JP2013185093A - Pyrolytic gasifying apparatus - Google Patents

Pyrolytic gasifying apparatus Download PDF

Info

Publication number
JP2013185093A
JP2013185093A JP2012051986A JP2012051986A JP2013185093A JP 2013185093 A JP2013185093 A JP 2013185093A JP 2012051986 A JP2012051986 A JP 2012051986A JP 2012051986 A JP2012051986 A JP 2012051986A JP 2013185093 A JP2013185093 A JP 2013185093A
Authority
JP
Japan
Prior art keywords
inner cylinder
pyrolysis
heat storage
carbide
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012051986A
Other languages
Japanese (ja)
Other versions
JP5342664B2 (en
Inventor
Mitsuyuki Iijima
光幸 飯嶋
Kiminori Takahashi
君典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012051986A priority Critical patent/JP5342664B2/en
Publication of JP2013185093A publication Critical patent/JP2013185093A/en
Application granted granted Critical
Publication of JP5342664B2 publication Critical patent/JP5342664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pyrolytic gasifying apparatus capable of producing a thermally decomposed gas having an uniform composition ratio by uniformalizing a heating temperature distribution.SOLUTION: In a pyrolytic gasifying apparatus for producing thermally decomposed gas by heating a carbonized material obtained by carbonizing organic waste in a carbonization furnace and a gasifying agent in a pyrolytic gasifying furnace 2, the pyrolytic gasifying furnace 2 is provided with: a cylindrical outer cylinder 4 which is provided with opening parts in the upper and lower end part and in which the opening part of the lower end part is connected to the carbonization furnace; an inner cylinder 12 which is provided with an opening part opened in the lower end part and provided with a thermally decomposed gas discharge path 17 in the upper end to be connected to a carbonized material supply means 18 for supplying the carbonized material and an opening part connected to a gasifying agent supplying means for supplying the gasifying agent and which is formed in a cylinder form to be provided inside the outer cylinder; a turntable 13 freely rotatably arranged with a gap from the inner cylinder lower end part in the under side of the inner cylinder 12; and a heat storing projection 14 provided in the rotary center part of the turntable 13 and arranged inside the inner cylinder with a gap at an interval equal substantially from the circumferential wall of the inner cylinder 12.

Description

本発明は、バイオマス(廃木材等有機廃棄物)を熱分解・ガス化により化学的に変化させて熱分解ガスを製造する熱分解ガス化装置に関する。   The present invention relates to a pyrolysis gasification apparatus that produces pyrolysis gas by chemically changing biomass (organic waste such as waste wood) by pyrolysis and gasification.

近年、バイオマス特にリグニンを多く含む木質系材料の熱分解ガス化は新規なエネルギー資源の供給源として大きな可能性を有しており有効利用する試みが行われている。木質系材料を熱分解ガス化するには、原料となる木質バイオマスを温度200〜600℃で低酸素状態において、ガス(CO、H、CH、CO、HO)、炭化物、炭化水素に分解し、熱分解生成物を酸素又は空気を制限下供給して燃焼し、次に前記炭化物を高温加熱してガス化して水性ガスを生成する。 In recent years, pyrolysis gasification of woody materials containing a large amount of biomass, particularly lignin, has great potential as a source of new energy resources, and attempts have been made to effectively use it. In order to pyrolyze and convert wood-based materials, the raw material wood biomass is gas (CO, H 2 , CH 4 , CO 2 , H 2 O), carbide, carbonization in a low oxygen state at a temperature of 200 to 600 ° C. It decomposes into hydrogen, the pyrolysis product is supplied with oxygen or air under restriction and burned, and then the carbide is heated to a high temperature and gasified to produce a water gas.

1990年代に入って化石燃料の消費が地球温暖化を引き起こすことが明らかとなったことに加え、2011年3月11日の東日本大震災により化石燃料に代わる代替えエネルギー資源としてバイオマスや廃棄物から熱化学的手法によってエネルギーを回収する方法が注目されボイラー設備を用いたスチームタービン発電の他に生成ガスを燃料ガスとして発電効率の高いガスエンジンで発電し20%を超える発電効率が得られている。また、ガス化で得られる合成ガスはメタルールや合成軽油、混合アルコールといった液体燃料の原料ともなることから石油代替燃化技術の一つとしてガス化技術が注目されている。   In addition to the fact that the consumption of fossil fuels caused global warming in the 1990s, the Great East Japan Earthquake on March 11, 2011, as an alternative energy resource to replace fossil fuels from biomass and waste In addition to steam turbine power generation using a boiler facility, a method of recovering energy by a conventional technique has been attracting attention, and power generation efficiency exceeding 20% is obtained by generating power with a gas engine having high power generation efficiency using generated gas as fuel gas. In addition, since the synthesis gas obtained by gasification also becomes a raw material for liquid fuels such as metal rule, synthetic light oil, and mixed alcohol, gasification technology is attracting attention as one of petroleum alternative combustion technologies.

前記の廃木材等バイオマスから炭化物を熱分解して熱分解ガスを発生させる装置としては例えば、特許文献1に記載の外熱式分解ガス化炉がある。特許文献1記載の外熱式分解ガス化炉は水平方向に配置された内筒となるガス化炉本体の外側に水蒸気加熱器の排ガスを通過させる外筒部が覆う二重構造となっており内筒内部に軸方向にスクリューコンベアが設置されている。   An apparatus for pyrolyzing carbide from biomass such as waste wood to generate pyrolysis gas is, for example, an externally heated cracking gasification furnace described in Patent Document 1. The externally heated cracking gasification furnace described in Patent Document 1 has a double structure in which an outer cylinder part that allows the exhaust gas of the steam heater to pass through is disposed outside the gasification furnace main body that is an inner cylinder arranged in the horizontal direction. A screw conveyor is installed in the axial direction inside the inner cylinder.

