WO2017131094A1 - 発電システム、発電システムの制御方法、及び発電装置 - Google Patents

発電システム、発電システムの制御方法、及び発電装置 Download PDF

Info

Publication number
WO2017131094A1
WO2017131094A1 PCT/JP2017/002757 JP2017002757W WO2017131094A1 WO 2017131094 A1 WO2017131094 A1 WO 2017131094A1 JP 2017002757 W JP2017002757 W JP 2017002757W WO 2017131094 A1 WO2017131094 A1 WO 2017131094A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
power
load
generation system
control
Prior art date
Application number
PCT/JP2017/002757
Other languages
English (en)
French (fr)
Inventor
毅史 山根
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017563818A priority Critical patent/JP6659736B2/ja
Priority to US16/073,762 priority patent/US10879548B2/en
Priority to EP17744324.9A priority patent/EP3410557B1/en
Publication of WO2017131094A1 publication Critical patent/WO2017131094A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16547Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a power generation system, a power generation system control method, and a power generation apparatus.
  • Such a power generation system performs load following operation so as to control the power generation output of the power generation system in accordance with load fluctuations when each distributed power source performs linked operation in order to improve energy recovery efficiency.
  • a power generation system includes a plurality of power generation devices, and supplies power to a load by connecting the plurality of power generation devices.
  • one of the plurality of power generation devices is a parent device and the other is a child device.
  • the parent device supplies all the devices of the parent device and the child device while generating power. The power is controlled to follow the power consumption of the load.
  • a control method for a power generation system includes a plurality of power generation devices, and connects the plurality of power generation devices to supply power to a load.
  • the control method includes a step of setting one of the plurality of power generation devices as a parent device and the other as a child device.
  • the parent device controls all the devices of the parent device and the child device.
  • a power generation apparatus includes a power generation unit that generates power supplied to a load, and a control unit that controls a power generation output of the power generation unit.
  • the control unit is a case where the power generation device and at least one other power generation device are connected to perform distributed control of the power supplied to the load, and the control unit is more than the generated power obtained by rated operation of each device.
  • control is performed so that the power supply follows the power consumption of the load while generating all the devices of the power generation device and the other power generation devices.
  • a distributed power source such as a fuel cell is most efficient for power generation by rated operation.
  • the power generation system may perform the load following operation as described above.
  • the power generation system distributes and controls the power supplied to the connected load among the distributed power sources. Therefore, depending on the method of load distribution control, the power generation efficiency of each distributed power source may decrease, and the energy recovery efficiency of the power generation system may be deteriorated.
  • the power generation system control method, and the power generation device of the present disclosure it is possible to improve energy recovery efficiency when performing load following operation.
  • the power generation system 10 includes a plurality of power generation devices. As shown in FIG. 1, the power generation system 10 according to the present embodiment includes three power generation devices 20A, 20B, and 20C. However, the power generation system 10 can be configured to include any plurality of power generation devices similar to the power generation devices 20A, 20B, and 20C. In the following description, description of elements and function units well known in the art will be simplified or omitted as appropriate.
  • the power generators 20A, 20B, and 20C are, for example, fuel cells.
  • the three power generators 20A, 20B, and 20C are connected to the load 30 in parallel with each other and perform a linked operation.
  • Each of the power generation devices 20A, 20B, and 20C generates power that is connected to the grid 40 and supplied to the load 30, for example.
  • the system 40 is a power system, and is a system that integrates power generation, power transformation, power transmission, and power distribution necessary for the customer facility to receive power. That is, the system 40 includes power distribution equipment in which the customer facility receives power supply.
  • the power generation device 20A includes a power generation unit 21A, a power conditioner (PCS) 22A, a control unit 23A, a storage unit 24A, and a communication unit 25A.
  • a thick solid line indicates a power path.
  • a broken line shows the path
  • the power generation unit 21A includes, for example, a cell stack and generates DC power.
  • the cell stack is a fuel cell, such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC), but is not limited thereto.
  • the power generation control in the power generation unit 21A is controlled by the control unit 23A.
  • the power generation unit 21A generates electric power that cannot be used to sell the generated power to the grid 40, that is, cannot be reversely flowed.
  • the power sale refers to, for example, supplying power from a distributed power source such as solar power generation to the system 40, and selling surplus power obtained by subtracting the power consumed in the customer facility from the supplied power to the power company. That is.
  • Reverse power flow means that current flows from the power generation system 10 to the system 40.
  • Power that cannot be reversed refers to power based on energy supplied from the infrastructure, such as power generated by fuel cells, and is not allowed to sell power as in Japan today. Electric power. Therefore, in the present embodiment, the power generation unit 21A is a power generation unit that is different from one that can sell the generated power to the system 40, such as a power generation unit including a solar cell that performs solar power generation.
  • the power generation unit 21A is an SOFC will be described.
  • the power generation unit 21A is not limited to the SOFC, and can typically be various power generation units including a fuel cell.
  • the power generation unit 21A can generate power by a fuel cell power generation device that causes an electrochemical reaction of gas such as hydrogen and oxygen supplied from the outside, and can supply the generated power.
  • the power generation unit 21A starts operation by receiving power from the grid 40 at the time of startup, but after startup, so-called self-sustained operation that operates without receiving power from the grid 40 is possible. Also good.
  • the power generation unit 21A appropriately includes other functional units such as a reforming unit as necessary so that it can be operated independently.
  • the power generation unit 21A can be configured by a generally well-known fuel cell, and thus a more detailed description of the fuel cell is omitted.
  • DC power generated by the power generation unit 21A is converted into AC power by the power conditioner 22A and supplied to various loads 30 that consume AC power.
  • the AC power output from the power generator 20A is supplied to the load 30 after passing through a distribution board or the like in an actual house or the like. In FIG. 1, such members are not shown.
  • the power conditioner 22A converts the DC power generated by the power generation unit 21A into AC power and supplies the AC power to the load 30. More specifically, the power conditioner 22A boosts or lowers the direct current power generated by the power generation unit 21A using a DC / DC converter, and then converts the direct current power into alternating current power using a DC / AC inverter.
  • the power conditioner 22A can be configured by using a general inverter or the like, and can have a generally well-known configuration, and thus detailed description thereof is omitted.
  • the output of AC power from the power conditioner 22A is controlled by the control unit 23A.
  • the control unit 23A controls and manages the entire power generation device 20A including each functional unit of the power generation device 20A. As will be described later, in the present embodiment, the control unit 23A sets the power generation device 20A as a parent device and the power generation devices 20B and 20C as child devices. Therefore, the control unit 23A also controls and manages the entire power generation devices including the functional units of the power generation devices 20B and 20C via the communication unit 25A.
  • the control unit 23A is composed of a processor such as a CPU (Central Processing Unit) that executes a program that defines a control procedure. Such a program is stored in, for example, the storage unit 24A or an external storage medium.
  • the control unit 23A controls the power generation outputs from the power generation devices 20A, 20B, and 20C, respectively.
  • the control unit 23A can control, for example, the power generation of the power generation unit 21A or the output of the power conditioner 22A.
  • the control unit 23A is connected to the power generation unit 21A and the power conditioner 22A by a control line.
  • operation movement of 23 A of control parts etc. which concern on control of this embodiment or another embodiment is demonstrated centering.
  • the storage unit 24A can be configured by a semiconductor memory or a magnetic memory, and stores various information and programs for operating the power generation devices 20A, 20B, and 20C, and also functions as a work memory.
  • the storage unit 24A also stores algorithms for performing various arithmetic processes performed by the control unit 23A, various reference tables such as a lookup table (LUT), and the like.
  • LUT lookup table
  • the communication unit 25A transmits a control signal from the control unit 23A to the power generation devices 20B and 20C.
  • the communication unit 25A receives a control signal for controlling the power generation output of the power generation devices 20B and 20C from the control unit 23A, and transmits the control signal to the power generation devices 20B and 20C.
  • the communication unit 25A receives various information transmitted from the power generation devices 20B and 20C. For example, the communication unit 25A receives information related to the current power generation output of the power generation devices 20B and 20C. The communication unit 25A sends the received information to the control unit 23A.
  • the power generation device 20B includes a power generation unit 21B that generates power to be supplied to the load 30, a power conditioner 22B that converts DC power generated by the power generation unit 21B into AC power and supplies the AC power to the load 30, and a communication unit 25A. And a communication unit 25B that communicates with the control unit 23A.
  • the power generation device 20B includes a control unit 23B that controls and manages the entire power generation device 20B including each functional unit of the power generation device 20B, and a storage unit 24B that stores various information, programs, and the like.
  • the power generation device 20C includes a power generation unit 21C that generates power to be supplied to the load 30, a power conditioner 22C that converts DC power generated by the power generation unit 21C into AC power and supplies the AC power to the load 30, and a communication unit 25A.
  • the communication unit 25C communicates with the control unit 23A.
  • the power generation device 20C includes a control unit 23C that controls and manages the entire power generation device 20C including each function unit of the power generation device 20C, and a storage unit 24C that stores various information, programs, and the like.
  • FIG. 1 shows a configuration in which the power generation device 20A is a parent device, and the control unit 23A controls the entire power generation system 10 including the power generation device 20A and the power generation devices 20B and 20C as child devices. It is not limited and various configurations can be adopted.
  • the parent device may be the power generation device 20B or 20C.
  • the power generation system 10 may have a configuration in which each control unit included in each power generation device controls the power generation output of each power generation device in cooperation with each other.
  • the power generation device 20A is connected to the other power generation devices 20B and 20C.
  • each of the power generation devices 20A, 20B, and 20C can be configured by a distributed power source.
  • the DC power generated by the power generation units 21A, 21B, and 21C is connected after being converted to AC, but the power generation system 10 according to the present embodiment is not limited to such a mode.
  • the DC power may be connected as it is.
  • the load 30 can be various devices such as home appliances used by the user, to which power is supplied from the power generation system 10.
  • the load 30 is shown as a single member, but is not limited to a single member and may be an arbitrary number of devices.
  • the current sensor 50 is, for example, a CT (Current Transformer). However, the current sensor 50 may be any element as long as it is an element that can detect a current value and a direction.
  • CT Current Transformer
  • the current sensor 50 can detect whether or not the power output from the power generation system 10 is flowing backward to the grid 40. Therefore, as shown in FIG. 1, the current sensor 50 is located at a position for detecting the power supplied to the system 40 after being supplied to the load 30 from the power output from the power generation devices 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C. Be placed. Information on the current value and direction detected by the current sensor 50 is notified directly or indirectly to the control unit 23A by wireless or wired communication. The control unit 23A can calculate the reverse power flow based on the current value and direction detected by the current sensor 50 and the supply voltage value to the load 30 measured by, for example, a voltage sensor.
  • the power generation device 20A and the power generation devices 20B and 20C are connected. More specifically, the power generation devices 20A, 20B, and 20C are connected to be communicable with each other via the communication units 25A, 25B, and 25C. Such a connection can be made by wire or wireless. Accordingly, the power generation apparatuses 20A, 20B, and 20C can exchange and share various types of information between them.
  • the control unit 23A can control the power generation device 20A having itself as a constituent unit as a main device (parent device).
  • the control unit 23A may control a device that is not selected as a parent device among the plurality of power generation devices 20A, 20B, and 20C as a subordinate device (child device). 1 and 2, as an example, a case will be described in which the power generation device 20A is a parent device, and the control unit 23A controls operations of the power generation device 20B that is the child device A and the power generation device 20C that is the child device B.
  • the control unit 23A performs control to follow the load 30 while performing linked operation by the power generation system 10.
  • the control unit 23A performs distributed control of the power supplied to the load 30 among the power generation apparatuses 20A, 20B, and 20C that are connected and operated.
  • the control unit 23A controls the parent device and the child device. To generate power for all devices.
  • the control unit 23A controls all of the parent device and the child device so that the supplied power follows the power consumption of the load 30.
  • the control unit 23A may perform control so that at least one of the parent device and the child device is driven with the minimum generated power.
  • the maximum power generation output of each of the power generation devices 20A, 20B, and 20C is 3 kW, but is not limited thereto.
  • it is possible to change the maximum power generation output by changing the number of cell stacks constituting the power generation units 21A, 21B, and 21C.
  • the control unit 23A sets a priority for each.
  • the control unit 23 ⁇ / b> A sets the highest priority 1 for the power generator 20 ⁇ / b> A.
  • the control unit 23A sets priority 2 for the power generation device 20B and sets the lowest priority 3 for the power generation device 20C.
  • the control unit 23A controls each of the power generators 20A, 20B, and 20C so that the rated operation is performed preferentially from a device having a higher priority.
  • the control unit 23 ⁇ / b> A controls each of the power generation devices 20 ⁇ / b> A and 20 ⁇ / b> B with priorities 1 and 2 to perform rated operation and output 3 kW power that is the maximum power generation output.
  • the control unit 23A sets the power generation device 20C so that the power generation device 20C set with the priority 3 performs the load following operation and the remaining 1 kW of the required supply power 7 kW is output. Control.
  • the control unit 23 ⁇ / b> A controls each of the power generators 20 ⁇ / b> A and 20 ⁇ / b> B to perform rated operation, but is not limited thereto.
  • the control unit 23A may perform control so that only the power generation device 20A performs the rated operation.
  • the power generator 20A may output 3 kW of power
  • the power generators 20B and 20C may output 2 kW of power by load following operation.
  • the control unit 23A performs the above-described control for a predetermined period and then generates the power generation apparatuses 20A, 20B, And the priority for each of 20C is updated. For example, the control unit 23A updates the priority of the power generation device 20A from 1 to 3. Similarly, the control unit 23A maintains the priority of the power generation device 20B at 2, but updates the priority of the power generation device 20C from 3 to 1.
  • the control unit 23A controls each of the devices so that the rated operation is preferentially performed from a device with a higher priority in the same manner as before the update.
  • the control unit 23A performs the rated operation so that the power generators 20C and 20B newly set with the priorities 1 and 2 perform the rated operation and output the power of 3 kW which is the maximum power generation output.
  • the control unit 23A controls the power generation device 20A so that the power generation device 20A set with the priority 3 performs the load following operation and the remaining 1 kW of the required power supply 7 kW is output. Control.
  • the control unit 23A is not limited to the update of the priority as described above, and sets the optimal priority at any time so as to obtain the optimum energy recovery efficiency as the power generation system 10 as a whole.
  • the schedule for updating the priority may be determined in advance, or may be arbitrarily determined by the user according to each use case. In any case, the schedule for updating the priority is stored in, for example, the storage unit 24A or an external storage medium.
  • the control unit 23A acquires data related to the schedule from the storage unit 24A or an external storage medium, and updates the priority.
  • the control unit 23A performs various factors such as the operating time of each of the power generation apparatuses 20A, 20B, and 20C, initial power generation efficiency, current power generation efficiency, rate of change in power generation efficiency, power generation amount, and change in maximum power generation amount.
  • the priority is determined based on the considered degradation parameter. Based on the deterioration parameter, the control unit 23A may set an optimal priority as needed so that deterioration of each component of the power generation system 10 does not occur.
  • the power generation system 10 can improve the energy recovery efficiency when performing the load following operation.
  • the power generation system 10 can easily set conditions for improving the energy recovery efficiency of the power generation system 10 as a whole by setting priorities for the power generation apparatuses 20A, 20B, and 20C. To do. Thereby, it becomes possible to further optimize the control of the entire power generation system 10.
  • the power generation system 10 reduces the occurrence of a bias in deterioration for each component of the power generation system 10 by updating the priority for each predetermined period. Thereby, each component of the power generation system 10, that is, each of the power generation devices 20A, 20B, and 20C is deteriorated almost uniformly over time. Therefore, the user does not have to replace only a part of the power generation system 10 according to the operating time. Thus, the power generation system 10 according to the present embodiment makes maintenance relatively easy.
