WO2017131188A1 - 高度不飽和脂肪酸を含む油脂の製造方法 - Google Patents

高度不飽和脂肪酸を含む油脂の製造方法 Download PDF

Info

Publication number
WO2017131188A1
WO2017131188A1 PCT/JP2017/003033 JP2017003033W WO2017131188A1 WO 2017131188 A1 WO2017131188 A1 WO 2017131188A1 JP 2017003033 W JP2017003033 W JP 2017003033W WO 2017131188 A1 WO2017131188 A1 WO 2017131188A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acids
culture
medium
highly unsaturated
unsaturated fatty
Prior art date
Application number
PCT/JP2017/003033
Other languages
English (en)
French (fr)
Inventor
石渡 夕子
峻允 関口
泉田 仁
裕司 沖田
Original Assignee
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本水産株式会社 filed Critical 日本水産株式会社
Publication of WO2017131188A1 publication Critical patent/WO2017131188A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the present invention is the genus Thraustochytrium (Thraustochytrium), Palier Tiki thorium genus (Parietichytrium), or a method of producing fats and oils comprising highly unsaturated fatty acids using microorganisms belonging to the genus Schizochytrium (Schizochytrium), fat content of the microbial cell body or Method of increasing the content of highly unsaturated fatty acids in fats and oils, fats and oils or fats and oils containing highly unsaturated fatty acids recovered from microbial cells, and fats and fats in cells and fats Thraustochytrium genus unsaturated fatty acid content was recovered in the state of being increased (Thraustochytrium), Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochy microbial cells belonging to the rium) on.
  • Thraustochytrium Thraustochytrium
  • Polyunsaturated fatty acids such as eicosapentaenoic acid (hereinafter referred to as EPA) and docosahexaenoic acid (hereinafter referred to as DHA) are highly evaluated for their physiological activity and are widely used in pharmaceuticals and health foods.
  • Oils and fats containing these highly unsaturated fatty acids are mainly extracted from marine animals such as sardines and tuna, plants such as flax and borage, and used after being refined and treated to increase the concentration of highly unsaturated fatty acids. Yes.
  • Non-patent Document 1 Production of arachidonic acid using filamentous fungi belonging to the genus Mortierella (Patent Documents 1 and 2) and DHA production using a dinoflagellate belonging to the genus Crypthecodinium (Non-patent Document 1) A typical example is given.
  • microorganisms belonging to the order of Drosophila which is a marine eukaryotic microorganism, Labyrinthula are also attracting attention as microorganisms containing highly unsaturated fatty acids such as DHA (Non-patent Document 2).
  • genus Aurantiochytrium
  • Schizochytrium Schizochytrium
  • Ulkenia Ulkenia
  • Emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen nov Mycoscience 48 199-211 Naoki Nagano, Yousuke Taoka, Daisuke Honda and Masahiro Hayashi (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine Thraustochytrid, Aurantiochytrium limacinum 12.
  • the lipid production stage is cultured under more anaerobic conditions, that is, in a process in which the saturated dissolved oxygen concentration in the fermentation medium is reduced.
  • Patent Literature 3 Non-Patent Literature 5
  • the microorganism growth method may include two stages: (1) a biomass density increasing stage and (2) a lipid producing stage. It has been found that reducing the dissolved oxygen level dramatically increases the rate of lipid production. ”“ The dissolved oxygen in the fermentation medium during the production phase is less than about 3% saturation, preferably less than about 1%. , And more preferably to about 0% saturation. "
  • the present inventor attempted to culture at various saturated dissolved oxygen concentrations with respect to typical microorganisms of the order of the terrestrial fungus and examined the influence on the production of highly unsaturated fatty acids.
  • the order of the order of the genus Clevis that are different from those described in the prior art. That is, there are many microorganisms in the order of the lipid production stage that do not increase the content of highly unsaturated fatty acids even when cultured in a more anaerobic condition, that is, in a process where the saturated dissolved oxygen concentration in the fermentation medium is reduced. I found. Therefore, in order to increase the content of polyunsaturated fatty acids in the microorganisms of the order of these species, it has been confirmed that another new solution is necessary.
  • the present invention provides a fat and oil having an increased content of highly unsaturated fatty acids when culturing microorganisms having the ability to produce highly unsaturated fatty acids to produce highly unsaturated fatty acids. It was made for the purpose of providing improved technology.
  • the present invention relates to a method for producing highly unsaturated fat in a high yield by increasing the highly unsaturated fatty acid production efficiency of a microorganism having a highly unsaturated fatty acid-producing ability, and a highly unsaturated fatty acid content obtained by the method. It is an object to provide increased fats and oils. Also provided are a method for enhancing the ability of producing highly unsaturated fatty acids by microorganisms having the ability to produce highly unsaturated fatty acids, and a microorganism having the ability to produce highly unsaturated fatty acids obtained by the method and having the ability to produce highly unsaturated fatty acids. The task is to do.
  • the present inventors have found that, out of a microorganism belonging to the order Thraustochytriales, in the genus Thraustochytrium (Thraustochytrium) or Palier Tiki thorium genus (Parietichytrium) and Schizochytrium (Schizochytrium), advanced to when cultured under aerobic conditions not It has been found that the content of saturated fatty acids increases.
  • Thraustochytrium genus Thraustochytrium (Thraustochytrium), for culturing a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium) or Schizochytrium (Schizochytrium), speed and amount of aeration, the saturated dissolved oxygen concentration in the medium by adjusting the pressure or the like It has been found that the productivity of highly unsaturated fatty acids is improved by culturing under aerobic conditions so as to have a period of 1% or more, and the present invention has been completed.
  • the present invention Thraustochytrium genus having polyunsaturated fatty acid producing ability (Thraustochytrium), Palier Tiki thorium genus (Parietichytrium), or a microorganism belonging to the genus Schizochytrium (Schizochytrium), culturing under constant or dissolved oxygen
  • Thraustochytrium Thraustochytrium
  • Palier Tiki thorium genus Pierier Tiki thorium genus
  • Schizochytrium Schizochytrium
  • the gist of the present invention is a method for producing fats and oils containing highly unsaturated fatty acids as described in (1) to (10) below.
  • (1) the genus Thraustochytrium (Thraustochytrium), and cultured under aerobic conditions a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium), and recovering the cells,
  • a method for producing fats and oils containing highly unsaturated fatty acids A method for producing fats and oils containing highly unsaturated fatty acids.
  • the aerobic condition is described in any one of (1) and (2) above, wherein the concentration value is 1% or more after the saturated dissolved oxygen concentration in the medium reaches the lower limit during microbial culture.
  • a method for producing fats and oils containing highly unsaturated fatty acids (4) The highly unsaturated fatty acid according to any one of (1) to (3) above, wherein the aerobic condition is that the saturated dissolved oxygen concentration in the medium is always maintained at 1% or more throughout the culture period.
  • the polyunsaturated fatty acid is linoleic acid (C18: 2, n-6, LA), ⁇ -linolenic acid (C18: 3, n-3, ALA), ⁇ -linolenic acid (C18: 3, n -6, GLA), stearidonic acid (C18: 4, n-3, STA), eicosatrienoic acid (C20: 3, n-3, ETrA), dihomo- ⁇ -linolenic acid (C20: 3, n-6) DGLA), eicosatetraenoic acid (C20: 4, n-3, ETA), arachidonic acid (C20: 4, n-6, ARA), eicosapentaenoic acid (C20: 5,
  • the microorganism is Thraustochytrium aureum , Thraustochytrium roseum , Thraustochytria triumatum , Parietichytrium sarkarianum , Parieticium sp. Or Schizochytrium sp.
  • the microorganism is Thraustochytrium aureum ATCC 34304, Thraustochytrium roseum ATCC 28210, Thraustochyttrium striatum ATCC 24473, Parieticium sarkarianum SEK351, Parieticium sp. NBRC102984, Parieticium sarkarianum SEK364, Schizochytrium sp. SEK210, or Schizochytrium sp.
  • the method for producing an oil or fat containing a highly unsaturated fatty acid according to any one of (1) to (8) above, which is at least one microorganism selected from the group consisting of SEK345.
  • the gist of the present invention is an oil containing a highly unsaturated fatty acid described in (11) below.
  • (11) An oil or fat containing a highly unsaturated fatty acid obtained by the method described in any one of (1) to (10) above.
  • the gist of the present invention is the microbial cell described in (12) below. (12) A cell of the microorganism recovered by the method described in any one of (1) to (10) above.
  • this invention makes a summary the pharmaceutical, foodstuff, or feed as described in following (13).
  • (13) A pharmaceutical, food, or feed containing the oil or fungus described in (11) or (12) above.
  • the highly unsaturated fatty acid production efficiency of microorganisms belonging to the order of highly unsaturated fatty acids is enhanced by a culture method having a time when the saturated dissolved oxygen concentration in the medium is 1% or more, and the yield is high. And a method for producing a highly unsaturated fat, and a fat having an increased content of a highly unsaturated fatty acid obtained by the method.
  • the genus Thraustochytrium As microorganisms belonging to the order Thraustochytriales, the genus Thraustochytrium (Thraustochytrium), enhance the production efficiency by selecting a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium), high yield polyunsaturated
  • Thraustochytrium genus Thraustochytrium
  • Parietichytrium palier Tiki thorium genus
  • Schizochytrium Schizochytrium
  • Thraustochytrium when a highly unsaturated fatty acid is produced by cultivating microorganisms belonging to the order of the genus Candidae having the ability to produce highly unsaturated fatty acids, a culture method that maintains the saturated dissolved oxygen concentration in the medium at 1% or more is adopted.
  • the genus Thraustochytrium by selecting a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium)
  • Thraustochytrium by selecting a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium)
  • Thraustochytrium highly unsaturated fatty acid content in the cells is accumulated oil inclusions or oil in a state in which an increase genus (Thraustochytrium), the Palier Tiki thorium genus (Parietichytrium) or Schizochytrium (Schizochytrium)
  • Thraustochytrium the Palier Tiki thorium genus
  • Schizochytrium Schizochytrium
  • Thraustochytrium roseum ATCC28210 In the flask culture of Thraustochytrium roseum ATCC28210, it represents the change in the glucose concentration in the medium when the medium amount is 200 ml or 300 ml.
  • PUFA polyunsaturated fatty acids
  • PUFA polyunsaturated fatty acids
  • the change in the glucose concentration in the medium when the medium amount is 200 ml or 300 ml is shown.
  • FIG. 23 shows a partial enlargement of the graph of FIG.
  • PUFA polyunsaturated fatty acids
  • the change in glucose concentration in the culture medium when the culture medium volume is 100 ml, 200 ml or 300 ml in the flask culture of Parieticium sarkarianum SEK364 is shown.