特開2004−35837号公報JP 2004-35837 A

しかし、前記の従来の固定床炉等では、ガス化炉本体を外側から800℃以上の高温に加熱しても内筒容積が大きなガス化炉では内部に投入された炭化物を均一に且つ速やかに高温に加熱することは困難であり、加熱温度分布にムラが生じる等不安定要素が高く、発生する熱分解ガスの組成比にブレが生じる可能性がある。そこで、内筒内部の炭化物を均一に且つ速やかに高温に加熱して組成比が均一な熱分解ガスが得られる熱分解ガス化技術が要望されている。   However, in the conventional fixed-bed furnace or the like, even if the gasification furnace main body is heated from the outside to a high temperature of 800 ° C. or higher, in the gasification furnace having a large inner cylinder volume, the carbide introduced into the inside is uniformly and quickly. It is difficult to heat to a high temperature, and unstable elements such as unevenness in the heating temperature distribution are high, and the composition ratio of the generated pyrolysis gas may be blurred. Therefore, there is a demand for a pyrolysis gasification technique in which the carbide inside the inner cylinder is uniformly and quickly heated to a high temperature to obtain a pyrolysis gas having a uniform composition ratio.

本願発明は、前記の問題点を解消するためになされたものであり、炉のつまりやホッパーにおけるラットホール、炭化物の加熱温度分布ムラ等の炉内の不安定要素が無く、また、水性ガス化が速い上に変換効率(冷ガス効率)が高く、且つ不純物を含まないクリーンな水性ガスが得られる。しかも、加熱温度分布が均一になるように高温加熱することによって、組成比が均一な熱分解ガスを生成することができる熱分解ガス化装置を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and there are no unstable elements in the furnace such as the furnace clogging, ratholes in the hopper, uneven heating temperature distribution of carbides, and water gasification. In addition, the conversion efficiency (cold gas efficiency) is high, and a clean water gas containing no impurities can be obtained. And it aims at providing the thermal decomposition gasification apparatus which can produce | generate the thermal decomposition gas with a uniform composition ratio by heating at high temperature so that heating temperature distribution may become uniform.

前記の課題を解決するために、本発明は、有機廃棄物を炭化炉で炭化して得た炭化物とガス化剤とを熱分解ガス化炉において前記炭化炉で発生した高熱の燃焼ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置であって、
前記熱分解ガス化炉は、上下端部に開口部を備え下端部の開口部を前記炭化炉に接続される筒状の外筒と、下端部が開口され上端に熱分解ガス排出路を備え中間部乃至下端寄りに炭化物を供給する炭化物供給手段と連結される開口部とガス化剤を供給するガス化剤供給手段と連結される開口部を備え筒状に形成されて前記外筒内部に設けられてなる内筒と、前記内筒の下方に内筒下端部と間隙を開けて回転自在に配置されるターンテーブルと、該ターンテーブルの回転中心部に設けられ前記内筒の周壁と略等間隔に空隙をおいて内筒内部に配設される蓄熱性突起と、を備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼ガスが導入され、該燃焼ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱によってガス化領域の炭化物が加熱されることよって温度分布がより安定化するように構成されることを特徴とする熱分解ガス化装置
とする。
In order to solve the above-mentioned problems, the present invention heats a carbonized product obtained by carbonizing organic waste in a carbonization furnace and a gasifying agent by a high-temperature combustion gas generated in the carbonization furnace in a pyrolysis gasification furnace. A pyrolysis gasifier that generates pyrolysis gas,
The pyrolysis gasification furnace has a cylindrical outer cylinder having an opening at the upper and lower ends and an opening at the lower end connected to the carbonization furnace, and a pyrolysis gas discharge path at the upper end and opened at the upper end. An opening connected to the carbide supplying means for supplying carbide to the middle or near the lower end and an opening connected to the gasifying agent supplying means for supplying the gasifying agent are formed in a cylindrical shape inside the outer cylinder. An inner cylinder provided, a turntable disposed below the inner cylinder with a gap from a lower end of the inner cylinder, and a rotatable table; and a circumferential wall of the inner cylinder provided at a rotation center of the turntable. A heat storage protrusion disposed inside the inner cylinder with gaps at equal intervals, and
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. A thermal decomposition gasification apparatus is configured such that the temperature distribution is further stabilized by heating the heat storage protrusion and heating the carbide in the gasification region by the radiant heat.

また、前記の課題を解決するために、本発明は、前記蓄熱性突起は鋳物、その他の金属またはセラミックの中の何れか一種からなることを特徴とする前記の熱分解ガス化装置とすることが好ましい。   Moreover, in order to solve the said subject, this invention sets it as the said thermal decomposition gasification apparatus characterized by the said thermal storage protrusion consisting of any one of casting, another metal, or ceramic. Is preferred.

また、前記の課題を解決するために、本発明は、前記内筒の内壁から前記蓄熱性突起までの距離は20〜100mm、蓄熱性突起の高さは200〜1000mmの範囲内に設定されることを特徴とする前記の熱分解ガス化装置とすることが好ましい。   In order to solve the above-mentioned problem, the present invention sets the distance from the inner wall of the inner cylinder to the heat storage protrusion to be in the range of 20 to 100 mm and the heat storage protrusion to be in the range of 200 to 1000 mm. It is preferable to use the above-described pyrolysis gasifier.

