JPS5869291A - Gasification of solid fuel and gas producer - Google Patents

Gasification of solid fuel and gas producer

Info

Publication number
JPS5869291A
JPS5869291A JP10637781A JP10637781A JPS5869291A JP S5869291 A JPS5869291 A JP S5869291A JP 10637781 A JP10637781 A JP 10637781A JP 10637781 A JP10637781 A JP 10637781A JP S5869291 A JPS5869291 A JP S5869291A
Authority
JP
Japan
Prior art keywords
furnace
solid fuel
gas
kiln
gasifying agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10637781A
Other languages
Japanese (ja)
Inventor
Tadao Fukuda
福田 任男
Kazu Kanazawa
金沢 和
Shota Fujimori
藤森 正太
Shozo Kureha
呉羽 正三
Hitoshi Matsunaga
松永 斉
Kosaku Nakamura
中村 交作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okutama Kogyo Co Ltd
Original Assignee
Okutama Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okutama Kogyo Co Ltd filed Critical Okutama Kogyo Co Ltd
Priority to JP10637781A priority Critical patent/JPS5869291A/en
Publication of JPS5869291A publication Critical patent/JPS5869291A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably gasify solid fuel at a high thermal efficiency, by gasifying the solid fuel supplied through a feeding hole of a double-lid construction at the top of a kiln with a gasifying agent sent through an eccentrically rotating grate and withdrawing generated gas through two-level outlets. CONSTITUTION:A solid fuel such as coal or coke is supplied to a kiln by operating an outer lid 3 and an inner lid 4 at the top of the kiln. A gasifying agent is sent from a gasifying agent feeding hole 13 at the bottom of the kiln through an eccentrically rotating grate 9 to gasify the solid fuel. The generated gas is withdrawn through upper withdrawing holes 5 and 6 and an intermediate withdrawing hole 7 out of the kiln. The gas withdrawn through the hole 7 contributes little to combustion in the kiln, so that heat loss is reduced by withdrawing it through this hole. It is possible to control an amt. of steam generated by heat exchange by a jacket by controlling a proportion of the gases withdrawn at the top and intermediate parts, which makes it possible to decrease make-up water and surplus steam and to increase the thermal efficiency.

Description

【発明の詳細な説明】 本発明は、固体燃料をカス化する方法及びその際に使用
するガス発生炉に関するものであり、さらに詳しくいえ
は、固体燃料として石炭や無煙炭などを用い、ガス化剤
として空気や水蒸気なとを、あるいはこれらの他に石灰
焼成炉排ガスを用い、ガスの発生が安定で熱効率の高い
改良された固体燃料のガス化方法及びそのガス発生炉、
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for turning solid fuel into scum and a gas generating furnace used in the process. An improved method for gasifying solid fuel with stable gas generation and high thermal efficiency, using air or steam, or lime kiln exhaust gas in addition to these, and its gas generating furnace;
It is related to.

従来、燃料用の可燃性ガスや合成化学用の原料ガスを製
造するために、石炭や無煙炭、コークスなどの固体燃料
に、ガス化剤として空気や酸素、水蒸気などを高温で接
触させ、下記に示す反応によシ発生する各種ガスを利用
する方法は古くから知られている。
Conventionally, in order to produce flammable gases for fuels and raw material gases for synthetic chemicals, solid fuels such as coal, anthracite, and coke are brought into contact with gasifying agents such as air, oxygen, and water vapor at high temperatures. Methods that utilize the various gases generated by the reactions described above have been known for a long time.

すなわち、ガス発生炉内において石炭や無煙炭などの揮
発分については、 CmHn −1−mHi’o −) mco +”−E
ユH2−(1)CmHn +−02−+ mCO+−H
2−(2)2 のような反応が、また石炭や無煙炭などの炭素分、コー
クスについては、 C+02  →CO□        ・・(3)C+
+0□ →Co         、、、 (4)C十
CO2→2CO・・(5) C+H20−+ CO十H2−(6) C+2H20→C02+2H2・(7)C+2H2→C
H4・・(8) のような反応が進行する。
In other words, for volatile components such as coal and anthracite in the gas generating furnace, CmHn -1-mHi'o -) mco +"-E
YuH2-(1)CmHn +-02-+ mCO+-H
2-(2) Reactions like 2, carbon content such as coal and anthracite, and coke, C+02 →CO□ ・・(3)C+
+0□ →Co ,,, (4) C+CO2→2CO・・・(5) C+H20−+ CO×H2−(6) C+2H20→C02+2H2・(7) C+2H2→C
H4...(8) The following reaction proceeds.