  • PUFA polyunsaturated fatty acid
  • Schizochytrium sp the production amount (g / L) of polyunsaturated fatty acid (PUFA) per liter of the culture medium when the culture medium volume is 100 ml, 200 ml or 300 ml. Schizochytrium sp.
  • PUFA polyunsaturated fatty acids
  • the present invention is the genus Thraustochytrium an genus Thraustochytriales (Thraustochytrium), characterized by using a microorganism belonging to Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium), the production of highly unsaturated fatty acids
  • Thraustochytrium an genus Thraustochytriales
  • the present invention relates to a method, or a method for increasing the content of polyunsaturated fatty acids in oils or fats contained in cells or oils.
  • the method for producing a highly unsaturated fatty acid according to the present invention, or a method for increasing the content of highly unsaturated fatty acids in fats and oils contained in cells or fats and oils includes Thraustochytrium , Parietychytrium.
  • a microorganism belonging to the genus Schizochytrium is cultured by a culture method having a time when the saturated dissolved oxygen concentration in the medium is 1% or more.
  • Microorganisms, the genus Thraustochytrium (Thraustochytrium) is selected from the group consisting of any of the mutant strain of microorganism and the microorganism belonging to Palier Tiki thorium genus (Parietichytrium), or Schizochytrium (Schizochytrium).
  • the microorganism belonging to the genus Parieticium in the present invention refers to Labyrinthula having the characteristics described in Non-Patent Document 6.
  • Non-Patent Document 6 the genus Ulkenia has been rearranged into four genera, and the genus Parieticium is one of the genus after the rearrangement.
  • the microorganism belonging to the genus Schizochytrium or Aurantiochytrium in the present invention refers to the Labyrinthula having the characteristics described in Non-Patent Document 7.
  • the genus Schizochytrium is rearranged into three genera, and the genus Schizochytrium and Aurantiochytrium are genus after reorganization.
  • Schizochytrium because of these Schizochytrium (Schizochytrium) distinction, the pre-reorganization “broad sense of Schizochytrium (Schizochytrium sensu lato)", the post-reorganization "narrow sense of Schizochytrium (Schizochytrium sensu may be referred to as stricto) "but Schizochytrium in the present invention (Schizochytrium) refers to a narrow sense of Schizochytrium after reorganization (Schizochytrium sensu stricto).
  • microorganisms belonging to the genus Aurantiochytrium in the present invention are conventionally called the genus Schizochytrium , but in the present invention these also belong to the genus Aurantiochytrium ( Aurantiochytrium ). Treat as a microorganism.
  • microorganisms can be obtained from a microorganism depository.
  • the strains used in Examples 1 to 3 are Thraustochytrium aureum ATCC 34304, Thraustochytrium roseum ATCC 28210, Thraustochytrium. striatum ATCC 24473, the strain used in the comparative example is Aurantiochytrium limacinum SR21 (ATCC MYA-1381), which is deposited with the ATCC (American Type Culture Collection) and is generally available.
  • the strain used in Example 4 is Parieticium. sarkarianum SEK351 (NBRC104108), the strain used in Example 5 was Pariechytrium sp.
  • Example 7 the strain used in Example 7 was Schizochyttrium sp. SEK210 (NBRC102615), and the strain used in Example 8 Schizochytrium sp. SEK345 (NBRC102616), this strain has been deposited with NBRC (National Institute of Technology and Evaluation Biotechnology Center) and is generally available.
  • the strain used in Example 6 was Parieticium. sarkarianum SEK364 (FERM BP-11298), and this strain is registered as an accession number (FERM BP-11298) at the National Institute of Advanced Industrial Science and Technology (JST 1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture). It has been deposited internationally on September 24, 2010 and is available from there.
  • Thraustochytrium inhabit Palier Tiki thorium genus (Parietichytrium), or microorganisms in sea water or brackish water belonging to the genus Schizochytrium (Schizochytrium), seaweed and mangrove estuary of fallen leaves, to the precipitate and the like, horse serum Separation using seawater agar medium, pine pollen agar medium, cholesterol agar medium, or the like is also possible.
  • the polyketide synthase (PKS) system is generally known in the art as an enzyme complex derived from the fatty acid synthase (FAS) system.
  • FOS fatty acid synthase
  • the polyketide synthase system is known to exist in marine bacteria and certain microalgae that can synthesize PUFAs from malonyl-CoA.
  • PUFA polyunsaturated fatty acid
  • PKS polyketide synthase
  • Labyrinthulas are generally known to accumulate fatty acids at high concentrations, but contain the highly unsaturated fatty acids of the present invention.
  • the above-mentioned microorganisms targeted by the method for producing fats and oils are labyrinthulas that have no or very weak ability to produce PUFA by the endogenous PUFA-PKS pathway and have the ability to produce PUFA by the endogenous elongase / desaturase pathway.
  • the microbial culture conditions include a biomass density increasing stage and a lipid producing stage.
  • the biomass density increasing step includes adding a carbon source and a restricted nutrient source.
  • the lipid production stage involves adding a carbon source without adding a limiting nutrient source to create conditions that induce lipid production.
  • the lipid production stage can be detected by measuring the point at which the rate of increase in lipid production per unit time changes positive when a graph of lipid production over time is created.
  • reducing dissolved oxygen levels in the lipid production phase was thought to increase lipid production rates. Surprisingly, however, the inventor has found that lipid production is dramatically increased by maintaining high levels of dissolved oxygen during the production phase.
  • an aerobic condition that is, a time when the saturated dissolved oxygen concentration in the medium is 1% or more in the lipid production stage of microbial culture.
  • it has the time when the value of the saturated dissolved oxygen concentration in a culture medium is 1% or more.
  • the saturated dissolved oxygen concentration in the medium in the lipid production stage has a time of 1% or more, lipid can be efficiently produced in the lipid production stage.
  • the saturated dissolved oxygen concentration in the medium in the lipid production stage is 2% or more, 3% or more, 4% or more, microorganisms can be kept healthy by supplying oxygen for respiration. ,preferable.
  • biomass is increased in the stage of increasing biomass density.
  • the amount of oxygen consumed by each microorganism increases, and when the amount of oxygen supplied into the medium is exceeded, the saturated dissolved oxygen concentration in the medium decreases.
  • the saturated dissolved oxygen concentration in the medium decreases.
  • the saturated dissolved oxygen concentration in the medium reaches the lower limit when shifting from the biomass density increasing stage to the lipid producing stage.
  • the lipid when there is a time when the value of the saturated dissolved oxygen concentration is 1% or more after the saturated dissolved oxygen concentration in the medium reaches the lower limit during microbial culture, the lipid is efficiently produced in the lipid production stage. Can be produced. If the saturated dissolved oxygen concentration in the culture medium reaches the lower limit during microbial culture and the saturated dissolved oxygen concentration has a period of 2% or more, 3% or more, or 4% or more, the microorganisms will keep breathing. This is preferable because a more healthy state can be obtained.
  • the time during which the saturated dissolved oxygen concentration is set to the predetermined concentration or higher is specifically 30 minutes or longer, so that lipid production can be performed with a small amount of biomass. Lipid separation can be performed in a small state. Furthermore, when the production is performed for 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more, the amount of lipid production increases. Is preferred. In one embodiment of the present invention, lipid production can be efficiently produced by maintaining the saturated dissolved oxygen concentration in the medium at 1% or more throughout the culture period. As mentioned above, the respiration of microorganisms can be ensured by maintaining 3% or more and 4% or more. Therefore, since microorganisms can be used continuously, it is preferable.
  • the saturated dissolved oxygen concentration in the medium is preferably maintained while maintaining the concentration value to be 1% or more after the saturated dissolved oxygen concentration in the medium reaches the lower limit during microbial culture. It is characterized by continuing the culture while always maintaining 1% or more throughout the culture period.
  • Specific methods for maintaining the saturated dissolved oxygen concentration at 1% or higher include using baffled flasks and Sakaguchi flasks, increasing the number of revolutions during soaking, reducing the amount of medium in the flask, and stirring the jar fermenter. There are various methods such as increasing the number of rotations of the wing, increasing the aeration rate in the jar culture, increasing the pressure of the culture apparatus, blowing oxygen into the medium using an oxygen cylinder, etc.
  • culture is preferably performed at a temperature of the medium of 20 ° C. or higher.
  • Examples of the medium used at this time include glucose, fructose, saccharose, starch, glycerin and the like as the carbon source, and yeast extract, corn steep liquor, polypeptone, sodium glutamate, urea, ammonium acetate, ammonium sulfate, ammonium nitrate, and chloride as the nitrogen source.
  • the pH is adjusted within the range of 3.0 to 8.0, and then sterilized with an autoclave or the like.
  • Culture may be carried out after inoculation as appropriate, followed by aeration and agitation culture or shaking culture at 10 to 40 ° C., preferably 15 to 35 ° C., more preferably 20 to 35 ° C. for 1 to 14 days.
  • a flask with a baffle or a Sakaguchi flask is used as a specific method for controlling the saturated dissolved oxygen concentration in the culture medium to a predetermined concentration or higher in the present invention.
  • Thraustochytrium grown a microorganism belonging to the Palier Tiki thorium genus (Parietichytrium) or Schizochytrium (Schizochytrium), the microorganisms were obtained from the medium recovered by centrifugation or the like, if necessary spraying
  • the cells are dried by a method such as drying. Highly unsaturated fatty acid content by crushing the obtained cells (dried product), extracting intracellular lipids using an appropriate organic solvent or supercritical fluid according to a conventional method, and distilling off the solvent. Can be obtained.
  • the highly unsaturated fatty acid in the present invention refers to a highly unsaturated fatty acid having 18 or more carbon atoms and 2 or more unsaturated bonds, and more specifically, linoleic acid (C18: 2, n-6, LA). , ⁇ -linolenic acid (C18: 3, n-3, ALA), ⁇ -linolenic acid (C18: 3, n-6, GLA), stearidonic acid (C18: 4, n-3, STA), eicosatriene Acid (C20: 3, n-3, ETrA), dihomo- ⁇ -linolenic acid (C20: 3, n-6, DGLA), eicosatetraenoic acid (C20: 4, n-3, ETA), arachidonic acid (C20: 4, n-6, ARA), eicosapentaenoic acid (C20: 5, n-3, EPA), docosatetraenoic acid (C22: 4, n-6, DTA
  • FIG. 1 shows the change in the glucose concentration in the medium when the amount of the medium is 100 ml, 200 ml or 300 ml in the flask culture of Thraustochytrium aureum ATCC 34304.