また、前記の課題を解決するために、本発明は、前記内筒における炭化物を供給する炭化物供給手段と連結される開口部は、前記蓄熱性突起の頭部よりも上方に設けられることを特徴とする前記の熱分解ガス化装置とすることが好ましい。   In order to solve the above-mentioned problem, the present invention is characterized in that the opening connected to the carbide supply means for supplying carbide in the inner cylinder is provided above the head of the heat storage protrusion. It is preferable to use the above-described pyrolysis gasifier.

また、前記の課題を解決するために、本発明は、前記内筒におけるガス化剤を供給するガス化剤供給手段は、前記内筒内部のガス化領域に向けてガス化剤を吹き付けることを特徴とする前記の熱分解ガス化装置とすることが好ましい。   In order to solve the above problem, the present invention is characterized in that the gasifying agent supply means for supplying the gasifying agent in the inner cylinder sprays the gasifying agent toward the gasification region inside the inner cylinder. Preferably, the thermal decomposition gasification apparatus is characterized.

本願発明に係る熱分解ガス化装置の熱分解ガス化炉は、前記のように内筒の下方に内筒下端部と間隙を開けて回転自在に配置されるターンテーブルと、該ターンテーブルの回転中心部に設けられ前記内筒の内部に空隙をおいて収納される蓄熱性突起とを備えることによって、蓄熱性突起自体が加熱され、ガス化領域内の炭化物は内筒と蓄熱性突起の両側から輻射熱によって加熱される。しかも、ガス化領域は内筒と蓄熱性突起との空隙は比較的狭く且つターンテーブルと共に回転するのでより炭化物に熱伝導しやすく、炭化物を効率よくしかも速やかに且つ温度分布が均一になるように高温加熱することによって、組成比が均一な熱分解ガスを効率よく生成することができる。   The pyrolysis gasification furnace of the pyrolysis gasification apparatus according to the present invention includes a turntable that is rotatably disposed with a gap from the lower end of the inner cylinder below the inner cylinder, and the rotation of the turntable. The heat storage protrusion itself is heated by providing the heat storage protrusion provided in the center portion with a space inside the inner cylinder, and the carbide in the gasification region is on both sides of the inner cylinder and the heat storage protrusion. Is heated by radiant heat. Moreover, in the gasification region, the gap between the inner cylinder and the heat storage protrusion is relatively narrow and rotates together with the turntable so that heat conduction to the carbide is facilitated, and the carbide is efficiently and quickly made uniform in temperature distribution. By heating at a high temperature, it is possible to efficiently generate a pyrolysis gas having a uniform composition ratio.

(a)は熱分解ガス化炉の内外筒部を示す部分断面平面図であり、(b)は(a)のA−A線部分断面側面図を含む熱分解ガス化炉の全体を示す構成図である。(A) is a partial cross-sectional top view which shows the inner and outer cylinder part of a pyrolysis gasification furnace, (b) is the structure which shows the whole pyrolysis gasification furnace containing the AA line partial cross section side view of (a). FIG. 本願発明に係る熱分解ガス化装置を示すブロック図である。It is a block diagram which shows the thermal decomposition gasification apparatus which concerns on this invention. 本願発明に係る熱分解ガス化装置を示す要部構成図である。It is a principal part block diagram which shows the thermal decomposition gasification apparatus which concerns on this invention.

本発明を実施するための形態(以下「実施の形態」と称する)について、以下に図面を参照しつつ詳細に説明する。しかし、本発明は、かかる実施の形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail below with reference to the drawings. However, the present invention is not limited to such an embodiment.

図2及び3には、本実施の形態に係る熱分解ガス化装置1が示されており、図1には、熱分解ガス化炉が示されている。図1に示すように、本発明の実施の形態において、2は熱分解ガス化炉であり、外筒11及び内筒12の何れも円筒形であり、互いに同心状に外筒11と内筒12を空隙23をあけて立設し、外筒11の上下端部は内筒12と密着させ、下方の開口部である燃焼ガス導入口15から空隙23に炭化炉で発生した燃焼ガスを導入し上方の開口部である燃焼ガス排出口16から排出されるように構成される。内筒の上端部は熱分解ガス排出路17に連結され、内筒の下端部は開口されておりターンテーブル13が内筒の下端部と間隙を保持して配設されている。ターンテーブルは円錐形をなし、その頂上部に円柱形の蓄熱性突起14が立設されており、蓄熱性突起が内筒周壁と略等間隔に空隙があくように内筒内部に配設されている。前記ターンテーブルは、中央部から下方に伸びる回転軸に支持されており連結されるモーターMによって所定の速度で回転するように構成される。   2 and 3 show a pyrolysis gasification apparatus 1 according to the present embodiment, and FIG. 1 shows a pyrolysis gasification furnace. As shown in FIG. 1, in the embodiment of the present invention, reference numeral 2 denotes a pyrolysis gasification furnace. Both the outer cylinder 11 and the inner cylinder 12 are cylindrical, and the outer cylinder 11 and the inner cylinder are concentric with each other. 12 is erected with a gap 23, the upper and lower ends of the outer cylinder 11 are brought into close contact with the inner cylinder 12, and the combustion gas generated in the carbonization furnace is introduced into the gap 23 from the combustion gas inlet 15 which is a lower opening. And it is comprised so that it may discharge | emit from the combustion gas discharge port 16 which is an upper opening part. The upper end portion of the inner cylinder is connected to the pyrolysis gas discharge passage 17, the lower end portion of the inner cylinder is opened, and the turntable 13 is disposed with a gap from the lower end portion of the inner cylinder. The turntable has a conical shape, and a columnar heat storage protrusion 14 is erected on the top of the turntable, and the heat storage protrusion is disposed inside the inner cylinder so that there are gaps at substantially equal intervals from the inner cylinder peripheral wall. ing. The turntable is configured to rotate at a predetermined speed by a motor M supported by a rotating shaft extending downward from a central portion.