  • the power generation system 10 can improve the convenience of the user by allowing the user to arbitrarily set the priority update schedule according to each use case.
  • the power generation system 10 can find the optimization condition for improving the energy recovery efficiency with higher accuracy by determining the priority based on the deterioration parameter considering various factors. is there.
  • the configuration of the power generation system according to the second embodiment is the same as that of the power generation system 10 according to the first embodiment.
  • the power generation system according to the second embodiment performs control different from the power generation system 10 according to the first embodiment with respect to the power generation output of each power generation device.
  • the description is abbreviate
  • the same components as those of the power generation system 10 according to the first embodiment are denoted by the same reference numerals.
  • the control unit 23 ⁇ / b> A includes the power generation device 20 ⁇ / b> A having itself as a constituent unit as a parent device. Can be controlled as Similarly, the controller 23A may control a device that has not been selected as a parent device as a child device. As an example, it is assumed that the power generation device 20A is a parent device, and the control unit 23A controls operations of the power generation device 20B that is the child device A and the power generation device 20C that is the child device B.
  • the maximum power generation output of each of the power generation devices 20A, 20B, and 20C is 3 kW, but is not limited thereto.
  • it is possible to change the maximum power generation output by changing the number of cell stacks constituting the power generation units 21A, 21B, and 21C.
  • the control unit 23A When the power generation system 10 according to the present embodiment performs distributed control of the power supplied to the load 30 among the power generation apparatuses 20A, 20B, and 20C, the control unit 23A performs control so that the respective outputs are equalized.
  • the control unit 23 ⁇ / b> A controls each of the power generation apparatuses 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C to output 2 kW of electric power that is lower than the maximum power generation output.
  • the control unit 23A performs control so that all the power generation devices 20A, 20B, and 20C perform the load following operation.
  • FIG. 4 is a schematic diagram illustrating control of the power generation system 10 according to the second embodiment in a predetermined use case.
  • the user first purchases only the two power generation devices 20 ⁇ / b> A and 20 ⁇ / b> B, purchases the third power generation device 20 ⁇ / b> C after a predetermined period, and adds it to the power generation system 10. You may do it.
  • the power generation system 10 supplies 6 kW of power only with the two power generation devices 20A and 20B for a predetermined period.
  • the control unit 23A performs control so that the respective outputs are substantially equal. That is, the control unit 23A controls the power generation apparatuses 20A and 20B so that the supplied power is 3 kW.
  • the power generation system 10 uses the three power generation devices 20A, 20B, and 20C to generate 6 kW of power. Supply.
  • the control unit 23A may perform control so that the respective outputs are equal. That is, the control unit 23A may control the supply power to be 2 kW for each of the power generation devices 20A, 20B, and 20C.
  • the power generation system 10 according to the second embodiment can improve the load following capability when performing the load following operation. That is, the power generation system 10 according to the second embodiment can compensate for the change in all the power generation devices 20A, 20B, and 20C substantially evenly even when the power consumption of the load 30 changes suddenly. It is. Therefore, the power generation system 10 according to the second embodiment is further improved in load followability as compared with the case where several power generation apparatuses are performing rated operation.
  • the power generation system 10 controls the power generation output of the power generation devices 20A, 20B, and 20C evenly, the energy recovery efficiency of the power generation system 10 with respect to the gas consumption is further improved as compared with the first embodiment. It is possible to make it.
  • the configuration of the power generation system according to the third embodiment is the same as that of the power generation system 10 according to the first embodiment.
  • the power generation system according to the third embodiment switches each control of the power generation system according to the first embodiment and the second embodiment for each case.
  • the description of the same points as in the first embodiment and the second embodiment, such as the configuration of the power generation system according to the third embodiment and the detailed description regarding each component, will be omitted, and the differences will mainly be described. explain.
  • the same components as those of the power generation system 10 according to the first embodiment are denoted by the same reference numerals.
  • FIG. 5 is a flowchart showing control of the power generation system 10 according to the third embodiment. Below, with reference to FIG. 5, the control of the whole electric power generation system 10 which concerns on this embodiment which 23A of control parts perform is demonstrated in detail.
  • control unit 23A measures the power consumption of the load 30 connected to the power generation system 10 (step S10).
  • the control unit 23A measures the difference from the power consumption of the load 30 measured last time based on the power consumption of the load 30 measured in step S10 (step S11).
  • the control unit 23A determines whether both the power consumption of the load 30 measured in step S10 and the amount of change in the power consumption of the load 30 measured in step S11 satisfy a predetermined condition (step S12).
  • the predetermined condition is a condition that the power consumption of the load 30 connected to the entire power generation system 10 is equal to or greater than a predetermined threshold.
  • the predetermined condition is a condition that the amount of change in the power consumption of the load 30 within a predetermined time is equal to or less than a predetermined threshold.
  • These threshold values may be determined in advance, or may be arbitrarily determined by the user according to each use case.
  • the data relating to the threshold value is stored in, for example, the storage unit 24A or an external storage medium.
  • the control unit 23A acquires the data from the storage unit 24A or an external storage medium when performing the processing in step S12.
  • step S10 If both the power consumption of the load 30 measured in step S10 and the amount of change in the power consumption of the load 30 measured in step S11 satisfy a predetermined condition, the process proceeds to step S13. If any of these does not satisfy the predetermined condition, the process proceeds to step S15.
  • control unit 23A selects the load distribution method based on the priority described in the first embodiment (step S13).
  • Control unit 23A calculates the power generation output instructed to each power generation device 20A, 20B, and 20C based on the set priority (step S14).
  • Step S12 when the control unit 23A determines that any of the predetermined conditions is not satisfied, the method described in the second embodiment described above for uniformly distributing the load 30 is selected (Step S15).
  • Control unit 23A calculates the power generation output instructed to each power generation device 20A, 20B, and 20C (step S16).
  • the controller 23A instructs the power generation outputs calculated in step S14 or S16 to the power generation devices 20A, 20B, and 20C (step S17). Thereafter, the flow ends.
  • control unit 23A has been described as performing the determination based on the power consumption of the load 30 measured in step S10 and the amount of change in the power consumption of the load 30 measured in step S11. It is not limited. For example, the control unit 23A determines whether or not a predetermined condition is satisfied based on only one of the power consumption of the load 30 measured in step S10 and the amount of change in the power consumption of the load 30 measured in step S11. May be determined. In this case, the control unit 23A may not perform the measurement or measurement process (step S10 or step S11) for the other parameter that is not used for the determination.
  • the power generation system 10 according to the third embodiment can obtain the effects described in the first embodiment or the second embodiment according to each case.
  • the power generation system 10 can find the optimization condition with higher accuracy and further improve the energy recovery efficiency by appropriately switching the control method according to the power consumption of the load 30 or the amount of change thereof.
  • the deterioration degree of the power generation apparatuses 20 ⁇ / b> A and 20 ⁇ / b> B rises to 2 after a predetermined period even if it is 1 at the beginning.
  • the deterioration degree of the newly added power generation apparatus 20C is an initial value of 1. That is, when the power generation device 20C is added after the lapse of a predetermined period, the degree of deterioration differs between the power generation devices 20A and 20B and the power generation device 20C.
  • the operation rate of the entire power generation system 10 is the optimum value. It can't be. Therefore, in such a case, the power generation system 10 does not equalize the power generation outputs of the power generation apparatuses 20A, 20B, and 20C.
  • Each power generation output may be changed according to the degree of deterioration.
  • the power generation system 10 can increase the operating rate of the entire power generation system 10 by appropriately changing the power generation output when the power generation device 20C is added later as described above.
  • Power generation systems 20A, 20B, 20C Power generation devices 21A, 21B, 21C Power generation units 22A, 22B, 22C Power conditioners (PCS) 23A Control unit 24A Storage unit 25A, 25B, 25C Communication unit 30 Load 40 System 50 Current sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