上記の反応のうち、(1)、(2)、(5)、(6)及
び(8)式がガス化反応として主要なものであり、この
うち(1)、(2)、(5)、(6)式は炉内温度の上
昇につれて反応は促進されるが、(8)式は温度が上る
と逆に反応が抑制される。一方、炉内圧が上昇すると(
8)式の反応が促進されるのに反し、(1)、(2)、
(5)、(6)式は逆に抑制される。したがって、常圧
で比較的高温のガス発生炉においては、発生ガスは一酸
化炭素や水素が主体であって、メタンの含有量は少なく
、一方加圧で比敦的低温のガス発生炉においては、相当
量のメタンを含むガスが得られる。
Among the above reactions, formulas (1), (2), (5), (6) and (8) are the main gasification reactions; , (6), the reaction is promoted as the temperature inside the furnace increases, but as the temperature rises, the reaction in (8) is conversely suppressed. On the other hand, when the furnace pressure increases (
8) Contrary to the fact that the reaction of formula (1), (2),
On the contrary, equations (5) and (6) are suppressed. Therefore, in a gas generating furnace at normal pressure and a relatively high temperature, the generated gas is mainly carbon monoxide and hydrogen, with a small content of methane, whereas in a gas generating furnace under pressure and at a relatively low temperature, , a gas containing considerable amounts of methane is obtained.

このような反応ケ踏まえて従来、要求するカス組成に応
じて各種形式のガス発生炉が実用化されている。例えば
ガス化剤として空気と水蒸気を用いて、窒素含有カスを
発生さゼるためのコツパー7゛カーゝす(Kapper
s −Kerpely)式ガス発生炉、ガス化剤として
空気小水蒸気を用いるが、窒素を含まないガスを発生さ
せるだめの間けつ式水性ガス発生炉や連続式水性ガス発
生炉、ガス化剤として空気、酸素及び水蒸気を用いて、
アンモニア合成に適したガスを発生させるための半水性
ガス化炉、あるいはメタン含有量に富むルルギ(Lu−
rgi )式高圧ガス発生炉などが実用化されている。
In view of such reactions, various types of gas generating furnaces have been put into practical use depending on the required residue composition. For example, Kapper 7 is used to generate nitrogen-containing scum using air and water vapor as gasifying agents.
S-Kerpely) type gas generator, which uses air and small steam as the gasifying agent, but intermittent water gas generators and continuous water gas generators, which generate gas that does not contain nitrogen, use air as the gasifying agent. , using oxygen and water vapor,
A semi-aqueous gasifier to generate gas suitable for ammonia synthesis, or a methane-rich lurgi (Lu-
(rgi) type high-pressure gas generating furnaces have been put into practical use.