内筒12の中間部乃至下端寄りには炭化物を供給する炭化物供給手段18が外筒を貫通して内筒の開口部19に連結されている。炭化物供給手段18としては特に限定するものではないが例えばスクリューコンベア等が好ましい。前記蓄熱性突起14が設けられている内筒周壁にはガス化剤である水蒸気を噴出する開口部21が穿設されていて、ガス化剤供給手段20によって水蒸気を噴出するように構成される。   Carbide supplying means 18 for supplying carbide is connected to an opening 19 of the inner cylinder through the outer cylinder near the middle part to the lower end of the inner cylinder 12. Although it does not specifically limit as the carbide | carbonized_material supply means 18, For example, a screw conveyor etc. are preferable. An opening 21 for ejecting water vapor as a gasifying agent is formed in the inner cylinder peripheral wall provided with the heat storage protrusion 14, and the gas generating agent supply means 20 is configured to eject water vapor. .

前記蓄熱性突起14の材料は、蓄熱性を有しガス化温度に耐えられる耐熱性を有する限りにおいて特に限定されるものではないが、鋳物、その他の金属またはセラミックが好ましく、中でも鋳物が特に好ましい。内筒と外筒の空隙部を通過する燃焼ガスの温度(900〜1000℃)によって内筒内部温度が800〜900℃、好ましくは750〜800℃前後になるように予め調整しておく。蓄熱性突起の材料は少なくとも1000℃以上の耐熱性を有することが好ましい。鋳物は炭素の含有率が2%以上の鋳鉄からなり砂型や金型に溶けた鋳鉄を流し込んで成型するもので、鋳鉄としては、硬いねずみ鋳鉄と呼ばれる片状黒鉛鋳鉄(FC)、引張強度の大きい球状黒鉛鋳鉄(FCD)、片状黒鉛鋳鉄と球状黒鉛鋳鉄の中間のCV鋳鉄等の何れでもよいが比較的比熱が大きく融点が高いねずみ鋳鉄が好ましい。   The material of the heat storage protrusion 14 is not particularly limited as long as it has heat storage properties and heat resistance capable of withstanding the gasification temperature, but is preferably a casting, other metal or ceramic, and particularly preferably a casting. . The temperature inside the inner cylinder is adjusted in advance so that the temperature inside the inner cylinder is 800 to 900 ° C., preferably around 750 to 800 ° C., depending on the temperature of the combustion gas (900 to 1000 ° C.) passing through the gap between the inner cylinder and the outer cylinder. It is preferable that the material of the heat storage protrusion has a heat resistance of at least 1000 ° C. or more. Casting is made of cast iron with a carbon content of 2% or more and cast by casting cast iron melted into a sand mold or mold. As cast iron, flake graphite cast iron (FC) called hard gray cast iron, tensile strength Any of large spheroidal graphite cast iron (FCD), CV cast iron in the middle of flake graphite cast iron and spheroidal graphite cast iron may be used, but gray cast iron having a relatively high specific heat and a high melting point is preferable.

Figure 2013185093
Figure 2013185093

表1にねずみ鋳鉄やその他の金属及びセラミックスの熱的性質を示す。鋳物以外に表1に示す耐熱性を有する金属及びセラミックス等も使用可能である。アルミニウムは比熱が大きくも融点が低いので単独使用は困難であるが合金として用いてもよい。前記内筒12と蓄熱性突起14との空隙22を炭化物のガス化領域として構成し、前記外筒と内筒の空隙23には炭化炉で発生した燃焼ガスが導入され、該燃焼ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱によってガス化領域にある炭化物が加熱されることよって温度分布がより安定化するように構成される。また、ターンテーブルの中心部に予め軸を設けてこの軸に大きさや材質の異なる蓄熱性突起を交換可能に装着できるように構成することが好ましい。蓄熱性突起の形状は特に限定するものではないが、例えば頭部を封じた円筒状又は円柱状が好ましい。   Table 1 shows the thermal properties of gray cast iron and other metals and ceramics. In addition to castings, metals and ceramics having heat resistance shown in Table 1 can be used. Aluminum has a large specific heat but a low melting point, so it is difficult to use alone, but it may be used as an alloy. A gap 22 between the inner cylinder 12 and the heat storage protrusion 14 is configured as a gasification region of carbide. Combustion gas generated in a carbonization furnace is introduced into the gap 23 between the outer cylinder and the inner cylinder, and the combustion gas causes the inner gas to pass through the inner cylinder 12. The inside of the cylinder and the heat storage projection are heated, and the carbide in the gasification region is heated by the radiant heat, whereby the temperature distribution is further stabilized. Further, it is preferable that a shaft is provided in the center of the turntable in advance so that heat storage protrusions of different sizes and materials can be exchangeably mounted on the shaft. Although the shape of the heat storage protrusion is not particularly limited, for example, a cylindrical shape or a columnar shape with a sealed head is preferable.