  • the saturated dissolved oxygen concentration in the medium was measured with a DO sensor.
  • FIG. 2 shows the change in the saturated dissolved oxygen concentration in the culture medium when the culture volume is 100 ml, 200 ml or 300 ml in the flask culture of Thraustochytrium aureum ATCC 34304.
  • FIG. 3 shows a partial enlargement of the graph of FIG.
  • the saturated dissolved oxygen concentration is less than 1% after the middle of the culture, while in cultures with a medium volume of 100 ml or 200 ml, the saturated dissolved oxygen concentration is always kept at 1% or higher throughout the culture period. It was.
  • the fatty acid analysis method was performed according to Non-Patent Document 8. That is, the cells were collected by centrifugation, washed with distilled water, and then lyophilized. Lipid was methylesterified by adding 100 ml of 1 ml dichloromethane and methanol to about 20 mg of dried cells, adding 2 ml of 10% methanolic hydrochloric acid and heating at 60 ° C for 3 hours. The fatty acid methyl ester thus obtained was extracted with hexane and subjected to gas chromatographic analysis.
  • FIGS. That is, FIG. 1 For the analysis, a 7890A GC System gas chromatograph (manufactured by Agilent Technologies) was used, and a capillary column DB-WAX (30 m ⁇ 250 ⁇ m, film thickness 0.25 ⁇ m, manufactured by Agilent Technologies) was used as the column. The temperature was raised from 140 ° C. to 240 ° C. at 4 ° C./min and held for 10 minutes. The results are shown in FIGS. That is, FIG.
  • FIG. 4 shows the composition (%) of polyunsaturated fatty acids (PUFA) in the total fatty acids contained in the cells when cultured in a flask culture of Thraustochytrium aureum ATCC 34304 at a culture volume of 100 ml, 200 ml or 300 ml.
  • FIG. 5 shows the production amount (g / L) of polyunsaturated fatty acid (PUFA) per liter of the medium.
  • a method of culturing under aerobic conditions particularly a method of culturing while maintaining a saturated dissolved oxygen concentration at 1% or more throughout the culture period, It was confirmed that the culture method efficiently increases the content of polyunsaturated fatty acids of Thraustochytrium aureum ATCC 34304.
  • Thraustochytrium roseum ATCC28210 was cultured in the same manner as in Example 1, and the influence of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined.
  • the amount of medium in a 500 ml baffled Erlenmeyer flask was 100 ml, 200 ml, or 300 ml, but in this example, it was 200 ml or 300 ml.
  • FIGS. shows the change in glucose concentration in the culture medium when the culture volume is 200 ml or 300 ml in the flask culture of Thraustochytrium roseum ATCC 28210
  • FIG. Represents the composition (%) of fatty acid (PUFA).
  • the method of culturing under aerobic conditions is a method of efficiently increasing the content of polyunsaturated fatty acids.
  • Thraustochytrium striatum ATCC 24473 was cultured in the same manner as in Example 1, and the effect of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined.
  • the amount of medium in a 500 ml baffled Erlenmeyer flask was 100 ml, 200 ml, or 300 ml, but in this example, it was 200 ml or 300 ml.
  • FIGS. shows the polyunsaturated fatty acid (PUFA) in the total fatty acids contained in the cells.
  • 10 shows the production amount (g / L) of polyunsaturated fatty acid (PUFA) per liter of the medium.
  • FIG. 10 Compared to culture under more anaerobic conditions (culture with a large amount of medium in the flask) in culture under more aerobic conditions (culture with a small amount of medium in the flask), FIG. As shown in FIG. 10, the content of highly unsaturated fatty acids in the fats and oils increased, and the amount of highly unsaturated fatty acids produced per liter of the medium also increased. Therefore, it was confirmed that the method of culturing under aerobic conditions is an culturing method that efficiently increases the content of polyunsaturated fatty acids for Thraustochytrium striatum ATCC 24473.
  • FIG. 11 shows changes in the glucose concentration in the medium when the culture volume was cultured at 100 ml or 300 ml in the flask culture of Parieticium sarkarianum SEK351
  • FIG. 12 shows the change in the saturated dissolved oxygen concentration in the medium.
  • FIG. 14 shows the composition (%) of polyunsaturated fatty acids (PUFA) in the total fatty acids contained in the cells
  • FIG. 15 shows the amount of polyunsaturated fatty acids (PUFA) produced per liter of medium ( g / L).
  • FIG. 13 shows a partial enlargement of the graph of FIG.
  • Example 1 of Parieticium sp. NBRC102984 The effect of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined. However, in Example 1, when the amount of the medium in the Erlenmeyer flask with 500 ml baffle was 100 ml or 300 ml, it was 100 ml, 200 ml or 300 ml in this example. The results are shown in FIGS. That is, FIG. 16 shows the relationship between Parieticium sp. In the flask culture of NBRC102984, the change in the glucose concentration in the medium when the medium amount is cultured at 200 ml or 300 ml is shown, and FIG. 17 shows the change in the saturated dissolved oxygen concentration in the medium. FIG.
  • FIG. 19 shows the composition (%) of polyunsaturated fatty acids (PUFA) in the total fatty acids contained in the cells
  • FIG. 20 shows the amount of polyunsaturated fatty acids (PUFA) produced per liter of medium ( g / L).
  • FIG. 18 shows a partial enlargement of the graph of FIG.
  • the saturated dissolved oxygen concentration becomes less than 1% after the middle of the culture, while in the culture with the medium volume of 200 ml, the saturated dissolved oxygen concentration becomes the culture period. Throughout, it was always over 1%. Further, in culture with a medium volume of 200 ml (culture in which the saturated dissolved oxygen concentration is always kept at 1% or higher throughout the culture period), culture with a medium volume of 300 ml (saturated dissolved oxygen concentration below 1% after the middle of the culture) 19), the content of highly unsaturated fatty acids in the fats and oils is remarkably increased as shown in FIG.
  • FIG. 21 Parietichyrium sarkarianum SEK364 (FERM BP-11298) was cultured in the same manner as in Example 1, and the effect of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined.
  • FIGS. 21 Parietichytrium
  • FIG. 22 shows the change in glucose concentration in the culture medium when the culture volume is 100 ml, 200 ml or 300 ml in the flask culture of sarkarianum SEK364.
  • FIG. 22 shows the polyunsaturated fatty acid (PUFA) in the total fatty acids contained in the cells.
  • FIG. 23 shows the production amount (g / L) of polyunsaturated fatty acid (PUFA) per liter of the medium.
  • the culture under a more aerobic condition (culture with a small amount of medium in the flask) is shown in FIG. 22 as compared with the culture under a more anaerobic condition (culture with a large amount of medium in the flask).
  • the content of highly unsaturated fatty acids in the fats and oils increased remarkably, and the amount of highly unsaturated fatty acids produced per liter of the medium also increased. Therefore, it was confirmed that the method of culturing under aerobic conditions is an culturing method that efficiently increases the content of polyunsaturated fatty acids for Parietichytrium sarkarianum SEK364.
  • Schizochytrium sp. SEK210 (NBRC102615) was cultured in the same manner as in Example 1, and the effect of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined. The results are shown in FIGS.
  • the culture under a more aerobic condition (culture with a small amount of medium in the flask) is shown in FIG. 25 as compared with the culture under a more anaerobic condition (culture with a large amount of medium in the flask).
  • the content of highly unsaturated fatty acid in the fat increased, and the amount of highly unsaturated fatty acid produced per liter of the medium increased. Therefore, the method of culturing under aerobic conditions is Schizochytrium sp. It was confirmed that this culture method efficiently increases the content of highly unsaturated fatty acids in SEK210 (NBRC102615).
  • Schizochytrium sp. SEK345 (NBRC102616) was cultured in the same manner as in Example 1, and the effect of the saturated dissolved oxygen concentration in the medium on the ability to produce highly unsaturated fatty acids was examined.
  • the amount of medium in a 500 ml baffled Erlenmeyer flask was 100 ml, 200 ml, or 300 ml, but in this example, it was 200 ml or 300 ml.
  • FIGS. That is, FIG. Schizochytrium sp.
  • the flask culture of SEK210 (NBRC102615), the change in the glucose concentration in the medium when the medium amount is cultured at 100 ml, 200 ml or 300 ml is shown.
  • FIG. 28 shows the highly unsaturated fatty acid in the total fatty acids contained in the cells.
  • the composition (%) of (PUFA) is shown
  • FIG. 29 shows the production amount (g / L) of polyunsaturated fatty acid (PUFA) per liter of the medium.
  • FIG. 29 Compared with culture under more anaerobic conditions (culture with a large amount of medium in the flask) in culture under more aerobic conditions (culture with a small amount of medium in the flask), FIG. As shown in FIG. 29, the content of highly unsaturated fatty acids in the fats and oils increased remarkably, and the amount of highly unsaturated fatty acids produced per liter of the medium also increased. Therefore, the method of culturing under aerobic conditions is It was confirmed that the culture method efficiently increases the content of highly unsaturated fatty acids of Schizochytrium sp. SEK345 (NBRC102616).
  • FIG. 31 shows the change in the concentration of glucose in the medium when the amount of the medium was cultured at 100 ml, 200 ml or 300 ml in the flask culture of Aurantiochytrium limacinum SR21 (ATCC MYA-1381).
  • FIG. 33 shows the composition (%) of polyunsaturated fatty acids (PUFA) in the total fatty acids contained in the cells, and FIG.
  • PUFA polyunsaturated fatty acids
  • FIG. 34 shows the production of polyunsaturated fatty acids (PUFA) per liter of medium. It represents the amount (g / L).
  • FIG. 32 shows a partial enlargement of the graph of FIG. In cultures with a medium volume of 300 ml, the saturated dissolved oxygen concentration was less than 1% after the middle of the culture, while in cultures with a medium volume of 100 ml, the saturated dissolved oxygen concentration was always kept at 1% or higher throughout the culture period. .
  • PUFA polyunsaturated fatty acids
  • Example 1 to Example 8 even in culture with a medium volume of 100 ml (culture in which the saturated dissolved oxygen concentration was always kept at 1% or more throughout the culture period), culture with a medium volume of 300 ml (after the middle of the culture) Compared with the culture in which the saturated dissolved oxygen concentration was less than 1%, the content of highly unsaturated fatty acids in the fats and oils did not increase as shown in FIG. Further, as shown in FIG. 34, the production amount of polyunsaturated fatty acid per liter of the medium did not increase but rather decreased slightly.
  • the present invention provides a method for efficiently producing highly unsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid used as pharmaceuticals, foods, or feeds, and fats and oils having a high content of highly unsaturated fatty acids.
  • highly unsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid used as pharmaceuticals, foods, or feeds, and fats and oils having a high content of highly unsaturated fatty acids.
  • Thraustochytrium genus Thraustochytrium
  • Parietichytrium palier Tiki thorium genus
  • Schizochytrium Schizochytrium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