複数の発電装置を備え、これらを連結運転して負荷に電力を供給する発電システムは、複数の発電装置のうちの1つを親装置、他を子装置とする。親装置及び子装置を定格運転して得られる発電電力よりも負荷の消費電力が小さい場合に、親装置は、親装置及び子装置の全ての装置を発電させつつ、供給電力を負荷の消費電力に追従させるように制御する。

Description

発電システム、発電システムの制御方法、及び発電装置 関連出願の相互参照
 本出願は、2016年1月28日に日本国に特許出願された特願2016-014834の優先権を主張するものであり、これら先の出願の開示全体をここに参照のために取り込む。
 本開示は、発電システム、発電システムの制御方法、及び発電装置に関するものである。
 近年、例えば太陽電池及び燃料電池のような複数の分散型電源を発電装置として連結し、これらの発電装置が発電する電力を供給する発電システムが研究されている(例えば、特許文献1参照)。
 このような発電システムは、エネルギー回収効率を向上させるために、各分散型電源が連結運転を行う際に、負荷の変動に応じて発電システムの発電出力を制御するような負荷追従運転を行う。
特開2002-247765号公報
 本開示の一実施形態に係る発電システムは、複数の発電装置を備え、前記複数の発電装置を連結運転して負荷に電力を供給する。前記発電システムは、前記複数の発電装置のうちの1つを親装置、他を子装置とする。前記親装置及び前記子装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、前記親装置は、該親装置及び前記子装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する。
 本開示の一実施形態に係る発電システムの制御方法は、複数の発電装置を備え、前記複数の発電装置を連結運転して負荷に電力を供給する。前記制御方法は、前記複数の発電装置のうちの1つを親装置、他を子装置として設定するステップを含む。前記制御方法は、前記親装置及び前記子装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、前記親装置が、該親装置及び前記子装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する制御ステップを含む。
 本開示の一実施形態に係る発電装置は、負荷への供給電力を発電する発電部と、前記発電部の発電出力を制御する制御部と、を備える。前記制御部は、当該発電装置と少なくとも1つの他の発電装置とを連結運転して前記負荷への供給電力を分散制御する場合であって、各装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、該発電装置及び前記他の発電装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する。
第1実施形態に係る、発電装置を含む発電システムを概略的に示す機能ブロック図である。 図1の発電システムの制御を示す模式図である。 第2実施形態に係る発電システムの制御を示す模式図である。 第2実施形態に係る発電システムの他の制御を示す模式図である。 第3実施形態に係る発電システムの制御を示すフローチャートである。
 燃料電池のような分散型電源は、定格運転による発電が最も効率が良い。一方で、発電システム全体としてエネルギー回収効率を向上させるためには、発電システムは、上述したような負荷追従運転を行うとよい。この場合、発電システムは、各分散型電源の間で、接続されている負荷への供給電力を分散制御している。従って、負荷の分散制御の方法によっては、各分散型電源の発電効率が低下し、発電システムのエネルギー回収効率がかえって悪化する恐れもある。本開示の発電システム、発電システムの制御方法、及び発電装置によれば、負荷追従運転を行う際に、エネルギー回収効率を向上させることが可能である。
 以下、一実施形態について、図面を参照して詳細に説明する。
(第1実施形態)
 発電システム10は、複数の発電装置を含んで構成される。本実施形態に係る発電システム10は、図1に示すように、3つの発電装置20A、20B、及び20Cを含む。ただし、発電システム10は、発電装置20A、20B、及び20Cと同様の発電装置を任意の複数個含んで構成することができる。以下の説明において、従来よく知られている要素及び機能部については、適宜説明を簡略化又は省略する。
 発電装置20A、20B、及び20Cは、例えば燃料電池である。3つの発電装置20A、20B、及び20Cは、負荷30に対して互いに並列に接続されて連結運転を行う。各発電装置20A、20B、及び20Cは、例えば系統40に連系して負荷30に供給する電力を発電する。系統40とは電力系統のことであり、電力を需要家施設が受電するのに必要な発電、変電、送電、及び配電を統合したシステムのことである。すなわち、系統40は、需要家施設が電力供給を受ける配電設備を含むものである。
 発電装置20Aは、図1に示すように、発電部21A、パワーコンディショナ(PCS)22A、制御部23A、記憶部24A、及び通信部25Aを備える。図1において、太い実線は電力の経路を示す。破線は制御信号又は各種情報を通信する信号の経路を示す。
 発電部21Aは、例えばセルスタックを含んで構成され、直流電力を発電する。セルスタックは、燃料電池であり、例えば固体高分子形燃料電池(PEFC)又は固体酸化物形燃料電池(SOFC)であるが、これらに限られない。発電部21Aにおける発電制御は、制御部23Aにより制御される。本実施形態においては、発電部21Aは、発電した電力を系統40に売電することができない、すなわち逆潮流させることができない電力を発電する。
 ここで、売電とは、例えば太陽光発電などの分散型電源から系統40へと電力を供給し、需要家施設内での消費電力をその供給電力から差し引いた余剰電力を電力会社に販売することである。
 逆潮流とは、発電システム10から系統40に電流が流れることをいう。「逆潮流させることができない電力」とは、例えば燃料電池の発電による電力のようにインフラストラクチャーから供給されるエネルギーに基づく電力であって、現在の日本国におけるように売電が認められていない電力である。従って、本実施形態において、発電部21Aは、例えば太陽光発電を行う太陽電池を備えた発電部のように発電した電力を系統40に売電することができるものとは異なる発電部である。以下、発電部21AがSOFCである場合の例について説明する。しかしながら、発電部21AはSOFCに限定されず、典型的には燃料電池を備えた各種の発電部とすることができる。
 発電部21Aは、外部から供給される水素及び酸素などのガスを電気化学反応させる燃料電池発電装置によって発電を行い、発電した電力を供給することができる。本実施形態において、発電部21Aは、起動時には系統40からの電力を受けて運転を開始するが、起動した後は、系統40からの電力を受けずに稼動するいわゆる自立運転が可能であってもよい。
 本実施形態において、発電部21Aは、自立運転することができるように、改質部など他の機能部も必要に応じて適宜含むものとする。本実施形態において、発電部21Aは、一般的によく知られた燃料電池で構成することができるため、燃料電池のより詳細な説明は省略する。
 発電部21Aが発電した直流電力は、パワーコンディショナ22Aで交流電力に変換されて、交流電力を消費する各種の負荷30に供給される。ここで、発電装置20Aから出力される交流電力は、実際の家屋等においては、分電盤等を経てから負荷30に供給される。図1では、そのような部材は記載を省略してある。
 パワーコンディショナ22Aは、発電部21Aが発電した直流電力を交流電力に変換して負荷30に供給する。より詳細には、パワーコンディショナ22Aは、発電部21Aが発電した直流の電力を、DC/DCコンバータによって昇圧又は降圧してから、DC/ACインバータによって交流の電力に変換する。パワーコンディショナ22Aは、一般的なインバータなどを用いて構成することができ、一般的によく知られた構成とすることができるため、詳細な説明は省略する。パワーコンディショナ22Aによる交流電力の出力は、制御部23Aにより制御される。
 制御部23Aは、発電装置20Aの各機能部をはじめとして発電装置20Aの全体を制御及び管理する。後述するように、本実施形態では、制御部23Aは、発電装置20Aを親装置とし、発電装置20B及び20Cを子装置として設定する。そのため、制御部23Aは、通信部25Aを介して、発電装置20B及び20Cの各機能部をはじめとする各発電装置の全体も制御及び管理する。制御部23Aは、制御手順を規定したプログラムを実行するCPU(Central Processing Unit)等のプロセッサで構成される。このようなプログラムは、例えば記憶部24A又は外部の記憶媒体に格納される。
 本実施の形態において、制御部23Aは、発電装置20A、20B、及び20Cからの発電出力をそれぞれ制御する。このような制御を行うために、制御部23Aは、例えば発電部21Aの発電を制御したり、パワーコンディショナ22Aの出力を制御したりすることができる。このため、図1に示すように、制御部23Aは、発電部21A及びパワーコンディショナ22Aと、制御線により接続される。本明細書では、本実施形態又は他の実施形態の制御に係る制御部23A等の動作について中心的に説明する。
 記憶部24Aは、半導体メモリ又は磁気メモリ等で構成することができ、各種情報及び発電装置20A、20B、及び20Cを動作させるためのプログラム等を記憶するとともに、ワークメモリとしても機能する。本実施形態において、記憶部24Aは、制御部23Aが行う各種の演算処理などを行う際のアルゴリズム、及びルックアップテーブル(LUT)のような各種の参照テーブル等も記憶する。記憶部24Aが記憶する情報の一例については、後述する制御部23A等の動作の説明において、適宜説明する。
 通信部25Aは、制御部23Aからの制御信号を発電装置20B及び20Cに送信する。例えば、通信部25Aは、発電装置20B及び20Cの発電出力を制御するための制御信号を制御部23Aから受け、発電装置20B及び20Cに送信する。
 通信部25Aは、発電装置20B及び20Cから送信される各種情報を受信する。例えば、通信部25Aは、発電装置20B及び20Cの現在の発電出力に関する情報を受信する。通信部25Aは、受信した情報を制御部23Aに送る。
 発電装置20Bは、負荷30に供給する電力を発電する発電部21Bと、発電部21Bが発電した直流電力を交流電力に変換して負荷30に供給するパワーコンディショナ22Bと、通信部25Aを介して制御部23Aと通信を行う通信部25Bとを備える。発電装置20Bは、発電装置20Bの各機能部をはじめとして発電装置20Bの全体を制御及び管理する制御部23Bと、各種情報及びプログラム等を記憶する記憶部24Bとを備える。発電装置20Cは、負荷30に供給する電力を発電する発電部21Cと、発電部21Cが発電した直流電力を交流電力に変換して負荷30に供給するパワーコンディショナ22Cと、通信部25Aを介して制御部23Aと通信を行う通信部25Cとを備える。発電装置20Cは、発電装置20Cの各機能部をはじめとして発電装置20Cの全体を制御及び管理する制御部23Cと、各種情報及びプログラム等を記憶する記憶部24Cとを備える。
 図1では、発電装置20Aを親装置として、その制御部23Aが、発電装置20Aと、子装置である発電装置20B及び20Cとを含む発電システム10全体を制御する構成を示したが、これに限定されるものではなく、種々の構成を採用することができる。例えば、親装置は、発電装置20B又は20Cであってもよい。発電システム10は、各発電装置が有する制御部それぞれが互いに連携して各発電装置の発電出力等を制御する構成であってもよい。
 図1に示すように、発電システム10において、発電装置20Aは、他の発電装置20B及び20Cに連結される。このように、発電装置20A、20B、及び20Cは、それぞれ、分散型電源により構成することができる。図1においては、発電部21A、21B、及び21Cが発電した直流の電力を、交流に変換してから連結しているが、本実施形態に係る発電システム10はこのような態様に限定されず、直流電力のまま連結してもよい。
 負荷30は、発電システム10から電力が供給される、ユーザが使用する家電製品などの各種の機器とすることができる。図1において、負荷30は1つの部材として示してあるが、1つの部材には限定されず任意の個数の機器とすることができる。
 電流センサ50は、例えばCT(Current Transformer:変流器)である。しかしながら、電流センサ50は、電流値及び方向を検出することができる要素であれば、任意のものを採用することができる。
 電流センサ50は、発電システム10の出力する電力が系統40に逆潮流しているか否かを検出することができる。そのため、電流センサ50は、図1に示すように、発電装置20A、20B、及び20Cから出力される電力のうち、負荷30に供給された後で系統40に供給される電力を検出する位置に配置される。電流センサ50が検出した電流値及び方向に関する情報は、制御部23Aに、無線又は有線の通信により、直接的又は間接的に通知される。制御部23Aは、電流センサ50が検出した電流値及び方向と、例えば電圧センサなどによって測定された負荷30への供給電圧値とに基づいて、逆潮流電力を算出できる。
 本実施形態に係る発電システム10においては、図1に示すように、発電装置20Aと、発電装置20B及び20Cとが接続される。より詳細には、通信部25A、25B、及び25Cを介して、発電装置20A、20B、及び20Cが互いに通信可能に接続される。このような接続は、有線又は無線により行うことができる。これにより、発電装置20A、20B、及び20Cは、それぞれの間で各種情報の交換及び共有等を行うことができる。
 本実施形態に係る発電システム10における発電装置20A、20B、及び20Cの動作について図2を用いて説明する。
 本実施形態に係る発電システム10が動作を開始する際には、制御部23Aは、それ自身を構成部に有する発電装置20Aを主たる装置(親装置)として制御することができる。この場合、制御部23Aは、複数の発電装置20A、20B、及び20Cのうち、親装置として選定されなかった装置を、従たる装置(子装置)として制御するとよい。図1及び2では、一例として、発電装置20Aを親装置として、制御部23Aが、子装置Aである発電装置20B及び子装置Bである発電装置20Cの動作を制御する場合について説明する。
 本実施形態では、制御部23Aは、発電システム10による連結運転を行いながら、負荷30に追従する制御を行う。制御部23Aは、負荷30への供給電力を、連結運転している発電装置20A、20B、及び20C間で分散制御する。制御部23Aは、親装置である発電装置20A、並びに子装置である発電装置20B及び20Cを定格運転して得られる発電電力よりも負荷30の消費電力が小さい場合に、該親装置及び子装置の全ての装置を発電させる。同時に、制御部23Aは、供給電力を負荷30の消費電力に追従させるように該親装置及び子装置の全ての装置を制御する。制御部23Aは、親装置及び子装置のうち、少なくとも1つの装置を最低発電電力で駆動させるように制御してもよい。
 ここで、負荷30への供給電力が、発電システム10全体として7kWである場合を一例として考える。本実施形態では、一例として、発電装置20A、20B、及び20Cの最大の発電出力は、それぞれ3kWであるものとするが、これに限定されない。例えば、発電部21A、21B、及び21Cを構成するセルスタックの数を変えることで、その最大発電出力を変更することも可能である。
 本実施形態に係る発電システム10が、発電装置20A、20B、及び20C間で負荷30への供給電力を分散制御する際に、制御部23Aは、それぞれに対して優先度を設定する。図2では、例えば、ある時点では、制御部23Aは、発電装置20Aに最も高い優先度1を設定する。同時に、制御部23Aは、発電装置20Bに優先度2を設定し、発電装置20Cに最も低い優先度3を設定する。
 制御部23Aは、発電装置20A、20B、及び20Cのうち、優先度が高い装置から優先的に定格運転させるようにそれぞれを制御する。図2では、一例として、制御部23Aは、優先度1及び2が設定された発電装置20A及び20Bが定格運転を行い、最大発電出力である3kWの電力が出力されるようにそれぞれを制御する。一方で、制御部23Aは、優先度3が設定された発電装置20Cが負荷追従運転を行い、必要とされる供給電力7kWのうちの残りの1kWの電力が出力されるように発電装置20Cを制御する。
 図2では、制御部23Aは、発電装置20A及び20Bが定格運転を行うようにそれぞれを制御するが、これに限定されない。例えば、制御部23Aは、発電装置20Aのみが定格運転を行うように制御してもよい。この場合、発電装置20Aは、3kWの電力を出力し、発電装置20B及び20Cは、負荷追従運転により、それぞれ2kWの電力を出力するようにしてもよい。
 上記のように一度設定した優先度を固定化すると、一定期間経過後、例えば、最大発電出力である3kWの電力を出力している発電装置20A及び20Bの劣化の度合いは、1kWのみの電力を出力している発電装置20Cの劣化の度合いと異なる可能性がある。従って、発電システム10の構成部ごとにこのような劣化の偏りが生じないように、図2に示すとおり、制御部23Aは、所定の期間上記の制御を行った後、発電装置20A、20B、及び20Cのそれぞれに対する優先度を更新する。例えば、制御部23Aは、発電装置20Aの優先度を1から3に更新する。同様に、制御部23Aは、発電装置20Bの優先度を2に維持するが、発電装置20Cの優先度を3から1に更新する。
 制御部23Aは、優先度を更新した後、更新前と同様に、優先度が高い装置から優先的に定格運転させるようにそれぞれを制御する。図2では、一例として、制御部23Aは、優先度1及び2が新たに設定された発電装置20C及び20Bが定格運転を行い、最大発電出力である3kWの電力が出力されるようにそれぞれを制御する。一方で、制御部23Aは、優先度3が設定された発電装置20Aが負荷追従運転を行い、必要とされる供給電力7kWのうちの残りの1kWの電力が出力されるように発電装置20Aを制御する。
 制御部23Aは、上述のような優先度の更新に限定せず、発電システム10全体として最適なエネルギー回収効率が得られるように、随時、最適な優先度の設定を行う。優先度を更新するスケジュールは、予め定められていてもよいし、それぞれのユースケースに応じてユーザが任意に定めることができるようにしてもよい。いずれの場合においても、優先度を更新するスケジュールは、例えば記憶部24A又は外部の記憶媒体に格納される。制御部23Aは、記憶部24A又は外部の記憶媒体から当該スケジュールに関するデータを取得して、優先度を更新する。
 制御部23Aは、発電装置20A、20B、及び20Cのそれぞれの稼働時間、初期の発電効率、現在の発電効率、発電効率の変化率、発電量、及び最大発電量の変化など、様々な要因を考慮した劣化パラメータに基づいて、優先度を判定する。発電システム10の構成部ごとに劣化の偏りが生じないように、当該劣化パラメータに基づいて、制御部23Aは、随時、最適な優先度の設定を行うとよい。
 以上により、第1実施形態に係る発電システム10は、負荷追従運転を行う際に、エネルギー回収効率を向上させることが可能である。
 本実施形態に係る発電システム10は、発電装置20A、20B、及び20Cのそれぞれに対して優先度を設定することで、発電システム10全体としてのエネルギー回収効率を向上させるような条件出しを容易にする。これにより、発電システム10全体の制御をより最適化することが可能となる。
 本実施形態に係る発電システム10は、優先度を所定の期間ごとに更新することで、発電システム10の構成部ごとに劣化の偏りが生じることを低減する。これにより、発電システム10の構成部、すなわち、発電装置20A、20B、及び20Cのそれぞれがほぼ一様に経年劣化することになる。それゆえ、ユーザは、稼働時間に応じて発電システム10の一部のみを買い替えなくてもよい。このように、本実施形態に係る発電システム10は、その保守を比較的容易とする。
 本実施形態に係る発電システム10は、優先度の更新スケジュールを、それぞれのユースケースに応じてユーザが任意に定めることができるようにすることで、ユーザの利便性を高めることが可能である。
 本実施形態に係る発電システム10は、様々な要因を考慮した劣化パラメータに基づいて優先度を判定することで、エネルギー回収効率を向上させるための最適化条件を、より精度良く見つけることが可能である。
(第2実施形態)
 第2実施形態に係る発電システムの構成は、第1実施形態に係る発電システム10と同様である。第2実施形態に係る発電システムは、各発電装置の発電出力について、第1実施形態に係る発電システム10と異なる制御を行う。以下では、第2実施形態に係る発電システムの構成、及び各構成部に関する詳細な説明など、第1実施形態と同様の点についてはその説明を省略し、第1実施形態に係る発電システム10と異なる点について主に説明する。第1実施形態に係る発電システム10と同じ構成要素については同一の符号を付す。
 第1実施形態と同様に、本実施形態に係る発電システム10が動作を開始する際には、図3に示すように、制御部23Aは、それ自身を構成部に有する発電装置20Aを親装置として制御することができる。同様に、制御部23Aは、親装置として選定されなかった装置を、子装置として制御するとよい。一例として、発電装置20Aを親装置として、制御部23Aが、子装置Aである発電装置20B及び子装置Bである発電装置20Cの動作を制御する場合を想定する。
 ここで、負荷30への供給電力が、発電システム10全体として6kWである場合を一例として考える。本実施形態では、一例として、発電装置20A、20B、及び20Cの最大の発電出力は、それぞれ3kWであるものとするが、これに限定されない。例えば、発電部21A、21B、及び21Cを構成するセルスタックの数を変えることで、その最大発電出力を変更することも可能である。
 本実施形態に係る発電システム10が、発電装置20A、20B、及び20C間で負荷30への供給電力を分散制御する際に、制御部23Aは、それぞれの出力が均等になるように制御する。図3では、例えば、制御部23Aは、発電装置20A、20B、及び20Cのそれぞれについて、最大発電出力よりも低い2kWの電力を出力するように制御する。この場合、第1実施形態と異なり、制御部23Aは、全ての発電装置20A、20B、及び20Cが負荷追従運転を行うように制御する。
 上記では、発電システム10は、初めから3台の発電装置20A、20B、及び20Cを含むものとして説明したが、実際のユースケースではこれに限定されない。図4は、所定のユースケースにおける、第2実施形態に係る発電システム10の制御を示す模式図である。図4に示すとおり、例えば、ユーザは、初めに2台の発電装置20A及び20Bのみを購入し、所定の期間経過後に、3台目の発電装置20Cを購入して、発電システム10に追加するようにしてもよい。
 この場合、発電システム10は、所定の期間、2台の発電装置20A及び20Bのみで6kWの電力を供給する。制御部23Aは、それぞれの出力が略均等になるように制御する。すなわち、制御部23Aは、発電装置20A及び20Bのそれぞれについて、供給電力が3kWとなるように制御する。
 一方で、所定の期間経過後に、ユーザによって3台目の発電装置20Cが発電システム10に追加されると、発電システム10は、3台の発電装置20A、20B、及び20Cを用いて6kWの電力を供給する。一例として、制御部23Aは、それぞれの出力が均等になるように制御してもよい。すなわち、制御部23Aは、発電装置20A、20B、及び20Cのそれぞれについて、供給電力が2kWとなるように制御してもよい。
 以上により、第2実施形態に係る発電システム10は、負荷追従運転を行う際に、その負荷追従性を向上させることが可能である。すなわち、第2実施形態に係る発電システム10は、負荷30の消費電力が急変した場合であっても、全ての発電装置20A、20B、及び20Cにおいて、その変化分を略均等に補うことが可能である。従って、第2実施形態に係る発電システム10は、いくつかの発電装置が定格運転を行っている場合に比べて、さらに負荷追従性が良くなる。
 本実施形態に係る発電システム10は、発電装置20A、20B、及び20Cの発電出力を均等に制御するので、第1実施形態と比べて、ガス消費量に対する発電システム10のエネルギー回収効率をさらに向上させることが可能である。
(第3実施形態)
 第3実施形態に係る発電システムの構成は、第1実施形態に係る発電システム10と同様である。第3実施形態に係る発電システムは、第1実施形態及び第2実施形態に係る発電システムのそれぞれの制御を、場合ごとに切替えて行う。以下では、第3実施形態に係る発電システムの構成、及び各構成部に関する詳細な説明など、第1実施形態及び第2実施形態と同様の点についてはその説明を省略し、異なる点について主に説明する。第1実施形態に係る発電システム10と同じ構成要素については同一の符号を付す。
 図5は、第3実施形態に係る発電システム10の制御を示すフローチャートである。以下では、図5を参照して、制御部23Aが行う本実施形態に係る発電システム10全体の制御について、詳細に説明する。
 フローが開始すると、制御部23Aは、発電システム10に接続された負荷30の消費電力を測定する(ステップS10)。
 制御部23Aは、ステップS10で測定した負荷30の消費電力に基づいて、前回測定した負荷30の消費電力との差分を計測する(ステップS11)。
 制御部23Aは、ステップS10で測定した負荷30の消費電力、及び、ステップS11で計測した負荷30の消費電力の変化量が、共に所定の条件を満たすかを判定する(ステップS12)。前者の場合、所定の条件とは、発電システム10全体に接続されている負荷30の消費電力が所定の閾値以上であるという条件である。後者の場合、所定の条件とは、一定時間内の負荷30の消費電力の変化量が所定の閾値以下であるという条件である。これらの閾値は、予め定められていてもよいし、それぞれのユースケースに応じてユーザが任意に定めることができるようにしてもよい。いずれの場合においても、閾値に関するデータは、例えば記憶部24A又は外部の記憶媒体に格納される。制御部23Aは、ステップS12における処理を行う際に、記憶部24A又は外部の記憶媒体から当該データを取得する。
 ステップS10で測定した負荷30の消費電力、及び、ステップS11で計測した負荷30の消費電力の変化量が共に所定の条件を満たす場合、ステップS13に進む。これらのうちのいずれかでも所定の条件を満たさない場合、ステップS15に進む。
 共に所定の条件を満たす場合、制御部23Aは、上記の第1実施形態において説明した、優先度による負荷分散方式を選択する(ステップS13)。
 制御部23Aは、設定された優先度に基づいて各発電装置20A、20B、及び20Cへ指示する発電出力を計算する(ステップS14)。
 ステップS12において、制御部23Aが、いずれかでも所定の条件を満たさないと判定した場合、上記の第2実施形態において説明した、均等に負荷30を分散させる方式を選択する(ステップS15)。
 制御部23Aは、各発電装置20A、20B、及び20Cへ指示する発電出力を計算する(ステップS16)。
 制御部23Aは、ステップS14又はS16において計算した発電出力を、各発電装置20A、20B、及び20Cに指示する(ステップS17)。その後、フローを終了する。
 上記のステップS12では、制御部23Aは、ステップS10で測定した負荷30の消費電力、及び、ステップS11で計測した負荷30の消費電力の変化量に基づいて判定を行うとして説明したが、これに限定されない。例えば、制御部23Aは、ステップS10で測定した負荷30の消費電力、及び、ステップS11で計測した負荷30の消費電力の変化量のいずれか一方のみに基づいて、所定の条件を満たすか否かを判定してもよい。この場合、制御部23Aは、判定に用いない他方のパラメータについては、その測定又は計測処理(ステップS10又はステップS11)を行わなくてもよい。
 以上により、第3実施形態に係る発電システム10は、それぞれの場合に応じて、第1実施形態又は第2実施形態において説明した上記の効果を得ることができる。発電システム10は、負荷30の消費電力又はその変化量に応じて、適宜制御方法を切替えることで、より精度良く最適化条件を見つけ、エネルギー回収効率をさらに向上させることが可能である。
 本開示は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。従って、先の記述は例示的なものであり、これに限定されるものではない。開示の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるものとする。
 例えば、図4のような場合、発電装置20A及び20Bの劣化度は、初めは1であったとしても、所定期間経過後にあっては、2まで上がる。一方で、新規に追加する発電装置20Cの劣化度は、初期値の1である。すなわち、発電装置20Cを所定期間経過後に増設する場合には、発電装置20A及び20Bと発電装置20Cとの間でそれぞれの劣化度が異なる。
 このような場合に、発電装置20A、20B、及び20Cのそれぞれの発電出力について、第2実施形態において説明した制御と同様の制御を行うと、発電システム10全体の稼働率は、最適値とはなり得ない。従って、発電システム10は、このような場合にあっては、発電装置20A、20B、及び20Cのそれぞれの発電出力を均等にするのではなく、例えば第1実施形態において説明した制御のように、劣化度に応じてそれぞれの発電出力を変更してもよい。
 発電システム10は、このように後から発電装置20Cを増設するような場合に適宜発電出力を変更することで、発電システム10全体の稼働率を上げることが可能である。
10 発電システム
20A、20B、20C 発電装置
21A、21B、21C 発電部
22A、22B、22C パワーコンディショナ(PCS)
23A 制御部
24A 記憶部
25A、25B、25C 通信部
30 負荷
40 系統
50 電流センサ

Claims (15)

  1.  複数の発電装置を備え、前記複数の発電装置を連結運転して負荷に電力を供給する発電システムであって、
     前記複数の発電装置のうちの1つを親装置、他を子装置とし、
     前記親装置及び前記子装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、前記親装置は、当該親装置及び前記子装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する、
     発電システム。
  2.  前記親装置は、当該親装置及び前記子装置のうち、少なくとも1つの装置を最低発電電力で駆動させるように制御する、
     請求項1に記載の発電システム。
  3.  前記親装置は、当該親装置及び前記子装置のそれぞれに対して優先度を設定し、前記優先度が高い装置から優先的に定格運転させるように制御する、
     請求項1又は2に記載の発電システム。
  4.  前記親装置は、所定の期間ごとに前記優先度を更新する、
     請求項3に記載の発電システム。
  5.  前記親装置は、当該親装置及び前記子装置のそれぞれの稼働時間及び発電効率を含む劣化パラメータに基づいて、前記優先度を判定する、
     請求項3又は4に記載の発電システム。
  6.  前記親装置は、前記負荷の消費電力を測定して、前記負荷の消費電力が閾値以上であると判定した場合に、前記優先度を設定し、前記優先度が高い装置から優先的に定格運転させる制御に切替え、前記負荷の消費電力が閾値以下であると判定した場合に、当該親装置及び前記子装置の発電出力をそれぞれ均等にする制御に切替える、
     請求項3乃至5のいずれか一項に記載の発電システム。
  7.  複数の発電装置を備え、前記複数の発電装置を連結運転して負荷に電力を供給する発電システムの制御方法であって、
     前記複数の発電装置のうちの1つを親装置、他を子装置として設定するステップと、
     前記親装置及び前記子装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、前記親装置は、当該親装置及び前記子装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する制御ステップと、を含む、
     発電システムの制御方法。
  8.  前記親装置が、当該親装置及び前記子装置のうち、少なくとも1つの装置を最低発電電力で駆動させるように制御する制御ステップを含む、
     請求項7に記載の発電システムの制御方法。
  9.  前記親装置が、当該親装置及び前記子装置のそれぞれに対して優先度を設定し、前記優先度が高い装置から優先的に定格運転させるように制御する制御ステップを含む、
     請求項7又は8に記載の発電システムの制御方法。
  10.  前記親装置が、所定の期間ごとに前記優先度を更新する制御ステップを含む、
     請求項9に記載の発電システムの制御方法。
  11.  負荷への供給電力を発電する発電部と、
     前記発電部の発電出力を制御する制御部と、を備える発電装置であって、
     前記制御部は、当該発電装置と少なくとも1つの他の発電装置とを連結運転して前記負荷への供給電力を分散制御する場合であって、各発電装置を定格運転して得られる発電電力よりも前記負荷の消費電力が小さい場合に、当該発電装置及び前記他の発電装置の全ての装置を発電させつつ、供給電力を前記負荷の消費電力に追従させるように制御する、
     発電装置。
  12.  前記制御部は、前記発電装置及び前記他の発電装置のうち、少なくとも1つの装置を最低発電電力で駆動させる、
     請求項11に記載の発電装置。
  13.  前記制御部は、前記発電装置及び前記他の発電装置のそれぞれに対して優先度を設定し、前記優先度が高い装置から優先的に定格運転させる、
     請求項11又は12に記載の発電装置。
  14.  前記制御部は、所定の期間ごとに前記優先度を更新する、
     請求項13に記載の発電装置。
  15.  前記制御部は、前記発電装置及び前記他の発電装置のそれぞれの稼働時間及び発電効率を含む劣化パラメータに基づいて、前記優先度を判定する、
     請求項13又は14に記載の発電装置。
PCT/JP2017/002757 2016-01-28 2017-01-26 発電システム、発電システムの制御方法、及び発電装置 WO2017131094A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017563818A JP6659736B2 (ja) 2016-01-28 2017-01-26 発電システム、発電システムの制御方法、及び発電装置
US16/073,762 US10879548B2 (en) 2016-01-28 2017-01-26 Power generation system, method for controlling power generation system, and power generation apparatus
EP17744324.9A EP3410557B1 (en) 2016-01-28 2017-01-26 Power generation system, method for controlling power generation system, and power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014834 2016-01-28
JP2016-014834 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017131094A1 true WO2017131094A1 (ja) 2017-08-03

Family

ID=59398513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002757 WO2017131094A1 (ja) 2016-01-28 2017-01-26 発電システム、発電システムの制御方法、及び発電装置

Country Status (4)

Country Link
US (1) US10879548B2 (ja)
EP (1) EP3410557B1 (ja)
JP (1) JP6659736B2 (ja)
WO (1) WO2017131094A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10848050B2 (en) 2018-07-02 2020-11-24 Palo Alto Research Center Incorporated Module-level shutdown electronics combined with module-level inverter for photovoltaic energy systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574238U (ja) * 1978-11-15 1980-05-22
JP2010148244A (ja) * 2008-12-18 2010-07-01 Cosmo Oil Co Ltd 小売電力供給制御方法、そのためのコンピュータプログラム、及び小売電力供給システム
WO2016006257A1 (ja) * 2014-07-10 2016-01-14 京セラ株式会社 発電装置、発電システム、および発電方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574238A (en) 1978-11-29 1980-06-04 Sanyo Electric Co Ltd Digital-analog converter
JPH02184298A (ja) * 1989-01-05 1990-07-18 Toshiba Corp 誘導発電機の制御システム
KR100860284B1 (ko) 2001-02-16 2008-09-25 얀마 가부시키가이샤 엔진에 의해 구동되는 발전기를 갖는 전력 시스템
JP3764056B2 (ja) 2001-02-16 2006-04-05 ヤンマー株式会社 パワーコンディショナの運転制御装置とその運転制御方法
JP2003244997A (ja) * 2002-02-14 2003-08-29 Yanmar Co Ltd 発電装置及び発電システム
JP3609397B2 (ja) * 2003-04-22 2005-01-12 株式会社日本総合研究所 電力供給システム、集合住宅、及びプログラム
WO2011055226A2 (en) * 2009-11-05 2011-05-12 Danfoss Drives A/S Electric power supply system comprising power modules coupled in parallel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574238U (ja) * 1978-11-15 1980-05-22
JP2010148244A (ja) * 2008-12-18 2010-07-01 Cosmo Oil Co Ltd 小売電力供給制御方法、そのためのコンピュータプログラム、及び小売電力供給システム
WO2016006257A1 (ja) * 2014-07-10 2016-01-14 京セラ株式会社 発電装置、発電システム、および発電方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410557A4 *

Also Published As

Publication number Publication date
JP6659736B2 (ja) 2020-03-04
EP3410557A4 (en) 2019-07-24
US20190036141A1 (en) 2019-01-31
JPWO2017131094A1 (ja) 2018-10-25
EP3410557B1 (en) 2021-08-18
EP3410557A1 (en) 2018-12-05
US10879548B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2016047146A1 (ja) 電力供給機器、電力供給システム、および電力供給方法
JPWO2013015225A1 (ja) 制御装置及び電力制御方法
JP2012060835A (ja) 蓄電装置制御装置
JP2004178877A (ja) 燃料電池システム
WO2013046713A1 (ja) エネルギー制御システム、エネルギー制御装置、およびエネルギー制御方法
JP6294494B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
WO2017131094A1 (ja) 発電システム、発電システムの制御方法、及び発電装置
WO2018021349A1 (ja) 発電ユニット及びその制御方法
WO2016006257A1 (ja) 発電装置、発電システム、および発電方法
JP4796957B2 (ja) 燃料電池発電装置の一定のidc動作
JP6586281B2 (ja) 制御方法、制御装置、および電力供給システム
JP6452330B2 (ja) 発電装置、発電システム、および発電方法
JP2019067530A (ja) 燃料電池装置
JP2016019428A (ja) 発電装置、発電システム、および発電方法
JP6677665B2 (ja) 電源システムおよび電源システムの制御方法
JP2006223042A (ja) インバータシステムの並列運転装置及びその並列運転方法
JP6453581B2 (ja) 電力供給機器、電力供給システム、および電力供給方法
JP6629606B2 (ja) 発電システム、発電制御方法及び発電装置
WO2021149477A1 (ja) 蓄電池の制御装置、蓄電池の制御方法、及び蓄電池の制御プログラム
JP6476240B2 (ja) 電力制御装置、電力制御装置の制御方法および電力制御装置の制御プログラム
KR100991244B1 (ko) 연료전지의 전력 제어방법 및 그의 연료전지시스템
WO2013046727A1 (ja) 給電システムおよび給電システムの制御方法
JP6629683B2 (ja) 発電システム及びその制御方法
JP2003229153A (ja) 燃料供給量制御装置、燃料供給量制御方法及び電力供給システム
JP5740237B2 (ja) 燃料電池システムおよびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017563818

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744324

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744324

Country of ref document: EP

Effective date: 20180828