前述したとおり、前記内筒12と蓄熱性突起14との空隙22を炭化物のガス化領域として、このガス化領域にある炭化物にガス化剤である水蒸気を吹きかけると共に内筒12と蓄熱性突起14から発する輻射熱によって加熱してガス化する。その際、炭化物を速やかに加熱するにはガス化領域はなるべく狭くした方が好ましい。しかし、狭すぎると生産効率が低下することから、特に限定するものではないが内筒周壁と蓄熱性突起までの距離は20〜100mm、蓄熱性突起の高さは200〜1000mmの範囲で炭化物が加熱される時間とガス化領域を通過する速度つまりターンテーブル13と内筒の間隙部及び炭化物の大きさ等を勘案して適宜調整することが好ましい。   As described above, the gap 22 between the inner cylinder 12 and the heat storage protrusion 14 is used as a carbide gasification region, and water vapor as a gasifying agent is sprayed on the carbide in the gasification region, and the inner cylinder 12 and the heat storage protrusion 14 are sprayed. It is heated and gasified by the radiant heat emitted from it. At that time, in order to quickly heat the carbide, it is preferable to make the gasification region as narrow as possible. However, since production efficiency is reduced if it is too narrow, the distance between the inner cylinder peripheral wall and the heat storage protrusion is 20 to 100 mm, and the height of the heat storage protrusion is 200 to 1000 mm. It is preferable to adjust appropriately considering the heating time and the speed of passing through the gasification region, that is, the gap between the turntable 13 and the inner cylinder, the size of carbides, and the like.

次に、図2及び3を参照して、本願実施の形態の熱分解ガス化装置の構成例について説明する。図2及び3に示すように、本願実施の形態の熱分解ガス化装置は、炭化炉3と熱分解ガス化炉2から構成される。   Next, with reference to FIG. 2 and 3, the structural example of the thermal decomposition gasification apparatus of this-application embodiment is demonstrated. As shown in FIGS. 2 and 3, the pyrolysis gasification apparatus of the present embodiment includes a carbonization furnace 3 and a pyrolysis gasification furnace 2.

先ず、炭化炉3は、バイオマスの有機廃棄物を温度200〜600℃で低酸素状態において、ガス(CO、H、CH、CO、HO)、炭化物、炭化水素に分解し、炭化物と炭化水素ガスとに分離し、炭化水素ガスは燃焼室で二次燃焼して900〜1000℃の燃焼ガスを生成し、熱分解ガス化炉3の下端部の開口部15を経て燃焼ガス領域に供給される。 First, the carbonization furnace 3 decomposes biomass organic waste into gas (CO, H 2 , CH 4 , CO 2 , H 2 O), carbides, hydrocarbons in a low oxygen state at a temperature of 200 to 600 ° C., The hydrocarbon gas is separated into a hydrocarbon and a hydrocarbon gas, and the hydrocarbon gas is subjected to secondary combustion in the combustion chamber to generate a combustion gas at 900 to 1000 ° C., and the combustion gas passes through the opening 15 at the lower end of the pyrolysis gasification furnace 3. Supplied to the area.

炭化物供給手段18は、炭化炉3から供給された炭化物を熱分解ガス化炉2の内筒12内部に供給する。内筒12内部に供給された炭化物は落下してガス化領域22に達すると内筒周面に設けられた複数のガス化剤供給口21から噴出した水蒸気と接触混合される。図示しないガス化剤供給手段によって水蒸気の噴射量が調整可能であり反応を制御して熱分解ガスの成分組成比を調整可能である。このガス化領域22において水蒸気と接触混合された炭化物は内筒壁と蓄熱性突起の両面から輻射熱を受け、蓄熱性突起14がターンテーブル13の回転(例えば5〜10rpm)に伴って回転しつつ徐々に下方に移動する。ガス化された炭化物の残渣はターンテーブル13と内筒の間隙部24を通過して排出口25から外部に排出される。   The carbide supply means 18 supplies the carbide supplied from the carbonization furnace 3 into the inner cylinder 12 of the pyrolysis gasification furnace 2. When the carbide supplied to the inside of the inner cylinder 12 falls and reaches the gasification region 22, it is contact-mixed with water vapor ejected from a plurality of gasifying agent supply ports 21 provided on the inner cylinder peripheral surface. The injection amount of water vapor can be adjusted by a gasifying agent supply means (not shown), and the component composition ratio of the pyrolysis gas can be adjusted by controlling the reaction. The carbide mixed in contact with water vapor in the gasification region 22 receives radiant heat from both surfaces of the inner cylinder wall and the heat storage protrusion, and the heat storage protrusion 14 rotates while the turntable 13 rotates (for example, 5 to 10 rpm). Move downward gradually. The residue of the gasified carbide passes through the turntable 13 and the gap 24 between the inner cylinders and is discharged to the outside from the discharge port 25.

