JP2009270050A - Carbonization furnace - Google Patents

Carbonization furnace Download PDF

Info

Publication number
JP2009270050A
JP2009270050A JP2008123271A JP2008123271A JP2009270050A JP 2009270050 A JP2009270050 A JP 2009270050A JP 2008123271 A JP2008123271 A JP 2008123271A JP 2008123271 A JP2008123271 A JP 2008123271A JP 2009270050 A JP2009270050 A JP 2009270050A
Authority
JP
Japan
Prior art keywords
carbonization
wall
cylindrical body
main body
carbonization furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008123271A
Other languages
Japanese (ja)
Other versions
JP4226066B1 (en
Inventor
Yoshihito Umemura
義仁 梅村
Kiminori Takahashi
君典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZUMA SANSHO KK
Original Assignee
AZUMA SANSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZUMA SANSHO KK filed Critical AZUMA SANSHO KK
Priority to JP2008123271A priority Critical patent/JP4226066B1/en
Application granted granted Critical
Publication of JP4226066B1 publication Critical patent/JP4226066B1/en
Priority to PCT/JP2009/058632 priority patent/WO2009136622A1/en
Publication of JP2009270050A publication Critical patent/JP2009270050A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B1/00Retorts
    • C10B1/02Stationary retorts
    • C10B1/04Vertical retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonization furnace superior in carbonization efficiency and carbonization product yield. <P>SOLUTION: A carbonization furnace 1 for organic waste includes a substantially cylindrical body 10 and a cylindrical material 20 housed in the body 10, and also a carbonization body 50 formed from the side wall of the body 10 and the cylindrical material 20 and used for carbonizing organic waste, and a non-combustion part 60 positioned below the carbonization part 50 and formed from the side wall of the body 10 and cylindrical material 20 and extinguishing burning of the carbonized organic waste; wherein the cylindrical material 20 has a double wall structure equipped with an inner wall and an air supply opening 23, and air is supplied from the air supply opening 23 to the carbonization part 50 through a preliminary heating chamber formed between the outer and inner walls. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は炭化炉、より詳しくは有機廃棄物を炭化するための炭化炉に関する。   The present invention relates to a carbonization furnace, and more particularly to a carbonization furnace for carbonizing organic waste.

近年、家庭や産業分野から排出される有機物(「有機廃棄物」ともいう)を処理して、炭として再利用する方法が検討されている。例えば特許文献1には、略円筒形の本体を備え、本体の内部の上部空間を、有機廃棄物から発生する可燃性ガスを主として燃焼させる燃焼ゾーンとなし、燃焼ゾーンの下方に、本体の内径よりも小さな円筒体を配置し、円筒体の上部分と本体の側壁とによって構成される空間を、有機廃棄物を燃焼させ、その燃焼熱により炭化させる精錬ゾーンとなし、円筒体の前記上部分以外の部分と本体の側壁とによって構成される空間を、不燃状態を作り出して炭化物を消火させる不燃ゾーンとなし、かつ、円筒体から燃焼ゾーンに空気を供給することを特徴とする炭化炉が開示されている。この炭化炉は円筒体から空気を供給することにより燃焼温度を均一にでき、精錬時間を短縮させるとともに炭品質を向上させることができるとされている。   In recent years, methods for treating organic substances (also referred to as “organic waste”) discharged from households and industrial fields and reusing them as charcoal have been studied. For example, Patent Document 1 includes a substantially cylindrical main body, and an upper space inside the main body is defined as a combustion zone in which combustible gas generated from organic waste is mainly combusted. A space formed by an upper portion of the cylindrical body and a side wall of the main body is formed as a refining zone for burning organic waste and carbonizing by the heat of combustion, and the upper portion of the cylindrical body Disclosed is a carbonization furnace characterized in that a space constituted by a portion other than the main body and a side wall of the main body is formed as a non-combustible zone for creating a non-combustible state and extinguishing the carbide, and supplying air from the cylindrical body to the combustion zone Has been. This carbonization furnace is said to be able to make the combustion temperature uniform by supplying air from a cylindrical body, shorten the refining time, and improve the quality of charcoal.

しかしながら、当該文献に記載の炭化炉は、時間当たりの炭化物収量で表される炭化効率や炭化物収率がいまだ十分ではなく、さらなる向上が求められていた。
特開2000−17269号公報
However, the carbonization furnace described in the document has not yet sufficient carbonization efficiency and carbide yield expressed by the carbide yield per hour, and further improvement has been demanded.
JP 2000-17269 A

発明者らは、特許文献1に記載の炭化炉に関し、炭化効率や炭化物収率を向上させるための検討を行った。その結果、円筒体から吹き込まれる空気により、有機廃棄物を炭化する雰囲気の温度が低下してしまうと、炭化効率および炭化物収率が低下することを見出した。
かかる事情に鑑み、本発明は、炭化効率および炭化物収率に優れた炭化炉を提供することを目的とする。
The inventors have studied the carbonization furnace described in Patent Document 1 in order to improve the carbonization efficiency and the carbide yield. As a result, it has been found that if the temperature of the atmosphere in which the organic waste is carbonized is lowered by the air blown from the cylindrical body, the carbonization efficiency and the carbide yield are lowered.
In view of such circumstances, an object of the present invention is to provide a carbonization furnace having excellent carbonization efficiency and carbide yield.

[1]略円筒形の本体と前記本体に収容された円筒体を含む、有機廃棄物の炭化炉であって、
前記本体の側壁と前記円筒体とにより形成され、有機廃棄物を炭化させる炭化部と、
前記炭化部の下方に位置し、前記本体の側壁と前記円筒体とにより形成され、炭化された前記有機廃棄物を消火する不燃部を備え、
前記円筒体は、内壁と、空気供給口を備えた外壁を有する二重壁構造であり、前記外壁と内壁の間に形成された予備加熱室を介して前記空気供給口から空気を前記炭化部に供給する、炭化炉。
[2]前記円筒体の内壁は、前記外壁に設けられた空気供給口と対向する領域外に、予備加熱室への空気導入口を有する、[1]に記載の炭化炉。
[3]前記円筒体の予備加熱室を形成する外壁と内壁に挟まれた空間の幅は、100〜200mmである、[1]または[2]に記載の炭化炉。
[4]前記円筒体は、上部が円錐台形であり、前記円錐台の側面は前記空気供給口を備える、[1]〜[3]のいずれかに記載の炭化炉。
[5]前記炭化部に位置する前記本体の壁は、空気供給口を備える、[1]〜[4]のいずれかに記載の炭化炉。
[6]前記円筒体は、前記本体の底部より取り外し可能である、[1]〜[5]のいずれかに記載の炭化炉。
[7]前記本体の側壁と前記円筒体の間に形成される空間の幅は、400〜600mmである、[1]〜[6]のいずれかに記載の炭化炉。
[1] An organic waste carbonization furnace including a substantially cylindrical main body and a cylindrical body accommodated in the main body,
A carbonized portion that is formed by the side wall of the main body and the cylindrical body, and carbonizes organic waste,
Located below the carbonized part, formed by the side wall of the main body and the cylindrical body, and comprising a non-combustible part that extinguishes the carbonized organic waste,
The cylindrical body has a double wall structure having an inner wall and an outer wall having an air supply port, and air is supplied from the air supply port through a preheating chamber formed between the outer wall and the inner wall. To supply the carbonization furnace.
[2] The carbonization furnace according to [1], wherein the inner wall of the cylindrical body has an air inlet to the preheating chamber outside a region facing the air supply port provided in the outer wall.
[3] The carbonization furnace according to [1] or [2], wherein a width of a space between the outer wall and the inner wall forming the preheating chamber of the cylindrical body is 100 to 200 mm.
[4] The carbonization furnace according to any one of [1] to [3], wherein an upper portion of the cylindrical body has a truncated cone shape, and a side surface of the truncated cone includes the air supply port.
[5] The carbonization furnace according to any one of [1] to [4], wherein the wall of the main body located in the carbonization unit includes an air supply port.
[6] The carbonization furnace according to any one of [1] to [5], wherein the cylindrical body is removable from a bottom portion of the main body.
[7] The carbonization furnace according to any one of [1] to [6], wherein a width of a space formed between the side wall of the main body and the cylindrical body is 400 to 600 mm.

本発明により、炭化効率および炭化物収率に優れた炭化炉が提供できる。   According to the present invention, a carbonization furnace excellent in carbonization efficiency and carbide yield can be provided.

1.炭化炉
本発明の炭化炉は、有機廃棄物の炭化炉であって、略円筒形の本体と前記本体に収容された円筒体を含む。本発明の炭化炉は、前記本体の側壁と前記円筒体とにより形成され、有機廃棄物を炭化させる炭化部と、前記炭化部の下方に位置し、前記本体の側壁と前記円筒体とにより形成され、炭化された前記有機廃棄物を消火する不燃部を備える。前記円筒体は、内壁と空気供給口を備えた外壁を有する二重壁構造であり、前記外壁と内壁の間に形成された予備加熱室を介して前記空気供給口から空気を前記炭化部に供給することを特徴とする。
1. Carbonization furnace The carbonization furnace of the present invention is a carbonization furnace for organic waste, and includes a substantially cylindrical main body and a cylindrical body accommodated in the main body. The carbonization furnace of the present invention is formed by the side wall of the main body and the cylindrical body, and is formed by the carbonization portion that carbonizes organic waste, the carbonization portion located below the carbonization portion, and the side wall of the main body and the cylindrical body. And an incombustible portion for extinguishing the carbonized organic waste. The cylindrical body has a double wall structure having an outer wall with an inner wall and an air supply port, and air is supplied from the air supply port to the carbonization part via a preheating chamber formed between the outer wall and the inner wall. It is characterized by supplying.

有機廃棄物とは、炭素を含む廃棄物である。その例には、食品廃棄物、建設廃材、シュレッダーダスト、畜産廃棄物、間伐材、剪定枝、製材のくず、竹、刈り草のような樹木製の廃材、汚泥、イナワラのようなソフトバイオマス、家庭から排出される一般廃棄物が含まれる。この中でも、有機廃棄物としては樹木製の廃材(「木質バイオマス」ともいう)が好ましい。   Organic waste is waste containing carbon. Examples include food waste, construction waste, shredder dust, livestock waste, thinned wood, pruned branches, sawdust, wood and wood waste such as bamboo and cut grass, soft biomass such as sludge and inawara, This includes general waste discharged from households. Among them, wood waste materials (also referred to as “woody biomass”) are preferable as organic waste.

有機廃棄物はあらかじめ乾燥機などで乾燥し、その含水率が適正に調整されていることが好ましい。炭化効率や炭化物収率を高くできるからである。含水率は10〜30%であることが好ましい。本発明において記号「〜」は、その両端の数値を含む。   It is preferable that the organic waste is previously dried with a drier or the like and the water content thereof is appropriately adjusted. This is because the carbonization efficiency and the carbide yield can be increased. The moisture content is preferably 10 to 30%. In the present invention, the symbol “˜” includes numerical values at both ends thereof.

図1は、本発明の炭化炉の一例を示す断面図である。図1に示すとおり、炭化炉1は、主として本体10と本体10に収納された円筒体20(円筒体20は正面図で示してある)より構成される。
本体10は、有機廃棄物の投入口11、排気口12、着火バーナー13、空気供給口14、取出口15を有する。円筒体20は、その上部が円錐台形であり、円錐台形の側面(「頂壁」21ともいう)と側壁22に空気供給口23を有する。以下に各材について図1〜3を参照しながら説明する。
FIG. 1 is a cross-sectional view showing an example of a carbonization furnace of the present invention. As shown in FIG. 1, the carbonization furnace 1 mainly includes a main body 10 and a cylindrical body 20 accommodated in the main body 10 (the cylindrical body 20 is shown in a front view).
The main body 10 has an input port 11 for organic waste, an exhaust port 12, an ignition burner 13, an air supply port 14, and an outlet 15. The upper portion of the cylindrical body 20 has a truncated cone shape, and has an air supply port 23 on a side surface (also referred to as “top wall” 21) and a side wall 22 of the truncated cone shape. Each material will be described below with reference to FIGS.

(1)本体
本体10は略円筒形である。略円筒形とは、円筒またはこれに類似する形状をいう。本体10は有機廃棄物の投入口11を有する。ここから廃棄物が炭化炉1内へ導入される。本体10は、導入された有機廃棄物を燃焼させるための、着火バーナー13と空気供給口14を有することが好ましい。着火バーナー13は、有機廃棄物に着火できればどの位置に設けられていてもよいが、投入口11よりやや下方に設けられていることが好ましい。有機廃棄物は、ここで燃焼させられ、炭化物を多く含む固形分と分解ガスを生成する。
(1) Main body The main body 10 has a substantially cylindrical shape. The substantially cylindrical shape refers to a cylinder or a shape similar to this. The main body 10 has an inlet 11 for organic waste. Waste is introduced into the carbonization furnace 1 from here. The main body 10 preferably has an ignition burner 13 and an air supply port 14 for burning the introduced organic waste. The ignition burner 13 may be provided at any position as long as the organic waste can be ignited, but is preferably provided slightly below the charging port 11. The organic waste is burned here to produce solids rich in carbides and cracked gas.

空気供給口14は、本体10側壁の投入口11よりも下の位置に設けられることが好ましく、本体10側壁の「円筒体20の空気供給口23が設けられた領域に対向する位置」に設けられることがより好ましい。さらに空気供給口14は、本体10の全周に亘って設けられることが好ましい。空気供給口14は円形の孔であることが好ましく、その直径は10〜30mm程度であることが好ましい。
有機物は燃焼させられ炭化物を多く含む固形分を生成する。この炭化物を多く含む固形分は、本体10側壁と円筒体20とにより形成された領域に到達する。この領域において炭化物を多く含む固形分はさらに炭化される。この領域は炭化部50と呼ばれる。炭化部50における炭化とは、空気を供給しつつ高温を維持して炭化を進行させることを意味する。この炭化は「精錬」や「あらし」とも呼ばれる。
The air supply port 14 is preferably provided at a position below the charging port 11 on the side wall of the main body 10, and is provided at a “position facing the region where the air supply port 23 of the cylindrical body 20 is provided” on the side wall of the main body 10. More preferably. Furthermore, the air supply port 14 is preferably provided over the entire circumference of the main body 10. The air supply port 14 is preferably a circular hole, and its diameter is preferably about 10 to 30 mm.
Organic matter is burned to produce solids rich in carbides. This solid content containing a large amount of carbide reaches the region formed by the side wall of the main body 10 and the cylindrical body 20. In this region, the solids rich in carbides are further carbonized. This region is called the carbonized portion 50. The carbonization in the carbonization part 50 means that the carbonization proceeds while maintaining the high temperature while supplying air. This carbonization is also called “refining” or “storm”.

この炭化部50のさらに下方の本体10側壁と円筒体20で挟まれた領域には、不燃部60が形成される。不燃部60には炭化部50で精錬された炭化物が移送される。不燃部60に到達した直後の炭化物はまだ燃焼しているため、不燃部60にて空気を遮断して消火する。   An incombustible portion 60 is formed in a region sandwiched between the side wall of the main body 10 and the cylindrical body 20 below the carbonized portion 50. Carbides refined in the carbonization part 50 are transferred to the non-combustible part 60. Since the carbide immediately after reaching the incombustible portion 60 is still burning, the incombustible portion 60 blocks the air and extinguishes the fire.

本体10の上部には、有機廃棄物が燃焼した際に生じる分解ガスを燃焼させるための空間が形成されていることが好ましい。この空間は二次燃焼部70とも呼ばれる。   It is preferable that a space for burning the decomposition gas generated when the organic waste is burned is formed in the upper part of the main body 10. This space is also called a secondary combustion unit 70.

本体10の底部には、不燃部60で消火された炭化物を取出すための取出口15が設けられることが好ましい。   It is preferable that the bottom of the main body 10 is provided with an outlet 15 for taking out the carbide extinguished by the incombustible portion 60.

本体10の大きさは、処理する有機廃棄物の量や、製造する炭化物の量により適宜選択してよいが、直径は0.5〜3mであることが好ましい。本体10の高さは1〜4mであることが好ましい。また、本体10を構成する材料は、公知の材料であればよく、公知の材料の例には、ステンレスが含まれる。   The size of the main body 10 may be appropriately selected according to the amount of organic waste to be treated and the amount of carbide to be produced, but the diameter is preferably 0.5 to 3 m. The height of the main body 10 is preferably 1 to 4 m. Moreover, the material which comprises the main body 10 should just be a well-known material, and stainless steel is contained in the example of a well-known material.

(2)円筒体
本発明の炭化炉1は、本体10に収納された円筒体20を有する。円筒体とは、円柱状の部材であり、本発明の炭化炉1においていわゆる「焼き玉」のような役割を果たす。すなわち、円筒体20は炭化部50を加熱して炭化を促進させる。円筒体20は、加熱装置を備えていてもよいが、円筒体20は、有機廃棄物を燃焼させる際の熱等により加熱されることが好ましい。
(2) Cylindrical body The carbonization furnace 1 of the present invention has a cylindrical body 20 accommodated in the main body 10. The cylindrical body is a columnar member and plays a role like a so-called “baked ball” in the carbonization furnace 1 of the present invention. That is, the cylindrical body 20 heats the carbonization part 50 to promote carbonization. The cylindrical body 20 may be provided with a heating device, but the cylindrical body 20 is preferably heated by heat or the like when burning organic waste.

円筒体20は、図1に示すように上部が円錐台形であることが好ましい。この構造により、炭化部50の上部を広くすることができ、有機廃棄物を燃焼させて得た炭化物を多く含む固形分を炭化部50に導入しやすくなる。   As for the cylindrical body 20, as shown in FIG. 1, it is preferable that an upper part is a truncated cone shape. With this structure, the upper part of the carbonization part 50 can be widened, and it becomes easy to introduce into the carbonization part 50 a solid content containing a large amount of carbides obtained by burning organic waste.

円筒体20は、図2に示すように、内壁26と外壁24を有する二重壁構造であり、前記外壁24と内壁26の間に形成された予備加熱室25を有する。図2は円筒体20の概要を示す断面図である。外壁24には空気供給口23が、内壁26には空気導入口28が設けられている。内壁26の内部に形成された空間27は、軸35の内部に設けられた空気送気口29に連通している。   As shown in FIG. 2, the cylindrical body 20 has a double wall structure having an inner wall 26 and an outer wall 24, and has a preheating chamber 25 formed between the outer wall 24 and the inner wall 26. FIG. 2 is a sectional view showing an outline of the cylindrical body 20. An air supply port 23 is provided in the outer wall 24, and an air introduction port 28 is provided in the inner wall 26. A space 27 formed in the inner wall 26 communicates with an air supply port 29 provided in the shaft 35.

空気送気口29から導入された空気は、空気導入口28から予備加熱室25に導入される。有機廃棄物が燃焼される等により発生した熱が外壁24から予備加熱室25に伝わり、予備加熱室25に導入された空気が加熱される。予備加熱室25は、内壁26で空間27と遮断されているため熱が空間27へ伝わりにくく、効率よく空気を加熱できる。予備加熱室25で加熱された空気は、空気供給口23を介して、炭化部50(図1)へ供給される。このように炭化部50には予め加熱された空気が送り込まれるため、雰囲気温度を低下させることがない。このため炭化部50では効率よく炭化が行える。   Air introduced from the air inlet 29 is introduced from the air inlet 28 into the preheating chamber 25. Heat generated by burning organic waste is transmitted from the outer wall 24 to the preheating chamber 25, and the air introduced into the preheating chamber 25 is heated. Since the preheating chamber 25 is shielded from the space 27 by the inner wall 26, heat is not easily transmitted to the space 27, and air can be efficiently heated. The air heated in the preheating chamber 25 is supplied to the carbonization unit 50 (FIG. 1) through the air supply port 23. Thus, since the air heated previously is sent into the carbonization part 50, atmospheric temperature is not reduced. For this reason, the carbonization part 50 can perform carbonization efficiently.

外壁24と内壁26に挟まれた空間の幅t(「予備加熱室25の幅t」ともいう)は、150〜300mm程度であることが好ましい。空気を効率よく加熱できるからである。
内壁26に設けられた空気導入口28は、外壁24に設けられた空気供給口23と対向する領域外に設けられることが好ましい。例えば、図2においては、空気供給口23と外壁24における空気導入口28は水平線上に並ばないように設けられる。このように空気の流路を複雑にすると、空気が予備加熱室25に滞留する時間を長くでき、空気を十分に加熱することができる。空気導入口28の形状は、本体10に設けられた空気供給口14と同じにすることが好ましい。
The width t (also referred to as “width t of the preheating chamber 25”) between the outer wall 24 and the inner wall 26 is preferably about 150 to 300 mm. This is because air can be efficiently heated.
The air introduction port 28 provided in the inner wall 26 is preferably provided outside the region facing the air supply port 23 provided in the outer wall 24. For example, in FIG. 2, the air supply port 23 and the air introduction port 28 in the outer wall 24 are provided so as not to line up on the horizontal line. Thus, if the air flow path is complicated, the time during which the air stays in the preheating chamber 25 can be lengthened, and the air can be sufficiently heated. The shape of the air inlet 28 is preferably the same as that of the air supply port 14 provided in the main body 10.

図1に示すように、空気供給口23は、円筒体20の上部に設けられ、円筒体20の下部には設けられないことが好ましい。これにより、円筒体20の下部と、その対向する本体10の側壁で囲まれた部分に、空気が遮断された不燃部60が形成される。円筒体20の上部とは、頂壁21または側壁22の上部をいう。空気供給口23は、頂壁21または側壁22の全周に亘って設けられることが好ましい。頂壁21とは、円筒体20の円錐台部分の側面をいう。特に頂壁21に空気供給口23が設けられると、投入口11から投入された直後に有機廃棄物を燃焼させやすくなるとともに、炭化部50での炭化も進行しやすくなるので好ましい。   As shown in FIG. 1, the air supply port 23 is preferably provided in the upper part of the cylindrical body 20 and is not provided in the lower part of the cylindrical body 20. Thereby, the incombustible part 60 by which air was interrupted | blocked is formed in the part enclosed by the lower part of the cylindrical body 20, and the side wall of the main body 10 which opposes. The upper part of the cylindrical body 20 refers to the upper part of the top wall 21 or the side wall 22. It is preferable that the air supply port 23 is provided over the entire circumference of the top wall 21 or the side wall 22. The top wall 21 refers to the side surface of the truncated cone portion of the cylindrical body 20. In particular, it is preferable to provide the air supply port 23 in the top wall 21 because the organic waste is easily burned immediately after being charged from the charging port 11 and the carbonization in the carbonization part 50 is also facilitated.

側壁22における、「空気供給口23が設けられる部分の高さ」と「空気供給口23が設けられない部分の高さ」の割合は、前者1に対して後者が0.5以上であることが好ましい。炭化物の消火を確実に行えるからである。
空気供給口23の形状は、本体10に設けられた空気供給口14と同じにすることが好ましい。
円筒体20の天面は、本体10に設けられた空気供給口14よりも100〜200mm、好ましくは150mm程度上部に位置することが望ましい。
The ratio of “height of the portion where the air supply port 23 is provided” and “height of the portion where the air supply port 23 is not provided” in the side wall 22 is 0.5 or more for the latter with respect to the former 1. Is preferred. This is because the carbide can be surely extinguished.
The shape of the air supply port 23 is preferably the same as that of the air supply port 14 provided in the main body 10.
It is desirable that the top surface of the cylindrical body 20 is located 100 to 200 mm, preferably about 150 mm above the air supply port 14 provided in the main body 10.

円筒体20は、円筒体20の底面および天井面の中心を通る垂直を軸として回転可能であることが好ましい。円筒体20がこのように回転可能であると炭化部50に空気をより均一に送り込むことができ、炭化効率を向上させられ、かつ炭化物の純度を向上できる。円筒体20を回転させる手段は限定されないが、軸35に円筒体20を連結し、軸35を公知の駆動手段で回転させることが好ましい。   The cylindrical body 20 is preferably rotatable about a vertical passing through the bottom surface of the cylindrical body 20 and the center of the ceiling surface. When the cylindrical body 20 is rotatable in this way, air can be fed more uniformly into the carbonizing portion 50, the carbonization efficiency can be improved, and the purity of the carbide can be improved. The means for rotating the cylindrical body 20 is not limited, but it is preferable to connect the cylindrical body 20 to the shaft 35 and rotate the shaft 35 by a known driving means.

図1に示すように、円筒体20の底部は、テーブル30を備えることが好ましい。テーブル30は、円錐台形であることが好ましく、かつ昇降が可能であり、本体10との間隔が適宜調節できることが好ましい。このような構造にすると、テーブル30と本体10の間で炭化物を粉砕することができ、炭化物の大きさを適宜調整できるからである。テーブル30は回転可能であることが好ましい。テーブル30は円筒体20と連動して回転してもよいが、円筒体20とは独立して回転可能であってもよい。テーブル30の昇降手段や回転手段には公知の手段が用いられる。   As shown in FIG. 1, the bottom of the cylindrical body 20 preferably includes a table 30. The table 30 is preferably frustoconical, and can be moved up and down, and the distance from the main body 10 can be adjusted as appropriate. This is because the carbide can be pulverized between the table 30 and the main body 10 and the size of the carbide can be appropriately adjusted. The table 30 is preferably rotatable. The table 30 may rotate in conjunction with the cylindrical body 20, but may be rotatable independently of the cylindrical body 20. Known means are used for the lifting means and rotating means of the table 30.

円筒体20は、本体10の底部より取り外し可能であることが好ましい。炭化炉1内部には、主として溶融したシリカが冷却されてなるクリンカーが存在することがある。クリンカーは炭化炉1の性能を損なうおそれがあるため、定期的に除去される必要がある。本発明の炭化炉1は、後述のとおり炭化部50と不燃部60の幅wを広くし、炭化物の収量を向上させられるため、生成するクリンカーの量も増加する場合がある。このとき円筒体20が本体10の底部より取り外し可能であると、クリンカーの除去作業が容易となる。円筒体20を本体10の底部より取り外すための構造は限定されないが、図3に示すような構造が好ましい。図3は、本発明の炭化炉1の底部付近の断面図(ただし、円筒体20とテーブル30は正面図)である。テーブル30は、本体10の底部18に接している。この底部18は、本体10側壁の下の部分に設けられた切離部19で切離し可能になっている。すなわち、切離部19は、通常は連結装置(図示せず)で連結されているが、補修等の際には、連結装置を解除することにより、本体10から底部18を切り離せる。底部18が切り離された本体10の底から、テーブル30と円筒体20を取り出せる。   The cylindrical body 20 is preferably removable from the bottom of the main body 10. In the carbonization furnace 1, there may be a clinker formed mainly by cooling molten silica. Since the clinker may impair the performance of the carbonization furnace 1, it needs to be removed periodically. Since the carbonization furnace 1 of the present invention can increase the width w of the carbonization part 50 and the incombustible part 60 and improve the yield of carbide as described later, the amount of clinker to be generated may increase. At this time, if the cylindrical body 20 is removable from the bottom of the main body 10, the clinker removal operation is facilitated. The structure for removing the cylindrical body 20 from the bottom of the main body 10 is not limited, but a structure as shown in FIG. 3 is preferable. FIG. 3 is a cross-sectional view of the vicinity of the bottom of the carbonization furnace 1 of the present invention (however, the cylindrical body 20 and the table 30 are front views). The table 30 is in contact with the bottom 18 of the main body 10. The bottom portion 18 can be separated by a separation portion 19 provided at a lower portion of the side wall of the main body 10. That is, the separating part 19 is normally connected by a connecting device (not shown), but when repairing or the like, the bottom 18 can be separated from the main body 10 by releasing the connecting device. The table 30 and the cylindrical body 20 can be taken out from the bottom of the main body 10 from which the bottom 18 has been cut off.

円筒体20の大きさは限定されないが、直径dは400〜800mm程度であることが好ましい。円筒体20の高さhは、800m〜1500mm程度であることが好ましい。
また、本体10側壁と円筒体20の間に形成される空間(炭化部50や不燃部60に該当する)の幅wは任意でよいが、400〜600mmが好ましく、450〜600mmがより好ましく、500〜550mmがさらに好ましい。従来の炭化炉における前記幅は、350〜400mmのものが多かった。これよりも前記幅が大きいと、有機廃棄物に十分空気を供給することができないため炭化効率が低下し、これよりも前記幅が小さいと、炭化物の収量が低下するからである。しかし、本発明の炭化炉は、十分に予備加熱された空気を炭化部50に供給できるため、前記幅を従来のものより大きくしても炭化効率が低下しにくい。よって、炭化効率と炭化物収率の双方を向上させうる。
円筒体20を構成する材料には公知の材料を用いてよい。公知の材料の例にはステンレスが含まれる。
The size of the cylindrical body 20 is not limited, but the diameter d is preferably about 400 to 800 mm. The height h of the cylindrical body 20 is preferably about 800 m to 1500 mm.
Further, the width w of the space formed between the side wall of the main body 10 and the cylindrical body 20 (corresponding to the carbonized portion 50 and the incombustible portion 60) may be arbitrary, but is preferably 400 to 600 mm, more preferably 450 to 600 mm, More preferably, it is 500-550 mm. In the conventional carbonization furnace, the width is often 350 to 400 mm. If the width is larger than this, it is not possible to sufficiently supply air to the organic waste, so that the carbonization efficiency is lowered. If the width is smaller than this, the yield of the carbide is lowered. However, since the carbonization furnace of the present invention can supply sufficiently preheated air to the carbonization section 50, even if the width is made larger than the conventional one, the carbonization efficiency is unlikely to decrease. Therefore, both carbonization efficiency and carbide yield can be improved.
A known material may be used as the material constituting the cylindrical body 20. Examples of known materials include stainless steel.

2.製造方法
本発明の炭化炉を用いた炭化物の製造方法は、(1)有機廃棄物を炭化炉に投入する工程、(2)有機廃棄物を燃焼・炭化させる工程、(3)炭化された有機廃棄物を消火する工程、(4)炭化物を取出す工程を含むことが好ましい。以下に、図1を用いて、本発明の炭化炉を用いた炭化物の製造方法を具体的に説明する。
2. Manufacturing method The manufacturing method of the carbide | carbonized_material using the carbonization furnace of this invention is (1) The process of throwing in organic waste into a carbonization furnace, (2) The process of burning and carbonizing organic waste, (3) Carbonized organic It is preferable to include a step of extinguishing the waste and (4) a step of taking out the carbide. Below, the manufacturing method of the carbide | carbonized_material using the carbonization furnace of this invention is demonstrated concretely using FIG.

(1)投入工程
本工程では、有機廃棄物を投入口11から炭化炉1内へ投入する。有機廃棄物としては既に述べたものを使用することが好ましい。有機廃棄物は乾燥されていてもよい。有機廃棄物を投入する手段は限定されないが、例えば、スクリューフィーダーやテーブルフィーダー等を用いて定量的、定期的に投入することが好ましい。
(1) Input process In this process, organic waste is input into the carbonization furnace 1 from the input port 11. It is preferable to use those already mentioned as the organic waste. The organic waste may be dried. The means for introducing the organic waste is not limited, but it is preferable to add it quantitatively and periodically using, for example, a screw feeder or a table feeder.

(2)燃焼・炭化工程
本工程では、投入された有機廃棄物を燃焼させる。具体的には着火バーナー13で有機廃棄物に着火するとともに、炭化炉1内に円筒体20の空気供給口23から空気を供給して有機廃棄物を燃焼させることが好ましい。また、炭化炉1内にヒーターを設置して、有機廃棄物を発火点まで加熱して燃焼させてもよい。
(2) Combustion / carbonization process In this process, the organic waste that is input is burned. Specifically, it is preferable that the organic waste is ignited by the ignition burner 13 and the organic waste is combusted by supplying air from the air supply port 23 of the cylindrical body 20 into the carbonization furnace 1. In addition, a heater may be installed in the carbonization furnace 1 so that the organic waste is heated to the ignition point and burned.

この工程では、有機廃棄物を燃焼させて、「炭化物を多く含む固形分」と「熱分解ガス」を得る。熱分解ガスとは一酸化炭素、水素、炭化水素、硫黄酸化物、窒素酸化物等を含む混合ガスである。炭化物を多く含む固形分は炭化部50へ移動し、熱分解ガスは炭化炉1の上方の二次燃焼部70へと移動し燃焼される。この燃焼で得られた熱は、円筒体20の加熱や、さらに新たに投入された有機廃棄物の燃焼・炭化にも利用できる。   In this step, the organic waste is burned to obtain “solids rich in carbides” and “pyrolysis gas”. The pyrolysis gas is a mixed gas containing carbon monoxide, hydrogen, hydrocarbons, sulfur oxides, nitrogen oxides and the like. The solid content containing a large amount of carbide moves to the carbonization section 50, and the pyrolysis gas moves to the secondary combustion section 70 above the carbonization furnace 1 and burns. The heat obtained by this combustion can also be used for heating the cylindrical body 20 and for burning and carbonizing newly introduced organic waste.

一方、「炭化物を多く含む固形分」には熱分解ガスが含まれているため、このまま消火されると炭化物に含まれる不純物が多くなり、炭化物収量が低下するおそれがある。そこで本発明では、炭化部50において、円筒体20の空気供給口23から予備加熱された空気を供給して、炭化物を多く含む固形分中に含まれる熱分解ガスを燃焼させるとともに、固形分の炭化をより進行させる。すなわち前述の「精錬」を効率よく行うことができる。よって、本発明においては、一般に除去しにくいとされる「固形物に内包された熱分解ガス」を除去でき、純度の高い炭化物が収率よく得られる。この際、円筒体20を回転させると、精錬より均一に進行させることができるので好ましい。   On the other hand, since the “solid content containing a large amount of carbides” contains pyrolysis gas, if the fire is extinguished as it is, impurities contained in the carbides increase, and the yield of carbides may be reduced. Therefore, in the present invention, in the carbonization unit 50, the preheated air is supplied from the air supply port 23 of the cylindrical body 20, and the pyrolysis gas contained in the solid content containing a large amount of carbides is combusted. Carbonization is further advanced. That is, the above-described “refining” can be performed efficiently. Therefore, in the present invention, it is possible to remove the “pyrolysis gas contained in solid matter” which is generally difficult to remove, and a high-purity carbide can be obtained in a high yield. At this time, it is preferable to rotate the cylindrical body 20 because it can proceed more uniformly than refining.

本工程は、投入口11付近および二次燃焼部70の温度を800〜1000℃、炭化部50の温度を600〜800℃程度とすることが好ましい。また、二次燃焼部70での熱分解ガスの滞留時間を2秒以上とすると、ダイオキシンの発生を低減できるので好ましい。各部位の温度は、炭化炉1内に供給される空気の量により調整できる。   In this step, it is preferable that the temperature in the vicinity of the inlet 11 and the secondary combustion part 70 is 800 to 1000 ° C., and the temperature of the carbonization part 50 is about 600 to 800 ° C. In addition, it is preferable to set the residence time of the pyrolysis gas in the secondary combustion section 70 to 2 seconds or more because generation of dioxins can be reduced. The temperature of each part can be adjusted by the amount of air supplied into the carbonization furnace 1.

(3)消火工程
炭化部50で前記固形物を十分に炭化させて得られた炭化物は、続いて不燃部60に到達する。到達したばかりの炭化物はまだ燃焼している。本工程では、この炭化物への空気の供給を遮断して炭化物を消火する。しかし、本工程において空気を完全に遮断することは困難である。従って、炭化物の温度がその着火温度以上である場合は、炭化物が燃焼し続け、炭化物収率が低下するおそれがある。よって本工程は着火温度未満で行われることが好ましい。不燃部60を炭化物の着火温度未満とするために、前述のとおり、側壁22における「空気供給口23が設けられる部分の高さ」と「空気供給口23が設けられない部分の高さ」の割合は、前者1に対して後者が0.5以上であることが好ましい。
(3) Fire extinguishing process The carbide obtained by sufficiently carbonizing the solid in the carbonization part 50 subsequently reaches the incombustible part 60. The carbide that has just reached is still burning. In this step, the carbide is extinguished by shutting off the supply of air to the carbide. However, it is difficult to completely block air in this process. Therefore, when the temperature of the carbide is equal to or higher than the ignition temperature, the carbide continues to burn, and the carbide yield may be reduced. Therefore, this step is preferably performed at a temperature lower than the ignition temperature. In order to make the incombustible portion 60 lower than the ignition temperature of the carbide, as described above, the “height of the portion where the air supply port 23 is provided” and the “height of the portion where the air supply port 23 is not provided” of the side wall 22 The ratio of the former 1 to the former 1 is preferably 0.5 or more.

(4)取出工程
本工程では不燃部60に存在する炭化物を取出口15から取り出す。炭化物は凝集し塊となっている場合が多い。そこで、テーブル30と本体10との隙間間隔を適正な値に調整し、かつ、テーブル30を回転させると、凝集した炭化物を粉砕して所望の大きさとすることができる。
(4) Extraction step In this step, the carbides present in the incombustible portion 60 are extracted from the outlet 15. In many cases, carbides are aggregated into a lump. Therefore, when the gap between the table 30 and the main body 10 is adjusted to an appropriate value and the table 30 is rotated, the agglomerated carbide can be pulverized to a desired size.

図1に示す炭化炉1を試作した。炭化炉1の本体10は直径が1m、高さ2.5mの円筒形とした。本体10に収納された円筒体20は、直径が600mmの円筒とし、上部は円錐台形とした。円筒体20の高さは800mmとした。
含水率20質量%の廃木材を炭化炉に投入して、既に述べた方法で炭化させたところ、25〜27%の収率で純度の高い炭化物が得られることを確認した。含水率20質量%の木材の理論炭化物収率は29.6%であることから、本発明により、高い収率で炭化物が得られることが明らかである。また、本例における炭化効率の尺度となる廃木材の処理効率は、1時間当たり1t程度であった。
A carbonization furnace 1 shown in FIG. The main body 10 of the carbonization furnace 1 has a cylindrical shape with a diameter of 1 m and a height of 2.5 m. The cylindrical body 20 accommodated in the main body 10 was a cylinder having a diameter of 600 mm, and the upper part was a truncated cone. The height of the cylindrical body 20 was 800 mm.
When waste wood having a water content of 20% by mass was put into a carbonization furnace and carbonized by the method described above, it was confirmed that high-purity carbide was obtained with a yield of 25-27%. Since the theoretical carbide yield of wood having a moisture content of 20% by mass is 29.6%, it is clear that the present invention can provide a carbide with a high yield. Moreover, the processing efficiency of the waste wood used as the scale of the carbonization efficiency in this example was about 1 t per hour.

本発明の炭化炉は、炭化効率、炭化物収率に優れるため、有機廃棄物の炭化炉として有用である。   Since the carbonization furnace of the present invention is excellent in carbonization efficiency and carbide yield, it is useful as a carbonization furnace for organic waste.

本発明の炭化炉の概要を示す断面図Sectional drawing which shows the outline | summary of the carbonization furnace of this invention 円筒体の概要を示す断面図Sectional view showing the outline of the cylinder 本発明の炭化炉の底部付近を示す断面図Sectional drawing which shows the bottom part vicinity of the carbonization furnace of this invention

符号の説明Explanation of symbols

1 炭化炉
10 本体
11 投入口
12 排気口
13 着火バーナー
14 空気供給口
15 取出口
18 底部
19 切離部
20 円筒体
21 頂壁
22 側壁
23 空気供給口
24 外壁
25 予備加熱室
26 内壁
27 空間
28 空気導入口
29 空気送気口
30 テーブル
35 軸
50 炭化部
60 不燃部
70 二次燃焼部
d 円筒体20の直径
t 予備加熱室25の幅
w 本体10の側壁と円筒体20の間に形成される空間の幅
DESCRIPTION OF SYMBOLS 1 Carbonization furnace 10 Main body 11 Input port 12 Exhaust port 13 Ignition burner 14 Air supply port 15 Outlet 18 Bottom part 19 Separation part 20 Cylindrical body 21 Top wall 22 Side wall 23 Air supply port 24 Outer wall 25 Preheating chamber 26 Inner wall 27 Space 28 Air introduction port 29 Air supply port 30 Table 35 Shaft 50 Carbonization part 60 Non-combustion part 70 Secondary combustion part d Diameter of cylindrical body 20 t Width of preheating chamber 25 w Formed between side wall of main body 10 and cylindrical body 20 Width of space

Claims (7)

略円筒形の本体と前記本体に収容された円筒体を含む、有機廃棄物の炭化炉であって、
前記本体の側壁と前記円筒体とにより形成され、有機廃棄物を炭化させる炭化部と、
前記炭化部の下方に位置し、前記本体の側壁と前記円筒体とにより形成され、炭化された前記有機廃棄物を消火する不燃部を備え、
前記円筒体は、内壁と、空気供給口を備えた外壁を有する二重壁構造であり、前記外壁と内壁の間に形成された予備加熱室を介して前記空気供給口から空気を前記炭化部に供給する、炭化炉。
An organic waste carbonization furnace including a substantially cylindrical main body and a cylindrical body accommodated in the main body,
A carbonized portion that is formed by the side wall of the main body and the cylindrical body, and carbonizes organic waste,
Located below the carbonized part, formed by the side wall of the main body and the cylindrical body, and comprising a non-combustible part that extinguishes the carbonized organic waste,
The cylindrical body has a double wall structure having an inner wall and an outer wall having an air supply port, and air is supplied from the air supply port through a preheating chamber formed between the outer wall and the inner wall. To supply the carbonization furnace.
前記円筒体の内壁は、前記外壁に設けられた空気供給口と対向する領域外に、予備加熱室への空気導入口を有する、請求項1に記載の炭化炉。   2. The carbonization furnace according to claim 1, wherein an inner wall of the cylindrical body has an air introduction port to a preheating chamber outside a region facing an air supply port provided in the outer wall. 前記円筒体の予備加熱室を形成する外壁と内壁に挟まれた空間の幅は、100〜200mmである、請求項1に記載の炭化炉。   The carbonization furnace according to claim 1, wherein a width of a space sandwiched between an outer wall and an inner wall forming the preheating chamber of the cylindrical body is 100 to 200 mm. 前記円筒体は、上部が円錐台形であり、前記円錐台の側面は前記空気供給口を備える、請求項1に記載の炭化炉。   2. The carbonization furnace according to claim 1, wherein an upper portion of the cylindrical body has a truncated cone shape, and a side surface of the truncated cone is provided with the air supply port. 前記炭化部に位置する前記本体の壁は、空気供給口を備える、請求項1に記載の炭化炉。   The carbonization furnace according to claim 1, wherein a wall of the main body located in the carbonization portion includes an air supply port. 前記円筒体は、前記本体の底部より取り外し可能である、請求項1に記載の炭化炉。   The carbonization furnace according to claim 1, wherein the cylindrical body is removable from a bottom portion of the main body. 前記本体の側壁と前記円筒体の間に形成される空間の幅は、400〜600mmである、請求項1に記載の炭化炉。   The carbonization furnace according to claim 1, wherein a width of a space formed between the side wall of the main body and the cylindrical body is 400 to 600 mm.
JP2008123271A 2008-05-09 2008-05-09 Carbonization furnace Expired - Fee Related JP4226066B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008123271A JP4226066B1 (en) 2008-05-09 2008-05-09 Carbonization furnace
PCT/JP2009/058632 WO2009136622A1 (en) 2008-05-09 2009-05-07 Carbonization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123271A JP4226066B1 (en) 2008-05-09 2008-05-09 Carbonization furnace

Publications (2)

Publication Number Publication Date
JP4226066B1 JP4226066B1 (en) 2009-02-18
JP2009270050A true JP2009270050A (en) 2009-11-19

Family

ID=40445095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123271A Expired - Fee Related JP4226066B1 (en) 2008-05-09 2008-05-09 Carbonization furnace

Country Status (2)

Country Link
JP (1) JP4226066B1 (en)
WO (1) WO2009136622A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104371A1 (en) * 2014-12-24 2016-06-30 株式会社高橋製作所 Carbonizing furnace, pyrolytic furnace, water gas generation system, hydrogen gas generation system, and power generation system
JPWO2014069234A1 (en) * 2012-11-02 2016-09-08 株式会社ストリートデザイン Processing system and processing apparatus
WO2016185635A1 (en) 2015-05-19 2016-11-24 テスナエナジー株式会社 Biomass gasification device
WO2017131235A1 (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system, and return system for thermal decomposition furnace
TWI781716B (en) * 2021-08-05 2022-10-21 國立中正大學 Batch Bamboo Charcoal Furnace Continuous Operating System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226066B1 (en) * 2008-05-09 2009-02-18 株式会社東産商 Carbonization furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183213B2 (en) * 1998-04-27 2008-11-19 利明 高橋 Carbonization furnace
JP3961314B2 (en) * 2002-03-01 2007-08-22 Jfeソルデック株式会社 Continuous solid waste carbonizer
JP4226066B1 (en) * 2008-05-09 2009-02-18 株式会社東産商 Carbonization furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014069234A1 (en) * 2012-11-02 2016-09-08 株式会社ストリートデザイン Processing system and processing apparatus
WO2016104371A1 (en) * 2014-12-24 2016-06-30 株式会社高橋製作所 Carbonizing furnace, pyrolytic furnace, water gas generation system, hydrogen gas generation system, and power generation system
US10618088B2 (en) 2014-12-24 2020-04-14 Takahashi Seisakusho Inc. Pyrolytic furnace, water gas generation system, and combustion gas supply method for water gas generation system
WO2016185635A1 (en) 2015-05-19 2016-11-24 テスナエナジー株式会社 Biomass gasification device
US9732291B2 (en) 2015-05-19 2017-08-15 Tesna Energy Co., Ltd. Biomass gasification system
WO2017131235A1 (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system, and return system for thermal decomposition furnace
JP2017132969A (en) * 2016-01-29 2017-08-03 株式会社高橋製作所 Biomass power generation system and return system of thermal decomposition furnace
TWI781716B (en) * 2021-08-05 2022-10-21 國立中正大學 Batch Bamboo Charcoal Furnace Continuous Operating System

Also Published As

Publication number Publication date
WO2009136622A1 (en) 2009-11-12
JP4226066B1 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4226066B1 (en) Carbonization furnace
WO2012161203A1 (en) Waste-melting method
RU2012115470A (en) HIGH-TEMPERATURE TREATMENT OF WATER-CONTAINING MINERALS
JP2010242035A (en) Manufacturing process of biomass charcoal
CN108455607A (en) A kind of activated carbon production system of charcoal activation integral
EP2633004B1 (en) Cement clinker manufacturing plant
CN104211271A (en) Two-section sludge gas-generating treatment method and two-section sludge gas-generating treatment device
JP2010043840A (en) Method and apparatus for melting waste
CN102746902A (en) Gasification method of organic wastes and special gasification furnace
JP2010052991A (en) Method for burning limestone and dolomite using top type burning furnace for lime
JP5574764B2 (en) Method for producing calcium oxide using lime cake
JP4567100B1 (en) Coconut charcoal manufacturing method and apparatus
CN114517099A (en) Method for producing biomass coal by carbonizing biomass
JP5603477B1 (en) Continuous carbonization equipment
JP5811501B2 (en) Waste melting treatment method
KR100593858B1 (en) Charcoal and sap manufacturing machine
JP2022163422A (en) Semi-carbide production device, semi-carbide, thermal power generation fuel and power generation method
JP4183213B2 (en) Carbonization furnace
JP2001234175A (en) Process for operating vertical self-burning carbonization oven
JP6493744B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
KR20070095423A (en) Carbonization apparatus
JP2010038535A (en) Waste melting treatment method and waste melting treatment device
JP2002327180A (en) Vertical type self-combusting carbonization furnace and method for operating the same
JP5794662B2 (en) Waste melting treatment method
JP2002035729A (en) Method for producing carbide made from refuse derived fuel as raw material and apparatus therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees