Recovery means for recovering the unreacted material after the reaction with the reaction means, and transport means for transporting the unreacted material from the recovery means to the upper part of the reaction tube of the pyrolysis furnace, and the unreacted material is returned to the pyrolysis furnace again. The present invention provides a return system for a pyrolysis furnace characterized in that it can be charged.
 本発明によれば、炭化物の反応効率を高め、精製される水性ガス量も多くでき、発電システムとして、安定に運用できることになる。また、本発明の熱分解炉をバイオマス発電システムに適用することでさらなる発電効率を図ることができる。 According to the present invention, the reaction efficiency of carbides can be increased, the amount of water gas to be purified can be increased, and the power generation system can be stably operated. Furthermore, further power generation efficiency can be achieved by applying the pyrolysis furnace of the present invention to a biomass power generation system.
 本発明によれば、バイオマスの燃焼効率を改善し且つ安定して熱分解を可能とし、また、水性ガスの流出等を防ぎ、下流側の装置へ供給する水性ガスとして組成比率の変動のない、安全且つ効率の良いバイオマス発電システムを提供することができる。 According to the present invention, it is possible to improve the combustion efficiency of biomass and enable stable thermal decomposition, prevent outflow of water gas, etc., and there is no variation in the composition ratio as water gas to be supplied to the downstream device, A safe and efficient biomass power generation system can be provided.
 また、本発明によれば、炭化物の反応効率を高め、精製される水性ガス量も多くできる、熱分解炉のリターンシステムを提供することができる。 Also, according to the present invention, it is possible to provide a return system for a pyrolysis furnace that can increase the reaction efficiency of carbides and increase the amount of purified water gas.
本発明の一実施形態に係るバイオマス発電システムのブロック図である。It is a block diagram of a biomass power generation system concerning one embodiment of the present invention. 本発明の一実施形態に係るバイオマス発電システムの概略構成図である。It is a schematic structure figure of a biomass power generation system concerning one embodiment of the present invention. 図2に示す本発明の一実施形態に係る炭化炉の縦断面図である。It is a longitudinal cross-sectional view of the carbonization furnace which concerns on one Embodiment of this invention shown in FIG. 図3に示す本発明の一実施形態に係る炭化炉のクリンカクラッシャを示す図であり、(a)は平面図、(b)は(a)のC-C矢視端面図である。It is a figure which shows the clinker crusher of the carbonization furnace which concerns on one Embodiment of this invention shown in FIG. 3, (a) is a top view, (b) is a CC arrow end surface figure of (a). 図3に示す本発明の一実施形態に係る炭化炉の端面図であり、(a)はA-A矢視端面図、(b)はB-B矢視端面図である。FIG. 4 is an end view of the carbonization furnace according to the embodiment of the present invention shown in FIG. 3, (a) is an end view taken along arrow AA, and (b) is an end view taken along arrow BB. 図3に示す本発明の一実施形態に係る炭化炉の1次空気供給部の第1変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 1st modification of the primary air supply part of the carbonization furnace which concerns on one Embodiment of this invention shown in FIG. 図3に示す本発明の一実施形態に係る炭化炉の1次空気供給部の第2変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the 2nd modification of the primary air supply part of the carbonization furnace which concerns on one Embodiment of this invention shown in FIG. 本発明の一実施形態に係る炭化炉の制御部による2次燃焼ファンの送風量の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the ventilation volume of the secondary combustion fan by the control part of the carbonization furnace which concerns on one Embodiment of this invention. 本発明の一実施形態に係る炭化炉の制御部によるターンテーブルの回転速度の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the rotational speed of the turntable by the control part of the carbonization furnace which concerns on one Embodiment of this invention. 図2に示す本発明の一実施形態に係る熱分解炉の縦断面図である。It is a longitudinal cross-sectional view of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. 図10に示す本発明の一実施形態に係る熱分解炉の反応管の断面図であり、(a)はD-D矢視断面図、(b)はE‐E矢視端面図である。It is sectional drawing of the reaction tube of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. 10, (a) is DD arrow sectional drawing, (b) is EE arrow end elevation. 図10に示す本発明の一実施形態に係る熱分解炉の要部拡大図である。It is a principal part enlarged view of the thermal decomposition furnace which concerns on one Embodiment of this invention shown in FIG. 図1に示す本発明の一実施形態に係る熱分解炉、減温器、サイクロン、蒸気発生器、および蒸気過熱器を示す構成図である。It is a block diagram which shows the pyrolysis furnace, temperature reducer, cyclone, steam generator, and steam superheater which concern on one Embodiment of this invention shown in FIG. 本発明の他の実施形態に係る熱分解炉のリターンシステムの構成図である。It is a block diagram of the return system of the pyrolysis furnace which concerns on other embodiment of this invention. 図1に示す本発明の一実施形態に係る乾燥機を示す構成図である。It is a block diagram which shows the dryer which concerns on one Embodiment of this invention shown in FIG. 本発明の他の実施形態に係るバイオマス発電システムのブロック図である。It is a block diagram of the biomass power generation system which concerns on other embodiment of this invention.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の一実施形態に係るバイオマス発電システムは、炭素を含む廃棄物であるバイオマス(有機廃棄物)を原料とし炭化させて炭化物を生成した後に、過熱された水蒸気(以下、「蒸気」ともいう。)をガス化剤として用いて炭化物を熱分解反応させることにより水性ガス(水素ガス、一酸化炭素ガス、二酸化炭素ガスを主成分とする混合ガス)を生成し、この水性ガスをガスエンジンやガスタービンエンジンに供給動作させ電力を得るようにしたシステムである。 A biomass power generation system according to an embodiment of the present invention is carbonized waste biomass (organic waste), carbonized to produce carbide by carbonization, and then superheated steam (hereinafter also referred to as “steam”). .) As a gasifying agent to produce a water gas (mixed gas mainly composed of hydrogen gas, carbon monoxide gas and carbon dioxide gas) by pyrolyzing the carbide, and this water gas is supplied to a gas engine or This is a system that supplies power to a gas turbine engine to obtain electric power.
 バイオマス(有機廃棄物)とは、例えば、食品廃棄物、建設廃材、シュレッダーダスト、畜産廃棄物、間伐材や剪定枝等の樹木製の廃材、汚泥、家庭から排出される一般廃棄物である。水性ガスを生成する原料として以上に例示されるような種々の有機廃棄物を用いることができる。 Biomass (organic waste) is, for example, food waste, construction waste, shredder dust, livestock waste, wood waste such as thinned wood and pruned branches, sludge, and general waste discharged from households. Various organic wastes as exemplified above can be used as a raw material for generating water gas.
 図1は、本発明の一実施形態に係るバイオマス発電システムのブロック図を示し、図2は、本発明の一実施形態に係るバイオマス発電システムの概略構成図を示している。なお、図1のブロック図に対し、図2の概略構成図は、一部記載を省略した部分や、詳細化した部分もある。 FIG. 1 shows a block diagram of a biomass power generation system according to an embodiment of the present invention, and FIG. 2 shows a schematic configuration diagram of the biomass power generation system according to an embodiment of the present invention. Note that, in contrast to the block diagram of FIG. 1, the schematic configuration diagram of FIG.
 図1及び図2に示すように、本発明の一実施形態に係るバイオマス発電システムAは、原料であるバイオマス(有機廃棄物)を原料破砕機等によりチップ状に破砕し乾燥機へ投入する有機廃棄物を貯留するホッパ11と、その破砕した有機廃棄物を乾燥させる乾燥機10と、乾燥された有機廃棄物から炭化物を生成する炭化炉20と、炭化炉20で生成された炭化物とガス化剤とを熱分解反応させる熱分解炉30と、熱分解炉30で生成された水性ガスを冷却する減温器40と、炭化炉20から排出された未燃の炭化物を回収するチャー回収装置41と、減温器40から供給される水性ガスから残渣を除去するサイクロン50と、サイクロン50で除去された残渣を回収する残渣回収装置51と、サイクロン50で残渣が除去された水性ガスを冷却する水性ガス冷却装置60と、余剰の水性ガス等を焼却処理するフレアースタック71と、水性ガスを燃料としてガスエンジンやガスタービンエンジン等に供給作動させて電力を得る発電設備72等を備える。また、水性ガスから水素ガスを精製する水素精製装置73を備えてもよい。 As shown in FIGS. 1 and 2, the biomass power generation system A according to an embodiment of the present invention is an organic material in which biomass (organic waste) that is a raw material is crushed into chips by a raw material crusher or the like and is fed into a dryer. Hopper 11 for storing waste, dryer 10 for drying the crushed organic waste, carbonization furnace 20 for generating carbide from the dried organic waste, and carbonization and gasification generated in the carbonization furnace 20 A pyrolysis furnace 30 that thermally decomposes the agent, a temperature reducer 40 that cools the water gas generated in the pyrolysis furnace 30, and a char recovery device 41 that collects unburned carbide discharged from the carbonization furnace 20. A cyclone 50 that removes the residue from the water gas supplied from the temperature reducer 40, a residue recovery device 51 that collects the residue removed by the cyclone 50, and an aqueous gas from which the residue has been removed by the cyclone 50 A water gas cooling device 60 that cools the water, a flare stack 71 that incinerates surplus water gas, and the like, and a power generation facility 72 that obtains electric power by supplying water gas to a gas engine, a gas turbine engine, or the like as fuel are provided. . Moreover, you may provide the hydrogen purification apparatus 73 which refine | purifies hydrogen gas from water gas.
 また、水から飽和蒸気を生成する蒸気発生器80と、蒸気発生器80が生成した蒸気を過熱する蒸気過熱器81と蒸気発生装置へ水を供給する水供給装置82と、バイオマス発電システムAの全体を制御する制御装置90等を備える。 Further, a steam generator 80 that generates saturated steam from water, a steam superheater 81 that superheats steam generated by the steam generator 80, a water supply device 82 that supplies water to the steam generator, and a biomass power generation system A A control device 90 for controlling the whole is provided.
 以下、バイオマス発電システムAが備える各部について説明する。 Hereinafter, each part with which biomass power generation system A is provided is explained.
 乾燥機10は、有機廃棄物を燃焼ガスにより乾燥させるとともに乾燥された有機廃棄物を炭化炉へ供給する装置である。乾燥機10には、有機廃棄物を貯蔵するホッパ11から原料供給路11aを介して有機廃棄物が供給される。また、乾燥機10には、有機廃棄物を乾燥させる熱源として、蒸気発生器80から排出された燃焼ガスが燃焼ガス流路200dを介して供給される。 The dryer 10 is an apparatus that dries organic waste with combustion gas and supplies the dried organic waste to a carbonization furnace. The dryer 10 is supplied with organic waste from a hopper 11 that stores the organic waste through a raw material supply path 11a. Moreover, the combustion gas discharged | emitted from the steam generator 80 is supplied to the dryer 10 through the combustion gas flow path 200d as a heat source which dries organic waste.
 ホッパ11から乾燥機10に供給される有機廃棄物は、例えば、5mm以上かつ60mm以下の長さの木製チップである。また、有機廃棄物は、例えば、55%程度の重量比で水分を含有する木質チップを加熱して乾燥させることにより、有機廃棄物が含有する水分を15%程度の重量比まで低下させるものである。 The organic waste supplied from the hopper 11 to the dryer 10 is, for example, a wooden chip having a length of 5 mm or more and 60 mm or less. In addition, organic waste, for example, reduces moisture contained in organic waste to a weight ratio of about 15% by heating and drying wood chips containing water at a weight ratio of about 55%. is there.
 乾燥機10は、燃焼ガスの熱により乾燥させた有機廃棄物を、原料供給路10aを介して定量供給器12へ供給する。また、乾燥機10は、有機廃棄物を乾燥させる熱源として用いた燃焼ガスを、燃焼ガス流路200eを介して排ガス冷却洗浄装置13へ供給する。乾燥機10が排ガス冷却洗浄装置13へ供給する燃焼ガスの温度は、150℃以上かつ210℃以下となるように調整されている。 The dryer 10 supplies the organic waste dried by the heat of the combustion gas to the metering feeder 12 through the raw material supply path 10a. Further, the dryer 10 supplies the combustion gas used as a heat source for drying the organic waste to the exhaust gas cooling and cleaning device 13 through the combustion gas channel 200e. The temperature of the combustion gas supplied from the dryer 10 to the exhaust gas cooling and cleaning device 13 is adjusted to be 150 ° C. or higher and 210 ° C. or lower.
 排ガス冷却洗浄装置13は、例えば、スクラバとされており、大気中に排出する燃焼ガスの温度が120℃以上かつ180℃以下となるように調整されている。図2の概略構成図において、この排ガス冷却洗浄装置13の一例として、熱交換機13a、排ガス設備(バグ集塵機)13b、廃棄塔13c等からなるものを示している。炭化炉20は、乾燥した有機廃棄物を部分燃焼させることにより炭化物と燃焼ガスとを生成する装置である。炭化炉20には、有機廃棄物を単位時間当たりの供給量を計測しながら炭化炉20へ供給する定量供給器12から、原料供給路12aを介して乾燥した有機廃棄物が供給される。 The exhaust gas cooling and cleaning device 13 is a scrubber, for example, and is adjusted so that the temperature of the combustion gas discharged into the atmosphere is 120 ° C. or higher and 180 ° C. or lower. In the schematic configuration diagram of FIG. 2, an example of the exhaust gas cooling and cleaning device 13 includes a heat exchanger 13 a, an exhaust gas facility (bug dust collector) 13 b, a waste tower 13 c, and the like. The carbonization furnace 20 is an apparatus that generates carbide and combustion gas by partially burning dry organic waste. The carbonized furnace 20 is supplied with the dried organic waste through the raw material supply path 12a from the quantitative feeder 12 that supplies the organic waste to the carbonized furnace 20 while measuring the supply amount per unit time.
 炭化炉20は、有機廃棄物の燃焼によって生成された炭化物を、炭化物供給路101を介して熱分解炉30へ供給する。炭化物供給路101には、クリンカ除去装置(後述の101b)、磁選機(後述の101d)等が設けられている。 The carbonization furnace 20 supplies the carbide generated by the combustion of the organic waste to the pyrolysis furnace 30 through the carbide supply path 101. The carbide supply path 101 is provided with a clinker removing device (101b described later), a magnetic separator (101d described later), and the like.
 また、炭化炉20は、有機廃棄物の燃焼によって生成された燃焼ガスを、燃焼ガス流路200aを介して熱分解炉30へ供給する。 Further, the carbonization furnace 20 supplies the combustion gas generated by the combustion of the organic waste to the pyrolysis furnace 30 through the combustion gas flow path 200a.
 熱分解炉30は、炭化炉20が生成した炭化物を過熱蒸気とともに燃焼ガスにより過熱して熱分解反応させることにより水性ガスを生成する装置である。熱分解炉30には、炭化物供給路101を介して炭化炉20が生成した炭化物が供給される。また、熱分解炉30には、蒸気過熱器81で加熱した過熱蒸気がガス化剤として供給される。また、熱分解炉30には、熱分解反応を促進させる熱源として燃焼ガス流路200aから燃焼ガスが供給される。 The pyrolysis furnace 30 is a device that generates water gas by heating the carbide generated by the carbonization furnace 20 together with superheated steam with a combustion gas to cause a thermal decomposition reaction. The pyrolysis furnace 30 is supplied with the carbide generated by the carbonization furnace 20 through the carbide supply path 101. The pyrolysis furnace 30 is supplied with superheated steam heated by the steam superheater 81 as a gasifying agent. The pyrolysis furnace 30 is supplied with combustion gas from the combustion gas channel 200a as a heat source for promoting the pyrolysis reaction.
 熱分解炉30は、炭化物と過熱蒸気とを熱分解反応をさせて、水素ガス、一酸化炭素ガス、二酸化炭素ガスを主成分とする水性ガスを生成する。炭化物と過熱蒸気との熱分解反応は、主に以下の式(1)、(2)に示す反応である。
 C+HO → CO+H     (1)
 CO+HO → CO+H   (2)
The pyrolysis furnace 30 causes a pyrolysis reaction of the carbide and superheated steam to generate a water gas mainly composed of hydrogen gas, carbon monoxide gas, and carbon dioxide gas. The thermal decomposition reaction between carbide and superheated steam is a reaction mainly represented by the following formulas (1) and (2).
C + H 2 O → CO + H 2 (1)
CO + H 2 O → CO 2 + H 2 (2)
 式(1)に示す水性ガス反応は吸熱反応であり、式(2)に示す水性ガスシフト反応は発熱反応である。式(2)に示す発熱反応の発熱量よりも式(1)に示す吸熱反応の吸熱量の方が大きい。そのため、炭化物と過熱蒸気との熱分解反応は、全体として吸熱反応となる。 The water gas reaction shown in Formula (1) is an endothermic reaction, and the water gas shift reaction shown in Formula (2) is an exothermic reaction. The endothermic amount of the endothermic reaction shown in formula (1) is larger than the exothermic amount of the exothermic reaction shown in formula (2). Therefore, the thermal decomposition reaction between the carbide and the superheated steam is an endothermic reaction as a whole.
 熱分解炉30に供給される炭化物の温度は、常温(例えば、25℃)以上かつ350℃以下となるように調整されている。また、熱分解炉30に供給される過熱蒸気の温度は、730℃以上かつ830℃以下となるように調整されている。また、熱分解炉30に供給される燃焼ガスの温度は、900℃以上かつ1300℃以下となるように調整されている。また、熱分解炉30が生成する水性ガスの温度は、650℃以上かつ850℃以下となるように調整されている。 The temperature of the carbide supplied to the pyrolysis furnace 30 is adjusted to be normal temperature (for example, 25 ° C.) or higher and 350 ° C. or lower. Moreover, the temperature of the superheated steam supplied to the pyrolysis furnace 30 is adjusted to be 730 ° C. or more and 830 ° C. or less. The temperature of the combustion gas supplied to the pyrolysis furnace 30 is adjusted to be 900 ° C. or higher and 1300 ° C. or lower. Moreover, the temperature of the water gas which the pyrolysis furnace 30 produces | generates is adjusted so that it may become 650 degreeC or more and 850 degrees C or less.
 熱分解炉30は、熱分解反応により生成された水性ガスと炭化物の未反応分および残渣を、水性ガス供給路102を介して減温器40へ供給する。また、熱分解炉30は、熱分解反応の熱源として用いられた燃焼ガスを、燃焼ガス流路200bを介して蒸気過熱器81へ供給する。蒸気過熱器81に供給される燃焼ガスの温度は、820℃以上かつ920℃以下となるように調整されている。 The pyrolysis furnace 30 supplies unreacted components and residues of the water gas and carbide generated by the pyrolysis reaction to the temperature reducer 40 via the water gas supply path 102. Further, the pyrolysis furnace 30 supplies the combustion gas used as a heat source for the pyrolysis reaction to the steam superheater 81 through the combustion gas channel 200b. The temperature of the combustion gas supplied to the steam superheater 81 is adjusted to be 820 ° C. or more and 920 ° C. or less.
 減温器40は、液体である水を噴霧することにより水性ガス供給路102から供給される水性ガスの温度を低下させる装置である。減温器40には、水供給装置82から水供給ポンプ(図示略)により水が供給される。減温器40は、減温させた水性ガスを、水性ガス供給路103を介してサイクロン50へ供給する。また、減温器40は、水性ガス供給路102から供給される炭化物の未反応分および残渣をチャー回収装置41へ供給する。 The temperature reducer 40 is a device that lowers the temperature of the water gas supplied from the water gas supply path 102 by spraying liquid water. Water is supplied to the temperature reducer 40 from a water supply device 82 by a water supply pump (not shown). The temperature reducer 40 supplies the temperature-reduced water gas to the cyclone 50 through the water gas supply path 103. The temperature reducer 40 supplies unreacted carbide residues and residues supplied from the water gas supply path 102 to the char recovery device 41.
 減温器40は、750℃以上かつ900℃以下となるように熱分解炉30で調整された水性ガスを、220℃以上かつ280℃以下となるように水の噴霧量を調整する。 The temperature reducer 40 adjusts the amount of water sprayed so that the water gas adjusted in the thermal decomposition furnace 30 is 750 ° C. or higher and 900 ° C. or lower, and is 220 ° C. or higher and 280 ° C. or lower.
 チャー回収装置41は、炭化物の未反応分を回収して再び熱分解炉30へ供給する装置である。 The char recovery device 41 is a device that recovers an unreacted portion of the carbide and supplies it to the pyrolysis furnace 30 again.
 チャー回収装置41を設けることにより、炭化物の未反応分が水性ガスの生成に用いられず破棄されることが回避される。そのため、チャー回収装置41を設けることにより、炭化物からの水性ガスの収率が向上する。 By providing the char recovery device 41, it is avoided that unreacted carbide is not used for generating water gas and discarded. Therefore, by providing the char recovery device 41, the yield of water gas from the carbide is improved.
 さらなる発明として、このチャー回収装置41を用い、発電システムや、水素供給システムに好適な、水性ガスの水性反応を高効率に改善した熱分解炉30のリターンシステムを提供することができる。このリターンシステムの詳細については後述する。 As a further invention, it is possible to provide a return system for the pyrolysis furnace 30 using the char recovery device 41, which is suitable for a power generation system and a hydrogen supply system, and which has improved the aqueous reaction of water gas with high efficiency. Details of this return system will be described later.
 サイクロン50は、水性ガス供給路103を介して供給される水性ガスに含まれる残渣を除去する装置である。サイクロン50は、水性ガス供給路103を介して供給される水性ガスを内部で旋回させることにより水性ガスに含まれる残渣を遠心分離して下方へ導いて残渣回収装置51へ供給する。また、サイクロン50は、残渣が除去された水性ガスを上方へ導いて水性ガス供給路104を介して水性ガス冷却装置60へ供給する。 The cyclone 50 is a device that removes residues contained in the water gas supplied via the water gas supply path 103. The cyclone 50 turns the water gas supplied through the water gas supply path 103 inside to centrifuge the residue contained in the water gas, guide it downward, and supply it to the residue collecting device 51. Further, the cyclone 50 guides the water gas from which the residue has been removed upward and supplies the water gas to the water gas cooling device 60 through the water gas supply path 104.
 水性ガス冷却装置60は、液体である水を噴霧することにより水性ガス供給路104から供給される水性ガスの温度を低下させる装置である。水性ガス冷却装置60は、水性ガス中に噴霧した冷却水を回収して循環ポンプ(図示略)により再び水性ガス中に噴霧させるように冷却水を循環させる。 The water gas cooling device 60 is a device that lowers the temperature of the water gas supplied from the water gas supply path 104 by spraying liquid water. The water gas cooling device 60 circulates the cooling water so that the cooling water sprayed in the water gas is recovered and sprayed again into the water gas by a circulation pump (not shown).
 水性ガス冷却装置60は、冷却した水性ガスを水性ガスホルダ70へ供給する。水性ガス冷却装置60は水性ガスホルダ70へ供給する水性ガスの温度を検出する温度センサ(図示略)を備えており、検出する温度が目標温度と一致するように循環ポンプ(図示略)により循環させる冷却水の水量を制御する。水性ガス冷却装置60は、220℃以上かつ280℃以下となるように減温器40で調整された水性ガスを、30℃以上かつ50℃以下となるように水の噴霧量を調整する。 The water gas cooling device 60 supplies the cooled water gas to the water gas holder 70. The water gas cooling device 60 is provided with a temperature sensor (not shown) for detecting the temperature of the water gas supplied to the water gas holder 70 and is circulated by a circulation pump (not shown) so that the detected temperature matches the target temperature. Control the amount of cooling water. The water gas cooling device 60 adjusts the spray amount of water so that the water gas adjusted by the temperature reducer 40 is 220 ° C. or more and 280 ° C. or less, and the water gas is 30 ° C. or more and 50 ° C. or less.
 水性ガスホルダ70は、水性ガス冷却装置60から供給される水性ガスを貯蔵する装置である。水性ガスホルダ70は、貯蔵した水性ガスをフレアースタック71、発電設備72、水素精製装置73のそれぞれに個別に供給することが可能となっている。なお、水素精製装置73は、発電設備としては直接係わるものではなく適宜設けられていてよい。 The water gas holder 70 is a device that stores the water gas supplied from the water gas cooling device 60. The water gas holder 70 can supply the stored water gas individually to the flare stack 71, the power generation facility 72, and the hydrogen purifier 73. Note that the hydrogen purifier 73 is not directly related to the power generation facility, and may be provided as appropriate.
 フレアースタック71は水性ガスホルダ70の貯蔵量が過剰となった場合等、水性ガスに余剰が生じた場合に焼却処理するための装置である。フレアースタック71は、液化天然ガス等の燃料によって常時燃焼が行われるようになっている。そのため、フレアースタック71に水性ガスが供給されると、水性ガスが焼却処理される。 The flare stack 71 is an apparatus for incineration when excess water gas is generated, such as when the amount of water gas holder 70 stored becomes excessive. The flare stack 71 is always combusted by a fuel such as liquefied natural gas. Therefore, when water gas is supplied to the flare stack 71, the water gas is incinerated.
 発電設備72は、水性ガスを燃料として動作することにより発電機を駆動させて発電出力を得る設備である。発電設備72が発電機を駆動させる動力源としては、例えば、水性ガスを燃焼させることにより動作するガスエンジンが用いられる。また、図2に示すように、回収した水性ガスを蓄える補助燃料タンク72aを備えてよい。 The power generation facility 72 is a facility that obtains a power generation output by driving a generator by operating water gas as a fuel. As the power source for driving the generator by the power generation facility 72, for example, a gas engine that operates by burning water gas is used. Moreover, as shown in FIG. 2, you may provide the auxiliary fuel tank 72a which stores the collect | recovered water gas.
 水素精製装置73は、水性ガスに含まれる一酸化炭素ガス、二酸化炭索ガス等の成分を除去することで純度が高い水素ガス(例えば、純度99.995%以上の水素ガス)を精製する装置である。水素精製装置73は、水性ガスを圧縮機(図示略)にて所定の圧力まで加圧して吸着剤(一酸化炭素ガス、二酸化炭素ガス等の成分の除去に適したもの)を充填した吸着塔(図示略)に供給する。水素精製装置73は、この吸着塔を、当該吸着塔に備え付けられた外気との導通を制御するバルブ(図示略)を開け閉めして大気圧まで減圧することで、吸着剤から一酸化炭素ガス、二酸化炭素ガス等の成分を除去し、純度が高い水素ガスを精製する。 The hydrogen purifier 73 is an apparatus that purifies high-purity hydrogen gas (for example, hydrogen gas having a purity of 99.995% or more) by removing components such as carbon monoxide gas and carbon dioxide cord gas contained in the water gas. It is. The hydrogen purifier 73 is an adsorption tower filled with an adsorbent (suitable for removing components such as carbon monoxide gas and carbon dioxide gas) by pressurizing water gas to a predetermined pressure with a compressor (not shown). (Not shown). The hydrogen purifier 73 opens and closes a valve (not shown) for controlling the conduction with the outside air provided in the adsorption tower and depressurizes the adsorption tower to atmospheric pressure, so that the carbon monoxide gas is removed from the adsorbent. Then, components such as carbon dioxide gas are removed, and high purity hydrogen gas is purified.
 蒸気発生器80は、燃焼ガスで加熱することにより水を気化させて飽和水蒸気を生成する装置である。蒸気発生器80には、水供給装置82から水供給ポンプ(図示略)を介して水が供給される。また、蒸気発生器80には、蒸気過熱器81から排出される燃焼ガスが燃焼ガス流路200cを介して供給される。蒸気発生器80に供給される燃焼ガスの温度は、750℃以上かつ850℃以下となるように調整されている。 The steam generator 80 is an apparatus that generates saturated steam by vaporizing water by heating with combustion gas. Water is supplied to the steam generator 80 from the water supply device 82 via a water supply pump (not shown). Further, the combustion gas discharged from the steam superheater 81 is supplied to the steam generator 80 via the combustion gas flow path 200c. The temperature of the combustion gas supplied to the steam generator 80 is adjusted to be 750 ° C. or higher and 850 ° C. or lower.
 蒸気発生器80が生成した飽和水蒸気は蒸気過熱器81へ供給される。また、蒸気発生器80で水を気化させる熱源として用いられた燃焼ガスは、燃焼ガス流路200dを介して乾燥機10へ供給される。乾燥機10へ供給される燃焼ガスの温度は、540℃以上かつ640℃以下となるように調整されている。 The saturated steam generated by the steam generator 80 is supplied to the steam superheater 81. The combustion gas used as a heat source for vaporizing water in the steam generator 80 is supplied to the dryer 10 through the combustion gas flow path 200d. The temperature of the combustion gas supplied to the dryer 10 is adjusted to be 540 ° C. or higher and 640 ° C. or lower.
 蒸気過熱器81は、燃焼ガスで飽和水蒸気を加熱することにより飽和水蒸気から過熱蒸気を生成する装置である。蒸気過熱器81には、蒸気発生器80が生成した飽和水蒸気が供給される。また、蒸気過熱器81には、熱分解炉30から排出される燃焼ガスが燃焼ガス流路200bを介して供給される。蒸気過熱器81に供給される燃焼ガスの温度は、820℃以上かっ920℃以下となるように調整されている。 The steam superheater 81 is a device that generates superheated steam from saturated steam by heating the saturated steam with combustion gas. The steam superheater 81 is supplied with saturated steam generated by the steam generator 80. Further, the combustion gas discharged from the pyrolysis furnace 30 is supplied to the steam superheater 81 through the combustion gas flow path 200b. The temperature of the combustion gas supplied to the steam superheater 81 is adjusted to be 820 ° C. or more and 920 ° C. or less.
 蒸気過熱器81が生成した過熱蒸気は、熱分解炉30へガス化剤として供給される。また、蒸気過熱器81で過熱蒸気を生成する熱源として用いられた燃発ガスは、燃焼ガス流路200cを介して蒸気発生器80へ供給される。 The superheated steam generated by the steam superheater 81 is supplied to the pyrolysis furnace 30 as a gasifying agent. Further, the combustion gas used as a heat source for generating superheated steam in the steam superheater 81 is supplied to the steam generator 80 via the combustion gas flow path 200c.
 制御装置90は、バイオマス発電システムAを制御する装置である。制御装置90はバイオマス発電システムAを構成する各部が備える制御部(図示略)と通信可能となっている。制御装置90は、バイオマス発電システムAを構成する各部が備える制御部に制御指令を伝達することにより、各部を制御することができるようになっている。また制御装置90は、バイオマス発電システムAを構成する各部から温度、圧力等の各部の状態を示す信号を受信可能となっている。 The control device 90 is a device that controls the biomass power generation system A. The control device 90 can communicate with a control unit (not shown) included in each unit constituting the biomass power generation system A. The control device 90 can control each unit by transmitting a control command to a control unit included in each unit constituting the biomass power generation system A. Moreover, the control apparatus 90 can receive the signal which shows the state of each part, such as temperature and pressure, from each part which comprises the biomass power generation system A.
 制御装置90は、記憶部(図示略)に記憶された制御プログラムを読み出して実行することにより、バイオマス発電システムAを構成する各部に所望の動作を実行させることができる。 The control device 90 can cause each unit constituting the biomass power generation system A to execute a desired operation by reading and executing a control program stored in a storage unit (not shown).
 図1に示すバイオマス発電システムAにおいて、炭化炉20で生成された燃焼ガスは燃焼ガス流路200a、200b、200c、200d、200eからなる燃焼ガス流路によって以下のように流通する。 In the biomass power generation system A shown in FIG. 1, the combustion gas generated in the carbonization furnace 20 circulates as follows through the combustion gas flow path including the combustion gas flow paths 200a, 200b, 200c, 200d, and 200e.
 第1に、炭化炉20が生成した燃焼ガスは、燃焼ガス流路200aによって熱分解炉30へ供給される。 1stly, the combustion gas which the carbonization furnace 20 produced | generated is supplied to the thermal decomposition furnace 30 by the combustion gas flow path 200a.
 第2に、熱分解炉30から排出された燃焼ガスは、燃焼ガス流路200bによって蒸気過熱器81へ供給される。 Second, the combustion gas discharged from the pyrolysis furnace 30 is supplied to the steam superheater 81 through the combustion gas channel 200b.
 第3に、蒸気過熱器81から排出された燃焼ガスは、燃焼ガス流路200cによって蒸気発生器80へ供給される。 Third, the combustion gas discharged from the steam superheater 81 is supplied to the steam generator 80 through the combustion gas flow path 200c.
 第4に、蒸気発生器80から排出された燃焼ガスは、燃焼ガス流路200dによって乾操機10へ供給される。 Fourth, the combustion gas discharged from the steam generator 80 is supplied to the dry operation machine 10 through the combustion gas flow path 200d.
 第5に、乾燥機10から排出された燃焼ガスは、燃焼ガス流路200eによって排ガス冷却洗浄装置13へ供給される。 Fifth, the combustion gas discharged from the dryer 10 is supplied to the exhaust gas cooling and cleaning device 13 through the combustion gas flow path 200e.
 第6に、排ガス冷却洗浄装置13が無害化した燃発ガスは、排ガス冷却洗浄装置13によって大気中に排出される。 Sixth, the flue gas detoxified by the exhaust gas cooling and cleaning device 13 is discharged into the atmosphere by the exhaust gas cooling and cleaning device 13.
 この排ガス冷却洗浄装置13は、図2に示すように、例えば、熱交換機13a、バグ集塵機13b、排気塔13c等からなる。 As shown in FIG. 2, the exhaust gas cooling and cleaning device 13 includes, for example, a heat exchanger 13a, a bag dust collector 13b, an exhaust tower 13c, and the like.
 ここで、炭化炉20が生成した燃焼ガスを他の熱媒体との熱交換をさせないで熱分解炉30へ供給しているのは、高温な状態が維持された燃焼ガスを用いて熱分解炉30における熱分解反応を促進して炭化物からの水性ガスの収率を向上させるためである。炭化炉20が生成した燃焼ガスを他の熱媒体との熱交換をさせた後に熱分解炉30へ供給する場合に比べ、熱分解炉30の内部を高温に維持することができるため、熱分解反応が促進されて炭化物からの水性ガスの収率が向上する。 Here, the combustion gas generated by the carbonization furnace 20 is supplied to the pyrolysis furnace 30 without performing heat exchange with other heat medium. The reason is that the combustion gas maintained at a high temperature is used for the pyrolysis furnace. This is because the thermal decomposition reaction at 30 is promoted to improve the yield of water gas from the carbide. Compared to the case where the combustion gas generated by the carbonization furnace 20 is supplied to the pyrolysis furnace 30 after heat exchange with another heat medium, the inside of the pyrolysis furnace 30 can be maintained at a high temperature. The reaction is accelerated and the yield of water gas from the carbide is improved.
 次に、図3から図5を用いて、本実施形態の炭化炉20について説明する。 Next, the carbonization furnace 20 of the present embodiment will be described with reference to FIGS.
 図3は、図2に示す本発明の一実施形態に係る炭化炉の縦断面図であり、図4は、図3に示す本発明の一実施形態に係る炭化炉のクリンカクラッシャを示す図であり、(a)は平面図、(b)は(a)のC-C矢視端面図である。また、図5は、図3に示す本発明の一実施形態に係る炭化炉の端面図であり、(a)はA-A矢視端面図、(b)はB-B矢視端面図である。 3 is a longitudinal sectional view of the carbonization furnace according to one embodiment of the present invention shown in FIG. 2, and FIG. 4 is a view showing a clinker crusher of the carbonization furnace according to one embodiment of the present invention shown in FIG. (A) is a plan view and (b) is an end view taken along the line CC of (a). 5 is an end view of the carbonization furnace according to one embodiment of the present invention shown in FIG. 3, wherein (a) is an end view taken along the line AA, and (b) is an end view taken along the line BB. is there.
 図3において、軸線Xは、炭化炉20が設置される設置面(図示略)に対して直交する鉛直方向(重力方向)を示している。 3, an axis X indicates a vertical direction (gravity direction) orthogonal to an installation surface (not shown) on which the carbonization furnace 20 is installed.
 図3に示すように、炭化炉20は、本体部21と、円筒部22(筒部)と有機廃棄物投入部23(投入部)と、炭化物排出部24と、1次空気供給部25と、2次空気供給部26と、燃焼ガス排出部27と、温度センサ28a(温度検出部)と、温度センサ28b(温度検出部)と、温度センサ28c(温度検出部)と、レベルセンサ28d(堆積量検出部)と、着火バーナ20cと、炭化炉制御部29(制御部)とを備える。 As shown in FIG. 3, the carbonization furnace 20 includes a main body part 21, a cylindrical part 22 (cylinder part), an organic waste input part 23 (input part), a carbide discharge part 24, and a primary air supply part 25. Secondary air supply unit 26, combustion gas discharge unit 27, temperature sensor 28a (temperature detection unit), temperature sensor 28b (temperature detection unit), temperature sensor 28c (temperature detection unit), and level sensor 28d ( A deposition amount detection unit), an ignition burner 20c, and a carbonization furnace control unit 29 (control unit).
 本体部21は、軸線Xに沿って延びる略円筒状に形成されるとともに炭化炉20の外装となる部材である。本体部21は、その内部に有機廃棄物を部分燃焼させる1次燃焼領域R2と、有機廃棄物から生成された燃焼ガスに含まれる可燃性ガスを燃焼させる2次燃焼領域R4とを形成している。 The main body 21 is a member that is formed in a substantially cylindrical shape extending along the axis X and is an exterior of the carbonization furnace 20. The main body 21 forms a primary combustion region R2 in which organic waste is partially combusted and a secondary combustion region R4 in which combustible gas contained in the combustion gas generated from the organic waste is combusted. Yes.
 本体部21は、炭化炉20の外装を形成する金属製(例えば鉄製)のハウジング21aと、ハウジング21aの内周面に貼り付けられる断熱材21bと、断熱材21bの内周面に貼り付けられる耐火材21cとを有する。 The main body 21 is attached to a metal (for example, iron) housing 21a that forms the exterior of the carbonization furnace 20, a heat insulating material 21b that is attached to the inner peripheral surface of the housing 21a, and an inner peripheral surface of the heat insulating material 21b. Refractory material 21c.
 円筒部22は、軸線Xに沿って延びる略円筒状に形成される部材である。円筒部22は本体部21の内周面21dとの間に有機廃棄物を燃焼させて炭化物を生成するための間隙20aを形成する外周面22aを有する。円筒部22は、有機廃棄物の燃焼によって高温となるため、耐熱性の材料(例えば、ステンレス等の金属材料)によって形成するのが好ましい。 The cylindrical portion 22 is a member formed in a substantially cylindrical shape extending along the axis X. The cylindrical portion 22 has an outer peripheral surface 22a that forms a gap 20a between the inner peripheral surface 21d of the main body portion 21 and combusting organic waste to generate carbides. Since the cylindrical part 22 becomes high temperature by combustion of organic waste, it is preferable to form the cylindrical part 22 from a heat-resistant material (for example, a metal material such as stainless steel).
 図3に示すように、円筒部22の内部は中空の閉空間となっておりこの閉空間は他の空間と連通しない状態となっている。そのため、円筒部22は一定の熱量を蓄熱可能であり外部の温度変化による影響を受けにくくなっている。 As shown in FIG. 3, the inside of the cylindrical portion 22 is a hollow closed space, and this closed space is not in communication with other spaces. Therefore, the cylindrical portion 22 can store a certain amount of heat and is not easily affected by an external temperature change.
 円筒部22は、後述するターンテーブル24aに取り付けられておりターンテーブル24aが軸線X回りに回転するのに応じて軸線X回りに回転するようになっている。円筒部22が軸線X回りに回転することにより、間隙20aとその上部に存在する有機廃棄物は間隙20aに沿って上方から下方へ導かれる。 The cylindrical portion 22 is attached to a turntable 24a, which will be described later, and rotates around the axis X in response to the turntable 24a rotating around the axis X. As the cylindrical portion 22 rotates about the axis X, the gap 20a and the organic waste existing above the gap 20a are guided along the gap 20a from above to below.
 間隙20aに供給された有機廃棄物は、1次燃焼領域R2において1次空気供給部25から供給される1次燃焼用空気によって部分燃焼し、炭化物を多く含む固形分と可燃性ガスを含む燃焼ガスとが生成される。炭化物を多く含む固形分は間隙20aに沿って下方の炭化物精錬・冷却領域R1へ導かれ、可燃性ガスを含む燃焼ガスは2次燃焼領域R4へ導かれる。 The organic waste supplied to the gap 20a is partially combusted by the primary combustion air supplied from the primary air supply unit 25 in the primary combustion region R2, and burns containing solids containing a large amount of carbides and combustible gas. Gas is generated. The solid content containing a large amount of carbide is guided to the lower carbide refining / cooling region R1 along the gap 20a, and the combustion gas containing combustible gas is guided to the secondary combustion region R4.
 炭化物精錬・冷却領域R1は、上方が有機廃棄物で閉塞されているとともに1次空気供給部25からの1次燃焼用空気が供給されない領域となっている。そのため、炭化物は、炭化物精錬・冷却領域R1において冷却されながら精錬される。 The carbide refining / cooling region R1 is a region where the upper portion is closed with organic waste and the primary combustion air from the primary air supply unit 25 is not supplied. Therefore, the carbide is refined while being cooled in the carbide refinement / cooling region R1.
 有機廃棄物投入部23は、本体部21に設けられるとともに定量供給器12から原料供給路12aを介して供給される有機廃棄物(図示略)を本体部21の内部へ投入する開口部である。有機廃棄物投入部23の下方には軸線Xに近付くにつれて上方から下方へ傾斜する傾斜面23aが形成されている。有機廃棄物投入部23から供給された有機廃棄物は、傾斜面23aに沿って円筒部22の上面22bおよび間隙20aに導かれる。 The organic waste input unit 23 is an opening that is provided in the main body 21 and inputs organic waste (not shown) supplied from the quantitative supply device 12 via the raw material supply path 12 a into the main body 21. . An inclined surface 23a is formed below the organic waste throwing portion 23. The inclined surface 23a is inclined downward from above as it approaches the axis X. The organic waste supplied from the organic waste input part 23 is guided to the upper surface 22b of the cylindrical part 22 and the gap 20a along the inclined surface 23a.
 図3に示すように有機廃棄物投入部23が配置される領域が原料投入領域R3である。原料投入領域R3において、軸線Xに対して有機廃棄物投入部23と反対側には点検窓20bが設けられている。点検窓20bは、炭化炉20の内部を視認可能にするものである。 As shown in FIG. 3, the region where the organic waste charging unit 23 is disposed is a raw material charging region R3. In the raw material charging region R3, an inspection window 20b is provided on the side opposite to the organic waste charging unit 23 with respect to the axis X. The inspection window 20b makes the inside of the carbonization furnace 20 visible.
 炭化物排出部24は、間隙20aにおいて有機廃棄物が部分燃焼することにより生成される炭化物を炭化物供給路101へ排出する機構である。炭化物排出部24から炭化物供給路101へ排出された炭化物は、熱分解炉30へ供給される。 The carbide discharge unit 24 is a mechanism for discharging carbide generated by partial combustion of organic waste in the gap 20 a to the carbide supply path 101. The carbide discharged from the carbide discharge unit 24 to the carbide supply path 101 is supplied to the pyrolysis furnace 30.
 図3に示すように、炭化物排出部24は、ターンテーブル24a(回転体)と、駆動部24bと、炭化物排出口24cとを有する。 As shown in FIG. 3, the carbide discharge part 24 has a turntable 24a (rotary body), a drive part 24b, and a carbide discharge port 24c.
 ターンテーブル24aは、間隙20aの軸線X方向の下端と対向する位置に設けられる部材であり、軸線X回りの周方向に延びる円環状の回転体である。ターンテーブル24aは、駆動部24bから伝達される駆動力によって軸線X回りに回転する。 The turntable 24a is a member provided at a position facing the lower end in the axis X direction of the gap 20a, and is an annular rotator extending in the circumferential direction around the axis X. The turntable 24a rotates around the axis X by the driving force transmitted from the driving unit 24b.
 間隙20aの下端と対向するターンテーブル24aの面は軸線Xから違さかるに従って下方へ傾斜する傾斜面となっている。そのため、間隙20aの下端とターンテーブル24aの傾斜面との間には隙間が形成されている。 The surface of the turntable 24a facing the lower end of the gap 20a is an inclined surface that is inclined downward as it differs from the axis X. Therefore, a gap is formed between the lower end of the gap 20a and the inclined surface of the turntable 24a.
 間隙20aの下端に存在する炭化物(図示略)は、ターンテーブル24aが軸線X回りに回転するのに応じてターンテーブル24aの傾斜面に沿って下方へ移動して炭化物排出口24cへと導かれる。そのため、ターンテーブル24aの回転速度が増加するのに応じて、間隙20aの下端から炭化物排出口24cへ導かれる炭化物の量が増加する。同様にターンテーブル24aの回転速度が減少するのに応じて、間隙20aの下端から炭化物排出口24cへ導かれる炭化物の量が減少する。 Carbide (not shown) existing at the lower end of the gap 20a moves downward along the inclined surface of the turntable 24a as the turntable 24a rotates about the axis X, and is guided to the carbide discharge port 24c. . Therefore, as the rotational speed of the turntable 24a increases, the amount of carbide guided from the lower end of the gap 20a to the carbide discharge port 24c increases. Similarly, as the rotational speed of the turntable 24a decreases, the amount of carbide guided from the lower end of the gap 20a to the carbide discharge port 24c decreases.
 駆動部24bは、ターンテーブル24cに駆動力を伝達し、ターンテーブル24bを軸線X回りに回転させる装置である。駆動部24bは、駆動モータ24eと、減速機24fと、駆動べルト24gと、駆動軸24hとを有する。 The driving unit 24b is a device that transmits driving force to the turntable 24c and rotates the turntable 24b about the axis X. The drive unit 24b includes a drive motor 24e, a speed reducer 24f, a drive belt 24g, and a drive shaft 24h.
 駆動モータ24eは、炭化炉制御部29から伝達される制御信号によって回転数が制御されるインバータモータである。駆動モータ24eの回転動力は、駆動べルト24gによって減速機24fに伝達される。 The drive motor 24e is an inverter motor whose rotation speed is controlled by a control signal transmitted from the carbonization furnace control unit 29. The rotational power of the drive motor 24e is transmitted to the speed reducer 24f by the drive belt 24g.
 減速機24fは駆動べルト24gによって駆動モータ24eから伝達される回転動力の回転速度を減速させつつトルクを増加させる装置である。減速機24fは、トルクを増加させた回転動力を軸線X回りに延びる駆動軸24hに伝達する。 The speed reducer 24f is a device that increases the torque while reducing the rotational speed of the rotational power transmitted from the drive motor 24e by the drive belt 24g. The speed reducer 24f transmits the rotational power with increased torque to the drive shaft 24h extending around the axis X.
 ターンテーブル24aは駆動軸24hに連結されている。そのため、駆動軸24hが軸線X回りに回転するのに伴って、ターンテーブル24aが軸線X回りに回転する。 The turntable 24a is connected to the drive shaft 24h. Therefore, the turntable 24a rotates about the axis X as the drive shaft 24h rotates about the axis X.
 炭化物排出口24cは、炭化物を炭化物供給路101へ排出する開口部である。炭化物排出口24cから炭化物供給路101へ排出された炭化物は、炭化物供給路101を介して熱分解炉30へ供給される。 The carbide discharge port 24 c is an opening for discharging carbide to the carbide supply path 101. The carbide discharged from the carbide discharge port 24 c to the carbide supply path 101 is supplied to the pyrolysis furnace 30 through the carbide supply path 101.
 クリンカクラッシャ24dは、間隙20aの下端とターンテーブル24aの傾斜面との間に形成される隙間よりも大きな塊であるクリンカを破砕するための部材である。ここでクリンカとは、1次燃焼領域R2での有機廃棄物の燃焼により生成された燃焼灰が溶融して塊となったものである。 The clinker crusher 24d is a member for crushing a clinker that is a lump larger than a gap formed between the lower end of the gap 20a and the inclined surface of the turntable 24a. Here, the clinker is obtained by melting the combustion ash generated by the combustion of the organic waste in the primary combustion region R2 into a lump.
 図4の(a)に示すように、クリンカクラッシャ24dは、軸線X回りに配置される略円環状の部材となっており、周方向の複数の位置に径方向の内側に突出する爪24iが設けられている。 As shown in FIG. 4A, the clinker crusher 24d is a substantially annular member arranged around the axis X, and claws 24i protruding radially inward at a plurality of positions in the circumferential direction. Is provided.
 図4の(a)のC-C矢視端面図である(b)に示すように、爪24iはターンテーブル24aの傾斜面に沿うように上方に向けて折れ曲がった形状となっている。 As shown in (b) of FIG. 4 (a), the claw 24i has a shape bent upward along the inclined surface of the turntable 24a.
 図3に示すようにクリンカクラッシャ24dは、締結ボルトによって本体部21に取り付けられている。クリンカクラッシャ24dは、ターンテーブル24aが軸線X回りに回転しても本体部21に対して固定されたままとなる。そのため、ターンテーブル24aの回転に伴ってクリンカが移動すると、クリンカがクリンカクラッシャの爪24iに衝突して破砕される。 As shown in FIG. 3, the clinker crusher 24d is attached to the main body 21 by fastening bolts. The clinker crusher 24d remains fixed to the main body 21 even when the turntable 24a rotates about the axis X. Therefore, when the clinker moves as the turntable 24a rotates, the clinker collides with the claws 24i of the clinker crusher and is crushed.
 次に、1次空気供給部25について説明する。 Next, the primary air supply unit 25 will be described.
 1次空気供給部25は、間隙20aに堆積する有機廃棄物に向けて有機廃棄物を部分燃焼させる1次燃焼用空気を供給する装置である。1次空気供給部25は、1次燃焼ファン25a(送風部)と、カバー部25bと、空気供給口25cとを有する。 The primary air supply unit 25 is a device that supplies primary combustion air that partially burns organic waste toward the organic waste accumulated in the gap 20a. The primary air supply unit 25 includes a primary combustion fan 25a (air blowing unit), a cover unit 25b, and an air supply port 25c.
 1次燃焼ファン25aは、外部から導入した空気(大気)を送風する装置であり、インバータモータ(図示略)とインバータモータにより駆動されるファン(図示略)を有している。1次燃焼ファン25aは、インバータモータの回転数を制御することにより送風する風量を調整することができる。 The primary combustion fan 25a is a device that blows air (atmosphere) introduced from the outside, and includes an inverter motor (not shown) and a fan (not shown) driven by the inverter motor. The primary combustion fan 25a can adjust the air volume to blow by controlling the rotation speed of the inverter motor.
 カバー部25bは、1次燃焼ファン25aから送風される空気が導入されるとともに空気供給口25cへ空気を供給する閉空間25dを形成する部材である。 The cover portion 25b is a member that forms a closed space 25d in which air blown from the primary combustion fan 25a is introduced and air is supplied to the air supply port 25c.
 図5の(a)は図3に示す炭化炉20のA-A矢視端面図を示し、図示するように、カバー部25bは、本体部21の外周面21eとの間に軸線X回りに延びる閉空間25dを形成する。 FIG. 5A shows an end view of the carbonization furnace 20 shown in FIG. 3 along the line AA. As shown in the figure, the cover portion 25b is disposed around the axis X between the outer peripheral surface 21e of the main body portion 21 and the cover portion 25b. An extended closed space 25d is formed.
 空気供給口25cは、1次燃焼ファン25aから閉空間25dに送風された空気を閉空間25dから本体部21の内部の1次燃焼領域R2へ供給する流路である。 The air supply port 25c is a flow path for supplying air blown from the primary combustion fan 25a to the closed space 25d to the primary combustion region R2 inside the main body 21 from the closed space 25d.
 図3に示すように、空気供給口25cは、有機廃棄物を1次燃焼用空気により部分燃焼させる1次燃焼領域R2において、軸線Xに沿った鉛直方向の複数箇所に設けられている。 As shown in FIG. 3, the air supply ports 25c are provided at a plurality of locations in the vertical direction along the axis X in the primary combustion region R2 where the organic waste is partially combusted by the primary combustion air.
 また、図5の(a)に示すように、空気供給口25cは軸線X回りの周方向に沿った等間隔(図5の(a)では30°間隔)で本体部21に設けられている。また、図5の(a)に示すように、空気供給口25cは、本体部21の外周面21eから軸線Xに向けた延びる直線状の流路となっている。 Further, as shown in FIG. 5A, the air supply ports 25c are provided in the main body 21 at equal intervals along the circumferential direction around the axis X (30 ° intervals in FIG. 5A). . As shown in FIG. 5A, the air supply port 25c is a linear flow path extending from the outer peripheral surface 21e of the main body 21 toward the axis X.
 なお、図5の(a)に示す例は軸線X回りの周方向に沿った30°間隔で空気供給口25cを配置するものとしたが、他の間隔(例えば、20°、45°等)としてもよいし、等間隔でなく任意の間隔で配置してもよい。 In the example shown in FIG. 5A, the air supply ports 25c are arranged at intervals of 30 ° along the circumferential direction around the axis X, but other intervals (for example, 20 °, 45 °, etc.) Alternatively, they may be arranged at arbitrary intervals instead of at equal intervals.
 図3に示す1次空気供給部25は、1次燃焼ファン25aから送風される空気を加熱する加熱部(図示略)を有する。空気供給口25cは、加熱部によって加熱された空気を空気供給口25cへ供給する。そのため、1次燃焼ファン25aから送風される空気を加熱しない場合に比べ、1次燃焼領域R2の雰囲気温度を高温に維持することができる。 The primary air supply unit 25 shown in FIG. 3 has a heating unit (not shown) for heating the air blown from the primary combustion fan 25a. The air supply port 25c supplies the air heated by the heating unit to the air supply port 25c. Therefore, compared with the case where the air blown from the primary combustion fan 25a is not heated, the atmospheric temperature of the primary combustion region R2 can be maintained at a high temperature.
 1次空気供給部25が備える加熱部として、図6および図7に示す放熱フィン25eを採用してもよい。図6は、図3に示す本発明の一実施形態に係る炭化炉の1次空気供給部の第1変形例を示す縦断面図であり、図7は、1次空気供給部の第2変形例を示す縦断面図である。 As the heating unit provided in the primary air supply unit 25, the radiation fins 25e shown in FIGS. 6 and 7 may be employed. 6 is a longitudinal sectional view showing a first modification of the primary air supply unit of the carbonization furnace according to the embodiment of the present invention shown in FIG. 3, and FIG. 7 is a second modification of the primary air supply unit. It is a longitudinal cross-sectional view which shows an example.
 図6および図7に示す1次空気供給部25の変形例は、炭化炉20の間隙20aから本体部21を介して伝達される熱を利用して1次燃焼ファン25aから送風される空気を加熱する放熱フィン25eを備えるものである。 The modification of the primary air supply part 25 shown in FIG.6 and FIG.7 uses the air transmitted from the gap | interval 20a of the carbonization furnace 20 via the main-body part 21, and the air ventilated from the primary combustion fan 25a is used. The heat dissipating fins 25e are provided.
 図6および図7に示すように放熱フィン25eは、本体部21の外周面21eに接触するとともに外周面21eに沿って軸線X回りに延びる環状の部材である。放熱フィン25eは、軸線Xに沿った複数箇所に設けられている。放熱フィン25eは、本体部21の外周面21eに対して溶接等によって取り付けられている。 6 and 7, the heat radiation fin 25e is an annular member that contacts the outer peripheral surface 21e of the main body 21 and extends around the axis X along the outer peripheral surface 21e. The radiation fins 25e are provided at a plurality of locations along the axis X. The radiation fin 25e is attached to the outer peripheral surface 21e of the main body 21 by welding or the like.
 図3に示す1次空気供給部25のカバー部25bは、空気供給口25cと軸線X方向の略同じ位置のみに設けられる。それに対して、図6の1次空気供給部25の第1変形例においては、1次空気供給部25のカバー部25bは、空気供給口25cと軸線X方向の略同じ位置に加えて空気供給口25cよりも下方の位置も包含するように設けられる。 The cover part 25b of the primary air supply part 25 shown in FIG. 3 is provided only at substantially the same position in the axis X direction as the air supply port 25c. On the other hand, in the first modification of the primary air supply unit 25 in FIG. 6, the cover portion 25b of the primary air supply unit 25 supplies air in addition to substantially the same position in the axis X direction as the air supply port 25c. It is provided so as to include a position below the opening 25c.
 図6に示す放熱フィン25eは、本体部21の外周面21eを介して間隙20aの雰囲気温度が伝熱される伝熱部材である。本体部21の外周面21eは、耐火材21cと断熱材21bによってハウジング21aが加熱しすぎないように保護されているものの50℃~70℃程度に加熱された状態となっている。そのため、放熱フィン25eによって1次燃焼ファン25aから送風される空気(大気)を加熱することができる。 6 is a heat transfer member to which the ambient temperature of the gap 20a is transferred through the outer peripheral surface 21e of the main body 21. The heat dissipation fin 25e shown in FIG. The outer peripheral surface 21e of the main body 21 is heated to about 50 ° C. to 70 ° C., although the housing 21a is protected by the refractory material 21c and the heat insulating material 21b so as not to be overheated. Therefore, the air (atmosphere) blown from the primary combustion fan 25a can be heated by the radiation fin 25e.
 図6に示すように、1次燃焼ファン25aは、間隙20aの下方の外周側に位置する本体部21の外周面21eに向けて外部から導入した空気を送風するようになっている。このようにしているのは、間隙20aの下方の外周側に位置する本体部21の外周面21eを外部から導入した空気によって冷却するためである。 As shown in FIG. 6, the primary combustion fan 25a blows air introduced from the outside toward the outer peripheral surface 21e of the main body portion 21 located on the outer peripheral side below the gap 20a. This is because the outer peripheral surface 21e of the main body 21 located on the outer peripheral side below the gap 20a is cooled by air introduced from the outside.
 図6に示すように、間隙20aの下方は炭化物精錬・冷却領域R1となっている。炭化物精錬・冷却領域R1は、1次燃焼領域R2で生成された炭化物を冷却しながら精錬する領域であるため、ある程度低い温度に維持されるのが望ましい。そこで本実施形態では、炭化物精錬・冷却領域R1が冷却されるように1次燃焼ファン25aが空気を送風する位置を設定している。 As shown in FIG. 6, below the gap 20a is a carbide refining / cooling region R1. The carbide refining / cooling region R1 is a region in which the carbide generated in the primary combustion region R2 is refined while being cooled, and therefore it is desirable to maintain the temperature at a certain low level. Therefore, in the present embodiment, the position where the primary combustion fan 25a blows air is set so that the carbide refining / cooling region R1 is cooled.
 一方、図7に示す1次空気供給部25の第2変形例では、放熱フィン25eが配置される位置における断熱材21bの厚さおよび本体部21の外周面21eの位置が、図6と異なっている。その他の点については、図6に示す第1変形例と同様である。 On the other hand, in the 2nd modification of the primary air supply part 25 shown in FIG. 7, the thickness of the heat insulating material 21b in the position where the radiation fin 25e is arrange | positioned, and the position of the outer peripheral surface 21e of the main-body part 21 are different from FIG. ing. About another point, it is the same as that of the 1st modification shown in FIG.
 図7に示すように、空気供給口25cが配置される位置における本体部21の内周面21dから外周面21eまでの距離は、距離D1となっている。一方、放熱フィン25eが配置される位置における本体部21の内周面21dから外周面21eまでの距離は、距離D2となっている。図7に示すように距離D1よりも距離D2の方が短くなっている。 As shown in FIG. 7, the distance from the inner peripheral surface 21d of the main body 21 to the outer peripheral surface 21e at the position where the air supply port 25c is arranged is a distance D1. On the other hand, the distance from the inner peripheral surface 21d of the main body 21 to the outer peripheral surface 21e at the position where the radiation fin 25e is disposed is the distance D2. As shown in FIG. 7, the distance D2 is shorter than the distance D1.
 図7に示す1次空気供給部25の第2変形例によれば、図6に示す1次空気供給部25の第1変形例に比べ、放熱フィン25eが配置される位置において間隙20aの雰囲気温度が外周面21eに伝達されやすくなっている。そのため、第2変形例によれば、第1変形例よりも放熱フィン25eがより高温に加熱される。よって、第2変形例の1次空気供給部25によれば、1次燃焼ファン25aが送風する空気をより高い温度に加熱した状態で空気供給口25cへ供給することができる。 According to the second modification of the primary air supply unit 25 shown in FIG. 7, compared with the first modification of the primary air supply unit 25 shown in FIG. 6, the atmosphere of the gap 20a at the position where the radiation fins 25e are arranged. The temperature is easily transmitted to the outer peripheral surface 21e. Therefore, according to the second modification, the radiating fins 25e are heated to a higher temperature than in the first modification. Therefore, according to the primary air supply unit 25 of the second modification, the air blown by the primary combustion fan 25a can be supplied to the air supply port 25c while being heated to a higher temperature.
 なお、図6および図7に示す放熱フィン25eは、軸線X回りに延びる環状の部材であるものとしたが、他の態様であってもよい。例えば、放熱フィン25eを、本体部21の外周面21eに接態するとともに外周面21eに沿って軸線X回りに下方から上方へ向けて旋回する螺旋状の流路を形成するような構造としてもよい。 In addition, although the radiation fin 25e shown to FIG. 6 and FIG. 7 shall be the cyclic | annular member extended around the axis line X, another aspect may be sufficient. For example, the heat dissipating fin 25e may be in contact with the outer peripheral surface 21e of the main body 21 and may be configured to form a spiral flow path that pivots from below to above around the axis X along the outer peripheral surface 21e. Good.
 次に、2次空気供給部26について説明する。 Next, the secondary air supply unit 26 will be described.
 2次空気供給部26は、1次燃焼領域R2において有機廃棄物の燃焼により生成される燃焼ガスに含まれる可燃性ガスを燃焼させる2次燃焼用空気を本体部21の内部へ供給する装置である。図3に示すように、2次空気供給部26は2次燃焼領域R4に設けられており、2次燃焼領域R4に向けて2次燃焼用空気を供給する。 The secondary air supply unit 26 is a device that supplies secondary combustion air for burning the combustible gas contained in the combustion gas generated by the combustion of the organic waste in the primary combustion region R2 to the inside of the main body 21. is there. As shown in FIG. 3, the secondary air supply unit 26 is provided in the secondary combustion region R4 and supplies secondary combustion air toward the secondary combustion region R4.
 2次空気供給部26は、2次燃焼ファン26aと、カバー部26bと、空気供給口26cとを有する。 The secondary air supply unit 26 includes a secondary combustion fan 26a, a cover unit 26b, and an air supply port 26c.
 2次燃焼ファン26aは、外部から導入した空気(大気)を送風する装置であり、インバータモータ(図示略)とインバータモータにより駆動されるファン(図示略)を有している。2次燃焼ファン26aは、インバータモータの回転数を制御することにより送風する風量を調整することができる。 The secondary combustion fan 26a is a device that blows air (atmosphere) introduced from the outside, and includes an inverter motor (not shown) and a fan (not shown) driven by the inverter motor. The secondary combustion fan 26a can adjust the air volume to blow by controlling the rotation speed of the inverter motor.
 カバー部26bは、2次燃焼ファン26aから送風される空気が導入されるとともに空気供給口26cへ空気を供給する閉空間26dを形成する部材である。 The cover portion 26b is a member that forms a closed space 26d that introduces air blown from the secondary combustion fan 26a and supplies air to the air supply port 26c.
 図3に示す炭化炉20のB-B矢視端面図として図5の(b)に示すように、カバー部26bは、本体部21の外周面21eとの間に軸線X回りに延びる閉空間26dを形成する。 As shown in FIG. 5B as an end view taken along the line BB of the carbonization furnace 20 shown in FIG. 3, the cover portion 26b is a closed space extending around the axis X between the outer peripheral surface 21e of the main body portion 21. 26d is formed.