前記ガス化領域22では吸熱反応である水性ガス化反応(C+HO→CO+H−28.36kcal/mol)及び発熱反応である水性ガスシフト反応(CO+HO→CO+H+9.85kcal/mol)が連続して進行する。その結果、水素(H)、一酸化炭素(CO)及び二酸化炭素(CO)の成分からなる熱分解ガスが発生する。一般的に、低温(750〜800℃)では発熱反応である水性ガスシフト反応が促進され、高カロリーの一酸化炭素が消費されて低カロリーの水素が生成されるので単位体積当たりの発熱量が小さい水素リッチな熱分解ガスが生成し高温(900〜950℃)では一酸化炭素リッチな熱分解ガスが生成する。また、ガス化剤の水蒸気の供給量が多いほど熱分解ガス中のH/CO比が高くなる。 In the gasification region 22, a water gasification reaction (C + H 2 O → CO + H 2 −28.36 kcal / mol) which is an endothermic reaction and a water gas shift reaction (CO + H 2 O → CO 2 + H 2 +9.85 kcal / mol) which is an exothermic reaction. ) Proceeds continuously. As a result, a pyrolysis gas composed of hydrogen (H 2 ), carbon monoxide (CO), and carbon dioxide (CO 2 ) components is generated. In general, the water gas shift reaction, which is an exothermic reaction, is promoted at low temperatures (750 to 800 ° C.), and high calorie carbon monoxide is consumed and low calorie hydrogen is generated, so the calorific value per unit volume is small. A hydrogen-rich pyrolysis gas is produced, and a carbon monoxide-rich pyrolysis gas is produced at a high temperature (900 to 950 ° C.). Further, as the amount of water vapor supplied from the gasifying agent increases, the H 2 / CO ratio in the pyrolysis gas increases.

次に、実施例について説明する。図1に示す実験用の熱分解ガス化炉を作成した。外筒は、外形がφ460mm、高さ1380mm、肉厚が50mmの耐火材で形成し、内筒は、外形がφ150mm、厚み8mmの耐熱性ニッケルクロム鋼板で形成した。更に、蓄熱性突起は、外形がφ84mmで、高さが230mmの鋳物で形成し、蓄熱性突起から内筒までの空隙であるガス化領域の幅は片側で25mmに調整した。炭化炉は従来の自己燃焼式炭化炉を用いた。原料の炭化物はガス化領域の幅25mmを通過するサイズの塊状炭を用いた。   Next, examples will be described. An experimental pyrolysis gasification furnace shown in FIG. 1 was prepared. The outer cylinder was formed of a refractory material having an outer diameter of φ460 mm, a height of 1380 mm, and a thickness of 50 mm, and the inner cylinder was formed of a heat-resistant nickel chrome steel plate having an outer diameter of φ150 mm and a thickness of 8 mm. Furthermore, the heat storage protrusion was formed of a casting having an outer diameter of φ84 mm and a height of 230 mm, and the width of the gasification region, which is a gap from the heat storage protrusion to the inner cylinder, was adjusted to 25 mm on one side. A conventional self-burning type carbonizing furnace was used as the carbonizing furnace. As the raw material carbide, bulk coal having a size passing through a width of 25 mm in the gasification region was used.

水分20%の廃木材等有機廃棄物を自己燃焼式炭化炉を用いて炭化し、前記の実験用の熱分解ガス化炉にてガス化領域の温度が750〜800℃になるように調整して、継続運転した結果、得られたガス化成分の組成比は、水素(H)が60%、一酸化炭素(CO)が20%及び二酸化炭素(CO)が20%であり、この成分比のブレが全く見られないことが確認された。 Carbonize organic waste such as waste wood with a moisture content of 20% using a self-combustion type carbonization furnace, and adjust the temperature of the gasification region to 750-800 ° C in the above-mentioned pyrolysis gasification furnace for experiments. As a result of continuous operation, the composition ratio of the obtained gasification component is 60% for hydrogen (H 2 ), 20% for carbon monoxide (CO), and 20% for carbon dioxide (CO 2 ). It was confirmed that the component ratio was not blurred at all.

本発明に係る熱分解ガス化装置は、水性ガス化が速い上に変換効率(冷ガス効率)が高く、且つ不純物を含まないクリーンな水性ガスが得られる。しかも、加熱温度分布が均一になるように高温加熱することによって、組成比が均一な熱分解ガスを生成することができる熱分解ガス化装置を提供する共に省エネルギーと自然環境保護及び経済的に極めて有用である。   The pyrolysis gasification apparatus according to the present invention is fast in water gasification and has high conversion efficiency (cold gas efficiency) and a clean water gas containing no impurities. In addition, by providing high-temperature heating so that the heating temperature distribution is uniform, a pyrolysis gasifier capable of generating a pyrolysis gas with a uniform composition ratio is provided, and at the same time, it is extremely energy saving, environmental protection, and economical. Useful.

1 熱分解ガス化装置
2 熱分解ガス化炉
3 炭化炉
11 外筒
12 内筒
13 ターンテーブル
14 蓄熱性突起
15 燃焼ガス導入口
16 燃焼ガス排出口
17 熱分解ガス排出路
18 炭化物供給手段
19 炭化物供給口
20 ガス化剤供給路
21 ガス化剤供給口
22 内筒と蓄熱性突起との空隙(ガス化領域)
23 外筒と内筒の空隙(燃焼ガス領域)
24 間隙部
25 排出口
M モーター
DESCRIPTION OF SYMBOLS 1 Pyrolysis gasifier 2 Pyrolysis gasification furnace 3 Carbonization furnace 11 Outer cylinder 12 Inner cylinder 13 Turntable 14 Thermal storage protrusion 15 Combustion gas introduction port 16 Combustion gas discharge port 17 Pyrolysis gas discharge channel 18 Carbide supply means 19 Carbide Supply port 20 Gasifying agent supply path 21 Gasifying agent supply port 22 Gap between the inner cylinder and the heat storage protrusion (gasification region)
23 Gap between outer cylinder and inner cylinder (combustion gas region)
24 Gap 25 Discharge M Motor

Claims (5)