本発明者ら、固形燃料を連続的に供給し、かつ生成した
灰分を容易に連続的に排出することができ、さらにガス
の発生が安定である上に熱効率の高い固体燃料のガス化
方法及びその装置について鋭意研究を重ねた結果、フラ
ッシュタンクと連結した冷却用ジャケットを有する竪型
ガス発生炉において、頂部の原料投入室を二重蓋構造に
することによって固体燃料を炉内に連続的に供給するこ
とができ、そのためガス温度やガス濃度の大幅な変動が
なくなりガス発生を安定化しうろこと、また発生ガス抜
き出し口を炉上部と中間部の二段に設け、両部からの発
生カス抜き出し量の割合を調節することによって、ジャ
ケットで熱交換されて発生する水蒸気の量をコツトロー
化することができ、かつ熱効率を高やうろこと、また炉
下部にある回転火格子の下に掻羽根を設けることによっ
て、灰分を容易に連続的に炉外−\排出しうろことを見
い出し、さらに発生カスを石灰焼成炉用に用い、この焼
成炉からの排ガスをガス化剤の一部として使用すること
によって、熱効率が上昇することを見い出し、この知見
に基ついて本発明を完成するに至った。
The present inventors have provided a solid fuel gasification method that allows solid fuel to be continuously supplied and generated ash to be easily and continuously discharged, and that also has stable gas generation and high thermal efficiency. As a result of extensive research into this device, we have developed a vertical gas generating furnace with a cooling jacket connected to a flash tank, with a double lid structure for the raw material input chamber at the top to continuously supply solid fuel into the furnace. As a result, there are no large fluctuations in gas temperature or gas concentration, and gas generation is stabilized.Also, the generated gas extraction ports are provided in two stages, one in the upper part of the furnace and the other in the middle, to reduce the amount of generated waste extracted from both parts. By adjusting the ratio, the amount of steam generated by heat exchange in the jacket can be reduced to a trickle, increasing thermal efficiency.In addition, a scraper can be installed under the rotating grate at the bottom of the furnace. By discovering a scale through which ash can be easily and continuously discharged outside the furnace, and by using the generated scum for a lime kiln, and using the exhaust gas from this kiln as part of the gasification agent, It was discovered that the thermal efficiency increased, and based on this knowledge, the present invention was completed.

すなわち、本発明は、竪型ガス発生炉において固体燃料
とガス化剤を接触させて固体燃料をカス化するに当り、
固体燃料を炉頂部の二重蓋構造を有する燃料投入室より
炉内に供給し、一方、カス化剤を炉下部に設置しである
偏心型回転火格子のグレート間より炉内に送入して固体
燃料をガス化し、発生したガスを炉の上部及び中間部の
二段に設けられたガス抜き出し口より抜き出し、他方固
体燃料のガス化に、より生成した灰分を偏心型回転火格
子及びその下方に設けられた掻羽根によって炉底部より
連続的に排出し、さらに冷却用ジャケット内において熱
交換により加熱された冷却水をフラッシュタンクに導い
てフランスさせ、発生した水蒸気をガス化剤の一部とし
て炉内に送入することを特徴−とする固体燃料のガス化
方法、及び炉の頂部に燃料投入室、下部に偏心型回転火
格子、底部にガス化剤送入口と灰分排出口を有し、かつ
発生ガス抜き出し口、及びフラツンユタンクと連結した
冷却用ジャケットを有する竪型ガス発生炉において、 (イ)燃料投入室を二重蓋構造とすること(ロ)発生ガ
ス抜き出し口を炉上部と中間部の二段に設けること (ハ)偏心型回転火格子の下に掻羽根を設けること を特徴とするガス発生炉に関する・ものである。
That is, in the present invention, when solid fuel is brought into contact with a gasifying agent in a vertical gas generating furnace to turn the solid fuel into scum,
Solid fuel is supplied into the furnace from a fuel input chamber with a double lid structure at the top of the furnace, while a sludge agent is fed into the furnace from between the grates of an eccentric rotating grate installed at the bottom of the furnace to solidify the solid fuel. The fuel is gasified and the generated gas is extracted from the gas extraction ports provided in two stages at the top and middle of the furnace, while the ash produced by gasification of the solid fuel is sent to the eccentric rotating grate and below it. Cooling water is continuously discharged from the bottom of the furnace using the provided scraper blades, and the cooling water heated by heat exchange in the cooling jacket is led to a flash tank to be used as a flash tank. A solid fuel gasification method is characterized in that the solid fuel is fed into the furnace, and the furnace has a fuel input chamber at the top, an eccentric rotating grate at the bottom, a gasification agent inlet and an ash discharge port at the bottom, In a vertical gas generating furnace that has a generated gas outlet and a cooling jacket connected to the flat tank, (a) the fuel input chamber has a double-lid structure, and (b) the generated gas outlet is located in the upper and middle parts of the furnace. This relates to a gas generating furnace characterized in that (c) a scraper blade is provided under the eccentric rotating grate.