 空気供給口26cは、2次燃焼ファン26aから閉空間26dに送風された空気を閉空間26dから本体部21の内部の2次燃焼領域R4へ供給する流路である。 The air supply port 26c is a flow path for supplying air blown from the secondary combustion fan 26a to the closed space 26d to the secondary combustion region R4 inside the main body 21 from the closed space 26d.
 図3に示すように、空気供給口26cは、燃焼ガスに含まれる可燃性ガスを2次燃焼用空気により燃焼させる2次燃焼領域R4において、軸線Xに沿つた鉛直方向の複数箇所に設けられている。 As shown in FIG. 3, the air supply ports 26 c are provided at a plurality of locations in the vertical direction along the axis X in the secondary combustion region R <b> 4 where the combustible gas contained in the combustion gas is combusted by the secondary combustion air. ing.
 また、図5の(b)に示すように、空気供給口26cは軸線X回りの周方向に沿った等間隔(図5の(b)では30°間隔)で本体部21に設けられている。また、図5の(b)に示すように、空気供給口26cは、本体部21の外周面21eから軸線Xに向けた延びる直線状の流路となっている。 Further, as shown in FIG. 5B, the air supply ports 26c are provided in the main body portion 21 at equal intervals along the circumferential direction around the axis X (30 ° intervals in FIG. 5B). . Further, as shown in FIG. 5B, the air supply port 26 c is a linear flow path extending from the outer peripheral surface 21 e of the main body 21 toward the axis X.
 なお、図5の(b)に示す例は軸線X回りの周方向に沿った30°間隔で空気供給口26cを配置するものとしたが、他の間隔(例えば、20°、45°等)としても良いし、等間隔でなく任意の間隔で配置してもよい。 In the example shown in FIG. 5B, the air supply ports 26c are arranged at intervals of 30 ° along the circumferential direction around the axis X, but other intervals (for example, 20 °, 45 °, etc.) Or may be arranged at an arbitrary interval instead of at equal intervals.
 燃焼ガス排出部27は、1次燃焼領域R2で生成されて2次燃焼領域R4で可燃性ガス成分を燃焼させた燃焼ガスを燃焼ガス流路200aへ排出する排出口である。燃焼ガス流路200aへ排出された燃焼ガスは、熱分解反応の熱源として利用するために熱分解炉30へ供給される。 The combustion gas discharge unit 27 is an exhaust port that discharges the combustion gas generated in the primary combustion region R2 and combusted with the combustible gas component in the secondary combustion region R4 to the combustion gas channel 200a. The combustion gas discharged to the combustion gas flow path 200a is supplied to the pyrolysis furnace 30 for use as a heat source for the pyrolysis reaction.
 温度センサ28aは、燃焼ガス排出部27から排出される燃焼ガスの温度を検出するセンサである。温度センサ28aは、検出した温度を示す温度検出信号を炭化炉制御部29へ伝達する。 The temperature sensor 28 a is a sensor that detects the temperature of the combustion gas discharged from the combustion gas discharge unit 27. The temperature sensor 28 a transmits a temperature detection signal indicating the detected temperature to the carbonization furnace control unit 29.
 図3に示すように、温度センサ28aは2次燃焼領域R4の中でも燃焼ガス流路200aに近接した領域に配置されている。そのため、温度センサ28aが検出する燃焼ガス温度Tgは、燃焼ガス流路200aに排出される燃焼ガスの温度と略一致した温度となる。 As shown in FIG. 3, the temperature sensor 28a is disposed in a region close to the combustion gas flow path 200a in the secondary combustion region R4. Therefore, the combustion gas temperature Tg detected by the temperature sensor 28a is substantially the same as the temperature of the combustion gas discharged to the combustion gas flow path 200a.
 温度センサ28bは、1次燃焼領域R2の雰囲気温度を検出するセンサである。温度センサ28bは、検出した温度を示す温度検出信号を炭化炉制御部29へ伝達する。 The temperature sensor 28b is a sensor that detects the ambient temperature of the primary combustion region R2. The temperature sensor 28 b transmits a temperature detection signal indicating the detected temperature to the carbonization furnace control unit 29.
 温度センサ28cは、間隙20aの下端側に堆積する炭化物の温度である炭化物温度Tcを検出するセンサである。温度センサ28bは、検出した炭化物温度Tcを示す温度検出信号を炭化炉制御部29へ伝達する。 The temperature sensor 28c is a sensor that detects a carbide temperature Tc that is a temperature of carbide deposited on the lower end side of the gap 20a. The temperature sensor 28 b transmits a temperature detection signal indicating the detected carbide temperature Tc to the carbonization furnace control unit 29.
 レベルセンサ28dは、間隙20aに堆積する有機廃棄物の堆積量を検出するセンサである。レベルセンサ28dは、1次燃焼領域R2において、図3に示す軸線Y方向に存在する有機廃棄物の堆積量を堆積量に応じた出力信号を得ることにより検出する。 The level sensor 28d is a sensor that detects the amount of organic waste deposited in the gap 20a. The level sensor 28d detects the amount of organic waste accumulated in the direction of the axis Y shown in FIG. 3 by obtaining an output signal corresponding to the amount of accumulation in the primary combustion region R2.
 レベルセンサ28dは、出射した光や超音波等の反射を受信することで堆積量を検出する反射型のセンサであってもよい。また、レベルセンサ28dは、出射したX線等を受信する受信部を円筒部22に設けた透過型のセンサであってもよい。 The level sensor 28d may be a reflective sensor that detects the amount of deposition by receiving reflection of emitted light, ultrasonic waves, or the like. Further, the level sensor 28d may be a transmission type sensor in which a receiving part for receiving emitted X-rays or the like is provided in the cylindrical part 22.
 後述するようにレベルセンサ28dは、有機廃棄物投入部23からの新たな有機廃棄物の投入が停止される場合等、間隙20aに存在する有機廃棄物の堆積量が減少したことを検出するためのセンサである。そのため、レベルセンサ28dは、取付位置から鉛直方向の下方に向けた軸線Yに沿った堆積量を検出するようになっている。炭化炉制御部29はレベルセンサ28dが検出する有機廃棄物の堆積量である堆積量Aoが0(ゼロ)である旨の検出信号を出力する場合、間隙20aに存在する有機廃棄物の堆積量が所定の第1堆積量Ao1以下へ減少したと判定する。 As will be described later, the level sensor 28d detects that the amount of organic waste deposited in the gap 20a has decreased, such as when the introduction of new organic waste from the organic waste input unit 23 is stopped. Sensor. Therefore, the level sensor 28d detects the amount of deposition along the axis Y directed downward from the mounting position in the vertical direction. When the carbonization furnace control unit 29 outputs a detection signal indicating that the deposition amount Ao, which is the deposition amount of the organic waste detected by the level sensor 28d, is 0 (zero), the deposition amount of the organic waste present in the gap 20a. Is determined to have decreased to a predetermined first deposition amount Ao1 or less.
 着火バーナ20cは、炭化炉20における有機廃棄物の燃焼を開始させる際に、有機廃棄物を着火させるために用いられる装置である。図3に示すように、着火バーナ20cは、間隙20aの下端側に設けられている。また、図3に示すように、着火バーナ20cは、軸線Xに対して対向する2箇所に配置されている。 The ignition burner 20c is a device used to ignite organic waste when starting combustion of organic waste in the carbonization furnace 20. As shown in FIG. 3, the ignition burner 20c is provided on the lower end side of the gap 20a. In addition, as shown in FIG. 3, the ignition burners 20 c are arranged at two locations facing the axis X.
 着火バーナ20cは、灯油等の着火用燃料を利用して火炎を発生させることにより間隙20aの下端側に堆積する有機廃棄物を燃焼させる。着火バーナ20cは、炭化炉制御部29からの制御指令によって炭化炉20における有機廃棄物の燃焼を開始させる際に火炎を発生させる。また、着火バーナ20cは、炭化炉制御部29からの制御指令によって所定のタイミングで火炎の発生を停止させる。 The ignition burner 20c burns organic waste accumulated on the lower end side of the gap 20a by generating a flame using ignition fuel such as kerosene. The ignition burner 20c generates a flame when starting combustion of organic waste in the carbonization furnace 20 in accordance with a control command from the carbonization furnace control unit 29. Further, the ignition burner 20c stops the generation of flame at a predetermined timing in accordance with a control command from the carbonization furnace control unit 29.
 炭化炉制御部29は、炭化炉20が備える各部から各部の状態を示す検出信号を受信するとともに検出信号に基づいて各部に制御信号を伝達することで各部を制御する装置である。また、炭化炉制御部29は、制御装置90へ炭化炉20の状態を示す信号を伝達するとともに制御装置90から伝達される制御信号に応答して炭化炉20を制御する装置である。 The carbonization furnace control unit 29 is a device that controls each part by receiving a detection signal indicating the state of each part from each part of the carbonization furnace 20 and transmitting the control signal to each part based on the detection signal. The carbonization furnace control unit 29 is a device that transmits a signal indicating the state of the carbonization furnace 20 to the control device 90 and controls the carbonization furnace 20 in response to a control signal transmitted from the control device 90.
 炭化炉制御部29は、温度センサ28a、28b、28cのそれぞれが検出する温度を示す温度検出信号と、レベルセンサ28dが検出する有機廃棄物の堆積量Aoを示す堆積量検出信号とを受信する。また、炭化炉制御部29は、1次燃焼ファン25aの送風量を制御する制御信号を1次空気供給部25へ伝達する。また、炭化炉制御部29は、2次燃焼ファン26aの送風量を制御する制御信号を2次空気供給部26へ伝達する。また、炭化炉制御部29は、着火バーナ20cに制御信号を伝達して有機廃棄物の燃焼を開始させる際に、火炎を発生させるとともに所定のタイミングで制御信号を伝達して火炎の発生を停止させる。また、炭化炉制御部29は、ターンテーブル24aの回転速度を制御する制御信号を駆動モータ24eへ伝達する。 The carbonization furnace control unit 29 receives a temperature detection signal indicating the temperature detected by each of the temperature sensors 28a, 28b, and 28c, and a deposition amount detection signal indicating the deposition amount Ao of the organic waste detected by the level sensor 28d. . Further, the carbonization furnace control unit 29 transmits a control signal for controlling the blown amount of the primary combustion fan 25 a to the primary air supply unit 25. Further, the carbonization furnace control unit 29 transmits a control signal for controlling the blown amount of the secondary combustion fan 26 a to the secondary air supply unit 26. In addition, when the carbonization furnace control unit 29 transmits a control signal to the ignition burner 20c to start combustion of organic waste, it generates a flame and transmits a control signal at a predetermined timing to stop the generation of the flame. Let Moreover, the carbonization furnace control unit 29 transmits a control signal for controlling the rotation speed of the turntable 24a to the drive motor 24e.
 次に、炭化炉制御部29による1次燃焼ファン25aの送風量の制御方法について説明する。 Next, a method for controlling the blowing amount of the primary combustion fan 25a by the carbonization furnace control unit 29 will be described.
 炭化炉制御部29は、温度センサ28bが検出する1次燃焼領域R2の雰囲気温度に基づいて1次燃焼ファン25aが送風する空気の送風量を制御する。1次燃焼ファン25aが送風する空気の送風量は空気供給口25cから炭化炉20の1次燃焼領域R2へ供給される1次燃焼用空気の空気量と一致している。そのため、炭化炉制御部29は、1次燃焼ファン25aが送風する空気の送風量を制御することにより、1次燃焼領域R2に送風される1次燃焼用空気の空気量を調整することができる。 The carbonization furnace control unit 29 controls the amount of air blown by the primary combustion fan 25a based on the atmospheric temperature of the primary combustion region R2 detected by the temperature sensor 28b. The amount of air blown by the primary combustion fan 25a coincides with the amount of primary combustion air supplied from the air supply port 25c to the primary combustion region R2 of the carbonization furnace 20. Therefore, the carbonization furnace control unit 29 can adjust the amount of primary combustion air blown to the primary combustion region R2 by controlling the amount of air blown by the primary combustion fan 25a. .
 炭化炉制御部29は、間隙20aに堆積した有機廃棄物を炭化させるのに適した燃焼状態が維持されるように温度センサ28bが検出する1次燃焼領域R2の雰囲気温度に基づいて1次燃焼ファン25aが送風する空気の送風量を制御する。具体的には、炭化炉制御部29は、1次燃焼領域R2の雰囲気温度が1000℃以上かつ1200℃以下の範囲に収まるように1次燃焼ファン25aが送風する空気の送風量を制御する。 The carbonization furnace control unit 29 performs primary combustion based on the atmospheric temperature in the primary combustion region R2 detected by the temperature sensor 28b so that the combustion state suitable for carbonizing the organic waste accumulated in the gap 20a is maintained. The amount of air blown by the fan 25a is controlled. Specifically, the carbonization furnace control unit 29 controls the amount of air blown by the primary combustion fan 25a so that the ambient temperature of the primary combustion region R2 is within the range of 1000 ° C. or more and 1200 ° C. or less.
 次に、炭化炉制御部29による2次燃焼ファン26aの送風量の制御方法について図8のフローチャートを用いて説明する。 Next, a method for controlling the blowing amount of the secondary combustion fan 26a by the carbonization furnace control unit 29 will be described with reference to the flowchart of FIG.
 炭化炉制御部29は、温度センサ28aが検出する燃焼ガス温度Tgに基づいて2次燃焼ファン26aが送風する空気の送風量を制御する。2次燃焼ファン26aが送風する空気の送風量は空気供給口26cから炭化炉20の2次燃焼領域R4へ供給される2次燃焼用空気の空気量と一致している。そのため、炭化炉制御部29は、2次燃焼ファン26aが送風する空気の送風量を制御することにより、2次燃燒領域R4に送風される2次燃焼用空気の空気量を調整することができる。 The carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a based on the combustion gas temperature Tg detected by the temperature sensor 28a. The amount of air blown by the secondary combustion fan 26a matches the amount of air for secondary combustion supplied to the secondary combustion region R4 of the carbonization furnace 20 from the air supply port 26c. Therefore, the carbonization furnace control unit 29 can adjust the air amount of the secondary combustion air blown to the secondary fuel burner region R4 by controlling the amount of air blown by the secondary combustion fan 26a. .
 炭化炉制御部29は、2次燃焼領域R4の燃焼ガスに含まれる可燃性ガスを燃焼させるのに適した燃焼状態が維持されるように温度センサ28aが検出する燃焼ガス温度Tgに基づいて2次燃焼ファン26aが送風する空気の送風量を制御する。具体的には、炭化炉制御部29は、図8に示すフローチャートに従って2次燃焼ファン26aが送風する空気の送風量を制御する。 Based on the combustion gas temperature Tg detected by the temperature sensor 28a so that the combustion state suitable for burning the combustible gas contained in the combustion gas in the secondary combustion region R4 is maintained. The amount of air blown by the next combustion fan 26a is controlled. Specifically, the carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a according to the flowchart shown in FIG.
 図8に示すフローチャートにおける各処理は、炭化炉制御部29が有する演算部(図示略)が記憶部(図示略)に記憶された制御プログラムを実行することにより行われる処理である。 Each process in the flowchart shown in FIG. 8 is a process performed when a calculation unit (not shown) included in the carbonization furnace control unit 29 executes a control program stored in a storage unit (not shown).
 図8のフローチャートに示す処理に先立って、炭化炉制御部29は、炭化炉20における有機廃棄物の燃焼を開始させる際に、着火バーナ20cによって火炎を発生させて間隙20aに堆積する有機廃棄物の燃焼を開始させる。炭化炉制御部29は、その後に2次燃焼ファン26aによる外部の空気(大気)の送風を開始させる。炭化炉制御部29は、温度センサ28aが検出する燃焼ガス温度Tgが第1燃焼ガス温度Tg1以上となるまでは一定の送風量となるように2次燃焼ファン26aを制御する。温度センサ28aが検出する燃焼ガス温度Tgが第1燃焼ガス温度Tg1以上となった後に、図8のフローチャートに示す各処理が開始される。 Prior to the processing shown in the flowchart of FIG. 8, when the carbonization furnace control unit 29 starts combustion of the organic waste in the carbonization furnace 20, the organic waste is generated by the ignition burner 20 c and accumulated in the gap 20 a. Start burning. Thereafter, the carbonization furnace control unit 29 starts blowing external air (atmosphere) by the secondary combustion fan 26a. The carbonization furnace control unit 29 controls the secondary combustion fan 26a so that the air flow rate is constant until the combustion gas temperature Tg detected by the temperature sensor 28a becomes equal to or higher than the first combustion gas temperature Tg1. After the combustion gas temperature Tg detected by the temperature sensor 28a becomes equal to or higher than the first combustion gas temperature Tg1, the processes shown in the flowchart of FIG. 8 are started.
 なお、燃焼ガス温度Tgが第1燃焼ガス温度Tg1以上となるまでに2次燃焼ファン26aが送風する2次燃焼用空気の送風量は、2次燃焼領域R4に存在すると想定される可燃性ガスを完全燃焼させるのに必要な量に一定の余剰量を加算した量となっている。 The amount of secondary combustion air blown by the secondary combustion fan 26a before the combustion gas temperature Tg becomes equal to or higher than the first combustion gas temperature Tg1 is assumed to exist in the secondary combustion region R4. It is an amount obtained by adding a certain surplus amount to the amount necessary to completely burn the fuel.
 ステップS800で炭化炉制御部29は、温度センサ28aから伝達される温度検出信号を受信することにより、燃焼ガス排出部27から排出される燃焼ガスの温度である燃焼ガス温度Tgを検出する。 In step S800, the carbonization furnace control unit 29 receives the temperature detection signal transmitted from the temperature sensor 28a, and thereby detects the combustion gas temperature Tg that is the temperature of the combustion gas discharged from the combustion gas discharge unit 27.
 ステップS801で炭化炉制御部29は、温度センサ28aが検出する燃焼ガス温度Tgが第1燃焼ガス温度Tg1より低いか否かを判定する。炭化炉制御部29は、燃焼ガス温度Tgが第1燃焼ガス温度Tg1よりも低いと判定した場合はステップS802に処理を進め、そうでなければステップS803に処理を進める。 In step S801, the carbonization furnace control unit 29 determines whether or not the combustion gas temperature Tg detected by the temperature sensor 28a is lower than the first combustion gas temperature Tg1. When determining that the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, the carbonization furnace control unit 29 advances the process to step S802, and otherwise advances the process to step S803.
 ステップS802で炭化炉制御部29は、2次燃焼ファン26aの送風量を減少させるための制御信号を2次燃焼ファン26aに伝達する。2次燃焼ファン26aは、炭化炉制御部29から制御信号を受信したのに応答して送風量を減少させる。 In step S802, the carbonization furnace control unit 29 transmits a control signal for reducing the blown amount of the secondary combustion fan 26a to the secondary combustion fan 26a. The secondary combustion fan 26a reduces the blown air volume in response to receiving the control signal from the carbonization furnace control unit 29.
 ここで、燃焼ガス温度Tgが第1燃焼ガス温度Tg1よりも低いと判定した場合に2次燃焼ファン26aの送風量を減少させているのは次の理由による。 Here, when it is determined that the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, the blowing amount of the secondary combustion fan 26a is decreased for the following reason.
 2次空気供給部26が2次燃焼領域R4へ供給する2次燃焼用空気の量は、2次燃焼領域R4に存在する燃焼ガスに含まれる可燃性ガスを完金燃焼させる量よりも一定量だけ多い量とするのが好ましい。すなわち、2次燃焼領域R4における空気過剰率を1.0より大きい一定値とするのが好ましい。 The amount of secondary combustion air supplied by the secondary air supply unit 26 to the secondary combustion region R4 is a constant amount than the amount of combustible gas contained in the combustion gas existing in the secondary combustion region R4. The amount is preferably as large as possible. That is, the excess air ratio in the secondary combustion region R4 is preferably set to a constant value larger than 1.0.
 しかしながら、2次燃焼領域R4に存在する可燃性ガスの量は、有機廃棄物の性状や1次燃焼領域R2における有機廃棄物の燃焼状態等の要因により変動するのが一般的である。そのため、2次空気供給部26が2次燃焼領域R4へ供給する2次燃焼用空気の量を一定としたままでは可燃性ガスを完全燃焼させるのに適した空気量を維持することができない。 However, the amount of combustible gas present in the secondary combustion region R4 generally varies depending on factors such as the properties of the organic waste and the combustion state of the organic waste in the primary combustion region R2. Therefore, if the amount of secondary combustion air supplied from the secondary air supply unit 26 to the secondary combustion region R4 is kept constant, an air amount suitable for complete combustion of the combustible gas cannot be maintained.
 そして、2次燃焼用空気の量が可燃性ガスを完全燃焼させる量に対して過剰に多くなる場合、可燃性ガスの燃焼に用いられない余剰空気が2次燃焼領域R4に多量に供給されることとなる。2次燃焼ファン26aが送風する空気(大気)の温度は2次燃焼領域R4の雰囲気温度よりも低いため、多量の余剰空気によって2次燃焼領域R4の雰囲気温度が低下してしまう。 When the amount of secondary combustion air is excessively large relative to the amount of complete combustion of the combustible gas, a large amount of surplus air that is not used for combusting the combustible gas is supplied to the secondary combustion region R4. It will be. Since the temperature of the air (atmosphere) blown by the secondary combustion fan 26a is lower than the atmospheric temperature in the secondary combustion region R4, the atmospheric temperature in the secondary combustion region R4 is lowered by a large amount of excess air.