課題:高度不飽和脂肪酸を含む油脂の効率的な製造方法、油脂中の高度不飽和脂肪酸含有率を増加させる方法、これらの方法により得られた油脂含有物あるいは油脂、および微生物の培養菌体の提供。 解決手段:高度不飽和脂肪酸生産能を有するスラウストキトリウム属 (Thraustochytrium)、パリエティキトリウム属 (Parietichytrium)またはシゾキトリウム属 (Schizochytrium)に属する微生物を好気的条件で培養する、高度不飽和脂肪酸の製造方法。当該微生物を好気的条件で培養し微生物の高度不飽和脂肪酸生産能を増強させることによる油脂中の高度不飽和脂肪酸含有率を増加させる方法。これらの方法により得られた油脂含有物あるいは油脂、および微生物の培養菌体。

Description

高度不飽和脂肪酸を含む油脂の製造方法
 本発明は、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物を用いる高度不飽和脂肪酸を含む油脂の製造方法、微生物菌体内の油脂含有物あるいは油脂中の高度不飽和脂肪酸含有率を増加させる方法、微生物菌体から回収された高度不飽和脂肪酸含有率が増加している油脂含有物あるいは油脂、および菌体内の油脂含有物あるいは油脂中の高度不飽和脂肪酸含有率が増加している状態で回収されたスラウストキトリウム属
Thraustochytrium)、パリエティキトリウム属
Parietichytrium)、またはシゾキトリウム属
Schizochytrium)に属する微生物菌体に関する。
 エイコサペンタエン酸(以下、EPAという)、ドコサヘキサエン酸(以下、DHAという)等の高度不飽和脂肪酸(PUFAともいう)は、その生理活性が高く評価され、医薬品や健康食品に幅広く利用されている。これら高度不飽和脂肪酸を含有する油脂は、主にイワシやマグロ等の水産動物、亜麻やボラージ等の植物から抽出され、精製や高度不飽和脂肪酸の濃度を高める処理等を施されて利用されている。
 近年、これら動植物の他に、微生物を用いた高度不飽和脂肪酸の製造方法に関する研究開発が進み、実用化された例も複数知られている。モルティエレラ属(Mortierella)に属する糸状菌を用いたアラキドン酸生産(特許文献1、2)や、クリプテコディニウム属
Crypthecodinium)に属する渦鞭毛藻を用いたDHA生産(非特許文献1)が代表的な例として挙げられる。また、海洋真核微生物のラビリンチュラ類であるヤブレツボカビ目に属する微生物も、DHAなどの高度不飽和脂肪酸を高濃度に含有する微生物として注目されており(非特許文献2)、オーランチオキトリウム属(Aurantiochytrium)やシゾキトリウム属(Schizochytrium)、ウルケニア属
Ulkenia)に属する微生物を用いたDHAの生産が行われている(非特許文献3,4)。
特開昭63-44891号公報 特開昭63-12290号公報 特開2010-57508号公報
ツヴィ・コーエン(Zvi Cohen)ら編,「シングル セル オイルズ(Single Cel1 0ils)」,(米国),エイオーシーエス・プレス(AOCS Press),2005年,p.86‐ 98 Nakahara T, Yokochi T, Higashihara T, Tanaka S ,Yaguchi T, Honda D(1996) Production of docosahexaenoic acid and docosapentaenoic acids by Schizochytrium sp. isolated from Yap lslands, J. Am. Chem Soc. 73,1421‐1426. ツヴィ・コーエン(Zvi Cohen)ら編,「シングル セル オイルズ(Single Cel1 0ils)」,(米国),エイオーシーエス・プレス(AOCS Press),2005年,p.36‐52 ツヴィ・コーエン(Zvi Cohen)ら編,「シングル セル オイルズ(Single Cell Oils)」,(米国),エイオーシーエス・プレス(AOCS Press),2005年,p.99‐106 Z Chi, Y Liu, C Frear, S Chen - Applied microbiology and biotechnology,(2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience 48:329-341 Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomical characteristics and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes, stramenopiles): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199-211 Naoki Nagano, Yousuke Taoka, Daisuke Honda and Masahiro Hayashi(2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine Thraustochytrid, Aurantiochytrium limacinum mh0186, J. Oleo Sci. 58,(12) 623-628
 ヤブレツボカビ目の微生物による高度不飽和脂肪酸の生産においては、脂質生産段階をより嫌気的な条件下、つまり発酵培地中の飽和溶存酸素濃度を低下させた工程で培養することが好ましいとされている(特許文献3、非特許文献5)。例えば特許文献3では、当該微生物の増殖法として(1)バイオマス密度増大段階と(2)脂質生産段階の2つの段階を含みうるとした上で、[0032]にて「(脂質)生産段階の溶存酸素レベルを低下させると、脂質の生産速度が劇的に増大することを見出した。」「生産段階における発酵培地中の溶存酸素は、約3%以下の飽和度、好ましくは約1%以下の飽和度、より好ましくは約0%の飽和度に低下させる。」と記載している。
 本発明者は先行技術に記載の知見に基づき、代表的なヤブレツボカビ目の微生物を対象に様々な飽和溶存酸素濃度における培養を試み、高度不飽和脂肪酸の生産に及ぼす影響について検討した。その結果、先行技術の記載とは異なる挙動を示すヤブレツボカビ目の微生物が多いことを見出した。すなわち、脂質生産段階をより嫌気的な条件下、つまり発酵培地中の飽和溶存酸素濃度を低下させた工程で培養した場合でも高度不飽和脂肪酸の含有率が増加しないヤブレツボカビ目の微生物が多いことを見出した。
 従い、これらのようなヤブレツボカビ目の微生物で高度不飽和脂肪酸の含有率を増加させるためには、別の新しい解決手段が必要であることを確認した。
 細胞中の脂質蓄積能についてはその向上に限界があり、高度不飽和脂肪酸の微生物生産において画期的なコストダウンを図る方法の一つとして、油脂中の高度不飽和脂肪酸の含有率を向上させることが重要と考えられる。本発明は、このような事情のもとで、高度不飽和脂肪酸生産能を有する微生物を培養して高度不飽和脂肪酸を生産するに当り、高度不飽和脂肪酸含有率の増加した油脂を得るための改良技術を提供することを目的としてなされたものである。
 本発明は、高度不飽和脂肪酸生産能を有する微生物の高度不飽和脂肪酸生産効率を高め、高収率で高度不飽和脂肪を製造する方法、および該方法により得られた高度不飽和脂肪酸含有率の増加した油脂を提供することを課題とする。また、高度不飽和脂肪酸生産能を有する微生物の高度不飽和脂肪酸生産能の増強方法、および該方法により得られた高度不飽和脂肪酸生産能が増強された高度不飽和脂肪酸生産能を有する微生物を提供することを課題とする。
 本発明者らは、ヤブレツボカビ目に属する微生物のうち、スラウストキトリウム属(Thraustochytrium)やパリエティキトリウム属
Parietichytrium)やシゾキトリウム属
Schizochytrium)で、好気的条件下で培養した際に高度不飽和脂肪酸の含有率が増加することを発見した。すなわち、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属
Parietichytrium)またはシゾキトリウム属
Schizochytrium)に属する微生物を培養する際、回転数や通気量、圧力等を調節して培地中の飽和溶存酸素濃度が1%以上である時期を有するように好気的条件下で培養を行うことで高度不飽和脂肪酸の生産性が向上することを見出し、本発明を完成するに至った。本発明は、高度不飽和脂肪酸生産能を有するスラウストキトリウム属
Thraustochytrium)、パリエティキトリウム属
Parietichytrium)、またはシゾキトリウム属
Schizochytrium)に属する微生物を、一定以上の溶存酸素下で培養することを特徴とする、高度不飽和脂肪酸の製造方法、当該方法により得られた高度不飽和脂肪酸含有率の増加した油脂、および当該方法により得られた高度不飽和脂肪酸含有率の増加した本微生物の培養菌体に関する。
 本発明は下記(1)~(10)に記載の高度不飽和脂肪酸を含む油脂の製造方法を要旨とする。
(1)スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物を好気的条件下で培養し、その菌体を回収することを特徴とする、高度不飽和脂肪酸を含む油脂の製造方法。
(2)好気的条件が、微生物培養の脂質生産段階において培地中の飽和溶存酸素濃度が1%以上である時期を有するものである、上記(1)に記載された高度不飽和脂肪酸を含む油脂の製造方法。
(3)好気的条件が、微生物培養時において培地中の飽和溶存酸素濃度が下限に達した後濃度の値が1%以上である、上記(1)または(2)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(4)好気的条件が、培地中の飽和溶存酸素濃度を培養期間を通じて常に1%以上に保つことである、上記(1)ないし(3)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(5)前記培地の温度が20℃以上で行う培養である、上記(1)ないし(4)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(6)前記高度不飽和脂肪酸が、炭素数18以上、不飽和結合が2以上の脂肪酸である、上記(1)ないし(5)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(7)前記高度不飽和脂肪酸が、リノール酸(C18:2,n-6、LA)、α-リノレン酸(C18:3,n-3、ALA)、γ-リノレン酸(C18:3,n-6、GLA)、ステアリドン酸(C18:4,n-3、STA)、エイコサトリエン酸(C20:3,n-3、ETrA)、ジホモ-γ-リノレン酸(C20:3,n-6、DGLA)、エイコサテトラエン酸(C20:4,n-3、ETA)、アラキドン酸(C20:4,n-6、ARA)、エイコサペンタエン酸(C20:5,n-3、EPA)、ドコサテトラエン酸(C22:4,n-6、DTA)、n-3 ドコサペンタエン酸(C22:5,n-3、n-3 DPA)、n-6 ドコサペンタエン酸(C22:5,n-6、n-6 DPA)、ドコサヘキサエン酸(C22:6,n-3、DHA)からなる群から選択される少なくとも1以上の脂肪酸である、上記(1)ないし(6)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(8)前記微生物が、Thraustochytrium aureum
Thraustochytrium roseum
Thraustochytrium striatum
Parietichytrium sarkarianum
Parietichytrium sp.、または
Schizochytrium sp.からなる群から選択される少なくとも1以上の微生物である、上記(1)ないし(7)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(9)前記微生物が、Thraustochytrium aureum ATCC34304、Thraustochytrium roseum ATCC28210、Thraustochytrium 
striatum ATCC24473、Parietichytrium 
sarkarianum SEK351、Parietichytrium sp.NBRC102984、Parietichytrium 