有機廃棄物を炭化炉で炭化して得た炭化物とガス化剤とを熱分解ガス化炉において前記炭化炉で発生した高熱の燃焼ガスによって加熱して熱分解ガスを発生させる熱分解ガス化装置であって、
前記熱分解ガス化炉は、上下端部に開口部を備え下端部の開口部を前記炭化炉に接続される筒状の外筒と、下端部が開口され上端に熱分解ガス排出路を備え中間部乃至下端寄りに炭化物を供給する炭化物供給手段と連結される開口部とガス化剤を供給するガス化剤供給手段と連結される開口部を備え筒状に形成されて前記外筒内部に設けられてなる内筒と、前記内筒の下方に内筒下端部と間隙を開けて回転自在に配置されるターンテーブルと、該ターンテーブルの回転中心部に設けられ前記内筒の周壁と略等間隔に空隙をおいて内筒内部に配設される蓄熱性突起と、を備え、
前記内筒と蓄熱性突起との空隙を炭化物のガス化領域として構成し、前記外筒と内筒の空隙には炭化炉で発生した燃焼ガスが導入され、該燃焼ガスによって内筒内部並びに前記蓄熱性突起が加熱されると共にその輻射熱によってガス化領域の炭化物が加熱されることよって温度分布がより安定化するように構成されることを特徴とする熱分解ガス化装置。
A pyrolysis gasifier for generating pyrolysis gas by heating a carbonized material obtained by carbonizing organic waste in a carbonization furnace and a gasifying agent in the pyrolysis gasification furnace with a high-temperature combustion gas generated in the carbonization furnace. Because
The pyrolysis gasification furnace has a cylindrical outer cylinder having an opening at the upper and lower ends and an opening at the lower end connected to the carbonization furnace, and a pyrolysis gas discharge path at the upper end and opened at the upper end. An opening connected to the carbide supplying means for supplying carbide to the middle or near the lower end and an opening connected to the gasifying agent supplying means for supplying the gasifying agent are formed in a cylindrical shape inside the outer cylinder. An inner cylinder provided, a turntable disposed below the inner cylinder with a gap from a lower end of the inner cylinder, and a rotatable table; and a circumferential wall of the inner cylinder provided at a rotation center of the turntable. A heat storage protrusion disposed inside the inner cylinder with gaps at equal intervals, and
A gap between the inner cylinder and the heat storage protrusion is configured as a gasification region of carbide. Combustion gas generated in a carbonization furnace is introduced into the gap between the outer cylinder and the inner cylinder. A thermal decomposition gasification apparatus characterized in that the temperature distribution is further stabilized by heating the heat storage protrusion and heating the carbide in the gasification region by the radiant heat.
前記蓄熱性突起は鋳物、その他の金属またはセラミックスの中の何れか一種からなることを特徴とする請求項1記載の熱分解ガス化装置。   2. The pyrolysis gasifier according to claim 1, wherein the heat storage protrusion is made of any one of castings, other metals, and ceramics. 前記内筒の内壁から前記蓄熱性突起までの距離は20〜100mm、蓄熱性突起の高さは200〜1000mmの範囲内に設定されることを特徴とする請求項1記載の熱分解ガス化装置。   2. The pyrolysis gasifier according to claim 1, wherein a distance from an inner wall of the inner cylinder to the heat storage protrusion is set in a range of 20 to 100 mm, and a height of the heat storage protrusion is set in a range of 200 to 1000 mm. . 前記内筒における炭化物を供給する炭化物供給手段と連結される開口部は、前記蓄熱性突起の頭部よりも上方に設けられることを特徴とする請求項1記載の熱分解ガス化装置。   The pyrolysis gasifier according to claim 1, wherein an opening connected to a carbide supply means for supplying carbide in the inner cylinder is provided above a head of the heat storage protrusion. 前記内筒におけるガス化剤を供給するガス化剤供給手段は、前記内筒内部のガス化領域に向けてガス化剤を吹き付けることを特徴とする請求項1記載の熱分解ガス化装置。   The pyrolysis gasifier according to claim 1, wherein the gasifying agent supplying means for supplying the gasifying agent in the inner cylinder sprays the gasifying agent toward the gasification region inside the inner cylinder.
JP2012051986A 2012-03-08 2012-03-08 Pyrolysis gasifier Active JP5342664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051986A JP5342664B2 (en) 2012-03-08 2012-03-08 Pyrolysis gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012051986A JP5342664B2 (en) 2012-03-08 2012-03-08 Pyrolysis gasifier

Publications (2)

Publication Number Publication Date
JP2013185093A true JP2013185093A (en) 2013-09-19
JP5342664B2 JP5342664B2 (en) 2013-11-13

Family

ID=49386820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051986A Active JP5342664B2 (en) 2012-03-08 2012-03-08 Pyrolysis gasifier

Country Status (1)