次に本発明のガス化方法及びガス発生炉を図面に従って
詳細に説明する。
Next, the gasification method and gas generating furnace of the present invention will be explained in detail with reference to the drawings.

図は本発明のガス発生炉の概略断面図であり、図におい
て符号1は固体燃料をガス発生炉に供給するだめのホッ
パー、2は上部外蓋3及び下部内蓋4を備えた二重蓋構
造をもつ燃料投入室、5.6は発生したガスを炉外へ抜
き出すだめの上部ガス抜き出し口、7は中間部ガス抜き
出し口、8は熱交換により加熱された冷却水をフランス
させるだめの7ラシユタンク12に連結された冷却用ジ
ャケット 9は生成した灰分を均一に下方に押し出すた
めの偏心型回転火格子、10は回転火格子より押し出さ
れた灰分を掻き集めて灰分抜き出し口11より炉外へ排
出するための灰分掻羽根、13は空気や水蒸気などのカ
ス化剤を炉内に送入するためのガス化剤送入口、14は
フラッシュタンク12でフラッシュされて生じた水蒸気
を炉内に供給するだめの水蒸気供給管及び15は水蒸気
以外のガス化剤供給管である。
The figure is a schematic sectional view of the gas generating furnace of the present invention. In the figure, reference numeral 1 denotes a hopper for supplying solid fuel to the gas generating furnace, and 2 denotes a double lid structure comprising an upper outer cover 3 and a lower inner cover 4. 5.6 is an upper gas outlet for extracting generated gas to the outside of the furnace; 7 is an intermediate gas outlet; 8 is a 7-rush tank 12 for discharging cooling water heated by heat exchange. A cooling jacket 9 is connected to an eccentric rotating grate for uniformly pushing out the generated ash downward, and 10 is for collecting the ash pushed out from the rotating grate and discharging it out of the furnace from an ash extraction port 11. 13 is a gasifying agent inlet for feeding a sludge agent such as air or steam into the furnace, and 14 is a tank for supplying the steam generated by flashing in the flash tank 12 into the furnace. The steam supply pipe and 15 are gasifying agent supply pipes other than steam.

ホッパー1より炉頂部の燃料投入室2に投入された固体
燃料を、上部外蓋3及び下部内蓋4を操作して炉内に供
給する。この二重蓋構造は、固体燃料を炉内に連続的に
供給することを可能とし、またガス温度やガス濃度の大
幅な変動をなくしてガス発生を安定化する役割を演じる
。ここで用いる固体燃料としては、例オば石炭、無煙炭
、コークス、木材チップなどか挙げられ、これらは単独
で用いてもよいし、混合して用いてもよい。
Solid fuel is introduced from a hopper 1 into a fuel input chamber 2 at the top of the furnace, and is supplied into the furnace by operating an upper outer cover 3 and a lower inner cover 4. This double lid structure makes it possible to continuously supply solid fuel into the furnace, and also plays the role of stabilizing gas generation by eliminating large fluctuations in gas temperature and gas concentration. Examples of the solid fuel used here include coal, anthracite, coke, and wood chips, and these may be used alone or in combination.

一方、ガス化剤を炉底部のガス化剤送入口13より、炉
下部に設置しである偏心型回転火格子9のグレート間を
通過させて炉内に送入し、固体燃料をガス化する。発生
したガスは、炉の上部抜き出し口5,6及び中間部抜き
出しロアより炉外へ抜き出す。この中間部抜き出し口よ
り抜き出されたガスは、炉内において燃焼に寄与するこ
とが少なく、シたがって中間部より抜き出すことによシ
熱損失が少なくなる。また上部及び中間部からのガス抜
き出し量の割合を調節することによって、ジャケットで
熱交換されて発生する水蒸気の量をコントロールするこ
とができ、これにより補給水の低減や余剰水蒸気量の減
少が可能となり熱効率が高められる。
On the other hand, the gasifying agent is fed into the furnace through the gasifying agent inlet 13 at the bottom of the furnace, passing between the grates of the eccentric rotating grate 9 installed at the bottom of the furnace, and gasifying the solid fuel. . The generated gas is extracted out of the furnace through the upper extraction ports 5 and 6 and the intermediate extraction lower. The gas extracted from the intermediate extraction port makes little contribution to combustion within the furnace, and therefore, by extracting it from the intermediate portion, heat loss is reduced. In addition, by adjusting the ratio of the amount of gas removed from the upper and middle sections, the amount of water vapor generated by heat exchange in the jacket can be controlled, making it possible to reduce make-up water and the amount of excess water vapor. This increases thermal efficiency.