sarkarianum SEK364、Schizochytrium 
sp.SEK210、またはSchizochytrium sp.SEK345からなる群から選択される少なくとも1以上の微生物である、上記(1)ないし(8)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
(10)前記微生物が、内因性PUFA-PKS経路によるPUFA生産能が無いあるいはきわめて微弱な微生物である、上記(1)ないし(9)のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
 また、本発明は下記(11)に記載の高度不飽和脂肪酸を含む油脂を要旨とする。
(11)上記(1)ないし(10)のいずれかに記載された方法で得られた高度不飽和脂肪酸を含む油脂。
 また、本発明は下記(12)に記載の微生物菌体を要旨とする。
(12)上記(1)ないし(10)のいずれかに記載された方法で回収される前記微生物の菌体。
 また、本発明は下記(13)に記載の医薬品、食品、または飼料を要旨とする。
(13)上記(11)または(12)に記載された油脂または菌体を含有する医薬品、食品、または飼料。
 本発明により、培地中の飽和溶存酸素濃度が1%以上である時期を有する培養方法で高度不飽和脂肪酸生産能を有するヤブレツボカビ目に属する微生物の高度不飽和脂肪酸生産効率を高め、高収率で高度不飽和脂肪を製造する方法、および該方法により得られた高度不飽和脂肪酸含有率の増加した油脂を提供することができる。ヤブレツボカビ目に属する微生物として、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属
Schizochytrium)に属する微生物を選択することにより生産効率を高め、高収率で高度不飽和脂肪酸を含む油脂の製造方法、および該方法により得られた高度不飽和脂肪酸含有率の増加した油脂を提供することができる。
 本発明により、高度不飽和脂肪酸生産能を有するヤブレツボカビ目に属する微生物を培養して高度不飽和脂肪酸を生産するに当り、培地中の飽和溶存酸素濃度を1%以上に保つ培養方法を採用し、スラウストキトリウム属
Thraustochytrium)、パリエティキトリウム属
Parietichytrium)、またはシゾキトリウム属
Schizochytrium)に属する微生物を選択することにより、高度不飽和脂肪酸含有率の増加した油脂を得るための改良技術を提供することができる。また、菌体内に高度不飽和脂肪酸含有率が増加している状態で油脂含有物あるいは油脂を蓄積しているスラウストキトリウム属
Thraustochytrium)、パリエティキトリウム属
Parietichytrium)またはシゾキトリウム属
Schizochytrium)に属する微生物菌体を回収することができる。
 本発明により、医薬品、食品、または飼料として用いられる高度不飽和脂肪酸を効率的に生産、ならびに高度不飽和脂肪酸含有率の増加した油脂、微生物を提供することができる。
Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中の飽和溶存酸素濃度の変化を表す。 図2のグラフの部分拡大を表す。 Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。 Thraustochytrium roseum ATCC28210のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Thraustochytrium roseum ATCC28210のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Thraustochytrium striatum ATCC24473のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Thraustochytrium striatum ATCC24473のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Thraustochytrium striatum ATCC24473のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を100mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を100mlまたは300mlとして培養した際の、培地中の飽和溶存酸素濃度の変化を表す。 図17のグラフの部分拡大を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を100mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を100mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。 Parietichytrium sp. NBRC102984のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中の飽和溶存酸素濃度の変化を表す。 図22のグラフの部分拡大を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Parietichytrium sarkarianum SEK351(NBRC104108)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。 Parietichytrium sarkarianumSEK364のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Parietichytrium sarkarianumSEK364のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Parietichytrium sarkarianumSEK364のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。 Schizochytrium sp. SEK210(NBRC102615)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Schizochytrium sp. SEK210(NBRC102615)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Schizochytrium sp.SEK210(NBRC102615)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。 Schizochytrium sp.SEK345(NBRC102616)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Schizochytrium sp.SEK345(NBRC102616)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Schizochytrium sp.SEK345(NBRC102616)のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
Aurantiochytrium limacinum SR21(ATCC MYA-1381)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。 Aurantiochytrium limacinum SR21(ATCC MYA-1381)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中の飽和溶存酸素濃度の変化を表す。 図36のグラフの部分拡大を表す。 Aurantiochytrium limacinum SR21(ATCC MYA-1381)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。 Aurantiochytrium limacinum SR21(ATCC MYA-1381)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
 本発明はヤブレツボカビ目の一属であるスラウストキトリウム属
Thraustochytrium)、パリエティキトリウム属
Parietichytrium)、またはシゾキトリウム属
Schizochytrium)に属する微生物を用いることを特徴とする、高度不飽和脂肪酸の製造方法、または菌体に含まれる油脂含有物あるいは油脂中の高度不飽和脂肪酸含有率を増加させる方法に関する。
 本発明の高度不飽和脂肪酸の製造方法、または菌体に含まれる油脂含有物あるいは油脂中の高度不飽和脂肪酸含有率を増加させる方法は、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)またはシゾキトリウム属
Schizochytrium)に属する微生物を、培地中の飽和溶存酸素濃度が1%以上である時期を有する培養方法で培養することを特徴とする。
微生物は、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物および該微生物のいずれかの突然変異株からなる群より選択される。
 本発明におけるパリエティキトリウム属
Parietichytrium)に属する微生物とは、非特許文献6に記載の特徴を有するラビリンチュラ類を指す。非特許文献6ではウルケニア属(Ulkenia)を4つの属に再編成しており、パリエティキトリウム属(Parietichytrium)は再編成後の属の一つである。
 また、本発明におけるシゾキトリウム属(Schizochytrium)やオーランチオキトリウム属(Aurantiochytrium)に属する微生物とは、非特許文献7に記載の特徴を有するラビリンチュラ類を指す。
 非特許文献7ではシゾキトリウム属(Schizochytrium)を3つの属に再編成しており、シゾキトリウム属
Schizochytrium)やオーランチオキトリウム属
Aurantiochytrium)は再編成後の属である。
 これらのうちシゾキトリウム属(Schizochytrium)は区別のため、再編成前を「広義のシゾキトリウム属
Schizochytrium sensu lato)」、再編成後を「狭義のシゾキトリウム属(Schizochytrium sensu 
stricto)」と呼ぶ場合があるが、本発明におけるシゾキトリウム属
Schizochytrium)は再編成後の狭義のシゾキトリウム属
Schizochytrium sensu stricto)を指す。
 また、本発明におけるオーランチオキトリウム属
Aurantiochytrium)に属する微生物の中には慣用的にシゾキトリウム属(Schizochytrium)と呼ばれるものもあるが、本発明ではこれらもオーランチオキトリウム属
Aurantiochytrium)に属する微生物として扱う。
 これら微生物は微生物寄託機関から入手することができる。
 例えば、実施例1~3で用いた菌株はThraustochytrium aureum ATCC 34304、Thraustochytrium roseum ATCC28210、Thraustochytrium 
striatum ATCC24473、比較例で用いた菌株は
Aurantiochytrium limacinum SR21(ATCC MYA-1381)であり、これらの菌株はATCC(アメリカン・タイプ・カルチャー・コレクション)に寄託され、一般に入手可能である。
 また、実施例4で用いた菌株はParietichytrium 
sarkarianum SEK351 (NBRC104108) 、実施例5で用いた菌株はParietichytrium sp. (NBRC102984)、実施例7で用いた菌株はSchizochytrium sp. SEK210(NBRC102615)、実施例8で用いた菌株は
Schizochytrium sp. SEK345(NBRC102616)であり、この菌株はNBRC(独立行政法人製品評価技術基盤機構バイオテクノロジーセンター)に寄託され、一般に入手可能である。