 そうすると、2次燃焼領域R4における可燃性ガスの燃焼効率が悪化し、可燃性ガスを多く含んだままの燃焼ガスが燃焼ガス排出部27から排出されてしまうこととなる。可燃性ガスには、凝固してタールとなる成分である高分子炭化水素が含まれている。そのため、可燃性ガスに凝固してタールとなる成分が多量に含まれたままであると、炭化炉20およびその下流側に設置される機器に損傷を与える可能性がある。そのため、燃焼ガスに凝固してタールとなる成分が多量に含まれないようにし、炭化炉20およびその下流側に設置される機器に与える損傷を抑制するのが望ましい。 Then, the combustion efficiency of the combustible gas in the secondary combustion region R4 is deteriorated, and the combustion gas containing a large amount of the combustible gas is discharged from the combustion gas discharge unit 27. The combustible gas contains polymer hydrocarbons which are components that solidify to become tar. Therefore, if a large amount of components that solidify into combustible gas and become tar is contained, the carbonization furnace 20 and equipment installed downstream thereof may be damaged. For this reason, it is desirable that a large amount of components that solidify into the combustion gas and become tar are not included, and damage to the carbonization furnace 20 and equipment installed downstream thereof is desirably suppressed.
 そこで、炭化炉制御部29は、燃焼ガス温度Tgが第1燃焼ガス温度Tg1よりも低いと判定した場合に、2次燃焼領域R4に供給される余剰空気量を減少させるために、2次燃焼ファン26aの送風量を減少させている。 Therefore, when the carbonization furnace control unit 29 determines that the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, the secondary combustion is performed in order to reduce the amount of surplus air supplied to the secondary combustion region R4. The air volume of the fan 26a is reduced.
 ステップS803で炭化炉制御部29は、温度センサ28aが検出する燃焼ガス温度Tgが第2燃焼ガス温度Tg2より高いか否かを判定する。炭化炉制御部29は、検出した燃焼ガス温度Tgが第2燃焼ガス温度Tg2よりも高いと判定した場合はステップS804に処理を進め、そうでなければステップS801に処理を進める。 In step S803, the carbonization furnace control unit 29 determines whether or not the combustion gas temperature Tg detected by the temperature sensor 28a is higher than the second combustion gas temperature Tg2. When determining that the detected combustion gas temperature Tg is higher than the second combustion gas temperature Tg2, the carbonization furnace control unit 29 advances the process to step S804, and if not, advances the process to step S801.
 ステップS804で炭化炉制御部29は、2次燃焼ファン26aの送風量を増加させるための制御信号を2次燃焼ファン26aに伝達する。2次燃焼ファン26aは、炭化炉制御部29から制御信号を受信したのに応答して送風量を増加させる。 In step S804, the carbonization furnace control unit 29 transmits a control signal for increasing the blowing amount of the secondary combustion fan 26a to the secondary combustion fan 26a. The secondary combustion fan 26a increases the blown air volume in response to receiving the control signal from the carbonization furnace control unit 29.
 炭化炉制御部29は、図8に示すフローチャートの処理を終了すると、再び図8に示す処理の実行を開始する。 The carbonization furnace control unit 29 starts execution of the process shown in FIG. 8 again when the process of the flowchart shown in FIG. 8 is completed.
 ここで、燃焼ガス温度Tgが第2燃焼ガス温度Tg2よりも高いと判定した場合に2次燃焼ファン26aの送風量を増加させているのは次の理由による。 Here, when it is determined that the combustion gas temperature Tg is higher than the second combustion gas temperature Tg2, the blowing amount of the secondary combustion fan 26a is increased for the following reason.
 燃焼ガス温度Tgに上限を定めずに炭化炉20を運転させる場合、想定される最高の燃焼ガス温度を想定し、その燃売ガス温度でも十分に耐熱性が保たれるように炭化炉20および燃焼ガス流路200aを設計する必要がある。この場合、耐熱性の高い高価な部材を用いて炭化炉20等を製造する必要があり、炭化炉20等の製造コストが増加してしまう。炭化炉20等の製造コストを増加させないようにするためには、燃焼ガス温度Tgが予め定めた上限温度以下となるようにするのが好ましい。 When the carbonization furnace 20 is operated without setting an upper limit on the combustion gas temperature Tg, the assumed maximum combustion gas temperature is assumed, and the carbonization furnace 20 and the heat resistance are sufficiently maintained even at the fuel gas temperature. It is necessary to design the combustion gas flow path 200a. In this case, it is necessary to manufacture the carbonization furnace 20 or the like using an expensive member having high heat resistance, and the manufacturing cost of the carbonization furnace 20 or the like increases. In order not to increase the manufacturing cost of the carbonization furnace 20 or the like, it is preferable that the combustion gas temperature Tg be equal to or lower than a predetermined upper limit temperature.
 そこで、炭化炉制御部29は、燃焼ガス温度Tgが第2燃焼ガス温度Tg2よりも高いと判定した場合に2次燃焼ファン26aの送風量を増加させている。前述したように、2次燃焼ファン26aの送風量を増加させることにより多量の余剰空気が2次燃焼領域R4に供給されると、2次燃焼領域R4の雰囲気温度が低下することとなる。 Therefore, the carbonization furnace control unit 29 increases the blowing amount of the secondary combustion fan 26a when it is determined that the combustion gas temperature Tg is higher than the second combustion gas temperature Tg2. As described above, when a large amount of surplus air is supplied to the secondary combustion region R4 by increasing the amount of air blown from the secondary combustion fan 26a, the atmospheric temperature in the secondary combustion region R4 is lowered.
 以上のように、炭化炉制御部29は、温度センサ28aが検出する燃発ガス温度Tgに基づいて2次燃焼ファン26aが送風する空気の送風量を制御することにより、燃焼ガス温度Tgが第1燃焼ガス温度Tg1以上かつ第2燃焼ガス温度Tg2以下となるようにしている。 As described above, the carbonization furnace control unit 29 controls the amount of air blown by the secondary combustion fan 26a based on the combustion gas temperature Tg detected by the temperature sensor 28a, so that the combustion gas temperature Tg becomes the first value. The first combustion gas temperature Tg1 or higher and the second combustion gas temperature Tg2 or lower are set.
 ここで、第1燃焼ガス温度Tg1および第2燃焼ガス温度Tg2として、例えば、第1燃焼ガス温度Tg1を900℃とし、第2燃焼ガス温度Tg2を1300℃と設定することができる。 Here, as the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2, for example, the first combustion gas temperature Tg1 can be set to 900 ° C., and the second combustion gas temperature Tg2 can be set to 1300 ° C.
 第1燃焼ガス温度Tg1を900℃としているのは、2次燃焼領域R4の温度を900℃以上に維持することにより、燃焼ガスから高分子炭化水素の大部分を除去することができるからである。高分子炭化水素は、燃焼ガスに含まれる可燃性ガスのうち凝固してタールとなる成分である。そのため、燃焼ガスから高分子炭化水素の大部分を除去することにより、炭化炉20およびその下流側に設置される機器に与える損傷を抑制することができる。 The reason why the first combustion gas temperature Tg1 is set to 900 ° C. is that most of the polymer hydrocarbons can be removed from the combustion gas by maintaining the temperature of the secondary combustion region R4 at 900 ° C. or higher. . The polymer hydrocarbon is a component that solidifies into a tar in the combustible gas contained in the combustion gas. Therefore, by removing most of the polymer hydrocarbon from the combustion gas, damage to the carbonization furnace 20 and equipment installed downstream thereof can be suppressed.
 また、第1燃焼ガス温度Tg1および第2燃焼ガス温度Tg2として、例えば、第1燃焼ガス温度Tg1を1000℃とし、第2燃焼ガス温度Tg2を1200℃と設定するようにしてもよい。 Further, as the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2, for example, the first combustion gas temperature Tg1 may be set to 1000 ° C., and the second combustion gas temperature Tg2 may be set to 1200 ° C.
 また、例えば、第1燃焼ガス温度Tg1および第2燃焼ガス温度Tg2の双方を1100℃に設定するようにしてもよい。この場合、炭化炉制御部29は、燃焼ガス温度Tgが第1燃焼ガス温度Tg1より低い場合は送風量を減少させ、燃焼ガス温度Tgが第2燃焼ガス温度Tg2より高い場合は送風量を増加させるよう2次燃焼ファン26aを制御する。 Further, for example, both the first combustion gas temperature Tg1 and the second combustion gas temperature Tg2 may be set to 1100 ° C. In this case, the carbonization furnace control unit 29 decreases the blowing amount when the combustion gas temperature Tg is lower than the first combustion gas temperature Tg1, and increases the blowing amount when the combustion gas temperature Tg is higher than the second combustion gas temperature Tg2. The secondary combustion fan 26a is controlled so as to cause this to occur.
 次に、炭化炉制御部29によるターンテーブル24aの回転速度の制御方法について図9のフローチャートを用いて説明する。 Next, a method for controlling the rotational speed of the turntable 24a by the carbonization furnace control unit 29 will be described with reference to the flowchart of FIG.
 図9に示すフローチャートにおける各処理は、炭化炉制御部29が有する演算部(図示略)が記憶部(図示略)に記憶された制御プログラムを実行することにより行われる処理である。 Each process in the flowchart shown in FIG. 9 is a process performed when a calculation unit (not shown) included in the carbonization furnace control unit 29 executes a control program stored in a storage unit (not shown).
 図9に示すフローチャートにおいて、炭化炉制御部29は、炭化物排出部24が排出する炭化物の排出量を制御している。本実施形態において炭化物排出部24が排出する炭化物の排出量を制御しているのは、有機廃棄物投入部23から間隙20aへの有機廃棄物の投入が停止されるのに伴って炭化物排出部24から排出される炭化物の温度が上昇してしまうことを防ぐためである。 In the flowchart shown in FIG. 9, the carbonization furnace control unit 29 controls the discharge amount of the carbide discharged by the carbide discharge unit 24. In the present embodiment, the amount of carbide discharged by the carbide discharge unit 24 is controlled because the input of the organic waste from the organic waste input unit 23 to the gap 20a is stopped. This is to prevent the temperature of the carbide discharged from 24 from rising.
 間隙20aに堆積する有機廃棄物の量が徐々に少なくなると、炭化物を消火させる炭化物精錬・冷却領域R1が徐々に狭くなる。この場合、ターンテーブル24aの回転速度を一定のままで維持すると、炭化物が十分に冷却されない状態で間隙20aの下端から排出されてしまう。これは、1次燃焼領域R2で炭化されて高温となった炭化物が炭化物精錬・冷却領域R1で十分に冷却されないためである。 When the amount of organic waste deposited in the gap 20a gradually decreases, the carbide refining / cooling region R1 for extinguishing the carbide gradually decreases. In this case, if the rotation speed of the turntable 24a is maintained constant, the carbide is discharged from the lower end of the gap 20a in a state where the carbide is not sufficiently cooled. This is because the carbide that has been carbonized in the primary combustion region R2 to a high temperature is not sufficiently cooled in the carbide refining / cooling region R1.
 そこで、炭化炉制御部29は、炭化物排出部24が排出する炭化物の排出量を制御することにより、炭化物排出部24が排出する炭化物の温度を調整している。 Therefore, the carbonization furnace control unit 29 adjusts the temperature of the carbide discharged by the carbide discharge unit 24 by controlling the discharge amount of the carbide discharged by the carbide discharge unit 24.
 本実施形態において、炭化炉制御部29は、温度センサ28cとレベルセンサ28dの双方を用いて、炭化物排出部24が排出する炭化物の温度を調整している。前者は炭化物の温度を直接的に検出するセンサであり、後者は炭化物の堆積量から炭化物の温度が高温となる状態を間接的に検出するセンサである。 In the present embodiment, the carbonization furnace control unit 29 adjusts the temperature of the carbide discharged by the carbide discharge unit 24 using both the temperature sensor 28c and the level sensor 28d. The former is a sensor that directly detects the temperature of the carbide, and the latter is a sensor that indirectly detects a state in which the temperature of the carbide is high from the amount of deposited carbide.
 以下、図9のフローチャートの各ステップについて説明する。 Hereinafter, each step of the flowchart of FIG. 9 will be described.
 ステップS900で炭化炉制御部29は、温度センサ28cから伝達される温度検出信号を受信することにより、間隙20aの下端側に堆積する炭化物の温度である炭化物温度Tcを検出する。 In step S900, the carbonization furnace control unit 29 receives the temperature detection signal transmitted from the temperature sensor 28c, thereby detecting the carbide temperature Tc, which is the temperature of the carbide deposited on the lower end side of the gap 20a.
 ステップS901で炭化炉制御部29は、レベルセンサ28dから伝達される堆積量検出信号を受信することにより、間隙20aに堆積する有機廃棄物の堆積量である堆積量Aoを検出する。 In step S901, the carbonization furnace control unit 29 receives the accumulation amount detection signal transmitted from the level sensor 28d, and thereby detects the accumulation amount Ao that is the accumulation amount of the organic waste accumulated in the gap 20a.
 ステップS902で炭化炉制御部29は、温度センサ28cが検出する炭化物温度Tcが第1炭化物温度Tc1以上であるか否かを判定する。炭化炉制御部29は、検出した炭化物温度Tcが第1炭化物温度Tc1以上であると判定した場合はステップS903に処理を進め、そうでなければステップS904に処理を進める。 In step S902, the carbonization furnace control unit 29 determines whether the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1. When determining that the detected carbide temperature Tc is equal to or higher than the first carbide temperature Tc1, the carbonization furnace control unit 29 proceeds to step S903, and otherwise proceeds to step S904.
 ここで、第1炭化物温度Tc1として、例えば、250℃以上かつ300℃以下の範囲の任意の温度を設定することができる。 Here, as the first carbide temperature Tc1, for example, an arbitrary temperature in the range of 250 ° C. or higher and 300 ° C. or lower can be set.
 ステップS903で炭化炉制御部29は、ターンテーブル24aの回転速度を第2回転速度Rs2で回転させるよう駆動部24bを制御する。第2回転速度Rs2は後述する第1回転速度Rs1よりも低速度である。 In step S903, the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the second rotation speed Rs2. The second rotation speed Rs2 is lower than the first rotation speed Rs1 described later.
 ここで、第1回転速度Rs1は、炭化炉20が通常運転状態を維持するために必要な量の炭化物を炭化物排出部24から排出させるための速度である。ステップS903では、温度センサ28cが検出する炭化物温度Tcが第1炭化物温度Tc1以上となった場合に炭化物排出部24が排出する炭化物の温度が低下するように、ターンテーブル24aの回転遠度を第1回転速度Rs1よりも低い第2回転速度Rs2としている。ターンテーブル24aの回転速度を低下させることにより炭化物が炭化物精錬・冷却領域R1に滞留する時間が長くなり、それに伴って炭化物排出部24が排出する炭化物の温度が低下する。 Here, the first rotation speed Rs1 is a speed for discharging the amount of carbide necessary for the carbonization furnace 20 to maintain the normal operation state from the carbide discharge section 24. In step S903, the rotational distance of the turntable 24a is set so that the temperature of the carbide discharged by the carbide discharge unit 24 decreases when the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1. The second rotational speed Rs2 is lower than the first rotational speed Rs1. By reducing the rotation speed of the turntable 24a, the time for which the carbide stays in the carbide refining / cooling region R1 becomes longer, and accordingly, the temperature of the carbide discharged by the carbide discharge portion 24 decreases.
 ステップS904で炭化炉制御部29は、レベルセンサ28dが検出する堆積量Aoが第1堆積量Ao1以下であるか否かを判定する。炭化炉制御部29は、検出した堆積量Aoが第1堆積量Ao1以下であると判定した場合はステップS905に処理を進め、そうでなければステップS906に処理を進める。 In step S904, the carbonization furnace control unit 29 determines whether or not the deposition amount Ao detected by the level sensor 28d is equal to or less than the first deposition amount Ao1. When determining that the detected deposition amount Ao is equal to or less than the first deposition amount Ao1, the carbonization furnace control unit 29 advances the process to step S905, and otherwise advances the process to step S906.
 ステップS905で炭化炉制御部29は、ターンテーブル24aの回転速度を第2回転速度Rs2で回転させるよう駆動部24bを制御する。第2回転速度Rs2は後述する第1回転速度Rs1よりも低速度である。ステップS905では、レベルセンサ28dが検出する堆積量Aoが第1堆積量Ao1以下となった場合に炭化物排出部24が排出する炭化物の温度が低下するように、ターンテープル24aの回転速度を第1回転速度Rs1よりも低い第2回転速度Rs2としている。 In step S905, the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the second rotation speed Rs2. The second rotation speed Rs2 is lower than the first rotation speed Rs1 described later. In step S905, the rotation speed of the turntable 24a is set to the first speed so that the temperature of the carbide discharged by the carbide discharge unit 24 is lowered when the accumulation amount Ao detected by the level sensor 28d is equal to or less than the first accumulation amount Ao1. The second rotation speed Rs2 is lower than the rotation speed Rs1.
 ステップS906で炭化炉制御部29は、ターンテーブル24aの回転速度を第1回転速度Rs1で回転させるよう駆動部24bを制御する。前述したように、第1回転速度Rs1は、炭化炉20が通常運転状態を維持するために必要な量の炭化物を炭化物排出部24から排出させるための速度である。炭化炉制御部29は、ステップS906において、炭化物温度Tcが第1炭化物温度Tc1よりも低くかつ堆積量Aoが第1堆積量Ao1よりも多いことから、運転状態を維持するために必要な量の炭化物を炭化物排出部24から排出させるように駆動部24bを制御する。 In step S906, the carbonization furnace control unit 29 controls the drive unit 24b to rotate the rotation speed of the turntable 24a at the first rotation speed Rs1. As described above, the first rotation speed Rs1 is a speed for discharging the amount of carbide necessary for the carbonization furnace 20 to maintain the normal operation state from the carbide discharge section 24. Since the carbide temperature Tc is lower than the first carbide temperature Tc1 and the deposition amount Ao is larger than the first deposition amount Ao1 in step S906, the carbonization furnace control unit 29 has an amount necessary for maintaining the operation state. The drive unit 24b is controlled to discharge the carbide from the carbide discharge unit 24.
 炭化炉制御部29は、図9に示すフローチャートの処理を終了すると、再び図9に示す処理の実行を開始する。このようにして、炭化炉制御部29は、温度センサ28cが検出する炭化物温度Tcおよびレベルセンサ28dが検出する有機廃棄物の堆積量Aoに基づいて駆動部24bがターンテーブル24aを回転させる回転速度を制御する。 The carbonization furnace control unit 29 starts execution of the process shown in FIG. 9 again when the process of the flowchart shown in FIG. 9 is completed. In this way, the carbonization furnace control unit 29 is configured so that the drive unit 24b rotates the turntable 24a based on the carbide temperature Tc detected by the temperature sensor 28c and the organic waste accumulation amount Ao detected by the level sensor 28d. To control.
 以上の図9に示すフローチャートにおいては、温度センサ28cが検出する炭化物温度Tcが第1炭化物温度Tc1以上であるか否かに応じてターンテーブル24aの回転速度を2段階に切り替えるものであったが他の態様であってもよい。 In the flowchart shown in FIG. 9 described above, the rotation speed of the turntable 24a is switched between two stages depending on whether or not the carbide temperature Tc detected by the temperature sensor 28c is equal to or higher than the first carbide temperature Tc1. Other embodiments may be used.
 例えば、炭化物温度Tcに応じて2段階以上の複数段階でターンテーブル24cの回転速度を切り替えるようにしてもよい。また、例えば、ターンテーブル24aの回転速度を段階的に切り替えず、温度センサ28cが検出する炭化物温度Tcと反比例する速度となるようにターンテーブル24aの回転速度を制御するようにしてもよい。 For example, the rotation speed of the turntable 24c may be switched in two or more stages according to the carbide temperature Tc. Further, for example, the rotational speed of the turntable 24a may be controlled so as to be in inverse proportion to the carbide temperature Tc detected by the temperature sensor 28c without switching the rotational speed of the turntable 24a stepwise.
 また、以上の図9に示すフローチャートにおいては、レベルセンサ28dが検出する堆積量Aoが第1堆積量Ao1以上であるか否かに応じてターンテーブル24aの回転速度を2段階に切り替えるものであったが他の態様であってもよい。 Further, in the flowchart shown in FIG. 9, the rotation speed of the turntable 24a is switched in two steps depending on whether or not the accumulation amount Ao detected by the level sensor 28d is equal to or more than the first accumulation amount Ao1. However, other embodiments may be used.
 例えば、堆積量Aoに応じて2段階以上の複数段階でターンテーブル24aの回転速度を切り替えるようにしてもよい。また、例えば、ターンテーブル24aの回転速度を段階的に切り替えず、レベルセンサ28dが検出する堆積量Aoと比例する遠度となるようにターンテーブル24aの回転遠度を制御するようにしてもよい。 For example, the rotational speed of the turntable 24a may be switched in two or more stages according to the accumulation amount Ao. For example, the rotational speed of the turntable 24a may be controlled so that the rotational speed of the turntable 24a is proportional to the deposition amount Ao detected by the level sensor 28d without switching the rotational speed of the turntable 24a stepwise. .
 また、以上の図9に示すフローチャートにおいては、温度センサ28cが検出する炭化物温度Tcとレぺルセンサ28dが検出する堆積量Aoの双方を用いてターンテーブル24aの回転速度を制御するものであったが他の態様であってもよい。 In the flowchart shown in FIG. 9, the rotational speed of the turntable 24a is controlled using both the carbide temperature Tc detected by the temperature sensor 28c and the accumulation amount Ao detected by the repel sensor 28d. May be other embodiments.
 例えば、温度センサ28cが検出する炭化物温度Tcとレベルセンサ28dが検出する堆積量Aoの何れか一方を用いてターンテーブル24aの回転速度を制御するようにしてもよい。 For example, the rotational speed of the turntable 24a may be controlled using either the carbide temperature Tc detected by the temperature sensor 28c or the deposition amount Ao detected by the level sensor 28d.
 次に、図10から図12を用いて、本実施形態の熱分解炉30について説明する。 Next, the pyrolysis furnace 30 of the present embodiment will be described with reference to FIGS.
 図10は、図2に示す本発明の一実施形態に係る熱分解炉の縦断面図であり、図11は、図10に示す熱分解炉の反応管の断面図であり、(a)はD-D矢視断面図、(b)はE‐E矢視端面図である。図12は、図10に示す熱分解炉の要部拡大図である。 FIG. 10 is a longitudinal sectional view of the pyrolysis furnace according to one embodiment of the present invention shown in FIG. 2, FIG. 11 is a sectional view of the reaction tube of the pyrolysis furnace shown in FIG. DD is a sectional view taken along the arrow D, and (b) is an end view taken along the arrow EE. FIG. 12 is an enlarged view of a main part of the pyrolysis furnace shown in FIG.
 図10において、軸線Zは、熱分解炉30が設置される設置面(図示略)に対して直交する鉛直方向(重力方向)を示している。 10, the axis Z indicates the vertical direction (gravity direction) orthogonal to the installation surface (not shown) on which the pyrolysis furnace 30 is installed.
 図10に示すように、本実施形態の熱分解炉30は、本体部31と、反応管32と、反応管ヘッド33(供給部)と、水性ガス出口ノズル34(水性ガス出口部)と、燃焼ガス供給部35(加熱用ガス供給部)と、燃焼ガス排出部36(加熱用ガス排出部)と、グランドパッキン37(第1シール部)と、グランドパッキン38(第2シール部)と、グランドパッキン39(第3シール部)とを備える。 As shown in FIG. 10, the pyrolysis furnace 30 of the present embodiment includes a main body 31, a reaction tube 32, a reaction tube head 33 (supply portion), a water gas outlet nozzle 34 (water gas outlet portion), Combustion gas supply part 35 (heating gas supply part), combustion gas discharge part 36 (heating gas discharge part), gland packing 37 (first seal part), gland packing 38 (second seal part), And a gland packing 39 (third seal portion).
 本体部31は、軸線Zに沿って延びる略円筒状に形成される部材である。本体部31は、その内部に反応管32を収容する空間を形成している。 The main body 31 is a member formed in a substantially cylindrical shape extending along the axis Z. The main body 31 forms a space for accommodating the reaction tube 32 therein.
 本体部31は、熱分解炉30の外装を形成する金属製(例えば、鉄製)のハウジング31aと、ハウジング31aの内周面に貼り付けられる断熱材31bと、断熱材31bの内周面に貼り付けられる耐熱材31cとを有する。 The main body 31 is a metal (for example, iron) housing 31a that forms the exterior of the pyrolysis furnace 30, a heat insulating material 31b that is attached to the inner peripheral surface of the housing 31a, and an inner peripheral surface of the heat insulating material 31b. And a heat-resistant material 31c to be attached.
 略円筒状の本体部31の上面は平面視円環状の上板31dで構成されており、本体部31の底面は平面視円環状の底板31eで構成されている。 The upper surface of the substantially cylindrical main body 31 is composed of an upper plate 31d that is annular in plan view, and the bottom surface of the main body 31 is composed of a bottom plate 31e that is annular in plan view.
 また、本体部31の側面31fの上端には上端フランジ31g(第1フランジ部)が設けられており、本体部31の側面31fの下端には下端フランジ31i(第2フランジ部)が設けられている。 An upper end flange 31g (first flange portion) is provided at the upper end of the side surface 31f of the main body 31, and a lower end flange 31i (second flange portion) is provided at the lower end of the side surface 31f of the main body 31. Yes.
 上板31dと上端フランジ部31gとは、軸線Z回りの複数箇所で上板31dと上端フランジ部31gとの間に図示しないガスケット(第4シール部)を挟んだ状態で締結ボルト31h(締結部材)によって締結されている。 The upper plate 31d and the upper end flange portion 31g are a fastening bolt 31h (fastening member) in a state where a gasket (fourth seal portion) (not shown) is sandwiched between the upper plate 31d and the upper end flange portion 31g at a plurality of positions around the axis Z. ).
 同様に、底板31eと下端フランジ31iとは、軸線Z回りの複数箇所で底板31eと下端フランジ31iとの間に図示しないガスケット(第5シール部)を挟んだ状態で締結ボルト31j(締結部材)によって締結されている。 Similarly, the bottom plate 31e and the lower end flange 31i are a fastening bolt 31j (fastening member) in a state where a gasket (fifth seal portion) (not shown) is sandwiched between the bottom plate 31e and the lower end flange 31i at a plurality of locations around the axis Z. It is concluded by
 反応管32は、軸線Zに沿って延びる略円筒状に形成される機構である。反応管32は、本体部31の内周面との間に燃焼ガス(加熱用ガス)を流通させるための燃焼ガス流路30aを形成する外周面32dを有する。 The reaction tube 32 is a mechanism formed in a substantially cylindrical shape extending along the axis Z. The reaction tube 32 has an outer peripheral surface 32 d that forms a combustion gas flow path 30 a for allowing a combustion gas (heating gas) to flow between the inner peripheral surface of the main body 31.
 反応管32は、センターパイプ32a(管状部材)と、上端フランジ32b(第3フランジ部)と、複数の第1傾斜板32fと、複数の第2傾斜板32gと、複数の保持棒32h(保持部)とを有する。 The reaction tube 32 includes a center pipe 32a (tubular member), an upper end flange 32b (third flange portion), a plurality of first inclined plates 32f, a plurality of second inclined plates 32g, and a plurality of holding rods 32h (holding portions). ).
 図10に示すように、反応管32の上端フランジ32bおよび上端フランジ32b側のセンターパイプ32aの端部は、本体部31の上板31d(上面)から上方へ突出している。 As shown in FIG. 10, the upper end flange 32b of the reaction tube 32 and the end of the center pipe 32a on the upper end flange 32b side protrude upward from the upper plate 31d (upper surface) of the main body 31.
 また、反応管32の下端部32cは、本体部31の底板31e(底面)から下方へ突出している。 The lower end 32c of the reaction tube 32 protrudes downward from the bottom plate 31e (bottom surface) of the main body 31.
 センターパイプ32aは、軸線Zに沿って延びる円筒状に形成される部材である。センターパイプ32aの内部には、複数の第1傾斜板32fと複数の第2傾斜板32gと複数の保持棒32h(保持部)からなる熱分解促進機構が収容されている。 The center pipe 32a is a member formed in a cylindrical shape extending along the axis Z. Inside the center pipe 32a is housed a thermal decomposition promotion mechanism including a plurality of first inclined plates 32f, a plurality of second inclined plates 32g, and a plurality of holding rods 32h (holding portions).
 熱分解促進機構は、炭化物をセンターパイプ32aの上端側から下端側まで段階的に導いて炭化物を反応管32の内部に滞留させることにより、炭化物および過熱蒸気(ガス化剤)の熱分解反応を促進させる機構である。 The thermal decomposition promotion mechanism promotes the thermal decomposition reaction of the carbide and superheated steam (gasification agent) by guiding the carbide stepwise from the upper end side to the lower end side of the center pipe 32a and retaining the carbide in the reaction tube 32. It is a mechanism to make.
 図10および図11に示すように、複数の第1傾斜板32fおよび複数の第2傾斜板32gは、軸線Zに沿った複数箇所で4本の保持捧32hによって保持されている。また、第1傾斜板32fおよび第2傾斜板32gは、軸線Zに沿って交互に配置されている。 As shown in FIG. 10 and FIG. 11, the plurality of first inclined plates 32f and the plurality of second inclined plates 32g are held by four holding bars 32h at a plurality of locations along the axis Z. Further, the first inclined plates 32f and the second inclined plates 32g are alternately arranged along the axis Z.
 4本の保持棒32hの上端は、反応管ヘッド33の下端フランジ33aの下面に取り付けられている。反応管32の上端フランジ32bと反応管ヘッド33の下端フランジ33aとの締結を解除することにより、熱分解促進機構はセンターパイプ32aから上方に取り外す(着脱する)ことが可能となっている。 The upper ends of the four holding rods 32 h are attached to the lower surface of the lower end flange 33 a of the reaction tube head 33. By releasing the fastening between the upper end flange 32b of the reaction tube 32 and the lower end flange 33a of the reaction tube head 33, the thermal decomposition promoting mechanism can be removed (detached) upward from the center pipe 32a.
 図11の(a)に示す第1傾斜板32fは、炭化物を反応管32の内周面32eの一端部(図11の(a)中の左端部)から他端部(図11の(a)中の右端部)に設けられた第1開口部32iへ導くように傾斜した第1傾斜面を形成するように配置されている。 The first inclined plate 32f shown in FIG. 11 (a) is configured such that the carbide is changed from one end of the inner peripheral surface 32e of the reaction tube 32 (the left end in FIG. 11 (a)) to the other end ((a) of FIG. ) Are arranged so as to form a first inclined surface that is inclined so as to be led to the first opening 32i provided at the right end).
 また、図11の(b)に示す第2傾斜板32fは、炭化物を反応管32の内周面32eの他端部(図11の(b)中の右端部)から一端部(図11の(b)中の左端部)に設けられた第2開口部32jへ導くように傾斜した第2傾斜面を形成するように配置されている。 Further, the second inclined plate 32f shown in FIG. 11 (b) has one end portion (in FIG. 11) from the other end portion (the right end portion in FIG. 11 (b)) of the carbide to the carbide. The second inclined surface is formed so as to be inclined so as to be led to the second opening 32j provided at the left end portion in (b).
 図10に示すように、第1傾斜板32fが形成する第1傾斜面は第2開口部32jから落下した炭化物を下方へ導くように傾斜しており、第2傾斜板32gが形成する第2傾斜面は第1開口部32iから落下した炭化物を下方へ導くように傾斜している。 As shown in FIG. 10, the first inclined surface formed by the first inclined plate 32f is inclined so as to guide the carbide falling from the second opening 32j downward, and the second inclined plate 32g forms the second inclined surface. The inclined surface is inclined so as to guide the carbide falling from the first opening 32i downward.
 このように、熱分解促進機構は、軸線Zに沿って交互に配置される第1傾斜板32fと第2傾斜板32gとを用いて炭化物をセンターパイプ32aの上端側から下端側まで段階的に導くことができる。 In this manner, the thermal decomposition promoting mechanism guides the carbide stepwise from the upper end side to the lower end side of the center pipe 32a using the first inclined plates 32f and the second inclined plates 32g that are alternately arranged along the axis Z. be able to.
 第1傾斜面および第2傾斜面の軸線Zに直交する平面に対する傾斜角度は、炭化物の性状に応じて任意に設定することができるが、炭化物を確実に傾斜面に沿って移動させるために炭化物の安息角以上の角度とするのが好ましい。一方、傾斜角度を大きくしすぎると炭化物の反応管32内での滞留時間が短くなり、熱分解反応が十分に促進されない。 The inclination angle of the first inclined surface and the second inclined surface with respect to the plane orthogonal to the axis Z can be arbitrarily set according to the properties of the carbide, but in order to reliably move the carbide along the inclined surface, the carbide It is preferable that the angle be equal to or greater than the angle of repose. On the other hand, if the inclination angle is too large, the residence time of the carbide in the reaction tube 32 is shortened, and the thermal decomposition reaction is not sufficiently promoted.
 そのため、第1傾斜面および第2傾斜面の軸線Zに直交する平面に対する傾斜角度は、20°以上かつ60°以下の範囲で炭化物の安息角以上となるように定めるのが特に好ましい。 Therefore, it is particularly preferable that the inclination angle of the first inclined surface and the second inclined surface with respect to the plane orthogonal to the axis Z is determined to be equal to or greater than the repose angle of the carbide in the range of 20 ° to 60 °.
 反応管ヘッド33は、反応管32に取り付けられるとともに反応管32の内部へ炭化物と過熱蒸気(ガス化剤)とを供給して反応管32の内部で水性ガスを生成させるものである。 The reaction tube head 33 is attached to the reaction tube 32 and supplies carbide and superheated steam (gasification agent) to the inside of the reaction tube 32 to generate water gas inside the reaction tube 32.
 反応管ヘッド33は、反応管32と取り付けられる下端フランジ33a(第4フランジ)と、炭化物供給路101に取り付けられる上端フランジ33bと、蒸気過熱器81から過熱蒸気が供給される流路(図示略)に取り付けられる側方フランジ33cとを有する。 The reaction tube head 33 includes a lower end flange 33a (fourth flange) attached to the reaction tube 32, an upper end flange 33b attached to the carbide supply passage 101, and a flow path (not shown) through which superheated steam is supplied from the steam superheater 81. ) And a side flange 33c attached thereto.
 反応管ヘッド33の下端フランジ33aと反応管32の上端フランジ32bとは、軸線Z回りの複数箇所でこれらの間に図示しないガスケット(第6シール部)を挟んだ状態で締結ボルト33dによって締結されている。 The lower end flange 33a of the reaction tube head 33 and the upper end flange 32b of the reaction tube 32 are fastened by fastening bolts 33d with a gasket (sixth seal portion) (not shown) sandwiched between them at a plurality of locations around the axis Z. ing.
 水性ガス出口ノズル34は、反応管32の下端部32cに取り付けられる略筒状の部材である。水性ガス出口ノズル34は、反応管32の内部で炭化物の熱分解反応により生成された水性ガス、炭化物の未反応分、および灰分等の残渣を、水性ガス供給路102を介して減温器40へ導く。 The water gas outlet nozzle 34 is a substantially cylindrical member attached to the lower end portion 32 c of the reaction tube 32. The water gas outlet nozzle 34 is used to reduce the temperature of the water gas generated by the pyrolysis reaction of the carbide in the reaction tube 32, the unreacted part of the carbide, the ash, and the like through the water gas supply path 102. Lead to.
 燃焼ガス供給部35は、本体部31の上方に設けられるとともに燃焼ガス流路200aから導かれる燃焼ガスを燃焼ガス流路30aへ供給する開口部である。 The combustion gas supply unit 35 is an opening that is provided above the main body 31 and supplies the combustion gas guided from the combustion gas channel 200a to the combustion gas channel 30a.
 燃焼ガス排出部36は、本体部31の下方に設けられるとともに燃焼ガス流路30aから燃焼ガス流路200bへ燃焼ガスを排出する開口部である。 The combustion gas discharge unit 36 is an opening that is provided below the main body 31 and discharges the combustion gas from the combustion gas channel 30a to the combustion gas channel 200b.
 燃焼ガス供給部35から燃焼ガス流路30aへ供給される燃焼ガスは、センターパイプ32aの外周面32dを加熱しながらセンターパイプ32aの上端側から下端側に向けて流通し、燃焼ガス排出部36から排出される。 The combustion gas supplied from the combustion gas supply part 35 to the combustion gas flow path 30a flows from the upper end side to the lower end side of the center pipe 32a while heating the outer peripheral surface 32d of the center pipe 32a, and is discharged from the combustion gas discharge part 36. Is done.
 グランドパッキン37は、本体部31の上板31dから燃焼ガス流路30a内の燃焼ガスが外部へ流出することを遮断する部材である。グランドパッキン37は、本体部31の上板31dの下面と接するように設けられるとともに反応管32の外周面32dと接触する内周面37dを有する平面視円環状の部材である。 The gland packing 37 is a member that blocks the combustion gas in the combustion gas flow path 30a from flowing out from the upper plate 31d of the main body 31 to the outside. The gland packing 37 is an annular member that is provided in contact with the lower surface of the upper plate 31 d of the main body 31 and has an inner peripheral surface 37 d that contacts the outer peripheral surface 32 d of the reaction tube 32.
 グランドパッキン37は、セラミックボード37aとセラミックボード37bとセラミックファイバー37cとを互いに密着させた状態で構成されている。比較的容易に変形可能な織維状の素材であるセラミックファイバー37cを用いることにより、断熱材31bおよび耐熱材31cと接触する部分におけるシール性を高めている。 The gland packing 37 is configured in a state where the ceramic board 37a, the ceramic board 37b, and the ceramic fiber 37c are in close contact with each other. By using the ceramic fiber 37c, which is a woven material that can be deformed relatively easily, the sealing performance at the portion in contact with the heat insulating material 31b and the heat resistant material 31c is enhanced.
 グランドパッキン38は、本体部31の底面31eから燃焼ガス流路30a内の燃焼ガスが外部へ流出することを遮断する部材である。グランドパッキン38は、本体部31の底板31eの上面と接するように設けられるとともに反応管32の外周面32dと接触する内周面38dを有する平面視円環状の部材である。 The gland packing 38 is a member that blocks combustion gas in the combustion gas passage 30a from flowing out from the bottom surface 31e of the main body 31 to the outside. The gland packing 38 is an annular member that is provided in contact with the upper surface of the bottom plate 31 e of the main body 31 and has an inner peripheral surface 38 d that contacts the outer peripheral surface 32 d of the reaction tube 32.
 グランドパッキン38は、セラミックボード38aとセラミックボード38bとセラミックファイバー38cとを互いに密着させた状態で構成されている。比較的容易に変形可能な繊維状の素材であるセラミックファイバー38cを用いることにより、断熱材31bおよび耐熱材31cと接触する部分におけるシール性を高めている。 The gland packing 38 is configured in a state where the ceramic board 38a, the ceramic board 38b, and the ceramic fiber 38c are in close contact with each other. By using the ceramic fiber 38c, which is a fibrous material that can be deformed relatively easily, the sealing performance at the portion in contact with the heat insulating material 31b and the heat resistant material 31c is enhanced.
 グランドパッキン39は、図12に示すように、反応管32の下端部32cと水性ガス出口ノズル34との取付位置において、取付位置からの水性ガスの流出を遮断する部材である。グランドパッキン39は、反応管32の外周面32dおよび水性ガス出口ノズル34の外周面34aのそれぞれと接触する内周面39dを有する平面視円環形状の部材となっている。 As shown in FIG. 12, the gland packing 39 is a member that blocks outflow of water gas from the mounting position at the mounting position of the lower end portion 32 c of the reaction tube 32 and the water gas outlet nozzle 34. The gland packing 39 is an annular member in plan view having an inner peripheral surface 39d that contacts each of the outer peripheral surface 32d of the reaction tube 32 and the outer peripheral surface 34a of the water gas outlet nozzle 34.
 図12に示すようにグランドパッキン39は、円環状のパッキン部材39aと、円環状のパッキン部材39bと、パッキン押さえ部材39cとを有する。パッキン押さえ部材39cを底板31eに締結ボルトで締結することにより、パッキン部材39aおよびパッキン部材39bが軸線Z方向に収縮するとともに軸線Zに直交する径方向に膨張する。グランドパッキン39が径方向に膨張することにより、グランドパッキン39の内周面39dが反応管32の外周面32dおよび水性ガス出口ノズル34の外周面34aのそれぞれと接触してシール領域を形成する。 As shown in FIG. 12, the gland packing 39 includes an annular packing member 39a, an annular packing member 39b, and a packing pressing member 39c. By fastening the packing holding member 39c to the bottom plate 31e with fastening bolts, the packing member 39a and the packing member 39b contract in the axis Z direction and expand in the radial direction perpendicular to the axis Z. When the gland packing 39 expands in the radial direction, the inner circumferential surface 39d of the gland packing 39 comes into contact with the outer circumferential surface 32d of the reaction tube 32 and the outer circumferential surface 34a of the water gas outlet nozzle 34 to form a sealing region.
 次に、図13を用いて、本実施形態の熱分解炉30、減温器40、サイクロン50、蒸気発生器80、蒸気過熱器81、およびその周辺の機器について説明する。 Next, the pyrolysis furnace 30, the temperature reducer 40, the cyclone 50, the steam generator 80, the steam superheater 81, and peripheral devices according to this embodiment will be described with reference to FIG. 13.
 図13に示すように、炭化物供給路101は、スクリューコンベア101aと、クリンカ除去装置101bと、ベルトコンべア101cと、磁選機101dと、スクリューコンベア101eと、スクリューコンベア101fとを有する。 As shown in FIG. 13, the carbide supply path 101 includes a screw conveyor 101a, a clinker removing device 101b, a belt conveyor 101c, a magnetic separator 101d, a screw conveyor 101e, and a screw conveyor 101f.
 スクリューコンベア101aは、炭化炉20から排出された炭化物を運搬する装置である。スクリューコンベア101aは、直線状に延びる筒体の内部にスクリューを収容したものである。スクリューコンベア101aは、モータの駆動力によってスクリューを筒体の内部で回転させることにより、炭化物を筒体の延びる方向に沿って運搬する。 The screw conveyor 101a is a device that conveys the carbide discharged from the carbonization furnace 20. The screw conveyor 101a accommodates a screw in a linearly extending cylindrical body. The screw conveyor 101a conveys the carbide along the extending direction of the cylinder by rotating the screw inside the cylinder by the driving force of the motor.
 クリンカ除去装置101bは、スクリューコンベア101aから排出される炭化物から一定以上の粒径のクリンカをネット等により除去する装置である。クリンカが除去された炭化物はベルトコンべア101cによって磁選機101dまで運搬される。 The clinker removing device 101b is a device that removes a clinker having a particle size of a certain size or more from the carbide discharged from the screw conveyor 101a with a net or the like. The carbide from which the clinker has been removed is transported to the magnetic separator 101d by the belt conveyor 101c.
 磁選機101dは、炭化物に含まれる釘等の鉄製の層を磁石により除去する装置である鉄製の屑が除去された炭化物は、スクリューコンベア101eへ供給される。 The magnetic separator 101d is a device that removes an iron layer such as a nail contained in the carbide with a magnet, and the carbide from which the iron scrap has been removed is supplied to the screw conveyor 101e.
 スクリューコンベア101eおよびスクリューコンベア101fは、それぞれ炭化物を運搬する装置である。スクリューコンベア101fは、炭化物を熱分解炉30が有する窒素置換器30bへ供給する。なお、スクリューコンベア101eおよびスクリューコンベア101fの構造は、スクリューコンベア101aと同様であるので説明を省略する。 The screw conveyor 101e and the screw conveyor 101f are apparatuses for conveying carbides, respectively. The screw conveyor 101f supplies the carbide to the nitrogen replacement unit 30b included in the pyrolysis furnace 30. In addition, since the structure of the screw conveyor 101e and the screw conveyor 101f is the same as that of the screw conveyor 101a, description is abbreviate | omitted.
 スクリューコンベア101eとスクリューコンベア101fとで熱分解炉30の上方まで炭化物を運搬しているのは、炭化物を熱分解炉30の上方から供給し、炭化物の自重によって熱分解炉30の反応管32中に炭化物を通過させるためである。炭化物の自重によって熱分解炉30の反応管32を通過させることにより、反応管32の上端から下端までの全領域を、熱分解反応を促進する領域として利用することができる。また、炭化物の自重によって反応管32中に炭化物を通過させるため、炭化物を移動させるための特段の動力を必要としない。 The screw conveyor 101e and the screw conveyor 101f carry the carbide to the upper side of the pyrolysis furnace 30 because the carbide is supplied from above the pyrolysis furnace 30 and in the reaction tube 32 of the pyrolysis furnace 30 by its own weight. This is to allow carbide to pass through. By passing the reaction tube 32 of the pyrolysis furnace 30 through the dead weight of the carbide, the entire region from the upper end to the lower end of the reaction tube 32 can be used as a region for promoting the pyrolysis reaction. Further, since the carbide is passed through the reaction tube 32 by its own weight, no special power for moving the carbide is required.
 なお、スクリューコンベア101eとスクリューコンベア101fとの2段階で炭化物を運搬しているのは、各スクリューコンベアがスクリューを回転させるのに必要とする動力を少なくして駆動力の大きな高価なモータを必要としないようにするためである。 Carbide is transported in two stages, screw conveyor 101e and screw conveyor 101f, because each screw conveyor requires an expensive motor with a large driving force by reducing the power required to rotate the screw. This is to avoid the above.
 窒素置換器30bは、熱分解炉30を構成する機器であり、炭化物とともにスクリューコンベア101fから供給される空気に含まれる酸素を不活性な窒素ガスと置換するための装置である。 The nitrogen replacer 30b is a device that constitutes the pyrolysis furnace 30, and is a device for replacing oxygen contained in the air supplied from the screw conveyor 101f together with the carbide with inert nitrogen gas.
 窒素置換器30bは、スクリューコンベア101fと連結される上方と、反応管ヘッド33と連結される下方の、それぞれに配置され、制御装置90によって開閉状態が制御される電動式の制御弁(例えば、ボール弁)を有する。 The nitrogen purger 30b is disposed on each of an upper side connected to the screw conveyor 101f and a lower side connected to the reaction tube head 33, and an electric control valve (for example, an open / closed state is controlled by the control device 90) Ball valve).
 制御装置90は、上方の制御弁を開状態とし、下方の制御弁を閉状態とすることで、窒素置換器30bの内部に炭化物を供給する。制御装置90は、窒素置換器30bの内部に供給される炭化物が一定量に達した場合、スクリューコンベア101fによる炭化物の運搬を停止させるとともに、窒素置換器30bの上方の制御弁を閉状態とする。 The control device 90 supplies carbide to the inside of the nitrogen purger 30b by opening the upper control valve and closing the lower control valve. When the amount of carbide supplied to the inside of the nitrogen purger 30b reaches a certain amount, the control device 90 stops the transportation of the carbide by the screw conveyor 101f and closes the control valve above the nitrogen purger 30b. .
 窒素置換器30bには、空気分離装置等の窒素ガスを生成する装置から窒素ガスが常時供給されるようになっている。そのため、窒素置換器30bの上方および下方の制御弁を開状態として一定時間が経過すると、炭化物とともに窒素置換器30bの内部に供結された空気が外部に排出されて内部が窒素ガスで置換された状態となる。 Nitrogen gas is always supplied to the nitrogen replacer 30b from a device that generates nitrogen gas such as an air separation device. Therefore, when a certain amount of time has elapsed with the control valves above and below the nitrogen purger 30b being opened, the air supplied to the interior of the nitrogen purger 30b together with the carbide is discharged to the outside and the interior is replaced with nitrogen gas. It becomes a state.
 制御装置90は、窒素置換器30bの内部が窒素ガスで置換された状態となった後に、窒素置換器30bの下方の制御弁を開状態に切り替えて窒業置換器30bから反応管ヘッド33へ炭化物を供給する。 After the inside of the nitrogen purger 30b has been replaced with nitrogen gas, the control device 90 switches the control valve below the nitrogen purger 30b to the open state and transfers the nitrogen purger 30b to the reaction tube head 33. Supply carbide.
 制御装置90は、窒素置換器30bから反応管ヘッド33へ炭化物を供給した後、窒素置換器30bの下方の制御弁を閉状態とする。また、制御装置90は、その後に窒素置換器30bの上方の制御弁を開状態として窒素置換器30bの内部に新たな炭化物を供給する。 The controller 90 supplies carbide to the reaction tube head 33 from the nitrogen purger 30b, and then closes the control valve below the nitrogen purger 30b. Further, the control device 90 then opens the control valve above the nitrogen purger 30b and supplies new carbide into the nitrogen purger 30b.
 制御装置90は、以上のように窒素置換器30bの上方および下方の制御弁の開閉を制御することにより、反応管ヘッド33へ炭化物とともに供給される気体を窒素ガスとしている。この窒素ガスは、反応管32で生成される水性ガスと反応しない不活性ガスである。そのため、炭化物とともに酸素を含む空気が反応管32へ供給され、酸素と水性ガスとが反応して水性ガスの収率が低下してしまうことを抑制することができる。 As described above, the control device 90 controls the opening and closing of the control valves above and below the nitrogen purger 30b, so that the gas supplied to the reaction tube head 33 together with the carbide is nitrogen gas. This nitrogen gas is an inert gas that does not react with the water gas generated in the reaction tube 32. Therefore, it is possible to suppress the air containing oxygen together with the carbide from being supplied to the reaction tube 32 and causing the reaction between oxygen and the water gas to reduce the yield of the water gas.
 チャー回収装置41は、窒素置換器41aとチャー回収部41bとを有する。 The char collection device 41 includes a nitrogen purger 41a and a char collection unit 41b.
 窒素置換器41aは、炭化物の未反応分とともに減温器40から供給される水性ガスを不活性な窒素ガスと置換するための装置である。 The nitrogen replacer 41a is a device for replacing the water gas supplied from the temperature reducer 40 together with the unreacted portion of the carbide with inert nitrogen gas.
 チャー回収部41bは、炭化物の未反応分を回収して図示しない供給経路から窒素置換器30bへ供給する装置である。この詳細は、リターンシステムとして後述する。 The char recovery unit 41b is a device that recovers an unreacted portion of the carbide and supplies it to the nitrogen replacement device 30b from a supply path (not shown). Details of this will be described later as a return system.
 室素置換器41aは、減温器40と連結される上方と、チャー回収部41bと連結される下方の、それぞれに配置され、制御装置90によって開閉状態が制御される電動式の制御弁(例えば、ボール弁)を有する。 The chamber replacer 41a is disposed on the upper side connected to the temperature reducer 40 and the lower side connected to the char recovery unit 41b, and is an electric control valve (open / close state controlled by the control device 90). For example, a ball valve).
 制御装置90は、上方の制御弁を開状態とし、下方の制御弁を閉状態とすることで窒素置換器41aの内部に炭化物の未反応分を供給する。制御装置90は、窒素置換器41aの内部に供給される炭化物の未反応分が一定量に達した場合、窒素置換器41aの上方の制御弁を閉状態とする。 The control device 90 opens the upper control valve and closes the lower control valve to supply unreacted carbide to the inside of the nitrogen purger 41a. When the unreacted amount of the carbide supplied into the nitrogen purger 41a reaches a certain amount, the control device 90 closes the control valve above the nitrogen purger 41a.
 窒素置換器41aには、空気分離装置等の窒素ガスを生成する装置から窒素ガスが常時供給されるようになっている。そのため、窒素置換器41aの上方および下方の制御弁を閉状態として一定時間が経過すると、炭化物の未反応分とともに窒素置換器41aの内部に供給された水性ガスが外部に排出されて内部が窒素ガスで置換された状態となる。なお、窒素置換器41aから排出される水性ガスは、フレアースタック71に供給されるようになっている。 Nitrogen gas is always supplied to the nitrogen replacer 41a from a device that generates nitrogen gas such as an air separation device. Therefore, when the upper and lower control valves of the nitrogen purger 41a are closed and a certain time elapses, the water gas supplied into the nitrogen purger 41a together with the unreacted portion of the carbide is discharged to the outside, and the interior is filled with nitrogen. The gas is replaced. The water gas discharged from the nitrogen purger 41a is supplied to the flare stack 71.
 制御装置90は、窒素置換器41aの内部が窒素ガスで置換された状態となった後に、窒素置換器41aの下方の制御弁を開状態に切り替えて窒素置換器41aからチャー回収部41bへ炭化物の未反応分を供給する。 After the inside of the nitrogen purger 41a is replaced with nitrogen gas, the control device 90 switches the control valve below the nitrogen purger 41a to the open state, and the carbide is transferred from the nitrogen purger 41a to the char recovery unit 41b. The unreacted portion is supplied.
 制御装置90は、窒素置換器41aからチャー回収部41bへ炭化物の未反応分を供給した後、窒素置換器41aの下方の制御弁を閉状態とする。また、制御装置90は、その後に窒素置換器41aの上方の制御弁を開状態として窒素置換器41aの内部に新たな炭化物の未反応分を供給する。 The control device 90 closes the control valve below the nitrogen purger 41a after supplying the unreacted portion of the carbide from the nitrogen purger 41a to the char recovery unit 41b. In addition, the control device 90 then opens the control valve above the nitrogen purger 41a and supplies new unreacted carbon carbide into the nitrogen purger 41a.
 制御装置90は、以上のように窒素置換器41aの上方および下方の制御弁の開閉を制御することにより、チャー回収部41bへ炭化物の未反応分とともに供給される水性ガスがチャー回収部41bへ供給されるのを防止している。 As described above, the control device 90 controls the opening and closing of the control valves above and below the nitrogen purger 41a, so that the water gas supplied to the char recovery unit 41b together with the unreacted carbide is supplied to the char recovery unit 41b. It is prevented from being supplied.
 残渣回収装置51は、窒素置換器51aと残渣回収部51bとを有する。 The residue collection device 51 has a nitrogen purger 51a and a residue collection unit 51b.
 窒素置換器51aは、残渣とともにサイクロン50から供給される水性ガスを不活性な窒素ガスと置換するための装置である。 The nitrogen replacer 51a is a device for replacing the water gas supplied from the cyclone 50 together with the residue with inert nitrogen gas.
 残渣回収部51bは、窒素置換器51aから排出される残渣を回収する装置である。 The residue collection unit 51b is a device that collects the residue discharged from the nitrogen purger 51a.
 窒素置換器51aは、サイクロン50と連結される上方と、残渣回収部51bと連結される下方の、それぞれに配置され、制御装置90によって開閉状態が制御される電動式の制御弁(例えば、ボール弁)を有する。窒素置換器51aには、空気分離装置等の窒素ガスを生成する装置から窒素ガスが常時供給されるようになっている。 The nitrogen purger 51a is disposed on each of an upper side connected to the cyclone 50 and a lower side connected to the residue collecting unit 51b, and an electric control valve (for example, a ball valve) whose opening / closing state is controlled by the control device 90 is provided. Valve). Nitrogen gas is always supplied to the nitrogen replacer 51a from a device that generates nitrogen gas such as an air separation device.
 なお、制御装置90は、窒素置換器41aの制御弁を制御するのと同様に窒素置換器51aの制御弁を制御し、水性ガスが残渣回収部51bへ供給されるのを防止するものである。制御装置90が窒素置換器51aの制御弁を制御する方法は、制御装置90が窒素置換器41aの制御弁を制御する方法と同様であるので説明を省略する。 The control device 90 controls the control valve of the nitrogen purger 51a in the same manner as the control valve of the nitrogen purger 41a, and prevents water gas from being supplied to the residue recovery unit 51b. . The method by which the control device 90 controls the control valve of the nitrogen purger 51a is the same as the method by which the control device 90 controls the control valve of the nitrogen purger 41a, and the description thereof is omitted.
 蒸気発生器80は、蒸気発生部80aと蒸気循環タンク80bとを有する。 The steam generator 80 includes a steam generation unit 80a and a steam circulation tank 80b.
 蒸気発生部80aは、燃焼ガスと熱交換する水を内部に流通させる伝熱管(図示略)と伝熱管を覆うように形成される筒体に設けられるとともに水を内部に流通させるジャケット(図示略)とを有する。伝熱管とジャケットには、それぞれ蒸気循環タンク80bから水が供給されるようになっている。 The steam generating unit 80a is provided in a heat transfer tube (not shown) that circulates water that exchanges heat with combustion gas, and a jacket (not shown) that circulates water inside the tube formed to cover the heat transfer tube. ). Water is supplied to the heat transfer tube and the jacket from the steam circulation tank 80b.
 蒸気循環タンク80bは、水供給装置82から水が供給されるとともに水を蒸気発生部80aの伝熱管およびジャケットに供給する。ジャケットで熱された温水と、伝熱管が燃焼ガスによって加熱されて生成した蒸気とは、それぞれ蒸気循環タンク80bに回収される。 The steam circulation tank 80b is supplied with water from the water supply device 82 and supplies water to the heat transfer tube and the jacket of the steam generation unit 80a. The hot water heated by the jacket and the steam generated by heating the heat transfer tube with the combustion gas are respectively collected in the steam circulation tank 80b.
 蒸気循環タンク80bは、蒸気発生部80aの伝熱管から供給された蒸気(飽和蒸気)を、蒸気過熱器81へ供給する。 The steam circulation tank 80b supplies the steam (saturated steam) supplied from the heat transfer tube of the steam generation unit 80a to the steam superheater 81.
 以上説明したバイオマス発電システムの設備中、熱分解炉のさらに改善された新たなシステムを図14により説明する。 A new and improved system of the pyrolysis furnace in the biomass power generation system described above will be described with reference to FIG.
 図14は、本発明の他の実施形態に係る熱分解炉のリターンシステムの構成図である。このリターンシステムは、先の図1にて説明したチャー回収装置41に係わるもので、その一部を説明したが、このチャー回収装置と協働して構成される。また、図14に示す熱分解炉30は、先に図1、図2の熱分解炉30の一実施形態として示した図10の構成に基本的に同じものである。また、本実施形態の熱分解炉30の周辺設備として図13にて説明した各機器についても同様である。従って、図14において、先に説明の各図にて用いた符号と同じ符号のものは、同じ機能をもつものである。 FIG. 14 is a configuration diagram of a return system for a pyrolysis furnace according to another embodiment of the present invention. This return system is related to the char recovery device 41 described with reference to FIG. 1, and a part of the return system has been described, but is configured in cooperation with the char recovery device. Further, the pyrolysis furnace 30 shown in FIG. 14 is basically the same as the configuration of FIG. 10 shown as an embodiment of the pyrolysis furnace 30 of FIGS. The same applies to each device described in FIG. 13 as the peripheral equipment of the pyrolysis furnace 30 of the present embodiment. Accordingly, in FIG. 14, the same reference numerals as those used in the respective drawings described above have the same functions.
 本発明は、熱分解炉30から排出される炭化物の未反応分に着目したものであり、図14により以下詳細に説明する。 The present invention focuses on the unreacted portion of the carbide discharged from the pyrolysis furnace 30 and will be described in detail below with reference to FIG.
 図14において、熱分解炉30の下段に、減温器40、チャー回収装置41が配され、熱分解炉30の上段には炭化物の受入れホッパ30c、窒素置換器30bが配されている。チャー回収装置41は、窒素置換器41a、チャー回収部41b、炭化物搬送部41c、炭化物回収部41d等からなる。炭化物搬送部41cと受入れホッパ30c間には未反応物の搬送路30dが設けられている。この搬送部41c、搬送路30d等はコンベアあるいはリフター等により構成でき文字通り搬送路となる。 14, a temperature reducer 40 and a char recovery device 41 are arranged at the lower stage of the pyrolysis furnace 30, and a carbide receiving hopper 30 c and a nitrogen purger 30 b are arranged at the upper stage of the pyrolysis furnace 30. The char recovery device 41 includes a nitrogen purger 41a, a char recovery unit 41b, a carbide transport unit 41c, a carbide recovery unit 41d, and the like. An unreacted material conveyance path 30d is provided between the carbide conveyance unit 41c and the receiving hopper 30c. The transport unit 41c, the transport path 30d, and the like can be configured by a conveyor, a lifter, or the like and literally become a transport path.
 このチャー回収部41bから排出される炭化物を炭化物搬送部41cへ選択的に切りかえることにより、未反応分を搬送路30dを経て再度、熱分解炉30へ投入可能とする。この回収、搬送手段が熱分解炉のリターンシステムを構成する。 By selectively switching the carbide discharged from the char recovery unit 41b to the carbide transfer unit 41c, the unreacted portion can be input again into the pyrolysis furnace 30 through the transfer path 30d. This collection / conveyance means constitutes a return system for the pyrolysis furnace.
 このリターンシステムにより、炭化物の未反応分を繰り返し熱分解炉30に投入することができ、反応管33内における滞留時間を長くすることができる。 With this return system, the unreacted portion of the carbide can be repeatedly charged into the pyrolysis furnace 30, and the residence time in the reaction tube 33 can be lengthened.
 <実施例>
 発明者らが実施検証したところ、本発明の熱分解炉のリターンシステムを採用することにより、反応管内の滞留時間が数倍になることから、水性反応率が75%乃至80%から90%乃至95%に上昇改善される。これにより水性ガス量が1.19倍~1.27倍に多くなることがわかった。
<Example>
As a result of the implementation verification by the inventors, the residence time in the reaction tube is increased several times by adopting the return system of the pyrolysis furnace of the present invention, so that the aqueous reaction rate is 75% to 80% to 90% to Increased to 95%. As a result, it was found that the amount of water gas increased from 1.19 times to 1.27 times.
 (例)
 ・未反応分の50%~200%をリターンできるリターンシステムを設置
 ・熱分解炉の反応管内の滞留時間:1.5倍~3倍
 とすることで、水性反応率が75%~80%から90%~95%に上昇。
(Example)
・ Installed a return system that can return 50% to 200% of the unreacted part. ・ Residence time in the reaction tube of the pyrolysis furnace: 1.5 to 3 times, so that the aqueous reaction rate can be reduced from 75% to 80%. Increased to 90-95%.
 (1)電力送電の場合
 リターンシステムを採用しない場合を100KWとするとリターンシステムを設置した場合119KW~127KWと送電可能となる。
 原料(木屑)が2To/h(含水率15wt%)の場合、送電量1200KWHから1430KWH~1520KWHに増大する。
(1) In the case of power transmission If the return system is not adopted is assumed to be 100 KW, transmission of 119 KW to 127 KW is possible when the return system is installed.
When the raw material (wood waste) is 2 To / h (water content 15 wt%), the transmission amount increases from 1200 KWH to 1430 KWH to 1520 KWH.
 (2)水素供給の場合
 リターンシステムを採用しない場合を100Nm3/hとするとリターンシステムを設置した場合119Nm3/h~127Nm3/hの水素を供給可能となる。
 原料(木屑)が2To/h(含水率15wt%)の場合、水素量が660Nm3/hから790Nm3/h~838Nm3/h(99.999V%の水素)増大する。
(2) In the case of hydrogen supply If the return system is not adopted is 100 Nm3 / h, hydrogen of 119 Nm3 / h to 127 Nm3 / h can be supplied when the return system is installed.
When the raw material (wood waste) is 2 To / h (water content 15 wt%), the amount of hydrogen increases from 660 Nm3 / h to 790 Nm3 / h to 838 Nm3 / h (99.999 V% hydrogen).
 次に、図15を用いて、本実施形態の乾燥機10について説明する。 Next, the dryer 10 of this embodiment is demonstrated using FIG.
 図15は、図1に示す本発明の一実施形態に係る乾燥機の構成図である。 FIG. 15 is a block diagram of the dryer according to the embodiment of the present invention shown in FIG.
 乾燥機10は、ロータリキルンと呼ばれる方式の乾操機であり、燃焼ガス導入部10bと、回転体10cと、排出部10dとを有する。 The dryer 10 is a dry kiln of a type called a rotary kiln, and includes a combustion gas introduction unit 10b, a rotating body 10c, and a discharge unit 10d.
 燃焼ガス導入部10bは、燃発ガス流路200dから供給される燃焼ガスを乾燥機10の内部へ導入するとともに導入した燃焼ガスを回転体10cの内部へ導くものである。 The combustion gas introduction unit 10b introduces the combustion gas supplied from the combustion gas passage 200d into the dryer 10 and guides the introduced combustion gas into the rotating body 10c.
 回転体10cは、軸線Wに沿って延びる方向に形成される円筒状の部材であり駆動モータによって回転動力を与えられることにより軸線W回りに回転する。 The rotating body 10c is a cylindrical member formed in a direction extending along the axis W, and rotates around the axis W when it receives rotational power from a drive motor.
 また、回転体10cの内部には、原料供給路11aから有機廃棄物が供給される。回転体10cの内部に供給された有機廃棄物は、燃焼ガス導入部10bから導かれる燃焼ガスによって乾燥されながら排出部10dに向けて導かれる。 Further, organic waste is supplied into the rotating body 10c from the raw material supply path 11a. The organic waste supplied to the inside of the rotating body 10c is guided toward the discharge unit 10d while being dried by the combustion gas guided from the combustion gas introduction unit 10b.
 有機廃棄物は、回転体10cの回転によって撹拌されながら燃焼ガスによって直接的に加熱され、回転体10cの一端から他端まで燃焼ガスの流れによって搬送される。 The organic waste is directly heated by the combustion gas while being stirred by the rotation of the rotating body 10c, and is conveyed by the flow of the combustion gas from one end to the other end of the rotating body 10c.
 排出部10dは、回転体10cによって搬送されながら乾燥した有機廃棄物を回収して原料供給路10aへ供給する。原料供給路10aへ供給された有機廃棄物は、定量供給器12を介して炭化炉20へ供給される。 The discharge unit 10d collects the dried organic waste while being conveyed by the rotating body 10c, and supplies it to the raw material supply path 10a. The organic waste supplied to the raw material supply path 10 a is supplied to the carbonization furnace 20 via the fixed amount supply device 12.
 また、排出部10dは、燃焼ガス導入部10bから回転体10cの内部を通過して導かれた燃焼ガスを燃焼ガス流路200eへ供給する。燃焼ガス流路200eへ供給された燃焼ガスは、排ガス冷却洗浄装置13へ供給される。 Further, the discharge unit 10d supplies the combustion gas introduced from the combustion gas introduction unit 10b through the inside of the rotating body 10c to the combustion gas channel 200e. The combustion gas supplied to the combustion gas flow path 200e is supplied to the exhaust gas cooling and cleaning device 13.
 次に、本発明の他の実施形態に係るバイオマス発電システムを、図16にて説明する。図16に示すバイオマス発電システムは、図1に示した本発明による炭化炉、熱分解炉を介して水性ガスを使用したバイオマス発電システムと基本構成を同じくし、一部記載を省略している。 Next, a biomass power generation system according to another embodiment of the present invention will be described with reference to FIG. The biomass power generation system shown in FIG. 16 has the same basic configuration as the biomass power generation system using water gas via the carbonization furnace and the pyrolysis furnace according to the present invention shown in FIG. 1, and a part of the description is omitted.
 図16に示すバイオマス発電システムBにおいては、原料バイオマスの破砕機10a、乾燥機10、炭化炉20、熱分解炉30、減温器40、チャー回収装置41、水性ガスホルダ70、発電設備72へ水性ガスを供給して発電する第1電力供給に至る系列は、先に示す第1実施の形態のバイオマス発電システムAとほぼ同様である。本発明の第2実施の形態が前記第1実施の形態と異なるのは、炭化炉20で発生した燃焼ガスが熱分解炉30、蒸気発生器80、ボイラー76の順に供給されて各装置の熱源となり、ボイラー76にて飽和蒸気を回収しスチームタービン発電設備75へ供給して発電し第2電力供給へ送電するとともにボイラー76にて回収した蒸気の一部が蒸気発生器80へ供給されて過熱蒸気を発生し熱分解炉30へ供給される点にある。このように本来の熱分解ガスによるガスエンジン等による発電設備72へ供給して発電する第1電力供給とボイラー76から回収した飽和蒸気によるスチームタービン発電設備75へ供給して発電する第2電力供給との複合サイクル発電、所謂ハイブリッド発電とする点において熱効率に優れている。また、第2電力供給系列のプロセスボイラー76で発生した飽和蒸気がスチームタービン発電設備75へ供給され、スチームタービン発電設備75で使用した蒸気は復水器77にて軟水タンク78に戻りポンプ79によってプロセスボイラー76へ供給する循環ラインを形成することにより外部へ排出する排水をなるべく少なくして水の使用効率を高める点において優れている。 In the biomass power generation system B shown in FIG. 16, the raw material biomass crusher 10 a, the dryer 10, the carbonization furnace 20, the pyrolysis furnace 30, the temperature reducer 40, the char recovery device 41, the water gas holder 70, and the power generation facility 72 are aqueous. The series leading to the first power supply for generating power by supplying gas is substantially the same as the biomass power generation system A of the first embodiment described above. The second embodiment of the present invention differs from the first embodiment in that the combustion gas generated in the carbonization furnace 20 is supplied in the order of the pyrolysis furnace 30, the steam generator 80, and the boiler 76, and the heat source of each device. Then, saturated steam is recovered by the boiler 76, supplied to the steam turbine power generation facility 75, generated, and transmitted to the second power supply, and part of the steam recovered by the boiler 76 is supplied to the steam generator 80 and overheated. The steam is generated and supplied to the pyrolysis furnace 30. In this way, the first power supply for generating power by supplying to the power generation facility 72 by the gas engine or the like using the original pyrolysis gas, and the second power supply for generating power by supplying to the steam turbine power generation facility 75 by the saturated steam recovered from the boiler 76. It is excellent in thermal efficiency in terms of combined cycle power generation, so-called hybrid power generation. Further, the saturated steam generated in the process boiler 76 of the second power supply system is supplied to the steam turbine power generation facility 75, and the steam used in the steam turbine power generation facility 75 is returned to the soft water tank 78 by the condenser 77 and is pumped by the pump 79. By forming a circulation line to be supplied to the process boiler 76, the waste water discharged to the outside is reduced as much as possible, and the use efficiency of water is improved.
 本発明の実施の形態に係るバイオマス発電システムBは、炭化炉20で発生した燃焼排ガスを熱分解炉30に供給して、熱分解炉30で炭化物と過熱蒸気との熱分解反応を促進するための熱源として利用することにより、バイオマス発電システムB全体の熱効率を向上させる点において特徴を有する。ボイラー76で水蒸気を生成するのに必要な温度ないし熱エネルギーよりも、ボイラー76で生成された水蒸気を過熱蒸気発生器80で過熱するのに必要な温度ないし熱エネルギーの方が高いことから、本発明の実施の形態では、バイオマス発電システムB全体の熱効率を向上させるために、炭化炉20で発生した燃焼ガスを熱分解炉30、過熱蒸気発生器80、ボイラー76の順に供給し各装置の熱源となるため、バイオマス発電システムB全体の熱効率を向上させることができる。 The biomass power generation system B according to the embodiment of the present invention supplies combustion exhaust gas generated in the carbonization furnace 20 to the pyrolysis furnace 30, and promotes the pyrolysis reaction between the carbide and superheated steam in the pyrolysis furnace 30. By using it as a heat source, it has a feature in improving the thermal efficiency of the biomass power generation system B as a whole. Since the temperature or heat energy required to superheat the steam generated by the boiler 76 with the superheated steam generator 80 is higher than the temperature or heat energy required to generate the steam with the boiler 76, In the embodiment of the invention, in order to improve the thermal efficiency of the biomass power generation system B as a whole, the combustion gas generated in the carbonization furnace 20 is supplied in the order of the pyrolysis furnace 30, the superheated steam generator 80, and the boiler 76, and the heat source of each device. Therefore, the thermal efficiency of the biomass power generation system B as a whole can be improved.
 以上説明した各実施形態は、本発明の理解のために例示されたものであり、本発明は、これら実施形態に限定されず、請求の範囲の記載によって定義される。また、本発明の技術思想から離れるものでない限り、特許請求の範囲に記載の構成と均等であるものも本発明の保護の範囲に含まれるものである。 Each embodiment described above is illustrated for the understanding of the present invention, and the present invention is not limited to these embodiments, but is defined by the description of the scope of claims. Further, unless it departs from the technical idea of the present invention, those equivalent to the configurations described in the claims are also included in the scope of protection of the present invention.
 本発明に係るバイオマス発電システムは、炭化炉の温度制御により燃焼効率を上げ、熱分解炉の密閉化を可能としガス化効率を高めると共に、発生する水性ガスの組成比を一定に保つことにより、且つ窒素、硫黄及びタールなどの不純物は炭化炉と熱分解ガス化装置で除去されるので高い発電効率が得られ、もって安全で効率の良い電力を供給できる。バイオマスの有効利用により省エネルギーと自然環境保護及び経済的に極めて有用である。 The biomass power generation system according to the present invention increases the combustion efficiency by controlling the temperature of the carbonization furnace, enables the pyrolysis furnace to be sealed, increases the gasification efficiency, and keeps the composition ratio of the generated water gas constant. Impurities such as nitrogen, sulfur and tar are removed by the carbonization furnace and the pyrolysis gasifier, so that high power generation efficiency can be obtained, and safe and efficient power can be supplied. Effective use of biomass is extremely useful for energy saving, natural environment protection and economics.
 10…乾燥機
 13…排ガス冷却洗浄装置
 20…炭化炉
 20a…間隙
 21…本体部
 22…円筒部
 23…有機廃棄物投入部
 24…炭化物排出部
 25…1次空気供給部
 26…2次空気供給部
 27…燃焼ガス排出部
 28a、28b、28c…温度センサ(温度検出部)
 28d…レベルセンサ(堆積量検出部)
 29…炭化炉制御部(制御部)
 30…熱分解炉
 31…本体部
 32…反応管
 32f…第1傾斜板
 32g…第2傾斜板
 34…水性ガス出口ノズル
 35…燃焼ガス供給部
 36…燃焼ガス排出部
 40…減温器
 41…チャー回収装置
 50…サイクロン
 60…水性ガス冷却装置
 70…水性ガスホルダ
 72…発電設備
 80…蒸気発生器
 81…蒸気過熱器
 82…水供給装置
DESCRIPTION OF SYMBOLS 10 ... Dryer 13 ... Exhaust gas cooling washing device 20 ... Carbonization furnace 20a ... Gap 21 ... Main body part 22 ... Cylindrical part 23 ... Organic waste input part 24 ... Carbide discharge part 25 ... Primary air supply part 26 ... Secondary air supply Part 27 ... Combustion gas discharge part 28a, 28b, 28c ... Temperature sensor (temperature detection part)
28d ... Level sensor (deposition amount detector)
29 ... Carbonization furnace control section (control section)
DESCRIPTION OF SYMBOLS 30 ... Pyrolysis furnace 31 ... Main-body part 32 ... Reaction tube 32f ... 1st inclination board 32g ... 2nd inclination board 34 ... Water gas outlet nozzle 35 ... Combustion gas supply part 36 ... Combustion gas discharge part 40 ... Temperature reducer 41 ... Char recovery device 50 ... cyclone 60 ... water gas cooling device 70 ... water gas holder 72 ... power generation facility 80 ... steam generator 81 ... steam superheater 82 ... water supply device

Claims (5)

  1.  バイオマスを炭化する炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、
     前記炭化炉に供給する空気の供給量を制御する空気供給制御部を設け、
     前記空気の供給量により温度制御された燃焼ガスを熱分解炉に供給することを特徴とするバイオマス発電システム。
    Electric power generation using a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas from the carbide and combustion gas obtained in the carbonization furnace, and water gas obtained by cleaning the pyrolysis gas With the device,
    An air supply control unit that controls the amount of air supplied to the carbonization furnace is provided,
    A biomass power generation system, characterized in that combustion gas whose temperature is controlled by the supply amount of air is supplied to a pyrolysis furnace.
  2.  バイオマスを炭化する炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、
     前記熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、
     前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、反応管内部を炭化物とガス化剤の反応部とし、得られた分解ガスを用いて前記水性ガスを電源装置に供給することを特徴とするバイオマス発電システム。
    Electric power generation using a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas from the carbide and combustion gas obtained in the carbonization furnace, and water gas obtained by cleaning the pyrolysis gas With the device,
    The pyrolysis furnace includes a cylindrical main body, and a reaction tube that protrudes from the upper end of the main body inside the main body.
    Between the inner wall of the main body and the outer peripheral surface of the reaction tube is a heating flow path, the reaction tube is a reaction part of carbide and gasifying agent, and the water gas is supplied to the power supply device using the obtained decomposition gas A biomass power generation system characterized by
  3.  バイオマスを炭化する炭化炉と、前記炭化炉で得られた炭化物および燃焼ガスにより熱分解ガスを発生させる熱分解炉と、前記熱分解ガスを洗浄し得られた水性ガスを用いて電力を得る発電装置とを備え、
     前記炭化炉に供給する空気の供給量を制御する空気供給制御部を設け、
     前記熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、
     前記炭化炉において、前記空気の供給量により温度制御された燃焼ガスを熱分解炉に供給し、
     前記熱分解炉において、前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、前記炭化炉からの燃焼排ガスを入力するとともに、前記炭化炉からの炭化物を反応管内部に入力しガス化剤との反応により、得られた分解ガスを用いて前記水性ガスを電源装置に供給することを特徴とするバイオマス発電システム。
    Electric power generation using a carbonization furnace that carbonizes biomass, a pyrolysis furnace that generates pyrolysis gas from the carbide and combustion gas obtained in the carbonization furnace, and water gas obtained by cleaning the pyrolysis gas With the device,
    An air supply control unit that controls the amount of air supplied to the carbonization furnace is provided,
    The pyrolysis furnace includes a cylindrical main body, and a reaction tube that protrudes from the upper end of the main body inside the main body.
    In the carbonization furnace, the combustion gas whose temperature is controlled by the supply amount of the air is supplied to the pyrolysis furnace,
    In the pyrolysis furnace, a heating flow path is provided between the inner wall of the main body and the outer peripheral surface of the reaction tube, and combustion exhaust gas from the carbonization furnace is input and carbide from the carbonization furnace is input into the reaction tube. A biomass power generation system, characterized in that the water gas is supplied to a power supply device using the cracked gas obtained by reaction with a gasifying agent.
  4.  前記熱分解炉に、前記熱分解炉にて炭化物とガス化剤との反応後の未反応物を回収する回収手段と、前記回収手段から未反応物を前記熱分解炉の反応管上部へ搬送する搬送手段を備え、
     前記未反応物を前記熱分解炉へ再度投入可能とすることを特徴とする請求項1~3のいずれか1記載のバイオマス発電システム。
    Recovery means for recovering unreacted material after the reaction between the carbide and the gasifying agent in the pyrolysis furnace, and transporting the unreacted material from the recovery means to the upper part of the reaction tube of the pyrolysis furnace. A conveying means for
    The biomass power generation system according to any one of claims 1 to 3, wherein the unreacted material can be input again into the pyrolysis furnace.
  5.  熱分解炉は、筒状の本体部と、前記本体部の内部に前記本体部の上端よりも突出した反応管を備え、前記本体部の内壁と前記反応管の外周面間を加熱用流路とし、反応管内部を炭化物とガス化剤の反応部とし、得られた分解ガスを用いて水性ガスを得るシステムであって、
     前記熱分解炉にて炭化物とガス化剤との反応後の未反応物を回収する回収手段と、前記回収手段から未反応物を前記熱分解炉の反応管上部へ搬送する搬送手段を備え、
     前記未反応物を前記熱分解炉へ再度投入可能とすることを特徴とする熱分解炉のリターンシステム。
    The pyrolysis furnace includes a cylindrical main body portion and a reaction tube protruding from the upper end of the main body portion inside the main body portion, and a heating flow path between the inner wall of the main body portion and the outer peripheral surface of the reaction tube. And the reaction tube interior is a reaction part of carbide and gasifying agent, and a water gas is obtained using the obtained cracked gas,
    A recovery means for recovering the unreacted material after the reaction between the carbide and the gasifying agent in the pyrolysis furnace, and a transport means for transporting the unreacted material from the recovery means to the upper part of the reaction tube of the pyrolysis furnace,
    A return system for a pyrolysis furnace, wherein the unreacted material can be charged again into the pyrolysis furnace.
PCT/JP2017/003223 2016-01-29 2017-01-30 Biomass power generation system, and return system for thermal decomposition furnace WO2017131235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016732 2016-01-29
JP2016016732A JP6170579B1 (en) 2016-01-29 2016-01-29 Biomass power generation system and pyrolysis furnace return system

Publications (1)

Publication Number Publication Date
WO2017131235A1 true WO2017131235A1 (en) 2017-08-03

Family

ID=59384333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003223 WO2017131235A1 (en) 2016-01-29 2017-01-30 Biomass power generation system, and return system for thermal decomposition furnace

Country Status (2)

Country Link
JP (1) JP6170579B1 (en)
WO (1) WO2017131235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034457A (en) * 2017-12-25 2018-05-15 北京雷浩环保能源技术有限公司 A kind of flammable solid discarded object, biomass and coal high temperature are total to gasification process and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888582B1 (en) * 2017-11-24 2018-09-20 주식회사 유기산업 Manufacturing assembly and manufacturing method of biochar using biomass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235133A (en) * 2000-02-23 2001-08-31 Nippon Steel Corp Operating method of vertical self-burning type carbonizing furnace for organic waste
JP2003213277A (en) * 2002-01-24 2003-07-30 Mitsubishi Heavy Ind Ltd Thermal decomposition and gasification system for waste
JP2004347274A (en) * 2003-05-26 2004-12-09 Mitsui Eng & Shipbuild Co Ltd Waste treatment device
JP2009270050A (en) * 2008-05-09 2009-11-19 Azuma Sansho:Kk Carbonization furnace
JP2013185093A (en) * 2012-03-08 2013-09-19 Mitsuyuki Iijima Pyrolytic gasifying apparatus
JP2015165019A (en) * 2014-02-10 2015-09-17 株式会社高橋製作所 biomass power generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589077B2 (en) * 1974-09-24 1983-02-18 トピ−コウギヨウ カブシキガイシヤ panel no seizouhouho
BR7702321A (en) * 1977-04-13 1978-10-24 Tde Tenenge Desenvolvimento En CONTINUOUS PROCESSES AND EQUIPMENT FOR TREATING SOLID SUBSTANCES IN GENERAL, WITH SPECIFIC APPLICATIONS FOR COAL AND SHALES GASIFICATION AND DIRECT REDUCTION OF IRON ORE
JP4886243B2 (en) * 2005-08-18 2012-02-29 株式会社東芝 Waste treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235133A (en) * 2000-02-23 2001-08-31 Nippon Steel Corp Operating method of vertical self-burning type carbonizing furnace for organic waste
JP2003213277A (en) * 2002-01-24 2003-07-30 Mitsubishi Heavy Ind Ltd Thermal decomposition and gasification system for waste
JP2004347274A (en) * 2003-05-26 2004-12-09 Mitsui Eng & Shipbuild Co Ltd Waste treatment device
JP2009270050A (en) * 2008-05-09 2009-11-19 Azuma Sansho:Kk Carbonization furnace
JP2013185093A (en) * 2012-03-08 2013-09-19 Mitsuyuki Iijima Pyrolytic gasifying apparatus
JP2015165019A (en) * 2014-02-10 2015-09-17 株式会社高橋製作所 biomass power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034457A (en) * 2017-12-25 2018-05-15 北京雷浩环保能源技术有限公司 A kind of flammable solid discarded object, biomass and coal high temperature are total to gasification process and device

Also Published As

Publication number Publication date
JP6170579B1 (en) 2017-07-26
JP2017132969A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6824745B2 (en) Carbonization furnace and pyrolysis furnace, as well as water gas generation system, hydrogen gas generation system, and power generation system
JP5917735B2 (en) Biomass power generation system
JP6759492B2 (en) Carbide production equipment, carbide production methods, and carbide production systems
JP2012531296A (en) Waste management system
JP2016121257A (en) Water gas generation system, and combustion gas supply method for water gas generation system
JP2010077260A (en) Combustible gas-forming apparatus for gasifying waste and process for producing combustible gas
JP6886242B2 (en) Hydrogen supply system
WO2017131235A1 (en) Biomass power generation system, and return system for thermal decomposition furnace
JP6642924B2 (en) Hydrogen station system
JP2009174392A (en) Biomass gasified gas power generation system
JP2016121256A (en) Pyrolysis furnace and water gas generation system
JP2016121255A (en) Carbonization furnace and water gas generating system
JP2016121252A (en) Carbonization furnace, aqueous gas generation system, and control method of carbonization furnace
JP2011099066A (en) Circulating fluidized bed type gasification method and apparatus therefor
JP6388555B2 (en) Biomass gasification system and boiler equipment using the same
JP2014125508A (en) Fuel gas generator
JP2016121254A (en) Carbonization furnace, water gas generating system, and control method of carbonization furnace
JP2016121253A (en) Carbonization furnace, water gas generating system, and control method of carbonization furnace
JP5605576B2 (en) Waste gasification and melting equipment
KR101898255B1 (en) A thermal decomposition unit with a fixed solids retention and combustion gas induction chiller
JP2011089672A (en) Waste melting treatment method
JP6345139B2 (en) Gas engine system
JP6041451B2 (en) Gasification method and gasification apparatus for solid organic raw material
JP6556639B2 (en) Gasification system and operation method of gasification system
JP2001280615A (en) Melting furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744464

Country of ref document: EP

Kind code of ref document: A1