本発明において、ガス化剤として空気又は高濃度酸素含
有空気と水蒸気が好捷しく用いられる。
In the present invention, air or highly oxygen-containing air and water vapor are preferably used as the gasifying agent.

また、本発明のガス発生炉より発生するガスは、石灰焼
成炉用に用いることができ、この際石灰焼成炉から排出
される二酸化炭素濃度約30〜50%の排ガスを、ガス
化剤として空気及び水蒸気とともに本発明のガス発生炉
に使用することにより、熱効率が約数%上昇する。
Further, the gas generated from the gas generating furnace of the present invention can be used for a lime kiln, and in this case, the exhaust gas discharged from the lime kiln with a carbon dioxide concentration of about 30 to 50% is used as a gasifying agent to By using it in the gas generating furnace of the present invention together with water vapor and steam, the thermal efficiency increases by about several percent.

他方、固体燃料のガス化により生成した灰分け、炉下部
に設置された偏心型回転火格子9及びその下方に設けら
れた灰分掻羽根IOによって炉底部の灰分抜き出し口】
1より、容易に連続的に炉外へ排出される。この際ガス
化剤が偏心型回転火格子のグレート間より炉内に送入さ
れているため失灰分はガス化剤によって冷却され、はこ
りのたたない取扱い易いものとなる。
On the other hand, the ash produced by gasification of solid fuel is separated, and the ash at the bottom of the furnace is extracted by the eccentric rotating grate 9 installed at the bottom of the furnace and the ash scraper IO installed below it.
1, it is easily and continuously discharged out of the furnace. At this time, since the gasifying agent is fed into the furnace from between the grates of the eccentric rotating grate, the lost ash is cooled by the gasifying agent, making it easy to handle without forming lumps.

また、冷却用ジャケット8内において熱交換により加熱
された冷却水を、フラッシュタンク12に導いてフラッ
シュさぜることにより生じた水蒸気を、ガス化剤として
水蒸気供給管14を通してガス発生炉に送入する。
In addition, the water vapor generated by guiding the cooling water heated by heat exchange in the cooling jacket 8 to the flash tank 12 and flashing it is sent to the gas generating furnace through the steam supply pipe 14 as a gasifying agent. do.

本発明のガス発生炉を用いて固体燃料をガス化する力伝
1グ、固体燃料の連続的供給や灰分の連続的排出が容易
であり、疫・つガスの発生が安定である上に熱効率が優
れており、さらに発生ガスを石灰焼成炉用に用いること
ができ、その際石灰焼成炉から排出するカスをガス化剤
の一部として本発明のガス発生炉に用いることにより、
熱効率はさらに上昇する。
The gas generation furnace of the present invention can be used to gasify solid fuel, is easy to continuously supply solid fuel and continuously discharge ash, is stable in gas generation, and is thermally efficient. Furthermore, the generated gas can be used for a lime kiln, and in this case, by using the dregs discharged from the lime kiln as part of the gasification agent in the gas generating furnace of the present invention,
Thermal efficiency increases further.

次に本発明を実施例によってさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例における熱効率の値は下記に示す式によっ
て計算したものである。
In addition, the value of thermal efficiency in an Example was calculated by the formula shown below.