 また、実施例6で用いた菌株はParietichytrium 
sarkarianum SEK364(FERM BP-11298)であり、この菌株は独立行政法人産業技術総合研究所特許生物寄託センター(茨城県つくば市東1-1-1中央第6)に受託番号(FERM BP-11298)として平成22年9月24日に国際寄託されており、そこから入手可能である。
 また、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物は海水や汽水中、海藻やマングローブ汽水域の落ち葉、沈殿物等に生息し、馬血清海水寒天培地、松花粉寒天培地、コレステロール寒天培地等を用いて分離することも可能である。
 ポリケチドシンターゼ(PKS)系は一般に、脂肪酸シンターゼ(FAS)系に由来する酵素複合体として当技術分野において知られている。現在ポリケチドシンターゼ系は、マロニル-CoAからPUFAを合成することができる海洋細菌および一定の微細藻類に存在することが知られている。
 炭素数が20個以上の高度不飽和脂肪酸(PUFA)ポリケチドシンターゼ(PKS)系に関し、ラビリンチュラ類は総じて脂肪酸を高濃度蓄積することで知られているが、本発明の高度不飽和脂肪酸を含む油脂の製造方法が対象とする上記の微生物は、内因性PUFA-PKS経路によるPUFAの生産能が無いあるいは極めて微弱であり、かつ内因性エロンガーゼ/デサチュラーゼ経路によるPUFA生産能を有するラビリンチュラ類である。
 これらスラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物を通常用いられる液体培地で、飽和溶存酸素濃度が1%以上である時期を有するように、常法により培養する。
 微生物培養条件は、バイオマス密度増大段階と脂質生産段階を含む。バイオマス密度増大段階は、炭素源および制限栄養源を添加することを含む。
 脂質生産段階は、脂質生産を誘発させる条件を創出するために、制限栄養源を加えずに炭素源を添加することを含む。脂質生産段階は、時間の経過による脂質生産量のグラフを作成したときに、単位時間当たりの脂質生産量の増加率が正に変化する点を測定することにより検出することが可能である。
 かつては脂質生産段階の溶存酸素レベルを低下させると、脂質の生産速度が増大すると考えられていた。しかし驚くべきことに、思いがけなく、本発明者は生産段階の溶存酸素レベルを高く維持することによって脂質の生産が劇的に増大することを見出した。本発明では、好気的条件すなわち、微生物培養の脂質生産段階において培地中の飽和溶存酸素濃度が1%以上である時期を有するものである。
 本発明では、培地中の飽和溶存酸素濃度の値が1%以上である時期を有する。脂質生産段階における培地中の飽和溶存酸素濃度が1%以上である時期を有すると、脂質生産段階において効率的に脂質を生産することができる。脂質生産段階における培地中の飽和溶存酸素濃度が、2%以上、3%以上、4%以上である時期を有すると、呼吸のための酸素を供給することにより微生物を健全に保つことができるため、好ましい。
 微生物培養では、バイオマス密度増大段階においてバイオマスが増大する。それに応じて各微生物が消費する酸素量も増大し、培地中に供給される酸素量を超えると、培地中の飽和溶存酸素濃度が低下する。しかし微生物培養がバイオマス密度増大段階から、脂質生産段階に移行すると、バイオマス密度増大に消費される酸素量が減少し、培地中に供給される酸素量より少なくなると、培地中の飽和溶存酸素濃度が上昇する。このようにバイオマス密度増大段階から脂質生産段階へ移行するときに培地中の飽和溶存酸素濃度は下限に達する。
 本発明の一態様では、微生物培養時において培地中の飽和溶存酸素濃度が下限に達した後に飽和溶存酸素濃度の値が1%以上である時期を有すれば、脂質生産段階において効率的に脂質を生産することができる。微生物培養時において培地中の飽和溶存酸素濃度が下限に達した後に飽和溶存酸素濃度の値が、2%以上、3%以上、4%以上である時期を有すれば、微生物の呼吸を維持することができ、より健全な状態にすることができるため、好ましい。飽和溶存酸素濃度を所定の濃度以上にする場合に、所定の濃度以上にしている時間は、具体的には30分以上であれば、バイオマスが少ない状態で脂質生産を行うことができるため不純物が少ない状態で脂質分離を行うことができる。さらに1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、8時間以上行う場合には、脂質生産量が増加するため、脂質の大量生産には好ましい。また本発明の一態様では、好気的条件が培地中の飽和溶存酸素濃度を培養期間を通じて常に1%以上に保つことにより、脂質生産を効率的に脂質を生産することができが、2%以上、3%以上、4%以上に保つことにより微生物の呼吸を確保することができる。そのため微生物を継続的使用するできるため、好ましい。
 また本発明の別の態様では、微生物培養時において培地中の飽和溶存酸素濃度が下限に達した後濃度の値が1%以上であるように保ちながら、好ましくは培地中の飽和溶存酸素濃度を培養期間を通じて常に1%以上に保ちながら培養を続けることを特徴とする。飽和溶存酸素濃度を1%以上に保つ具体的な方法としては、バッフル付フラスコや坂口フラスコを使用する、浸とう培養時の回転数を上げる、フラスコ中の培地量を減らす、ジャーファーメンターの撹拌翼の回転数を上げる、ジャー培養における通気量を上げる、培養装置の圧力をあげる、酸素ボンベ等を使って培地に酸素を吹き込む、培地の温度を下げる等の様々な方法が挙げられる。本発明では、前記培地の温度が20℃以上で行う培養が好ましい。
 この時、用いられる培地としては、例えば炭素源としてグルコース、フルクトース、サッカロース、デンプン、グリセリン等、また窒素源として酵母エキス、コーンスティープリカー、ポリペプトン、グルタミン酸ナトリウム、尿素、酢酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、硝酸ナトリウム等、また無機塩としてリン酸カリウム等、その他必要な成分を適宜組み合わせた培地であり、ヤブレツボカビ目に属する微生物を培養するために通常用いられるものであれば特に限定されないが、特に好ましくは酵母エキス・グルコース液体培地(GY培地)が用いられる。
 培地調製後、pHを3.0~8.0の範囲内に調整した後、オートクレーブ等により殺菌して用いる。培養は適宜植菌した後、10~40℃、好ましくは15~35℃、さらに好ましくは20~35℃において1~14日間、通気撹拌培養や振とう培養を行えばよい。本発明で培地中の飽和溶存酸素濃度を所定の濃度以上に制御する具体的な方法としては、バッフル付フラスコや坂口フラスコを使用する、浸とう培養時の回転数を上げる、フラスコ中の培地量を減らす、ジャーファーメンターの撹拌翼の回転数を上げる、ジャー培養における通気量を上げる、培養装置の圧力をあげる、酸素ボンベ等を使って培地に酸素を吹き込む、培地の温度を下げる等の様々な方法が挙げられる。
 このようにスラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)またはシゾキトリウム属(Schizochytrium)に属する微生物を生育し、その培地から得た微生物を遠心分離等により回収し、必要に応じてスプレードライ等の方法で細胞を乾燥させる。
 得られた細胞(乾燥物)を破砕し、常法に従い適当な有機溶媒あるいは超臨界流体等を用いて細胞内の脂質を抽出し、溶媒等を留去することにより、高度不飽和脂肪酸含有率の増加した油脂を得ることができる。
 なお、本発明における高度不飽和脂肪酸とは、炭素数が18以上、不飽和結合が2以上の高度不飽和脂肪酸を指し、より具体的にはリノール酸(C18:2,n-6、LA)、α-リノレン酸(C18:3,n-3、ALA)、γ-リノレン酸(C18:3,n-6、GLA)、ステアリドン酸(C18:4,n-3、STA)、エイコサトリエン酸(C20:3,n-3、ETrA)、ジホモ-γ-リノレン酸(C20:3,n-6、DGLA)、エイコサテトラエン酸(C20:4,n-3、ETA)、アラキドン酸(C20:4,n-6、ARA)、エイコサペンタエン酸(C20:5,n-3、EPA)、ドコサテトラエン酸(C22:4,n-6、DTA)、n-3 ドコサペンタエン酸(C22:5,n-3、n-3 DPA)、n-6 ドコサペンタエン酸(C22:5,n-6、n-6 DPA)、ドコサヘキサエン酸(C22:6,n-3、DHA)等が例示される。
 また、本明細書において、発明の各態様に関する一実施形態中で説明された各発明特定事項は、任意に組み合わせて新たな実施形態としてもよく、このような新たな実施形態も、本発明の各態様に包含され得るものとして、理解されるべきである。
 培地中の飽和溶存酸素濃度がThraustochytrium 
aureum ATCC34304の高度不飽和脂肪酸生産能に及ぼす影響を、下記の条件で培養することにより検討した。すなわち、500ml容バッフル付三角フラスコにGY液体培地(50%濃度人工海水にグルコース3%、酵母エキス(Difco社製)1%となるよう溶解したものに、ビタミン溶液を1%添加したもの)を100ml、200mlまたは300ml分注した。
 これに、あらかじめ試験管で培養した菌液をフラスコ中の培地量の1%量となるよう植菌し、26℃120rpmで振とう培養を行った。
 人工海水とビタミン溶液の組成は非特許文献8を参考に設定した。
 培養開始から培地中のグルコース濃度を適宜測定し、培地中のグルコース濃度がゼロになった時点で菌体を回収した。結果を図1に示す。すなわち、図1は、Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表す。
 培養中はDOセンサーにより培地中の飽和溶存酸素濃度を測定した。結果を図2および図3に示す。
 すなわち、図2は、Thraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中の飽和溶存酸素濃度の変化を表す。なお、図3は、図2のグラフの部分拡大を表す。
 培地量を300mlとした培養では培養中盤以降には飽和溶存酸素濃度が1%未満になり、一方培地量を100mlまたは200mlとした培養では飽和溶存酸素濃度が培養期間を通じて常に1%以上に保たれていた。
 脂肪酸分析方法は非特許文献8にしたがって実施した。
 すなわち、遠心分離により菌体を回収し、蒸留水で菌体を洗浄した後、凍結乾燥した。乾燥菌体約20mgに1mlジクロロメタン、メタノール100μlを添加し、2mlの10%塩酸メタノールを添加して60℃で3時間加熱することで、脂質をメチルエステル化した。こうして得た脂肪酸メチルエステルをヘキサン抽出し、ガスクロマトグラフ分析に供した。
 分析は7890A GC Systemガスクロマトグラフ(アジレント・テクノロジー社製)を用い、カラムはキャピラリカラムDB-WAX(30m×250μm、膜厚0.25μm、アジレント・テクノロジー社製)を使用した。温度条件は4 ℃/minで140℃から240℃に昇温し10分間保持した。結果を図4および5に示す。
 すなわち、図4はThraustochytrium aureum ATCC34304のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図5は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
 培地量を100mlまたは200mlとした培養(培養期間を通じて飽和溶存酸素濃度を常に1%以上に保った培養)では、培地量を300mlとした培養(飽和溶存酸素濃度が1%未満になった培養)と比較して、図4に示したように油脂中の高度不飽和脂肪酸の含有率が増加し、また図5に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、好気的条件下で培養する方法、特に飽和溶存酸素濃度を培養期間を通じて常に1%以上に保って培養する方法は、
Thraustochytrium aureum ATCC34304の高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Thraustochytrium roseum ATCC28210を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。ただし実施例1では500ml容バッフル付三角フラスコ中の培地量を100ml、200mlまたは300mlとしたところを、本実施例では200mlまたは300mlとした。結果を図6~7に示す。すなわち、図6はThraustochytrium roseum ATCC28210のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図7は菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表す。