Country Link
JP (1) JP5342664B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165019A (en) * 2014-02-10 2015-09-17 株式会社高橋製作所 biomass power generation system
WO2016104371A1 (en) * 2014-12-24 2016-06-30 株式会社高橋製作所 Carbonizing furnace, pyrolytic furnace, water gas generation system, hydrogen gas generation system, and power generation system
JPWO2014069234A1 (en) * 2012-11-02 2016-09-08 株式会社ストリートデザイン Processing system and processing apparatus
WO2016185635A1 (en) 2015-05-19 2016-11-24 テスナエナジー株式会社 Biomass gasification device
WO2017131235A1 (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system, and return system for thermal decomposition furnace
WO2019008934A1 (en) * 2017-07-05 2019-01-10 新東工業株式会社 Biomass gasification device
JP2019196452A (en) * 2018-05-10 2019-11-14 エネサイクル株式会社 Reforming furnace and gasification system using the same
WO2021065793A1 (en) * 2019-10-03 2021-04-08 株式会社ストリートデザイン Organic matter gasification system, and carbonization furnace and gasification furnace used therefor
CN113881462A (en) * 2021-10-28 2022-01-04 河南工业大学 Organic solid waste semi-in-situ carbon fixation gasification device and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869291A (en) * 1981-07-08 1983-04-25 Okutama Kogyo Kk Gasification of solid fuel and gas producer
JP2002210444A (en) * 2001-01-18 2002-07-30 Japan Science & Technology Corp Apparatus for gasifying solid fuel
JP2004189932A (en) * 2002-12-12 2004-07-08 Kozo Shionoya Apparatus for gasifying solid fuel
JP2005139338A (en) * 2003-11-07 2005-06-02 Mitsui Eng & Shipbuild Co Ltd Method for measuring temperature of burning zone of moving bed-type gasification furnace and apparatus for gasifying waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869291A (en) * 1981-07-08 1983-04-25 Okutama Kogyo Kk Gasification of solid fuel and gas producer
JP2002210444A (en) * 2001-01-18 2002-07-30 Japan Science & Technology Corp Apparatus for gasifying solid fuel
JP2004189932A (en) * 2002-12-12 2004-07-08 Kozo Shionoya Apparatus for gasifying solid fuel
JP2005139338A (en) * 2003-11-07 2005-06-02 Mitsui Eng & Shipbuild Co Ltd Method for measuring temperature of burning zone of moving bed-type gasification furnace and apparatus for gasifying waste

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069234A1 (en) * 2012-11-02 2016-09-08 株式会社ストリートデザイン Processing system and processing apparatus
JP2015165019A (en) * 2014-02-10 2015-09-17 株式会社高橋製作所 biomass power generation system
WO2016104371A1 (en) * 2014-12-24 2016-06-30 株式会社高橋製作所 Carbonizing furnace, pyrolytic furnace, water gas generation system, hydrogen gas generation system, and power generation system
US10618088B2 (en) 2014-12-24 2020-04-14 Takahashi Seisakusho Inc. Pyrolytic furnace, water gas generation system, and combustion gas supply method for water gas generation system
WO2016185635A1 (en) 2015-05-19 2016-11-24 テスナエナジー株式会社 Biomass gasification device
US9732291B2 (en) 2015-05-19 2017-08-15 Tesna Energy Co., Ltd. Biomass gasification system
WO2017131235A1 (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system, and return system for thermal decomposition furnace
JP2017132969A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system and return system of thermal decomposition furnace
JP7026891B2 (en) 2017-07-05 2022-03-01 新東工業株式会社 Biomass gasifier
WO2019008934A1 (en) * 2017-07-05 2019-01-10 新東工業株式会社 Biomass gasification device
JPWO2019008934A1 (en) * 2017-07-05 2020-04-30 新東工業株式会社 Biomass gasifier
JP2019196452A (en) * 2018-05-10 2019-11-14 エネサイクル株式会社 Reforming furnace and gasification system using the same
JP7088734B2 (en) 2018-05-10 2022-06-21 エネサイクル株式会社 Reformer
WO2021065793A1 (en) * 2019-10-03 2021-04-08 株式会社ストリートデザイン Organic matter gasification system, and carbonization furnace and gasification furnace used therefor
US11725155B2 (en) 2019-10-03 2023-08-15 Street Design Corporation Organic material gasification system, and carbonization furnace and gasification furnace used therefor
CN113881462A (en) * 2021-10-28 2022-01-04 河南工业大学 Organic solid waste semi-in-situ carbon fixation gasification device and application thereof

Also Published As

Publication number Publication date
JP5342664B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5342664B2 (en) Pyrolysis gasifier
JP5917735B2 (en) Biomass power generation system
Guo et al. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study
KR101625152B1 (en) Microwave plasma biomass gasifying fixed bed gasifier and process
KR100887137B1 (en) Method and apparatus of gasification under integrated pyrolysis-reformer system(iprs)
CA2861813A1 (en) Externally heated microwave plasma gasifier and synthesis gas production method
JP2004292768A (en) Method and apparatus for gasifying biomass
ITTO20120856A1 (en) GASIFICATOR IN CONTINUOUS, IN PARTICULAR FOR BIOMASSES AND URBAN AND INDUSTRIAL WASTE.
WO2017138157A1 (en) Reformer furnace and gasification system using same
JP2004204106A (en) Gasifier of organic material
JP6936914B2 (en) Solid fuel gasifiers, power generators and gasification methods
SE541605C2 (en) Process and reactor for producing biochar from renewable material.
CN105925282A (en) Biomass thermal conversion device and method based on carbon cycle
KR101617392B1 (en) An industrial high temperature reformer and reforming method
JPWO2017138157A1 (en) Reforming furnace and gasification system using the same
KR102224937B1 (en) Metal scrap recycling device
CN102634375B (en) Steam spraying device of biomass gasification furnace
CN202465607U (en) External heating type microwave plasma gasification furnace
Ramarao et al. Evaluation of Carbon Conversion Efficiency of Mixed Biomass Gasification
JP6551745B2 (en) Biomass gasifier
JP4993460B2 (en) Method for thermal decomposition of carbonaceous raw materials
KR20210055216A (en) Pyrolysis gasification apparatus of solid refuse fuel
CN205821242U (en) A kind of biomass thermal conversion equipment based on Carbon cycle
JPH11302665A (en) Gasification method using biomass and fossil fuel
JP5774800B1 (en) Gasification furnace that produces flammable fuel gas

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130612

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250