実施例】 本発明のカス発生炉において、固体燃料としてコークス
、無煙炭、石炭及び木材チップ+コークスの4種類を、
カス化剤として空気及び水蒸気を用い、本発明のガス化
方法に従って固体燃料のガス化を行った。たたし、炉上
部ガス抜き出し口及び中間部ガス抜き出し口より抜き出
す発生カス量の割合は、67 : 33である。
[Example] In the scum generating furnace of the present invention, four types of solid fuels were coke, anthracite, coal, and wood chips + coke.
Solid fuel was gasified according to the gasification method of the present invention using air and water vapor as scum forming agents. However, the ratio of the amount of generated waste extracted from the furnace upper gas outlet and the intermediate gas outlet was 67:33.

その結果を、固体原料の物性と粒度分布、送入空気の量
と温度及び送入蒸気量とともに第1表に示す。
The results are shown in Table 1 along with the physical properties and particle size distribution of the solid raw material, the amount and temperature of the air fed, and the amount of steam fed.

なお、表中の送入空気量、送入蒸気量及び産気量は固体
燃料1トン当りの値である。
Note that the amount of air fed, the amount of steam fed, and the amount of produced air in the table are values per ton of solid fuel.

実施例2 固体燃料とし〈実施例1のN[L ]におけるコークス
と同じコークスを用い、ガ子化剤として水蒸気の一部を
石灰焼成炉排カスに置きかえて、実施例1と同様にして
固体燃料のガス化を行った。
Example 2 A solid fuel was produced in the same manner as in Example 1, using the same coke as the coke in N[L] in Example 1 as the solid fuel, and replacing part of the steam with lime kiln waste as a gazing agent. The fuel was gasified.

その結果を、送入空気の量と温度、送入蒸気量及び送入
排ガス量とともに第2表に示す。
The results are shown in Table 2 along with the amount and temperature of the air to be fed, the amount of steam to be fed, and the amount of exhaust gas to be fed.

なお、表中の送入空気量、送入蒸気量、送入排ガス量及
び産気量は固体燃料1トン当りの値である。また、石灰
焼成炉排カス中のCO2濃度は32〜37%である。
Note that the amount of air fed, the amount of steam fed, the amount of exhaust gas fed, and the amount of produced air in the table are values per 1 ton of solid fuel. Moreover, the CO2 concentration in the lime kiln waste is 32 to 37%.

第   2   表 第2表から、石灰焼成炉排ガスをガス化剤として水蒸気
の一部に置きかえて用いた場合、排ガスを用いガい場合
(実施例]−Nα1)に比較して熱効率が3%上昇する
ことが判る。
Table 2 From Table 2, when lime kiln furnace exhaust gas is used as a gasification agent in place of a portion of steam, the thermal efficiency increases by 3% compared to when exhaust gas is used (Example) -Nα1). It turns out that it does.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のガス発生炉の概略断面図であり、図中符号
1はホッパー、2は燃料投入室、3は上部外蓋、4は下
部内蓋、5,6は上部カス抜き出し口、7は中間部ガス
抜き出し口、8は冷却用ジャケット、9は偏心型回転火
格子、】0は灰分掻羽根、11は灰分抜き出し口、12
はフラッシュタンク、13はガス化剤送入口、14は水
蒸気供給管及び15は水蒸気以外のガス止剤供給管であ
る。 特許出願人  奥多摩工業株式会社 代理人 阿 形  明
The figure is a schematic sectional view of the gas generating furnace of the present invention, in which reference numeral 1 is a hopper, 2 is a fuel input chamber, 3 is an upper outer cover, 4 is a lower inner cover, 5 and 6 are upper waste removal ports, and 7 is an intermediate gas extraction port, 8 is a cooling jacket, 9 is an eccentric rotating grate, ]0 is an ash scraper, 11 is an ash extraction port, 12
13 is a flash tank, 13 is a gasifying agent inlet, 14 is a water vapor supply pipe, and 15 is a gas stopper supply pipe other than water vapor. Patent applicant Akira Agata, agent of Okutama Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1 竪型ガス発生炉におい“て、固体燃料とガス化剤を
接触させて固体燃料をガス化するに当シ、固体燃料を炉
頂部の二重蓋構造を有する燃料投入室より炉内に供給し
、一方、ガス化剤を炉下部に設置しである偏心型回転火
格子のグレート間より炉内に送入して固体燃料をカスイ
ヒし、発生したガスを炉の上部及び中間部の二段に設り
られたガス抜き出し口より抜き出し、他方、固体燃料の
ガス化により生成した灰分を偏心型回転火格子及びその
下方に設けられた掻羽根によって炉底部より連続的に排
出し、〜さらに冷却用ジャケット内において熱交換によ
り加熱された冷却水をフラッシュタンクに導いてフラッ
シュさせ、発無した水蒸気をガス化剤の一部として炉内
に送入することを特徴とする固体燃料のガス化方法。 2 ガス化剤が空気と水蒸気及び石灰焼成炉iJトガス
である特許請求の範囲第1項記載のガス化方法。 3 炉の頂部に燃料投入室、下部に偏心型回転火格子、
底部にガス化剤送入口と灰分排出口を有し、かつ発生ガ
ス抜き出し口、及びフラツンユタンクと連結した冷却用
ジャケットを有する竪型方ス発生炉において、 (イ)燃料投入室を二重蓋構造とすること(ロ)発生カ
ス抜き州し口を炉上部と中間部の二段に設けること (ハ)偏心型回転火格子の下方に掻羽根を設けること を特徴とするガス発生炉。
[Claims] 1. In a vertical gas generating furnace, when solid fuel is brought into contact with a gasifying agent to gasify the solid fuel, the solid fuel is introduced into the fuel input chamber having a double lid structure at the top of the furnace. On the other hand, the solid fuel is fed into the furnace between the grates of an eccentric rotating grate installed in the lower part of the furnace, and the generated gas is sent to the upper and middle parts of the furnace. On the other hand, the ash produced by gasification of the solid fuel is continuously discharged from the bottom of the furnace using an eccentric rotating grate and scraper blades installed below it. , ~ A solid fuel characterized by further leading the cooling water heated by heat exchange in the cooling jacket to a flash tank and flashing it, and sending the emitted water vapor into the furnace as part of the gasifying agent. 2. The gasification method according to claim 1, wherein the gasifying agents are air, steam, and lime kiln gas. 3. The furnace has a fuel input chamber at the top and an eccentric rotating grate at the bottom. ,
In a vertical generator furnace that has a gasifying agent inlet and an ash outlet at the bottom, and a cooling jacket connected to the generated gas outlet and the flattened tank, (a) the fuel input chamber has a double lid structure; (b) A gas generating furnace is characterized in that waste removal outlets are provided in two stages at the upper and middle parts of the furnace, and (c) scrapers are provided below the eccentric rotating grate.
JP10637781A 1981-07-08 1981-07-08 Gasification of solid fuel and gas producer Pending JPS5869291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10637781A JPS5869291A (en) 1981-07-08 1981-07-08 Gasification of solid fuel and gas producer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10637781A JPS5869291A (en) 1981-07-08 1981-07-08 Gasification of solid fuel and gas producer

Publications (1)

Publication Number Publication Date
JPS5869291A true JPS5869291A (en) 1983-04-25

Family

ID=14432018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10637781A Pending JPS5869291A (en) 1981-07-08 1981-07-08 Gasification of solid fuel and gas producer

Country Status (1)

Country Link
JP (1) JPS5869291A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696790A (en) * 1992-03-13 1994-04-08 Wolf Johnssen Method for generation of electric energy from biological raw material
JP2013185093A (en) * 2012-03-08 2013-09-19 Mitsuyuki Iijima Pyrolytic gasifying apparatus
WO2015012302A1 (en) * 2013-07-24 2015-01-29 富士古河E&C株式会社 Charcoal syngas manufacturing method and apparatus, and fuel cell power generation system using said manufacturing method and apparatus
CN106987277A (en) * 2017-02-09 2017-07-28 北京四维天拓技术有限公司 A kind of contraction type vaporizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123450A (en) * 1975-04-08 1976-10-28 Bbc Brown Boveri & Cie Heat power plant
JPS5234571A (en) * 1975-09-10 1977-03-16 Hitachi Zosen Corp Thermal cracking device for combustible refuse
JPS5271505A (en) * 1975-12-05 1977-06-15 Otto & Co Gmbh Dr C Waterrcooling high temperature gasifier
US4165970A (en) * 1977-08-16 1979-08-28 Metallgesellschaft Aktiengesellschaft Process and apparatus for gasifying granular coal under superatmospheric pressure
JPS54141803A (en) * 1978-04-21 1979-11-05 Tenneco Chem Manufacture of finely divided carbon
JPS5653185A (en) * 1978-09-25 1981-05-12 Midland Ross Corp Method of running vertical continuous gasification furnace and said furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123450A (en) * 1975-04-08 1976-10-28 Bbc Brown Boveri & Cie Heat power plant
JPS5234571A (en) * 1975-09-10 1977-03-16 Hitachi Zosen Corp Thermal cracking device for combustible refuse
JPS5271505A (en) * 1975-12-05 1977-06-15 Otto & Co Gmbh Dr C Waterrcooling high temperature gasifier
US4165970A (en) * 1977-08-16 1979-08-28 Metallgesellschaft Aktiengesellschaft Process and apparatus for gasifying granular coal under superatmospheric pressure
JPS54141803A (en) * 1978-04-21 1979-11-05 Tenneco Chem Manufacture of finely divided carbon
JPS5653185A (en) * 1978-09-25 1981-05-12 Midland Ross Corp Method of running vertical continuous gasification furnace and said furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696790A (en) * 1992-03-13 1994-04-08 Wolf Johnssen Method for generation of electric energy from biological raw material
JP2013185093A (en) * 2012-03-08 2013-09-19 Mitsuyuki Iijima Pyrolytic gasifying apparatus
WO2015012302A1 (en) * 2013-07-24 2015-01-29 富士古河E&C株式会社 Charcoal syngas manufacturing method and apparatus, and fuel cell power generation system using said manufacturing method and apparatus
JPWO2015012302A1 (en) * 2013-07-24 2017-03-02 富士古河E&C株式会社 Charcoal water gas production method and apparatus, and fuel cell power generation system using the production method and apparatus
CN106987277A (en) * 2017-02-09 2017-07-28 北京四维天拓技术有限公司 A kind of contraction type vaporizer
CN106987277B (en) * 2017-02-09 2022-12-02 北京四维天拓技术有限公司 Contraction type gasification chamber

Similar Documents

Publication Publication Date Title
RU2287010C2 (en) Environmental safe process for obtaining energy from coal (options)
US5324336A (en) Partial oxidation of low rank coal
FI74532C (en) Procedure for waste disposal.
US8168144B2 (en) System and method for providing an integrated reactor
WO2017050231A1 (en) Industrial furnace integrated with biomass gasification system
CA2755353A1 (en) Two stage dry feed gasification system and process
NZ202333A (en) Gasifying carbonaceous material
PL136806B1 (en) Method of generating gaseous mixture,containing especially carbon monoxide and hydrogen,from coal and/or hadrocarbons containing materials and apparatus therefor
CA1309589C (en) Method of producing a clean gas containing carbon monoxide and hydrogen
JPS614788A (en) Carbon gasification
JP2021152210A (en) Blast furnace operation method and blast furnace incidental facility
JPS5869291A (en) Gasification of solid fuel and gas producer
JPS63193989A (en) Fuel gasifying method
JPS5832196B2 (en) Coal gasification method
US4089659A (en) Process for producing a lean gas by the gasification of a fuel mainly in lump form
US1559622A (en) Production of combustible gas
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP2021152211A (en) Blast furnace operation method and blast furnace incidental facility
US4693729A (en) Method for gasifying solid fuels
Cruz Producer gas from agricultural wastes—Its production and utilization in a converted oil-fired boiler
JPS5829999B2 (en) Solid fuel gasification equipment
US1921711A (en) Process of producing water gas
JP2009001826A (en) Gasification method of biomass
US2751287A (en) Gasification of fuels
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system