 より好気的な条件下での培養(フラスコ中の培地量が少ない培養)では、より嫌気的な条件下での培養(フラスコ中の培地量が多い培養)と比較して、図7に示したように油脂中の高度不飽和脂肪酸の含有率が上昇した。
 したがって、Thraustochytrium roseum ATCC28210にとって、好気的条件下で培養する方法は、高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Thraustochytrium striatum ATCC24473を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。ただし実施例1では500ml容バッフル付三角フラスコ中の培地量を100ml、200mlまたは300mlとしたところを、本実施例では200mlまたは300mlとした。結果を図8~10に示す。すなわち、図8は、
Thraustochytrium striatum ATCC24473のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図9は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図10は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
 より好気的な条件下での培養(フラスコ中の培地量が少ない培養)では、より嫌気的な条件下での培養(フラスコ中の培地量が多い培養)と比較して、図9に示したように油脂中の高度不飽和脂肪酸の含有率が上昇し、また図10に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、Thraustochytrium striatum ATCC24473にとって、好気的条件下で培養する方法は、高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Parietichytrium sarkarianum SEK351(NBRC104108)を、実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。結果を図11~15に示す。
 図11は、Parietichytrium sarkarianum SEK351のフラスコ培養において、培地量を100mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図12は、培地中の飽和溶存酸素濃度の変化を表す。また、図14は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図15は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。なお、図13は、図12のグラフの部分拡大を表す。
 図12および図13に示したとおり、培地量を300mlとした培養では培養中盤以降には飽和溶存酸素濃度が1%未満になり、一方培地量を100mlとした培養では飽和溶存酸素濃度が培養期間を通じて常に1%以上になっていた。
 また、培地量を100mlとした培養(培養期間を通じて飽和溶存酸素濃度を常に1%以上に保った培養)では、培地量を300mlとした培養(培養中盤以降に飽和溶存酸素濃度が1%未満になった培養)と比較して、図14に示したように油脂中の高度不飽和脂肪酸の含有率が顕著に増加し、また図15に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、好気的条件下で培養する方法、特に飽和溶存酸素濃度を培養期間を通じて常に1%以上に保って培養する方法は、
Parietichytrium sarkarianum SEK351の高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Parietichytrium sp.NBRC102984を実施例1
と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。ただし実施例1では500ml容バッフル付三角フラスコ中の培地量を100mlまたは300mlとしたところを、本実施例では100ml、200mlまたは300mlとした。結果を図16~20に示す。
 すなわち、図16は、Parietichytrium sp.NBRC102984のフラスコ培養において、培地量を200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図17は、培地中の飽和溶存酸素濃度の変化を表す。また、図19は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図20は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。なお、図18は、図17のグラフの部分拡大を表す。
 図17および図18に示したとおり、培地量を300mlとした培養では培養中盤以降には飽和溶存酸素濃度が1%未満になり、一方培地量を200mlとした培養では飽和溶存酸素濃度が培養期間を通じて常に1%以上になっていた。
 また、培地量を200mlとした培養(培養期間を通じて飽和溶存酸素濃度を常に1%以上に保った培養)では、培地量を300mlとした培養(培養中盤以降に飽和溶存酸素濃度が1%未満になった培養)と比較して、図19に示したように油脂中の高度不飽和脂肪酸の含有率が顕著に増加し、また図20に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、好気的条件下で培養する方法、特に飽和溶存酸素濃度を培養期間を通じて常に1%以上に保って培養する方法は、
Parietichytrium sp.NBRC102984の高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Parietichytrium sarkarianum SEK364(FERM BP-11298)を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。結果を図21~23に示す。
 すなわち、図21は、Parietichytrium 
sarkarianumSEK364のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図22は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図23は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
 より好気的な条件下での培養(フラスコ中の培地量が少ない培養)では、より嫌気的な条件下での培養(フラスコ中の培地量が多い培養)と比較して、図22に示したように油脂中の高度不飽和脂肪酸の含有率が顕著に上昇し、また図23に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、Parietichytrium sarkarianumSEK364にとって、好気的条件下で培養する方法は、高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Schizochytrium sp. SEK210(NBRC102615)を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。結果を図24~26に示す。
 より好気的な条件下での培養(フラスコ中の培地量が少ない培養)では、より嫌気的な条件下での培養(フラスコ中の培地量が多い培養)と比較して、図25に示したように油脂中の高度不飽和脂肪酸の含有率が上昇し、また図26に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、好気的条件下で培養する方法は
Schizochytrium sp.SEK210(NBRC102615)の高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
 Schizochytrium sp. SEK345(NBRC102616)を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。ただし実施例1では500ml容バッフル付三角フラスコ中の培地量を100ml、200mlまたは300mlとしたところを、本実施例では200mlまたは300mlとした。結果を図27~29に示す。すなわち、図27は、
Schizochytrium sp. SEK210(NBRC102615)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図28は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図29は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。
 より好気的な条件下での培養(フラスコ中の培地量が少ない培養)では、より嫌気的な条件下での培養(フラスコ中の培地量が多い培養)と比較して、図28に示したように油脂中の高度不飽和脂肪酸の含有率が顕著に上昇し、また図29に示したように培地1リットルあたりの高度不飽和脂肪酸の生産量も増加していた。
 したがって、好気的条件下で培養する方法は
Schizochytriumsp. SEK345(NBRC102616)の高度不飽和脂肪酸の含有率を効率的に増加させる培養方法であることが確認された。
比較例
 Aurantiochytrium limacinum SR21(ATCC MYA-1381)を実施例1と同様の方法で培養し、培地中の飽和溶存酸素濃度が高度不飽和脂肪酸生産能に及ぼす影響を検討した。
 結果を図30~34に示す。すなわち、図30は、
Aurantiochytrium limacinum SR21(ATCC MYA-1381)のフラスコ培養において、培地量を100ml、200mlまたは300mlとして培養した際の、培地中のグルコース濃度の変化を表し、図31は、培地中の飽和溶存酸素濃度の変化を表し、図33は、菌体に含まれる総脂肪酸中の高度不飽和脂肪酸(PUFA)の組成(%)を表し、図34は、培地1リットルあたりの高度不飽和脂肪酸(PUFA)の生産量(g/L)を表す。なお、図32は、図31のグラフの部分拡大を表す。
 培地量を300mlとした培養では培養中盤以降には飽和溶存酸素濃度が1%未満になり、一方培地量を100mlとした培養では飽和溶存酸素濃度が培養期間を通じて常に1%以上に保たれていた。
 実施例1~ 実施例8とは異なり、培地量を100mlとした培養(培養期間を通じて飽和溶存酸素濃度を常に1%以上に保った培養)でも、培地量を300mlとした培養(培養中盤以降に飽和溶存酸素濃度が1%未満になった培養)と比較して、図33に示したように油脂中の高度不飽和脂肪酸の含有率は増加しなかった。また、図34に示したように、培地1リットルあたりの高度不飽和脂肪酸の生産量も増加せず、むしろ若干減少していた。
 したがって、Aurantiochytrium limacinum SR21(ATCC MYA-1381)にとって、好気的条件下で培養する方法、特に飽和溶存酸素濃度を培養期間を通じて常に1%以上に保って培養する方法は、高度不飽和脂肪酸の含有率を効率的に増加させる培養方法ではないことが確認された。
 本発明により、医薬品、食品、または飼料として用いられるエイコサペンタエン酸やドコサヘキサエン酸などの高度不飽和脂肪酸を効率的に生産する方法、および高度不飽和脂肪酸含有率が高い油脂が提供される。
 さらに、スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)およびシゾキトリウム属(Schizochytrium)に属する微生物において、高度不飽和脂肪酸生産能が増強されたものが提供される。

 

Claims (13)

  1.  スラウストキトリウム属(Thraustochytrium)、パリエティキトリウム属(Parietichytrium)、またはシゾキトリウム属(Schizochytrium)に属する微生物を好気的条件下で培養し、その菌体を回収することを特徴とする、高度不飽和脂肪酸を含む油脂の製造方法。
  2.  好気的条件が、微生物培養の脂質生産段階において培地中の飽和溶存酸素濃度が1%以上である時期を有するものである、請求項1に記載された高度不飽和脂肪酸を含む油脂の製造方法。
  3.  好気的条件が、微生物培養時において培地中の飽和溶存酸素濃度が下限に達した後濃度の値が1%以上である、請求項1または2のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  4.  好気的条件が、培地中の飽和溶存酸素濃度を培養期間を通じて常に1%以上に保つことである、請求項1ないし3のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  5.  前記培地の温度が20℃以上で行う培養である、請求項1ないし4のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  6.  前記高度不飽和脂肪酸が、炭素数18以上、不飽和結合が2以上の脂肪酸である、請求項1ないし5のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  7.  前記高度不飽和脂肪酸が、リノール酸(C18:2,n-6、LA)、α-リノレン酸(C18:3,n-3、ALA)、γ-リノレン酸(C18:3,n-6、GLA)、ステアリドン酸(C18:4,n-3、STA)、エイコサトリエン酸(C20:3,n-3、ETrA)、ジホモ-γ-リノレン酸(C20:3,n-6、DGLA)、エイコサテトラエン酸(C20:4,n-3、ETA)、アラキドン酸(C20:4,n-6、ARA)、エイコサペンタエン酸(C20:5,n-3、EPA)、ドコサテトラエン酸(C22:4,n-6、DTA)、n-3 ドコサペンタエン酸(C22:5,n-3、n-3 DPA)、n-6 ドコサペンタエン酸(C22:5,n-6、n-6 DPA)、ドコサヘキサエン酸(C22:6,n-3、DHA)からなる群から選択される少なくとも1以上の脂肪酸である、請求項1ないし6のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  8.  前記微生物が、Thraustochytrium aureumThraustochytrium roseum
    Thraustochytrium striatum
    Parietichytrium sarkarianum
    Parietichytrium sp.または
    Schizochytrium sp.からなる群から選択される少なくとも1以上の微生物である、請求項1ないし7のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  9.  前記微生物が、Thraustochytrium aureum ATCC34304、Thraustochytrium 
    roseum ATCC28210、
    Thraustochytrium striatum ATCC24473、Parietichytrium 
    sarkarianum SEK351、
    Parietichytrium sp.NBRC102984、Parietichytrium sarkarianum SEK364、Schizochytrium sp.SEK210、または
    Schizochytrium sp.SEK345からなる群から選択される少なくとも1以上の微生物である、請求項1ないし8のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  10.  前記微生物が、内因性PUFA-PKS経路によるPUFA生産能が無いあるいはきわめて微弱な微生物である、請求項1ないし9のいずれかに記載された高度不飽和脂肪酸を含む油脂の製造方法。
  11.  請求項1ないし10のいずれかに記載された方法で得られた高度不飽和脂肪酸を含む油脂。
  12.  請求項1ないし10のいずれかに記載された方法で回収される前記微生物の菌体。
  13.  請求項11または12に記載された油脂または菌体を含有する医薬品、食品、または飼料。
PCT/JP2017/003033 2016-01-28 2017-01-27 高度不飽和脂肪酸を含む油脂の製造方法 WO2017131188A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016014771 2016-01-28
JP2016-014771 2016-01-28
JP2016-014770 2016-01-28
JP2016014770 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017131188A1 true WO2017131188A1 (ja) 2017-08-03

Family

ID=59397981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003033 WO2017131188A1 (ja) 2016-01-28 2017-01-27 高度不飽和脂肪酸を含む油脂の製造方法

Country Status (1)

Country Link
WO (1) WO2017131188A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707630A (zh) * 2018-06-12 2018-10-26 厦门大学 一种提高裂殖壶菌中epa含量的调控方法与应用
WO2020053375A1 (fr) 2018-09-14 2020-03-19 Fermentalg Procede d'extraction d'une huile riche en acides gras polyunsatures (agpi)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318484A (ja) * 1998-05-14 1999-11-24 Sagami Chem Res Center 微生物による標識高度不飽和脂肪酸の製造方法
JP2005270115A (ja) * 2000-01-28 2005-10-06 Martek Biosciences Corp 発酵槽での真核微生物の超高密度培養によるポリエン脂肪酸を含有する脂質の生産促進
JP2012520673A (ja) * 2009-03-19 2012-09-10 マーテック バイオサイエンシーズ コーポレーション ヤブレツボカビ、脂肪酸組成物、ならびにその作出および使用の方法
JP2014140308A (ja) * 2013-01-22 2014-08-07 Fuji Electric Co Ltd 油脂製造方法
WO2014122158A1 (fr) * 2013-02-06 2014-08-14 Roquette Freres Biomasse de la microalgue schizochytrium mangrovei et son procédé de préparation
JP2014522655A (ja) * 2011-07-21 2014-09-08 ディーエスエム アイピー アセッツ ビー.ブイ. 脂肪酸組成物
JP2014524745A (ja) * 2011-07-13 2014-09-25 オールテック インク. 藻類脂質組成物ならびにその調製方法および利用方法
JP2016059281A (ja) * 2014-09-16 2016-04-25 富士電機株式会社 油脂製造方法及び油脂製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318484A (ja) * 1998-05-14 1999-11-24 Sagami Chem Res Center 微生物による標識高度不飽和脂肪酸の製造方法
JP2005270115A (ja) * 2000-01-28 2005-10-06 Martek Biosciences Corp 発酵槽での真核微生物の超高密度培養によるポリエン脂肪酸を含有する脂質の生産促進
JP2012520673A (ja) * 2009-03-19 2012-09-10 マーテック バイオサイエンシーズ コーポレーション ヤブレツボカビ、脂肪酸組成物、ならびにその作出および使用の方法
JP2014524745A (ja) * 2011-07-13 2014-09-25 オールテック インク. 藻類脂質組成物ならびにその調製方法および利用方法
JP2014522655A (ja) * 2011-07-21 2014-09-08 ディーエスエム アイピー アセッツ ビー.ブイ. 脂肪酸組成物
JP2014140308A (ja) * 2013-01-22 2014-08-07 Fuji Electric Co Ltd 油脂製造方法
WO2014122158A1 (fr) * 2013-02-06 2014-08-14 Roquette Freres Biomasse de la microalgue schizochytrium mangrovei et son procédé de préparation
JP2016059281A (ja) * 2014-09-16 2016-04-25 富士電機株式会社 油脂製造方法及び油脂製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IIDA, I. ET AL.: "Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization.", J. FERMENT. BIOENG., vol. 81, no. 1, 1996, pages 76 - 78, XP002327281 *
LI, Z. ET AL.: "Production of docosahexaenoic acid by Thraustochytrium roseum.", J. IND. MICROBIOL., vol. 13, 1994, pages 238 - 241, XP000864529 *
ZHANG, L. ET AL.: "Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode.", BIORESOUR. TECHNOL., vol. 142, 2013, pages 719 - 722, XP028576237 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707630A (zh) * 2018-06-12 2018-10-26 厦门大学 一种提高裂殖壶菌中epa含量的调控方法与应用
CN108707630B (zh) * 2018-06-12 2020-10-16 厦门大学 一种提高裂殖壶菌中epa含量的调控方法与应用
WO2020053375A1 (fr) 2018-09-14 2020-03-19 Fermentalg Procede d'extraction d'une huile riche en acides gras polyunsatures (agpi)
FR3085962A1 (fr) 2018-09-14 2020-03-20 Fermentalg Procede d'extracton d'une huile riche en pufa

Similar Documents

Publication Publication Date Title
Gupta et al. Omega-3 biotechnology: Thraustochytrids as a novel source of omega-3 oils
Papanikolaou et al. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media
Vadivelan et al. Production and enhancement of omega-3 fatty acid from Mortierella alpina CFR-GV15: its food and therapeutic application
US20150104557A1 (en) Method for the cultivation of microorganisms of the genus thraustochytriales by using an optimized low salt medium
US20060205047A1 (en) Method for producing gamma-linolenic acids from a ciliate culture by adding suitable precursor molecules to said culture medium
KR102247276B1 (ko) 트라우스토키트리움 속 미세조류의 바이오매스의 dha의 강화 방법
AU2008338017B2 (en) Method for the cultivation of microorganisms of the order thraustochytriales
IL175521A (en) Process for the cultivation of microorganisms of the genus thraustochytriales
JP5649785B2 (ja) 油脂含有物あるいは油脂中のドコサヘキサエン酸含有率を増加する方法
WO2017131188A1 (ja) 高度不飽和脂肪酸を含む油脂の製造方法
KR101521274B1 (ko) 신규 미세조류 오란티오키트리움(Aurantiochytrium sp.) LA3(KCTC12685BP) 및 이를 이용한 바이오오일의 제조방법
EP1606413B1 (en) A method for enhancing levels of polyunsaturated fatty acids in thraustochytrid protists
US20050019880A1 (en) Method of enhancing levels of polyunsaturated fatty acids in thraustochytrid protists
JP5371750B2 (ja) 微生物発酵によるdha含有リン脂質の製造方法
JPH11243981A (ja) アラキドン酸及び/又はエイコサペンタエン酸含有油脂の製造方法
KR102023756B1 (ko) 신규 트라우스토키트리드〔Thraustochytrid〕 계 미세조류 트라우스토키트리움〔Thraustochytrium〕sp.LA6〔KCTC12389BP〕및 이를 이용한 바이오오일의 생산방법
Prabu et al. Effect of sodium sulphate salinity for production of docosahexaenoic acid (DHA) by Thraustochytrids aureum RAK-21
Rawat et al. Microbial Biofactories: A Promising Approach Towards Sustainable Omega-3 Fatty Acid Production
Radhakrishnan Produktion av fettsyror i mikrobiella system
MXPA06005296A (en) Method for the cultivation of microorganisms of the genusthraustochytrialesby using an optimized low salt medium
MXPA06005301A (en) Process for the cultivation of microorganisms of the genus thraustochytriales

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP