WO2017131070A1 - 磁場調整装置および磁気共鳴イメージング装置 - Google Patents

磁場調整装置および磁気共鳴イメージング装置 Download PDF

Info

Publication number
WO2017131070A1
WO2017131070A1 PCT/JP2017/002663 JP2017002663W WO2017131070A1 WO 2017131070 A1 WO2017131070 A1 WO 2017131070A1 JP 2017002663 W JP2017002663 W JP 2017002663W WO 2017131070 A1 WO2017131070 A1 WO 2017131070A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
current
shim coil
shim
eigenmode
Prior art date
Application number
PCT/JP2017/002663
Other languages
English (en)
French (fr)
Inventor
充志 阿部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/774,339 priority Critical patent/US10512418B2/en
Publication of WO2017131070A1 publication Critical patent/WO2017131070A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a magnetic field adjustment device for adjusting a magnetic field and a magnetic resonance imaging apparatus.
  • MRI magnetic resonance magnet
  • nmr magnetic resonance magnet
  • a superconducting coil When a superconducting coil is adopted as the main magnetomotive force source and this is energized in a permanent current mode, the magnetic flux inside the coil is preserved and the magnetic field strength is kept constant. Utilizing this property, a superconducting coil is used in a magnet of an MRI apparatus or the like, and the magnetic field is maintained almost constant for a long time of one year or more. Furthermore, the MRI apparatus has a fine adjustment coil that can finely adjust the distribution of the magnetic field in the central axis direction of the magnet.
  • FIG. 12 shows a conventional fine adjustment coil (local coil) disclosed in Patent Document 1.
  • a number of local coils are spaced apart. Thereby, fine adjustment of the magnetic field is enabled.
  • the current distribution of each coil was calculated by the strength of spherical harmonics and the Lagrange undetermined coefficient method.
  • FIG. 13 shows the wiring of the fine adjustment coil disclosed in Patent Document 2.
  • a magnetic field is adjusted by passing an electric current through a conducting wire arranged on the cylindrical surface.
  • Each current value is determined using singular value decomposition.
  • Patent Document 1 the magnetic field generated by each local coil is grasped as a spherical harmonic function including a number of order terms from higher to lower orders. In this case, interference remains between the high-order function (high-order order term) and the low-order function (low-order order term). In other words, there is a correlation. Whenever the magnetic field is adjusted, unintended magnetic field components also change. Moreover, since there is a trade-off with the error magnetic field when the heat generation is minimized, it is difficult to increase the adjustment accuracy from the relationship.
  • the problem is relatively serious compared to the case where the magnetic field strength is low. This is because, in order to adjust the magnetic field distribution of a magnet having a strong magnetic field, the current for adjusting the magnetic field needs to have a corresponding magnitude.
  • Patent Document 2 improves the magnetic field adjustment accuracy compared to Patent Document 1, but each local coil constitutes a cylindrical surface, so the magnetic field adjustment coil has a multi-layered structure of cylindrical surfaces, Therefore, a radial thickness is required. Therefore, in order to reduce the size of the magnet device, a more miniaturized magnetic field adjustment coil is required.
  • an MRI apparatus there is a method of adjusting a magnetic field distribution by developing a target magnetic field distribution with a spherical harmonic function, generating a magnetic field corresponding to the developed result.
  • the magnetic field corresponding to the expansion result of the spherical harmonic function is generated by a magnetic field adjustment coil composed of a plurality of coils.
  • the coils cannot mutually interfere with the influence of the magnetic field and induction derived from other coils.
  • the magnetic field distribution corresponding to the other expansion results is affected by the previously performed correction, making accurate correction of the magnetic field difficult.
  • the presence of interference is an unnecessarily large current as a current value.
  • the present application includes a plurality of means for solving the above-mentioned problems.
  • a shim coil array having a plurality of shim coils for adjusting a static magnetic field in a magnetic field utilization region, and a current flowing through the shim coil to a magnetic field.
  • a first arithmetic unit that determines a current command value of the shim coil based on an eigenmode obtained by singular value decomposition of a response matrix; and a power source that controls a current of the shim coil based on the determined current command value , Connected to the second calculation unit, a second calculation unit for calculating a correspondence relationship between the order term obtained by expanding the static magnetic field in the magnetic field utilization region by a spherical harmonic function, and the intensity of the eigenmode, The change of the static magnetic field in the magnetic field utilization region by the shim coil that is energized based on the current command value is displayed as information on the order term of the spherical harmonic function And shown apparatus, at least comprising magnetic field adjustment device "a is provided.
  • the user can adjust and grasp the magnetic field distribution as in the past, and provide an efficient magnetic field adjustment device and magnetic resonance imaging device. it can.
  • FIG. 1 is a schematic configuration diagram of a magnetic field adjustment device according to an embodiment. It is a flowchart of the magnetic field adjustment method using the magnetic field adjustment apparatus which concerns on this embodiment. It is a schematic diagram of the arithmetic circuit of an eigenmode intensity
  • Patent Document 1 It is important in simplifying the structure of the magnetic field adjustment device that the number of shim coils (local coils constituting the magnetic field adjustment coil) is small (one layer in the example of Patent Document 1) as in Patent Document 1. . However, the method of Patent Document 1 tends to make the magnetic field control calculation complicated.
  • each magnetic field component constituting the correction magnetic field is obtained as an eigenmode corresponding to the current and the magnetic field. Since each eigenmode is non-interfering (having orthogonality), the magnetic field control can be adjusted more easily.
  • the magnetic field adjustment apparatus uses a large number of shim coils, and the current control of each shim coil uses a method applying singular value decomposition. Thereby, it is possible to configure a magnetic field adjustment device that is highly accurate and easy to handle.
  • the disturbance magnetic field is not limited to one type, and a magnetic field having various components may enter. Therefore, it is desirable that the fine adjustment shim coil is not a single coil (or a set of coils connected in series or parallel) but a set of several shim coils. Also, the disturbance magnetic field may be distributed in the circulation direction.
  • each shim coil is independent of each other. That is, when a current flows through a certain set of shim coils, current is induced in other shim coils, which makes accurate fine adjustment difficult. Further, when correcting a magnetic field by combining a plurality of shim coils, it is desirable that a disturbance magnetic field component in a wide range can be corrected according to a necessary degree.
  • a shim coil group configured to be able to remove a disturbance magnetic field component over a wide range by operating a plurality of shim coils independently and in combination with each other is required.
  • the technique of the non-patent reference can be extended and used.
  • the current distribution of the poloidal magnetic field coil is optimized to a current distribution that is corrected for the target magnetic field.
  • the response matrix of the target region plasma surface in non-patent literature
  • the magnetic field adjustment is performed by combining the eigenmodes. Is going.
  • the adjustment results were grasped by the conventional parameters of the plasma position and shape.
  • this method is applied to a magnet apparatus that requires a high-precision magnetic field, such as a high-precision magnetic field apparatus for research and an MRI apparatus.
  • the shim coils described below are controlled in the eigenmode of singular value decomposition.
  • a magnetic field adjustment device is proposed in which the degree of correction can be grasped even by the intensity of the spherical harmonic function.
  • the following two types of shim coils using singular value decomposition are conceivable.
  • One is a conventional shim coil as shown in FIG.
  • shim coil shim coils are produced in one-to-one correspondence for each eigenmode.
  • the coil current control circuit allows a current necessary for each eigenmode to flow in proportion to the eigenmode intensity.
  • Another method is an array type shim coil.
  • the array type shim coil is a unit in which unit shim coils divided in the circulation direction are densely arranged.
  • Each coil is a closed current closed circuit (however, the power supply wiring is connected to the current supply circuit), each coil is connected to a current-controlled power source, and the current value is the current distribution of each mode component of the eigenmode
  • the current values are superimposed for each mode, and magnetic field measurement is performed at multiple points, and the eigenmode intensity is calculated from the measured values by adding the weights of each measured value in consideration of the eigenmode weight.
  • a magnetic field adjustment device that adjusts the magnetic field by converting the residual with the mode into a current value and controlling the current value.
  • the user of the device can grasp the adjustment state of the magnetic field with the spherical harmonic intensity as in the conventional case.
  • FIG. 1 is a schematic cross-sectional view of a magnet device 1 according to the present embodiment, and shows a shim coil connection according to the present embodiment (within a balloon shown on the lower side of FIG. 1).
  • 1 is a horizontal sectional view of the magnet device 1 cut along a plane formed by a Z axis which is a central axis of a superconducting coil 1a to be described later and a Y axis which is a vertical axis. It is sectional drawing.
  • the magnet device 1 includes a plurality of (in the example of FIG. 1, four) superconducting coils 1a, refrigerant containers 1b, radiation shields 1c, vacuums, and the like whose central axes (Z axes) coincide with each other.
  • a container 1d whose central axes (Z axes) coincide with each other.
  • the superconducting coil 1a is accommodated in the refrigerant container 1b.
  • the refrigerant container 1b is filled with a refrigerant for cooling the superconducting coil 1a.
  • the refrigerant container 1b is accommodated in the vacuum container 1d.
  • the inside of the vacuum container 1d is in a high vacuum state, and the refrigerant container 1b and the vacuum container 1d are vacuum insulated. Further, a radiation shield 1c is provided between the refrigerant container 1b and the vacuum container 1d so as to suppress heat transfer due to radiation.
  • the superconducting coil 1a is a coil composed of a superconducting wire, and is cooled to a superconducting critical temperature or lower by a refrigerant filled in the refrigerant container 1b.
  • the superconducting coil 1a functions as a superconducting magnet that generates a magnetic field (main magnetic field) in the direction of the magnetic field 11 indicated by the arrow in the Z-axis direction in FIG. 1 when energized in the permanent current mode. Thereby, the superconducting coil 1a generates a static magnetic field in the magnetic field utilization region 12 provided in the center of the cylindrical magnet device 1.
  • the magnet apparatus 1 is a magnet apparatus 1 that generates a static magnetic field in an MRI apparatus, and a cylindrical magnetic field utilization region 12 is set.
  • the magnet device 1 includes a magnetic field adjustment device 2 (see FIG. 3 described later).
  • the magnetic field adjustment device 2 is a device that performs magnetic field adjustment so as to improve the accuracy (uniformity) of the static magnetic field in the magnetic field utilization region 12.
  • the magnetic field adjustment device 2 performs magnetic field adjustment on the set magnetic field evaluation surface 13 so as to improve the accuracy (uniformity) of the static magnetic field.
  • FIG. 1 shows an example in which the boundary surface of the magnetic field utilization region 12 is the magnetic field evaluation surface 13.
  • the magnetic field adjusting device 2 includes a shim coil array 20 including a plurality of shim coils 21 (see FIG. 2 described later).
  • the shim coil array 20 (shim coil 21) is disposed on the cylindrical surface 2S (see FIG. 1) provided inside the refrigerant container 1b and inside the superconducting coil 1a in the radial direction.
  • the central axis of the cylindrical surface 2S coincides with the Z axis (that is, the central axis of the superconducting coil 1a).
  • the shim coil 21 is arrange
  • the number of power supply lines entering the cryogenic part (inside the refrigerant container 1b) can be reduced, so that the amount of heat input can be reduced, stable operation of the superconducting magnet can be performed, and the load on the refrigerator is reduced. be able to.
  • This configuration will be described again in detail in FIG.
  • FIG. 2 is a development view of the shim coil array 20 provided in the magnetic field adjustment device 2 according to the present embodiment.
  • the horizontal axis indicates the rotation direction angle (radian), and the vertical axis indicates the axial position of the Z axis (see FIG. 1).
  • the shim coil 21 is formed by winding a superconducting wire.
  • FIG. 2 only the coil portion (winding portion) of the shim coil 21 is illustrated, and wiring (leader wire) connected to the coil portion of the shim coil 21 is illustrated. The illustration is omitted.
  • the shim coil array 20 is configured by arranging a plurality of shim coils 21 in the circumferential direction and the axial direction, and is arranged on the cylindrical surface 2S shown in FIG.
  • the cylindrical surface 2S is divided into a large number in the circumferential direction and the axial direction, and the shim coils 21 are arranged in the divided areas to constitute the shim coil array 20.
  • the shim coil array 20 shows an example in which a total of 30 shim coils 21 are arranged, six in the circumferential direction and five in the axial direction.
  • the shim coil array 20 of this embodiment has the shim coils 21 arranged densely as shown in FIG.
  • the magnetic moment increases in proportion to the area of each coil, it is preferable to arrange the shim coils 21 without any gaps.
  • the occupation ratio cannot be 100%.
  • the ratio of the sum of the areas enclosed by each shim coil 21 (coil center line) for example, the area S1 ⁇ 30 enclosed by the shim coils 21) to the area of the coil placement surface (area of the cylindrical surface 2S) is 80%. This is the dense arrangement.
  • the magnetic moment can be increased by arranging the shim coils 21 densely, the magnetic field can be corrected with a lower current than in the first conventional example (see FIG. 12).
  • the magnetic field ripple caused by the distributedly arranged shim coils 21 does not cause a problem by adopting the dense arrangement.
  • FIG. 3 is a schematic configuration diagram of the magnetic field adjustment device 2 according to the present embodiment.
  • the magnetic field adjustment device 2 includes a shim coil array 20 configured by arranging a plurality of shim coils 21 in the circulation direction and the axial direction, a magnetic field measurement unit 22 that measures the magnetic field of the magnetic field evaluation surface 13 (see FIG. 1), and magnetic field measurement.
  • a current generation unit 23 that calculates a current flowing through each shim coil 21 based on the magnetic field measurement value measured by the unit 22 and flows a current through each shim coil 21.
  • the current generation unit 23 includes a natural mode intensity calculation unit 24, a residual calculation unit 25, a current correction command value calculation unit 26, an addition amplifier (power source) 27, a storage unit 28, and the first calculation unit 35.
  • the display device 33 is provided for displaying the calculation result of the spherical harmonic function calculation unit 31 or the information of the spherical harmonic function converted from the eigenmode intensity by the calculation conversion unit 32. Also provided is an input device 34 that can specify the coefficient of the order term of the target spherical harmonic function.
  • the eigenmode strength calculation unit 24 calculates the eigenmode strength based on the magnetic field measurement value measured by the magnetic field measurement unit 22. The calculation process of the eigenmode intensity calculation unit 24 will be described later with reference to FIGS. 4 and 5.
  • the residual calculation unit 25 calculates a difference (residual) between the natural mode strength calculated by the natural mode strength calculation unit 24 and the natural mode reference strength stored in the storage unit 28.
  • the current correction command value calculation unit 26 calculates a current correction command value based on the residual calculated by the residual calculation unit 25.
  • the addition amplifier (power source) 27 calculates the current command value by adding the current correction command value calculated by the current correction command value calculation unit 26 to the reference current value stored in the storage unit 28, and calculates the calculated current. A current is passed through the shim coil 21 based on the command value. Note that the summing amplifier (power source) 27 is configured to be able to independently control the current flowing through each shim coil 21.
  • the processing of the residual calculation unit 25, the current correction command value calculation unit 26, and the addition amplifier (power source) 27 will be described later with reference to FIGS.
  • the above description has described a method in which the measurement magnetic field is expanded to the eigenmode strength and the difference from the target mode strength is used as the residual.
  • a difference residual magnetic field
  • the mode expansion is a residual with the eigenmode intensity. In both cases, the residual magnetic field is adjusted to zero.
  • the storage unit 28 stores data necessary for magnetic field adjustment such as eigenmode reference intensity, reference current value, target magnetic field value (to be described later), eigendistribution data, and the like.
  • the spherical harmonic function calculation unit 31 expands the spherical harmonic function based on the magnetic field measurement value measured by the magnetic field measurement unit 22 and acquires the order term.
  • the calculation conversion unit 32 calculates a correspondence relationship between an eigenmode described later and an order term acquired by expansion of a spherical harmonic function.
  • FIG. 4 is a flowchart of a magnetic field adjustment method using the magnetic field adjustment apparatus 2 according to this embodiment.
  • Steps S1 to S4 are processes for creating eigendistribution data used in later-described current distribution calculation / magnetic field adjustment processes (steps S5 to S11) using a general-purpose computer or the like (eigendistribution data creation process). .
  • step S1 the computer accepts input of the arrangement of shim coils 21 constituting the shim coil array 20 (see FIG. 2) and the positions of a plurality of magnetic field measurement points set on the magnetic field evaluation surface 13 (see FIG. 1).
  • the operator inputs the positions of the shim coils 21 constituting the shim coil array 20 (see FIG. 2) and the positions of a plurality of magnetic field measurement points set on the magnetic field evaluation surface 13 (see FIG. 1) (shape input). ).
  • step S2 the computing device of the computer generates a magnetic field response matrix A based on the input shape (the arrangement of the shim coils 21 and the position of the magnetic field measurement points).
  • the number of shim coils 21 constituting the shim coil array 20 is n
  • the shim coil currents of the respective shim coil 21 (I 1, ..., I i, ..., I n) and current vector I n-dimensional vector having a component To do.
  • the number of magnetic field measurement points is set as h
  • an h-dimensional vector having the magnetic fields (B 1 ,..., B k ,..., B h ) at the respective magnetic field measurement points as components is set as a magnetic field vector B.
  • the magnetic field response matrix A is a matrix of h rows and n columns.
  • the response magnetic field at each magnetic field measurement point when a unit current is passed through a certain shim coil 21 is calculated using the Biot-Savart formula, and this is similarly applied to all shim coils 21. By doing so, a magnetic field response matrix A is generated.
  • step S3 the computing device of the computer performs singular value decomposition on the response matrix A of the magnetic field generated in step S2.
  • ⁇ j is a singular value of the j-th mode.
  • the unit current v j of the j-th mode is an n-dimensional vector (v 1j ,..., V) representing a current distribution that generates the magnetic field u j (h-dimensional vector) of the j-th mode with the intensity of ⁇ j (scalar). ij ,..., v nj ), and the distribution intensity corresponding to the i-th shim coil 21 is v ij .
  • step S4 the computing device of the computer displays the eigenmode obtained by singular value decomposition in step S3 (two eigen distributions u j and v j and one singular value ⁇ j indicate one eigen mode).
  • the group data is output as eigendistribution data.
  • the eigenmodes are numbered in order from the largest singular value. Further, the number of eigenmodes is equal to or smaller than the smaller one of the number n of shim coils 21 and the number h of magnetic field measurement points. For this reason, it is preferable that the number h of magnetic field measurement points be at least the number n of shim coils 21.
  • step S5 to step S11 a current to be passed through each shim coil 21 is calculated from the eigen distribution data created in advance and the magnetic field measurement value measured by the magnetic field measurement unit 22, and a current is passed through each shim coil 21 to generate a magnetic field.
  • Current distribution calculation / magnetic field adjustment processing When adjusting the magnetic field, each shim coil 21 is supplied with a current having a reference current value (I 01 ,..., I 0i ,..., I 0n ) as a shim coil current.
  • the reference current value vector I 0 which is an n-dimensional vector having components of the reference current values (I 01 ,..., I 0i ,..., I 0n ) of the n shim coils 21, is the previous current value or the main current value. It is estimated from the manufacturing error of the magnet device 1 (superconducting coil 1a) that generates the magnetic field.
  • step S ⁇ b> 5 the current generation unit 23 of the magnetic field adjustment device 2 reads the eigendistribution data created in advance in step S ⁇ b> 4 and stores it in the storage unit 28.
  • a target magnetic field value distribution B 0, which is an h-dimensional vector having components of target magnetic field values (B 01 ,..., B 0k ,..., B 0h ) at each of the h magnetic field measurement points, is stored in advance. It shall be remembered.
  • step S6 the magnetic field measurement unit 22 of the magnetic field adjusting device 2 measures the magnetic field measurement values (B 1 ,..., B k ,..., B h ) at each magnetic field measurement point.
  • An h-dimensional vector having components of magnetic field measurement values (B 1 ,..., B k ,..., B h ) at h magnetic field measurement points is referred to as a magnetic field measurement value distribution B.
  • the eigenmode strength calculating unit 24 of the magnetic field adjustment device 2 calculates the eigenmode strength of the magnetic field of each mode from the magnetic field measurement value distribution B (B 1 ,..., B k ,..., B h ). That is, the number of eigenmodes used for the magnetic field control and m, determine the eigenmode intensity P m of the m-th mode from the specific mode intensity P 1 of the first mode field.
  • the number m of eigenmodes used for magnetic field control is generally the same as the number n of shim coils 21 or a number smaller than n, but here it is a number smaller than n. Details will be described later.
  • u j is an eigen distribution u j (h dimension) of the magnetic field distribution of the j-th mode, and is stored in the storage unit 28 as eigen distribution data.
  • Calculated by the inner product of The eigenmode reference intensity P 0j may be calculated in advance and stored in the storage unit 28, and read.
  • step S8 the residual calculation unit 25 calculates a residual ⁇ P that is a difference between the natural mode strength and the natural mode reference strength for each mode. That is, the residual which is the difference between the eigenmode strength and the eigenmode reference strength is calculated for the 1st mode to the mth mode.
  • step S9 the current correction command value calculator 26 calculates a current correction command value ⁇ I i for canceling the residual ⁇ P.
  • the target magnetic field value distribution B 0 is a magnetic field that is stronger than the correction amount of the magnetic field corrected by the magnetic field adjusting device 2, and is usually P j ⁇ B 0 . Therefore, current correction command value vector [Delta] I (current correction command value of n for each shim coil 21 to be added to the individual shim coil 21 required for magnetic field adjustment using the following equation ( ⁇ I 1, ..., ⁇ I i , ..., N-dimensional vector) having ⁇ I n ) as a component is calculated.
  • v ij is the distribution intensity corresponding to the i-th shim coil 21 in the n-dimensional vector (v 1j ,..., V ij , v nj ) that is the unit current v j of the j-th mode, and is unique. It is stored in the storage unit 28 as distribution data.
  • ⁇ j is a singular value of the j-th mode and is stored in the storage unit 28 as eigen distribution data.
  • the sign on the right side is “ ⁇ ”, which means that this magnetic field adjustment is negative feedback control of the magnetic field distribution (negative feedback control).
  • the current correction command value vector ⁇ I ( ⁇ I 1 ,..., ⁇ I i ,..., ⁇ I n ) is calculated by performing this similarly for the first shim coil 21 to the nth shim coil 21.
  • step S10 the addition amplifier 27 calculates the current command value vector I by adding the current correction command value vector ⁇ I calculated by the current correction command value calculation unit 26 to the reference current value vector I 0 .
  • the current command value vector I is an n-dimensional vector.
  • a current command value I i which is a current flowing through the shim coil 21 of n) is calculated.
  • the current command value vector I can be regarded as an addition of the components of each eigenmode.
  • Ie j is a current value in the j-th mode, and a current correction command value to be added to the shim coil 21 to cancel the j-th mode component of the reference current value vector I 0 and the residual ⁇ P j in the j-th mode.
  • ⁇ Ie j ( ⁇ I 1j , ⁇ I 2j ,..., ⁇ I ij ,..., ⁇ I nj ) is added.
  • step S12 the spherical harmonic function computing unit 29 reads out the measured magnetic field distribution acquired by using the magnetic field measuring unit 22 from the storage unit 28 and develops it by the spherical harmonic function.
  • the target magnetic field distribution is similarly read out from the storage unit 28 and developed based on the spherical harmonic function.
  • the order term acquired by the expansion is stored in the storage unit 28.
  • step S13 the arithmetic conversion unit 32 calculates the correspondence between the SVD eigenmode and each order term of the spherical harmonic function.
  • the magnetic field adjustment device 2 can generate an adjustment magnetic field so as to reduce the residual for each eigenmode of the magnetic field.
  • the current of the shim coil 21 is controlled so as to reduce the residual of a certain eigenmode, the residual of another eigenmode does not increase. Magnetic field adjustment becomes easy.
  • FIG. 5 is a schematic diagram of a calculation circuit of the eigenmode intensity calculation unit 24.
  • arithmetic circuits denoted by reference numerals 24 1 to 24 m are circuits that perform the inner product calculation of the above-described equation (5), and perform calculations for all eigenmodes (1 to m), respectively.
  • the eigenmode intensity calculation unit 24 receives magnetic field measurement values (B 1 ,..., B k ,..., B h ) at h magnetic field measurement points, and receives m eigen mode intensities (P 1 ,. ,..., P m ) are output.
  • the number m of eigenmodes used for magnetic field control is smaller than the number n of shim coils 21.
  • the eigenmodes are numbered in order from the largest singular value.
  • the generation of the magnetic field per unit current is small as shown in the equation (4). For this reason, if control is performed so as to reduce the residual for higher-order (small singular values) eigenmodes (see steps S8 to S10), a large current is required.
  • the maximum number of eigenmodes is determined by the smaller value of either the number n of shim coils 21 or the number h of magnetic field measurement points, and the number h of magnetic field measurement points is the number of shim coils 21. Since it is set to n or more, it is determined by the number n of shim coils 21. For this reason, the number m of the natural modes used for the magnetic field control is set to a small number (less than the number n of the shim coils 21) so that the magnetic field can be adjusted with a small current. Note that if the number m of eigenmodes used for magnetic field control is too small, the required magnetic field accuracy may not be achieved. Therefore, m is appropriately set according to the required magnetic field accuracy.
  • the arithmetic circuit 24 j is composed of h amplifier circuits that amplify an input signal (gain multiplication) and an adder circuit, and performs an operation shown in Expression (5A) to output an eigenmode strength P j of the j-th mode. .
  • the j-th mode magnetic field distribution u j (u j1 ,..., U jk ,..., U jh ) is stored in the storage unit 28 as eigen distribution data.
  • the arithmetic circuit of the eigenmode intensity calculator 24 in FIG. 5 can realize the inner product calculation of the above-described equation (6) for outputting the eigenmode reference intensity P 0j by setting the input as the target magnetic field value distribution B 0. .
  • FIG. 6 is a schematic diagram showing the residual calculation unit 25, the current correction command value calculation unit 26, the calculation circuit of the addition amplifier 27, and the connection to each shim coil 21.
  • the residual calculation unit 25 includes residual calculation circuits 25 1 to 25 m , and m eigenmode strengths (P 1 ,..., P j ) output from the eigenmode strength calculation unit 24 (see FIG. 5). ,..., P m ) and m natural mode reference intensities (P 01 ,..., P 0j ,..., P 0m ) are input, and the residual calculation of equation (7) is performed to obtain m residuals ( ⁇ P 1 ,..., ⁇ P j ,..., ⁇ P m ) are output (see step S8 in FIG. 4).
  • the current correction command value calculation unit 26 receives m residuals ( ⁇ P 1 ,..., ⁇ P j ,..., ⁇ P m ), executes the calculations of Expressions (8) and (9), and outputs n Current correction command values ( ⁇ I 1 ,..., ⁇ I i ,..., ⁇ I n ) are output (see step S9 in FIG. 4).
  • the n reference current value (I 01, ..., ⁇ I 0i , ..., ⁇ I 0n) and n current correction command value ( ⁇ I 1, ..., ⁇ I i , ..., ⁇ I n) is input
  • the calculation of equation (10) is executed to calculate n current command values (I 1 ,..., I i ,..., I n ) (see step S10 in FIG. 4).
  • the adding amplifier 27 controls the current flowing through the shim coils 21 1 to 21 n to be current command values (I 1 ,..., I i ,..., I n ).
  • the summing amplifier 27 is composed of independent summing amplifiers 27 1 to 27 n , and each summing amplifier 27 1 to 27 n is connected to one end of each shim coil 21 1 to 21 n and the first feed lines 29 1 to 29. n are connected in a one-to-one correspondence, and the currents of the shim coils 21 1 to 21 n can be controlled independently.
  • the other ends of the shim coils 21 1 to 21 n are connected to the addition amplifiers 27 1 to 27 n through the second feed line 30 that is a common feed line.
  • the feed lines 29 and 30 that connect the shim coil 21 inside the refrigerant container 1b (and the vacuum container 1d), which is the cryogenic part, and the external summing amplifier 27 are an entrance of heat to the cryogenic part.
  • two current introduction terminals are used for one shim coil. That is, if the number of shim coils is n, 2n wirings serve as heat entry holes that penetrate the vacuum heat insulating portion.
  • one of the power supply lines to the shim coil 21 is a common power supply line (second power supply line 30).
  • (n + 1) wirings become a heat intrusion port that penetrates the vacuum heat insulating part, and the number of wirings can be reduced to suppress the heat intrusion to the cryogenic part.
  • the second feeder line 30 may be a ground line.
  • a permanent current switch (PCS) (not shown) may be provided between the terminals of the shim coils 21 1 to 21 n so as to operate in the permanent current mode. That is, after the summing amplifier 27 controls the current flowing through the shim coil 21 to be a current command value, a permanent current switch (not shown) is connected. With this configuration, not only the superconducting coil 1a (see FIG. 1) but also the magnetic field adjusting shim coil 21 can be operated in the permanent current mode.
  • the SVD type shim coil in which the eigenmode strength and the shim coil have a one-to-one correspondence does not have the addition circuit of FIG. 6, but the circuit is the same except for this part.
  • the 2nd electric power feeding line 30 can also be installed. Since there is no higher-order eigenmode in the SVD shim coil, at least one dummy coil is provided. As the dummy coil, a circuit (high-order shim coil) that generates a very weak magnetic field is combined with the shim coil, and the circuit including the dummy coil is energized so that the magnetic field generated by the current passing through the second feeder 30 becomes almost zero. .
  • a negative shim coil that generates a magnetic field opposite to that of the shim coil to be used is made, the magnetic field is adjusted by a difference between the magnetic fields (which becomes a higher order component), and the current is adjusted in total to adjust the second feeder line.
  • the current correction command value calculation unit 26 may include a mode selection unit 26a.
  • the current correction command value calculation unit 26 calculates the above equation (9) by replacing it with the following equation (9A) including the coefficient G j .
  • the current correction command value calculation unit 26 may include a common feed line current reduction processing unit 26b.
  • the 1 ⁇ n th shim coils 21 1 to 21 the first feed line 29 1 ⁇ 29 n to flow a current to n, respectively, while the current flow I 1 ⁇ I n, the a common feed line 2
  • the common feeder line current reduction processing unit 26b performs control so as to reduce the current I com flowing through the second feeder line 30.
  • the eigenmodes used for the magnetic field control are from the first to the m-th, and are smaller than the number n of the shim coils 21 (m ⁇ n). For this reason, (nm) degrees of freedom remain. Further, as described above, the higher the eigenmode, the smaller the singular value and the smaller the generation of the magnetic field per unit current. Therefore, even if the current passed through the shim coil 21 is changed in a higher order eigenmode, the influence on the magnetic field is small. On the other hand, the current I com flowing through the second feeder line 30 can be reduced.
  • the capacity is about three times less than that of the first power supply lines 29 1 to 29 n and more aggressive control is performed.
  • the capacity can be reduced to about 1/10.
  • v m + 1 ( ⁇ v n ) is a unit current (n-dimensional vector) of the m + 1 ( ⁇ n) th mode, and is stored in the storage unit 28 as eigendistribution data.
  • F m + 1 to F n are coefficients.
  • the adding amplifier 27 controls the current flowing through the shim coil 21 with the current command value vector I. However, even if the current distribution vector I H in the higher mode is added, the influence of the magnetic field is small. Therefore, the common feeder line current reduction processing unit 26b determines F m + 1 to F n so that the current flowing through the second feeder line 30 becomes small.
  • vin is a current distribution intensity corresponding to the i-th shim coil 21 of the unit current v n (n-dimensional vector) in the n-th mode.
  • the higher-order mode current distribution vector I H is output from the current correction command value calculation unit 26 to the addition amplifier (power source) 27, and the addition amplifier (power source) 27 outputs the current correction command value to the reference current value vector I 0.
  • the current distribution vector I H high order modes may be added when adding the vector [Delta] I.
  • a current correction command value vector [Delta] I a material obtained by adding the current distribution vector I H according to the high-order mode in the current correction command value calculating section 26 to the current correction command value vector [Delta] I, so as to output to the summing amplifier (power supply) 27 May be.
  • the spherical harmonic function computing unit 31 develops the measured magnetic field distribution acquired by using the magnetic field measuring unit 22 by using the spherical harmonic function.
  • the target magnetic field distribution is also developed based on the spherical harmonic function. It should be noted that the spherical harmonic function calculation unit 31 may receive information regarding the uniformity of the target magnetic field distribution and the strength of the target spherical harmonic function (coefficient for each order term) from the outside via the input device 34. Good.
  • equation (15) is obtained.
  • the magnetic field adjustment device 2 of the present embodiment is configured so that the operator can grasp the contents of the magnetic field adjustment by the singular value decomposition described above using the coefficient of the spherical harmonic function.
  • the operator can grasp the state of the magnetic field based on the same parameters as in the prior art, and the magnetic field adjustment enables highly accurate adjustment by singular value decomposition.
  • the conversion between the eigenmode acquired by singular value decomposition and the coefficient of each order term acquired by expanding the spherical harmonic function is executed in the arithmetic conversion unit 32 as follows.
  • the expansion of the spherical harmonic function is to obtain up to order terms of about 15 or less for both i and j, and about 225 or less SVD eigenmodes are obtained. Therefore, C can be a square matrix of about 15x15.
  • Equation 16 the coefficient of each order term of the spherical harmonic function can be converted into the SVD eigenmode intensity, and the inverse matrix is obtained to obtain the intensity of the spherical harmonic function from the SVD eigenmode intensity (coefficient of each order term). Conversion to can also be done.
  • the intensity of the spherical harmonic function is displayed on the display device 33 to the operator to indicate the state of the magnetic field, or an input regarding the strength of the spherical harmonic function is received via the input device 34.
  • the control system for adjusting the magnetic field enables highly accurate magnetic field adjustment using the natural mode strength of the SVD.
  • the current magnetic field and shim coil energization output measured in reverse can be converted from the eigenmode intensity to the coefficient of the spherical harmonic function, and the operation of the operator can be facilitated.
  • FIG. 7A is a development view for explaining the arrangement of the shim coil array 20 according to the embodiment.
  • the horizontal axis indicates the rotation direction in radians from ⁇ / 2 to 3 ⁇ / 2
  • the vertical axis indicates the axial position in meters (m).
  • the individual shim coils 21 are rectangular along the cylinder, and are arranged at the same angle in the circumferential direction. Further, the intervals between the shim coils 21 are arranged as close as possible so that a magnetic field can be generated strongly.
  • the shim coil 21 does not necessarily have to be disassembled and arranged at the same angle in the circumferential direction. In FIG. 7A, some shim coils are marked to make their shapes easy to understand. Each shim coil 21 is numbered from 1 to 30.
  • FIG. 7B is a bird's eye view for explaining the arrangement of the shim coil array 20 according to the embodiment.
  • a small cylindrical surface at the center is a magnetic field evaluation surface 13 for performing magnetic field measurement.
  • the magnetic field measurement point can be taken at an arbitrary position in this method.
  • the magnetic field evaluation surface 13 is a cylindrical surface.
  • Thirty shim coils 21 are arranged in a cylindrical shape. Each of the shim coils 21 has a current terminal, but is not shown here.
  • Each shim coil 21 is usually wound with a plurality of turns instead of one turn. As a result, the current is reduced and the current introduction terminal is reduced. It is also advantageous in reducing the amount of heat generated, and particularly advantageous when a superconducting wire is used.
  • the mutual spacing of the shim coils 21 is close, but there are actually some gaps. This is because of the insulation and the fixed parts of the shim coil 21.
  • FIG. 8 is a graph illustrating the magnetic field distribution in the eigenmode according to the embodiment.
  • FIG. 8 shows a natural mode magnetic field distribution u j that can be generated on the magnetic field evaluation surface 13 in the shim coil array 20 (shim coil 21) shown in the example of FIG.
  • the horizontal axis is the circumferential direction
  • the vertical axis is the axial position. The presence or absence of a dot indicates the sign of the magnetic field.
  • MODE in each figure indicates an eigenmode number, and a numerical value below it indicates a singular value of the eigenmode.
  • FIG. 8 shows the distribution of the magnetic field component in the axial direction for each eigenmode.
  • the magnetic field of the radial component can be similarly adjusted considering that each shim coil 21 is oriented in the direction of generating the radial magnetic field.
  • the shim coil array 20 has a shim coil 21 arranged in a single layer on a cylindrical surface.
  • the number of eigenmodes is equal to or less than the smaller value of either the number n of shim coils 21 or the number h of magnetic field measurement points. For this reason, a large number of eigenmodes can be generated by arranging a plurality of shim coils 21 in both the circumferential direction and the axial direction.
  • FIG. 9 is a graph for explaining a simulation example for adjusting the error magnetic field.
  • FIG. 9 (a) shows the consensus magnetic field with contour lines every 0.5 gauss (5.000 ⁇ 10 ⁇ 5 [T]) when one superconducting coil 1a (see FIG. 1) generating the main magnetic field is tilted.
  • the magnetic field evaluation surface 13 is on the cylindrical surface of FIG. 7B, and is set to ⁇ 10 cm in the vertical direction and 33.3 cm in radius.
  • the error magnetic field is distributed from ⁇ 1.08 Gauss ( ⁇ 1.079 ⁇ 10 ⁇ 4 [T]) to ⁇ 4.45 Gauss ( ⁇ 4.462 ⁇ 10 ⁇ 4 [T]).
  • Exist
  • Fig. 9 (c) shows the eigenmode intensity calculated from this magnetic field distribution, numbered in descending order of singular values, and the intensity plotted with crosses.
  • the vertical axis is the eigenmode intensity of the residual, and the horizontal axis is the eigenmode number.
  • the graph of FIG. 9 (c) has a tendency to descend to the right.
  • the component having a higher eigenmode intensity disappears. This is because the magnetic field control is performed for the 1st to mth eigenmodes in FIGS. 5 and 6 and the magnetic field adjustment can be suitably performed without performing the higher-order (m + 1 to nth) magnetic field control. Show.
  • the eigenmode component with a circle in FIG. 9C when the eigenmode component with a circle in FIG. 9C is corrected, the large component disappears. Considering the intensity of the component to be corrected, it can be expected to be a residual magnetic field of a few hundredths. In this way, a large contributing eigenmode is selected from FIG. This corresponds to the processing of the mode selection unit 26a in FIG. If all eigenmodes (1 to m-th) are to be corrected, the current of each shim coil 21 tends to be excessive, so it is meaningful to select an eigenmode that contributes greatly to the magnetic field adjustment. FIG. This graph is used for the selection.
  • FIG. 9B shows a residual magnetic field distribution when the eigenmode component with a circle is corrected.
  • the residual magnetic field is indicated by contour lines every 0.01 gauss (1.000 ⁇ 10 ⁇ 6 [T]).
  • the residual magnetic field is distributed from 0.016 Gauss (+ 1.631 ⁇ 10 ⁇ 6 [T]) to ⁇ 0.017 Gauss (-1.735 ⁇ 10 ⁇ 6 [T]).
  • the residual magnetic field has a magnitude of ⁇ 2 ⁇ T or less and is well corrected.
  • ⁇ Modification ⁇ The magnet device 1 and the magnetic field adjustment device 2 according to the present embodiment are not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.
  • FIG. 10A is a development view of the shim coil array 20 according to the first modification
  • FIGS. 10B and 10C are examples of the magnetic field distribution in the natural mode of the shim coil array 20 according to the first modification.
  • the width of the shim coils 21 arranged in the axial direction is made equal, but the present invention is not limited to this.
  • the shim coil 21B on the center side of the axial position that is, the side close to the magnetic field evaluation surface 13 (magnetic field utilization region 12) is made narrow, and the shim coil 21A on the far side is made wide. Good. Even if the widths are not equal to each other, as shown in FIGS. 10B and 10C, eigenmode magnetic field distributions that do not interfere with each other can be obtained, and magnetic field adjustment can be performed by the same processing.
  • FIG. 11 is a schematic cross-sectional view of a configuration of a magnet device according to a second modification.
  • the shim coil array 20 has been described as being disposed on the cylindrical surface 2S, but the present invention is not limited to this.
  • the shim coil array 20 may be arranged on the cylindrical surface 2Sa.
  • the superconducting coil 1a is disposed in the magnetic field utilization region 12 (magnetic field evaluation surface) as compared with the case where the shim coil array 20 is disposed inside the superconducting coil 1a (see FIG. 1). 13)
  • the current flowing through the superconducting coil 1a can be reduced.
  • the shim coil 21 is separated from the magnetic field utilization region 12 (magnetic field evaluation surface 13), the current flowing through the shim coil 21 increases. In that respect, it is preferable to arrange on the cylindrical surface 2S.
  • the shim coil array 20 is a normal conductive shim coil array. Since this position is close to the magnetic field utilization region 12, a faster response is possible and a larger magnetic field can be corrected.
  • the arrangement of the shim coil array 20 can be selected as appropriate in consideration of the thickness necessary for the arrangement, the margin of the arrangement area of the superconducting coil 1a, and the magnetic field performance of the shim coil 21 necessary for target correction. it can.
  • the magnet device 1 and the magnetic field adjustment device 2 according to the present embodiment can be used for devices using a magnetic field, such as an accelerator and a magnetic resonance imaging device.
  • the magnet device 1 according to the present embodiment is a magnet device that generates a static magnetic field in a cylindrical region in the magnetic field use region 12, and the magnetic field adjustment device 2 according to the present embodiment is a static magnetic field in the magnetic field use region 12.
  • the magnetic field generated by the magnet device 1 in the magnetic field use region 12 is not limited to a static magnetic field.
  • the magnet device 1 and the magnetic field adjustment device 2 that generate a target magnetic field distribution in the magnetic field utilization region 12 may be used.
  • shaft (Z-axis) of the superconducting coil 1a of the magnet apparatus 1 was demonstrated as a horizontal thing, it is not restricted to this, For example, it may be perpendicular
  • the magnet device 1 has a tunnel shape as shown in FIG. 1, it may have a generally magnet shape.
  • the magnetic field utilization region 12 has been described as being cylindrical, but is not limited thereto.
  • a spherical shape may be sufficient and other shapes may be sufficient.
  • the magnetic field evaluation surface 13 may be appropriately selected according to the shape of the magnetic field utilization region 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】 特異値分解により得た固有モード毎に磁場調整することで精度良く磁場分布を保つ電磁石装置で、操作者には従来機と同様な操作性を提供する。 【解決手段】 計測磁場から固有モードの強度を求め、その磁場に応じた負帰還制御の固有モード毎の電流を算出し、その電流をモード毎に加算して各シムコイルの電流を求め、その電流値になるようにコイル電流を制御する。操作者向けインターフェースでは、球面調和関数強度で補正磁場の目標やシムコイルによる磁場を表示する。そのため、従来同様の操作性でありながら精度良い磁場調整が可能となる装置を提供できる。

Description

磁場調整装置および磁気共鳴イメージング装置
  本発明は、磁場を調整する磁場調整装置および磁気共鳴イメージング装置
に関する。
 研究用磁石やMRI磁石は、磁場一定値もしくはある目標の磁場分布となるように高精度な磁場分布の調整が要求される。たとえば、磁気共鳴用磁石(MRI, nmr)であれば、1ppm以下の精度において一定、かつ時間的にも一定の磁場分布が必要とされることもある。
 主たる起磁力源として超電導コイルを採用し、これを永久電流モードで通電している場合、その内部の磁束は保存され、磁場強度は一定に保たれる。この性質を利用してMRI装置等の磁石には超電導コイルが用いられ、磁場を1年以上の長時間ほぼ一定に維持している。さらにMRI装置は、磁石の中心軸方向の磁場についてその分布を微調整できる微調整用のコイルを持つ。
 図12は特許文献1に開示された従来の微調整用のコイル(局所コイル)である。多数の局所コイルが間隔を置いて配置されている。これにより、磁場の微調整を可能としている。各コイルの電流配分は、球面調和関数の強度とラグランジェ未定係数法で計算されていた。
 また図13は、特許文献2に開示された微調整用コイルの配線を示す。円筒面上に配置された導線に電流が流されることによって、磁場が調整される。なお、各電流値は特異値分解を用いて決めるとされている。
特開平8-316031号公報 特開2013-98439号公報
 しかし、特許文献1において、各局所コイルが作る磁場は、高次から低次にわたって多数の次数項を含む球面調和関数として把握される。この場合、高次の関数(高次の次数項)と低次の関数(低次の次数項)との間で干渉が残る、換言すると相関が存在するため、いずれかの次数項に着目して磁場を調整すると、その都度、意図しなかった磁場成分も変化する。また、発熱最少とするときに、誤差磁場とのトレードオフが有るため、その関係から調整精度を高めることが難しい。
  特に高磁場環境下では、磁場強度の低い場合と比べて相対的に問題は重大となる。磁場が強い磁石について、その磁場分布を調整するためには、磁場調整用の電流も相応の大きさが必要となるためである。
 なお図12、13は共に、円筒面上に局所コイルが配置される例を示し、横軸は周回方向位置、縦軸は軸方向位置を示す。特許文献2は、特許文献1と比較して磁場の調整精度が向上するが、各局所コイルはそれぞれ円筒面を構成するので、磁場調整用のコイルは多数の円筒面の積層構造を有し、従って半径方向の厚さを必要としている。そのため、磁石装置を小型化するためには、より小型化された磁場調整コイルが必要とされる。
 またMRI装置であれば、目標とする磁場分布を球面調和関数で展開し、その展開結果に対応する磁場を発生させ、磁場分布を調整する方法がある。球面調和関数の展開結果に対応する磁場は、複数のコイルから構成された磁場調整用コイルによって発生する。しかし、この磁場調整用コイルに関しては、一般的に各コイルは互いに他のコイルに由来する磁場や誘導の影響を非干渉に出来ない。展開結果の一つに対応する補正を行ったときに、他の展開結果に対応する磁場分布は、先の実行された補正によって影響を受け、磁場の正確な補正を難しくする。また、干渉があるということは、電流値としては不必要に大きな電流としているといえる。
 以上の課題を鑑み、本発明は、従来よりも小さな電流であっても高精度な磁場調整が可能な磁場調整装置および磁気共鳴イメージング装置を提供することを課題とする。
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「磁場利用領域における静磁場を調整する複数のシムコイルを有するシムコイルアレイと、前記シムコイルを流れる電流の磁場への応答行列の特異値分解で得た固有モードに基づいて、前記シムコイルの電流指令値を決定する第1演算部と、決定された前記電流指令値に基づいて、前記シムコイルの電流を制御する電源と、前記磁場利用領域における静磁場を球面調和関数によって展開して得られる次数項と、前記固有モードの強度との対応関係を演算する第2演算部と、前記第2演算部に接続され、前記電流指令値に基づき通電される前記シムコイルによる前記磁場利用領域における静磁場の変化を、前記球面調和関数の次数項に関する情報として表示する表示装置と、を少なくとも備える磁場調整装置」が提供される。
本発明によれば、特異値分解利用のシムコイルを用いた場合においても、利用者は従来と同様に磁場分布を調整、把握でき、効率の良い磁場調整装置および磁気共鳴イメージング装置を提供することができる。
本実施形態に係る磁石装置の模式断面図とシムコイル結線法を示した図である。 本実施形態に係る磁場調整装置が備えるシムコイルアレイの展開図である。 本実施形態に係る磁場調整装置の構成模式図である。 本実施形態に係る磁場調整装置を用いた磁場調整方法のフローチャートである。 固有モード強度演算部の演算回路の模式図である。 残差演算部、電流補正指令値演算部、加算増幅器の演算回路および各シムコイルへの結線を示した模式図である。 実施例に係るシムコイルアレイの配置を説明する図であり、(a)は展開図、(b)は鳥瞰図である。 実施例に係る固有モードの磁場分布を説明するグラフである。 誤差磁場を調整するシミュレーション例を説明するグラフである。 (a)は第1変形例に係るシムコイルアレイの展開図であり、(b)(c)は第1変形例に係るシムコイルアレイの固有モードの磁場分布の例である。 第2変形例に係る磁石装置の構成模式断面図である。 第1従来例のシムコイルの配置例の展開図である。 第2従来例のシムコイルの配置例の展開図である。
 特許文献1のように、シムコイル(磁場調整用コイルを構成する局所コイル)の層を少数(特許文献1の例では1層)とすることは、磁場調整装置の構造の簡素化において重要である。しかし、特許文献1の方法では磁場制御計算が煩雑となりやすい。
 これに対し、特許文献2が開示する特異値分解(SVD)を使う方法は、磁場成分がわかりやすい。特異値分解法によると、補正磁場を構成するそれぞれの磁場成分を電流と磁場が対応した固有モードとして求める。各固有モードは互いに非干渉(直交性を有する)なため、磁場制御をより簡単に調整できる。
 そこで、本実勢形態に係る磁場調整装置は、多数のシムコイルを用い、各シムコイルの電流制御は、特異値分解を応用する方法を用いる。これにより、高精度で、扱いやすい磁場調整装置を構成することができる。
 このような方法は、本発明者らによる非特許参考文献(M. Abe, K. Takeuchi, "Low loop voltage startup and equilibrium control using multivariable poloidal field coils in the Hitachi tokamak HT-2", Fusion Technology, 29(1996)p.277)の計算手法を参考にできる。この非特許文献では、円環プラズマの平衡磁場制御を行うために、周回方向の一様な磁場のみ考えている。しかし、今回は周回方向に非一様な考慮する。
 なお、外乱磁場は1種類とは限らず、様々な成分を持った磁場が入り込む可能性がある。そのため、微調整用のシムコイルは単数のコイル(もしくは直列・並列に結線された1組のコイル)ではなく、いくつかのシムコイルの集合であることが望ましい。また外乱磁場は周回方向にも分布する可能性がある。
 さらに、それぞれのシムコイルは相互に独立であることが望ましい。つまり、ある一組のシムコイルに電流が流れると、他のシムコイルに電流が誘導されるということでは、精度良い微調整が困難となるためである。また、複数のシムコイルを組み合わせて磁場を補正する際に、必要な程度に応じて広い範囲の外乱磁場成分を補正できることが望ましい。
 すなわち、複数のシムコイルを、相互には独立に、かつ組み合わせて動作させることによって、外乱磁場の成分を広範囲にわたって除去できるように構成したシムコイル群が必要となる。
 このようなシムコイル群を求める設計手法として、非特許参考文献の手法を拡張して用いる事ができる。この文献の手法では、ポロイダル磁場コイルの電流分配を、目的磁場に対して補正する電流分布に最適化する。この計算過程で、コイル電流から目標領域(非特許文献ではプラズマ表面)の応答行列を特異値分解し、電流分配と磁場成分を対とした固有モードを得、その固有モードの組み合わせで磁場調整を行っている。しかし、調整の結果はプラズマ位置と形状の従来的なパラメータで把握していた。
 そこで、この方法を研究用高精度磁場装置やMRI装置などの高精度な磁場を必要とする磁石装置に適用する。なお以降で説明するシムコイルは、特異値分解の固有モードで制御される。しかし操作者が従来的な球面調和関数によって補正磁場を把握する場合を考慮し、球面調和関数の強度でも補正の程度を把握できる磁場調整装置を提案する。なお、特異値分解を利用するシムコイルとしては、次の2種類が考えられる。一つは、従来法の図3のようなシムコイルである。このシムコイルでは固有モード毎にシムコイルを一対一に対応させて制作する。コイルの電流制御回路は個々の固有モードに必要な電流を、その固有モード強度に比例させて流す。他の方法は、アレイ型シムコイルである。
 アレイ型シムコイルは、周回方向に関して分割された単位シムコイルを密に配置したものである。それぞれのコイルは閉じた電流閉回路(但し、給電配線部は電流供給回路に接続)であり、それぞれのコイルは電流制御型の電源に接続され、電流値は固有モードの各モード成分の電流分配のモードについて重ね合わせた電流値とされ、また、磁場計測は多点で行い、それぞれの計測値の固有モードの重みを考慮した加算で、各固有モード強度を計測値から算出し、目標の固有モードとの残差を電流値に換算して、電流値を制御することで磁場を調整する磁場調整装置を提案する。
 本発明ではこのような特異値分解利用のシムコイルに加えて、機器の利用者は、従来と同様に球面調和関数強度で磁場の調整状況を把握できることを提案する。
 <<磁石装置1、磁場調整装置2≫
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
 本実施形態に係る磁場調整装置2、および、この磁場調整装置2を備える磁石装置1について図1から図6を用いて説明する。図1は、本実施形態に係る磁石装置1の模式断面図であり、本実施形態のシムコイル結線(図1の下側に示す吹き出し内)と共に示す。なお、図1の上側に示す模式断面図は、水平軸であり後述する超電導コイル1aの中心軸であるZ軸、および、鉛直軸であるY軸で形成される平面で切断した磁石装置1の断面図である。
 本実施形態に係る磁石装置1は、互いに中心軸(Z軸)が一致する環形状の複数(図1の例では4個)の超電導コイル1aと、冷媒容器1bと、輻射シールド1cと、真空容器1dと、を備えている。
 超電導コイル1aは、冷媒容器1bに収容されている。また、冷媒容器1bには、超電導コイル1aを冷却するための冷媒が充填されている。冷媒容器1bは、真空容器1dに収容される。真空容器1d内は、高真空状態となっており、冷媒容器1bと真空容器1dの間を真空断熱するようになっている。さらに、冷媒容器1bと真空容器1dの間には、輻射シールド1cが設けられており、輻射による熱伝達を抑制するようになっている。
 超電導コイル1aは、超電導線材で構成されるコイルであり、冷媒容器1bに充填された冷媒により超電導臨界温度以下まで冷却される。超電導コイル1aは、永久電流モードで通電されることにより、図1においてZ軸方向の矢印で示す磁場方向11の向きに磁場(主たる磁場)を発生させる超電導磁石として機能する。これにより、超電導コイル1aは、円筒状の磁石装置1の中心に設けられた磁場利用領域12に静磁場を発生させる。なお、図1の例では、磁石装置1は、MRI装置において静磁場を発生する磁石装置1であり、円筒状の磁場利用領域12が設定されているものとして説明する。
 さらに、磁石装置1は、磁場調整装置2(後述する図3参照)を備えている。磁場調整装置2は、磁場利用領域12の静磁場の精度(均一度)を向上させるように磁場調整をする装置である。具体的には、磁場調整装置2は、設定された磁場評価面13について、静磁場の精度(均一度)を向上させるように磁場調整をする。なお、図1では、磁場利用領域12の境界面を磁場評価面13とした場合を例に示している。
 磁場調整装置2(後述する図3参照)は、複数のシムコイル21(後述する図2参照)からなるシムコイルアレイ20を備えている。シムコイルアレイ20(シムコイル21)は、冷媒容器1bの内部で、超電導コイル1aの径方向の内側に設けられる円筒面2S(図1参照)に配置されている。また、円筒面2Sの中心軸は、Z軸(即ち、超電導コイル1aの中心軸)と一致する。なお、シムコイル21は、冷媒が充填された冷媒容器1bの内部に配置されるため、超電導線材で構成し、通電による発熱を抑制する構成とすることが好ましい。このシムコイル21の給電線(291 ~29n ,30)から、極低温部(冷媒容器1bの内部)に進入する熱は無視できない。そのため、本実施形態では給電線の片側は共通の給電線30とする。これにより、極低温部(冷媒容器1bの内部)に進入する給電線数を減少できるので、入熱量も減少でき、安定した超電導磁石の運転を行うことができ、また、冷凍機の負荷を下げることができる。なお、この構成については、図6で再度詳しく述べる。
 次に、本実施形態に係る磁場調整装置2が備えるシムコイルアレイ20およびシムコイル21について図2を用いて更に説明する。図2は、本実施形態に係る磁場調整装置2が備えるシムコイルアレイ20の展開図である。なお、図2において、横軸は周回方向角度(ラジアン)を示し、縦軸はZ軸(図1参照)の軸方向位置を示す。また、シムコイル21は、超電導線材を巻回して構成されるが、図2では、シムコイル21のコイル部(巻回部)のみを図示し、シムコイル21のコイル部と接続する配線(引出線)等は省略して図示している。
 シムコイルアレイ20は、図2に示すように、周回方向および軸方向に複数のシムコイル21が配列されて構成され、図1に示す円筒面2Sに配置される。換言すれば、円筒面2Sは周回方向および軸方向について多数に分割され、その分割された領域にそれぞれシムコイル21が配置されて、シムコイルアレイ20が構成されている。なお、図2では、シムコイルアレイ20は、周回方向に6個、軸方向に5個の計30個のシムコイル21が配列される例を示している。
 ここで、第1従来例では、図12に示すように、シムコイル121と、隣接するシムコイル121との間には広い隙間がある。これに対し、本実施形態のシムコイルアレイ20は、図2に示すように、シムコイル21を密に配置している。
 ここで、磁気モーメントは各コイルの面積に比例して大きくなるので、シムコイル21を隙間なく配置することが好ましい。但し、実際にはシムコイル21の支持構造やコイル導体断面の大きさ等で制限されるため、占有率を100%とすることはできない。ここでは、各シムコイル21(コイル中心線)が囲む面積の和(例えば、シムコイル21が囲む面積S1×30個)と、コイル配置面の面積(円筒面2Sの面積)との比が、80%以上となることを、密配置としている。
 このように、シムコイル21を密配置とすることにより、磁気モーメントを大きくすることができるので、第1従来例(図12参照)と比較して、低い電流で磁場補正をすることができる。また、密配置とすることにより、分散配置されたシムコイル21による磁場リップルも問題とはならない。
 次に、本実施形態に係る磁場調整装置2について図3を用いて更に説明する。図3は、本実施形態に係る磁場調整装置2の構成模式図である。
 磁場調整装置2は、周回方向および軸方向に複数のシムコイル21が配置されて構成されるシムコイルアレイ20と、磁場評価面13(図1参照)の磁場を計測する磁場計測部22と、磁場計測部22で計測した磁場計測値に基づいて各シムコイル21に流す電流を算出して各シムコイル21に電流を流す電流生成部23と、を備えている。また、電流生成部23は、第1演算部35として固有モード強度演算部24と、残差演算部25と、電流補正指令値演算部26と、加算増幅器(電源)27と、記憶部28とを有し、第2演算部36として球面調和関数演算部31と、演算変換部32とを備えている。またこの球面調和関数演算部31の計算結果、または演算変換部32によって固有モード強度から変換された球面調和関数の情報を表示する表示装置33を備える。また目標とする球面調和関数の次数項の係数を指定できる入力装置34を備える。
 固有モード強度演算部24は、磁場計測部22で計測した磁場計測値に基づいて固有モード強度を算出する。なお、固有モード強度演算部24の演算処理は、図4および図5を用いて後述する。
 残差演算部25は、固有モード強度演算部24で算出した固有モード強度と、記憶部28に保存されている固有モード基準強度との差(残差)を算出する。電流補正指令値演算部26は、残差演算部25で算出した残差に基づいて電流補正指令値を算出する。加算増幅器(電源)27は、記憶部28に保存されている基準電流値に、電流補正指令値演算部26が算出した電流補正指令値を加算して電流指令値を算出するとともに、算出した電流指令値に基づいてシムコイル21に電流を流す。なお、加算増幅器(電源)27は、各シムコイル21に流す電流を独立して制御することができるように構成されている。なお、残差演算部25、電流補正指令値演算部26および加算増幅器(電源)27の処理は、図4および図6を用いて後述する。前記の説明は、計測磁場を固有モード強度に展開し、目標モード強度との差違を残差とする方法を述べた。一方、一様磁場などの目標磁場と計測磁場との差違(残差磁場)を計算し、そのモード展開を固有モード強度との残差とする計算手順もある。共に、残差磁場を零とする調整であることには変わりない。
 記憶部28は、固有モード基準強度、基準電流値、後述する目標磁場値、固有分布データ等の磁場調整に必要なデータが記憶されている。
 球面調和関数演算部31は、磁場計測部22で計測した磁場計測値に基づいて、球面調和関数を展開し次数項を取得する。
 演算変換部32は、後述する固有モードと、球面調和関数の展開によって取得される次数項との対応関係を演算する。
 <磁場調整装置を用いた磁場調整方法>
 次に、本実施形態に係る磁場調整装置2を用いた磁場調整方法について、図4を用いて説明する。図4は、本実施形態に係る磁場調整装置2を用いた磁場調整方法のフローチャートである。
 ステップS1からステップS4は、汎用のコンピュータ等を用いて、後述する電流分配演算・磁場調整処理(ステップS5からステップS11)に用いる固有分布データをあらかじめ作成する処理である(固有分布データ作成処理)。
 ステップS1において、コンピュータは、シムコイルアレイ20を構成するシムコイル21の配置(図2参照)と、磁場評価面13(図1参照)上に設定される複数の磁場計測点の位置の入力を受け付ける。操作者は、シムコイルアレイ20を構成するシムコイル21の配置(図2参照)と、磁場評価面13(図1参照)上に設定される複数の磁場計測点の位置をコンピュータに入力する(形状入力)。
 ステップS2において、コンピュータの演算装置は、入力された形状(シムコイル21の配置、磁場計測点の位置)に基づいて、磁場の応答行列Aを生成する。
 ここで、シムコイルアレイ20を構成するシムコイル21の数をnとし、それぞれのシムコイル21のシムコイル電流(I1 ,…,Ii ,…,In )を成分にもつn次元ベクトルを電流ベクトルIとする。また、磁場計測点の数をhとし、それぞれの磁場計測点の磁場(B1 ,…,Bk ,…,Bh )を成分にもつh次元ベクトルを磁場ベクトルBとする。磁場の応答行列式は、
   B = AI                         ……(1)
の方程式で表わすことができる。なお、磁場の応答行列Aは、h行n列の行列となる。
 具体的には、あるシムコイル21に単位電流を流した際の各磁場計測点の応答磁場について、ビオ・サバール(Biot-Savart)の式を用いて算出し、これを全てのシムコイル21について同様に行うことにより、磁場の応答行列Aを生成する。
 ステップS3において、コンピュータの演算装置は、ステップS2で生成した磁場の応答行列Aを特異値分解する。
 磁場の応答行列Aを特異値分解すると、磁場分布の固有分布は、
   u1 ,u2 ,u3 ,…                      ……(2)
であり、電流ポテンシャルの固有分布は、
   v1 ,v2 ,v3 ,…                      ……(3)
であり、uj とvj の間には、
   λj ・uj =A・vj                       ……(4)
が成立する。ここで、λj は、j番目モードの特異値である。
 即ち、j番目モードの単位電流vj は、j番目モードの磁場uj (h次元ベクトル)をλj (スカラー)の強さで発生する電流分配を表わすn次元ベクトル(v1j,…,vij,…,vnj)であり、i番目のシムコイル21に対応する分布強度はvijである。
 ステップS4において、コンピュータの演算装置は、ステップS3において特異値分解により得られた固有モード(2つの固有分布uj ,vj と、1つの特異値λj で、1つの固有モードを示す。)群のデータを、固有分布データとして、出力する。なお、固有モードは特異値が大きい方から順に番号が付されているものとする。また、固有モードの数は、シムコイル21の数nまたは磁場計測点の数hのいずれか小さい方の値以下である。このため、磁場計測点の数hは、少なくともシムコイル21の数n以上とすることが好ましい。
 次に、ステップS5からステップS11では、あらかじめ作成された固有分布データおよび磁場計測部22により計測された磁場計測値から、各シムコイル21に流す電流を演算し、各シムコイル21に電流を流して磁場を調整する処理である(電流分配演算・磁場調整処理)。なお、磁場調整時において、各シムコイル21には、シムコイル電流として基準電流値(I01,…,I0i,…,I0n)の電流が流されている。なお、n個の各シムコイル21の基準電流値(I01,…,I0i,…,I0n)を成分にもつn次元ベクトルである基準電流値ベクトルI0 は、前回の電流値や、主たる磁場を生成する磁石装置1(超電導コイル1a)の製作誤差から推定する。
 ステップS5において、磁場調整装置2の電流生成部23は、ステップS4であらかじめ作成された固有分布データを読み込んで記憶部28に記憶する。なお、記憶部28には、h個の各磁場計測点の目標磁場値(B01,…,B0k,…,B0h)を成分にもつh次元ベクトルである目標磁場値分布B0 があらかじめ記憶されているものとする。
 ステップS6において、磁場調整装置2の磁場計測部22により、各磁場計測点の磁場計測値(B1 ,…,Bk ,…,Bh )を計測する。h個の各磁場計測点の磁場計測値(B1 ,…,Bk ,…,Bh )を成分にもつh次元ベクトルを磁場計測値分布Bと称する。
 ステップS7において、磁場調整装置2の固有モード強度演算部24は、磁場計測値分布B(B1 ,…,Bk ,…,Bh )から、各モードの磁場の固有モード強度を算出する。即ち、磁場制御に用いる固有モードの数をmとし、1番目モードの磁場の固有モード強度P1 からm番目モードの固有モード強度Pm を求める。なお、磁場制御に用いる固有モードの数mは、一般的には、シムコイル21の数nと同じか、または、nよりも小さい数であるが、ここでは、nよりも小さい数とする。詳細は後述する。
 ここで、j番目モードの磁場の固有モードの強度Pj は、
   Pj =B・uj                         ……(5)
の内積で算出する。なお、uj は、j番目モードの磁場分布の固有分布uj (h次元)であり、固有分布データとして記憶部28に記憶されている。
 また、目標磁場値分布B0 から、各固有モードの固有モード基準強度を算出する。j番目モードの磁場の固有モード基準強度P0jは、
   P0j=B0 ・uj                         ……(6)
の内積で算出する。なお、固有モード基準強度P0jは、あらかじめ計算して記憶部28に記憶しておき、それを読み込む構成としてもよい。
 ステップS8において、残差演算部25は、各モードについて、固有モード強度と固有モード基準強度との差分である残差ΔPを算出する。即ち、1番目モードからm番目モードについて、固有モード強度と固有モード基準強度との差分である残差を算出する。
 ここで、j番目モードの残差ΔPj は、j番目モードの固有モード強度Pj およびj番目モードの固有モード基準強度P0jを用いて、
   ΔPj =P0j-Pj                        ……(7)
から算出する。
 ステップS9において、電流補正指令値演算部26は、残差ΔPを打ち消すための電流補正指令値ΔIi を算出する。ここで、目標磁場値分布B0 は磁場調整装置2により補正する磁場の補正量に比べて強い磁場であり、通常、Pj <<B0 となる。このため、以下の式を用いて磁場調整に必要な個々のシムコイル21に加算する電流補正指令値ベクトルΔI(n個の各シムコイル21の電流補正指令値(ΔI1 ,…,ΔIi ,…,ΔIn )を成分にもつn次元ベクトル)を算出する。
 即ち、j番目モードの残差ΔPj を打ち消すためにi番目(i=1~n)のシムコイル21に加算する電流補正指令値ΔIijは、
   ΔIij=-vijΔPj /λj                    ……(8)
となる。ここで、vijは、j番目モードの単位電流vjであるn次元ベクトル(v1j,…,vij,…,vnj)のうちi番目のシムコイル21に対応する分布強度であり、固有分布データとして記憶部28に記憶されている。また、λj は、j番目モードの特異値であり、固有分布データとして記憶部28に記憶されている。なお、式(8)において、右辺の符号が「-」となっていることは、この磁場調整が磁場分布の負帰還制御(負のフィードバック制御)となっていることを意味している。
 よって、1番目モードからm番目モードまでの残差(ΔP1 ~ΔPm )を打ち消すためにi番目のシムコイル21に加算する電流補正指令値ΔIi は、
   ΔIi =ΔIi1+ΔIi2+……+ΔIim              ……(9)
となる。これを1番目のシムコイル21からn番目のシムコイル21について同様に行うことにより、電流補正指令値ベクトルΔI(ΔI1 ,…,ΔIi ,…,ΔIn )を算出する。
 ステップS10において、加算増幅器27は、基準電流値ベクトルI0 に電流補正指令値演算部26で算出した電流補正指令値ベクトルΔIを加算して電流指令値ベクトルIを算出する。なお、電流指令値ベクトルIは、n次元のベクトルである。
 即ち、i番目(i=1~n)のシムコイル21について、基準電流値I0iに電流補正指令値演算部26で算出した電流補正指令値ΔIi を加算して、i番目(i=1~n)のシムコイル21に流す電流である電流指令値Iiを算出する。
   Ii =I0i+ΔIi                       ……(10)
 なお、電流指令値ベクトルIは、各固有モードの成分の加算とみることができる。
  I=Ie1 +Ie2 +……+Iej +……+Iem          ……(11)
ここで、Iej は、j番目モードによる電流値であり、基準電流値ベクトルI0 のj番目モード成分と、j番目モードの残差ΔPj を打ち消すためにシムコイル21に加算する電流補正指令値ΔIej (ΔI1j,ΔI2j,…,ΔIij,…,ΔInj)の加算である。
 ステップS11において、加算増幅器27は、電流指令値ベクトルIに基づいてシムコイル21に通電する。即ち、i番目(i=1~n)のシムコイル21にステップS10で算出した電流指令値Ii に基づいて通電する。
 また、ステップS12において、球面調和関数演算部29は、磁場計測部22を利用して取得された計測磁場分布を、記憶部28から読み出し球面調和関数によって展開する。また目標とする磁場分布も同様に記憶部28から読み出し球面調和関数に基づき展開する。展開によって取得される次数項は、記憶部28に保存される。
 さらにステップS13において、演算変換部32はSVDによる固有モードと球面調和関数の各次数項との対応関係を演算する。
 以上のように、本実施形態に係る磁場調整装置2は、磁場の固有モードごとに残差を低減するように調整磁場を発生させることができる。なお、固有モード間は非干渉であることから、ある固有モードの残差を低減するようにシムコイル21の電流を制御しても、他の固有モードの残差が増加するといったことがないため、磁場調整が容易になる。
 <固有モード強度演算部24>
 次に、図4のステップS7において、磁場の固有モード強度P1 ~Pm を算出する固有モード強度演算部24の演算回路について、図5を用いてさらに説明する。図5は、固有モード強度演算部24の演算回路の模式図である。
 図5において、符号241 ~24m に示す演算回路は、前述の式(5)の内積演算を行う回路であり、固有モード全て(1~m)についてそれぞれ演算を行う。固有モード強度演算部24は、h個の磁場計測点の磁場計測値(B1 ,…,Bk ,…,Bh )が入力され、m個の固有モード強度(P1 ,…,Pj ,…,Pm )を出力する。
 なお、前述のように、磁場制御に用いる固有モードの数mは、シムコイル21の数nよりも少ない数とする。また、前述のように、固有モードは特異値が大きい方から順に番号が付されている。特異値の小さい固有モード(m+1番目以降の固有モード)では、式(4)に示すように、単位電流当たりの磁場の発生が小さい。このため、高次(特異値が小さい)の固有モードについて残差を減少させるように制御すると(ステップS8~S10参照)、大きな電流が必要となる。なお、ステップS4で前述したように、固有モードの最大数は、シムコイル21の数nまたは磁場計測点の数hのいずれか小さい方の値で決まり、磁場計測点の数hをシムコイル21の数n以上とすることから、シムコイル21の数nで決まる。このため、磁場制御に用いる固有モードの数mを(シムコイル21の数nよりも)少ない数として、少ない電流で磁場調整できるようにしている。なお、磁場制御に用いる固有モードの数mを小さくしすぎると要求される磁場精度が達成できない場合もあるので、mは要求される磁場精度に応じて適宜設定する。
 演算回路241 ~24m は、同様の構成であるため、演算回路24j を例に説明する。演算回路24j は、入力信号を増幅(利得倍)するh個の増幅回路と、加算回路から構成され、式(5A)に示す演算を行い、j番目モードの固有モード強度Pj を出力する。なお、j番目モードの磁場分布uj (uj1,…,ujk,…,ujh)は、固有分布データとして記憶部28に記憶されている。
   Pj =B1 uj1+…+Bk ujk+…+Bh ujh          ……(5A)
 また、図5の固有モード強度演算部24の演算回路は、入力を目標磁場値分布B0 とすることにより、固有モード基準強度P0jを出力する前述の式(6)の内積演算を実現できる。
 <残差演算部25、電流補正指令値演算部26、加算増幅器27>
 次に、残差演算部25、電流補正指令値演算部26、加算増幅器27の演算回路について、図6を用いてさらに説明する。図6は、残差演算部25、電流補正指令値演算部26、加算増幅器27の演算回路および各シムコイル21への結線を示した模式図である。
 残差演算部25は、残差演算回路251 ~25m を備えており、固有モード強度演算部24(図5参照)から出力されたm個の固有モード強度(P1 ,…,Pj ,…,Pm )およびm個の固有モード基準強度(P01,…,P0j,…,P0m)が入力され、式(7)の残差演算を実行し、m個の残差(ΔP1 ,…,ΔPj ,…,ΔPm )を出力する(図4のステップS8参照)。
 電流補正指令値演算部26は、m個の残差(ΔP1 ,…,ΔPj ,…,ΔPm )が入力され、式(8)および式(9)の演算を実行し、n個の電流補正指令値(ΔI1 ,…,ΔIi ,…,ΔIn )を出力する(図4のステップS9参照)。
 加算増幅器27は、n個の基準電流値(I01,…,ΔI0i,…,ΔI0n)とn個の電流補正指令値(ΔI1 ,…,ΔIi ,…,ΔIn )が入力され、式(10)の演算を実行し、n個の電流指令値(I1 ,…,Ii ,…,In )を算出する(図4のステップS10参照)。そして、加算増幅器27は、各シムコイル211 ~21n に流れる電流が電流指令値(I1 ,…,Ii ,…,In )となるように制御する。
 ここで、加算増幅器27は、独立した加算増幅器271 ~27n で構成され、各加算増幅器271 ~27n が、各シムコイル211 ~21n の一端と、第1給電線291 ~29nを介して、1対1に対応して接続されており、各シムコイル211 ~21n の電流を独立して制御することができるようになっている。
 また、各シムコイル211 ~21n の他端は、共通給電線である第2給電線30で加算増幅器271 ~27n と接続されている。ここで、極低温部である冷媒容器1b(および、真空容器1d)の内部のシムコイル21と外部の加算増幅器27とを接続する給電線29,30は、極低温部への熱の進入口となる。第1従来例では、1つのシムコイルに対し、2つの電流導入端子を使っている。即ち、シムコイルの数をnとすると、2n個の配線が真空断熱部を貫通する熱侵入口となる。これに対し、本実施形態では、図5に示すように、シムコイル21への給電線のうちの一方を共通給電線(第2給電線30)とする。これにより、(n+1)個の配線が真空断熱部を貫通する熱侵入口となり、配線数を減らして極低温部への熱進入を抑制することができる。なお、第2給電線30はアース線としてもよい。
 また、電流制御時において、各シムコイル211 ~21n に流れる電流を変化させる際、シムコイル21同士の磁気的な干渉が生じるため、精度よく電流を制御する。一方、各シムコイル211 ~21n に流れる電流が一定値(電流指令値)に到達すると、干渉は生じず、電流制御は不要となる。このため、各シムコイル211 ~21n の端子間に永久電流スイッチ(PCS)(図示せず)を設けておき、永久電流モードで運転するようにしてもよい。即ち、加算増幅器27でシムコイル21に流れる電流を電流指令値になるように制御した後に、永久電流スイッチ(図示せず)を接続する。このように構成することにより、超電導コイル1a(図1参照)だけでなく、磁場調整用のシムコイル21も永久電流モードで運転することができる。
 なお、固有モード強度とシムコイルが1対1対応するSVD型シムコイルでは、図6の加算の回路は無いが、その部分以外は同じ回路となる。また、第2給電線30も設置可能である。SVD型シムコイルでは高次の固有モードは存在しないので、ダミーのコイルを少なくとも一つ設ける。ダミーのコイルとしては、きわめて弱い磁場を発生する回路(高次シムコイル)をシムコイルと組み合わせ、第2給電線30を通る電流によって生じる磁場をほぼ零となるようにダミーのコイルを含む回路に通電する。また、使用されるシムコイルに対し、その逆の磁場を発生する負シムコイルを作り、磁場はそれらの磁場差分(高次成分となる)で調整し、電流はその合計で調整して第2給電線30の電流をほぼ零にする方法がある。このようにした場合、太い給電線は不要となり、流入熱を抑制できる。
 また、図6に示すように、電流補正指令値演算部26は、モード選択部26aを備えていてもよい。モード選択部26aは、あらかじめ設定された許容誤差εに基づいて、j番目モードの残差ΔPj が、
   ΔPj <ε                         ……(12)
の場合、係数Gj =0とする。式(12)が成立しない場合は、係数Gj =1とする。
 そして、電流補正指令値演算部26は、前述の式(9)を、係数Gj を含んだ以下の式(9A)に置き換えて演算する。
Figure JPOXMLDOC01-appb-M000001
 即ち、j番目モードの残差ΔPj が許容誤差ε未満の場合、加算から排除する、換言すれば、j番目モードについて磁場調整を行わないようにすることができる。残差ΔPj が十分に小さい(許容誤差ε未満)場合、式(8)に示すように、ΔIijについても小さくなる。このため、加算増幅器(電源)27の電流制御可能な分解能によっては、同様に磁場調整を行うと、むしろ磁場の均一度が乱れるおそれがある。これに対し、j番目モードの残差ΔPj が許容誤差ε未満の場合、j番目モードについて磁場調整を行わないようにすることにより、このような磁場の均一度の乱れを防止することができる。なお、Gj は、0または1を用いるものとして説明したが、これに限られるものではなく、他の値を用いてもよい。
 また、図6に示すように、電流補正指令値演算部26は、共通給電線電流低減処理部26bを備えていてもよい。
 ここで、1~n番目のシムコイル211 ~21n に電流を流す第1給電線291 ~29n には、それぞれ、電流I1 ~In が流れるのに対し、共通給電線である第2給電線30に流れる電流Icomは、
   Icom=I1 +…+Ii +…+In                ……(13)
となる。このため、第2給電線30は、第1給電線291 ~29n よりも大電流が流れるため、電流容量を大きくする、即ち、第2給電線30の線材の断面積を大きくする。このため、第2給電線30からの熱侵入が大きくなるおそれがある。
 これに関し、共通給電線電流低減処理部26bは、第2給電線30に流れる電流Icomを小さくするように制御する。前述したように、磁場制御に用いる固有モードは1番目からm番目までであり、シムコイル21の数nよりも小さくなっている(m<n)。このため、(n-m)の自由度が残っている。また、前述のように、高次の固有モードほど特異値が小さく、単位電流当たりの磁場の発生が小さい。したがって、高次の固有モードでシムコイル21に流す電流を変化させても、磁場に与える影響は小さい。一方で、第2給電線30に流れる電流Icomを小さくすることができる。これにより、第2給電線30の線材の断面積を極端に大きくする必要がなく、第1給電線291 ~29n と比較してせいぜい3倍程度以下の容量、より積極的な制御を行えば1/10程度の容量まで低減させることができる。これにより、第2給電線30の線材の断面積を小さくして、第2給電線30からの熱侵入を抑制することができる。
 ここで、高次モードによる電流分配ベクトルIH を、
   IH =Fm+1m+1+…+Fn vn                 …(14)
とする。なお、vm+1(~vn )は、m+1(~n)番目モードの単位電流(n次元ベクトル)であり、固有分布データとして記憶部28に記憶されている。Fm+1~Fnは、係数である。
 加算増幅器27は、電流指令値ベクトルIでシムコイル21に流す電流を制御しているが、高次モードによる電流分配ベクトルIH を加算しても磁場の影響は小さい。このため、共通給電線電流低減処理部26bは、第2給電線30に流れる電流が小さくなるようにFm+1~Fnを決定する。
 例えば、最も磁場の影響が小さい、即ち、最も特異値が小さいn番目モードを用いるものとして、
   Fm+1=…=Fn-1=0
   Fn =-Icom/(v1n+…+vin+…+vnn)         ……(15)
とすればよい。なお、vinは、n番目モードの単位電流vn (n次元ベクトル)のi番目のシムコイル21に対応する電流分布強度である。
 また、高次モードが算出しにくい場合もある。これは、特異値が小さくなるほど、計算誤差が相対的に大きくなるためである。この場合、高次モードによる電流分配ベクトルIH について、仮想的なモードの電流分配を考える。まず、
   E=(1,1,…,1)                   ……(16)
のn次元ベクトルを考え、vHとして、
  vH =E-(Ev+…+EvL)/|E-((Ev+…+EvL))|…(17)
を計算する。ここで、LはEの成分としてL番目モードの固有モードまで差し引くことで、vH にはL番目以下の固有モードは含まれなくなる。また、Lは、m+1からn未満の整数である。このようにして求めたvHの電流分配で、
   IH =FH vH                       ……(14A)
   FH =-Icom/(v1H+…+viH+…+vnH)        ……(15A)
で計算した高次モードによる電流分配ベクトルIHを各シムコイル電流に加える。このような方法で、第2給電線(共通給電線)30を通過する電流を小さく保つことができる。
 なお、高次モードによる電流分配ベクトルIHは、電流補正指令値演算部26から加算増幅器(電源)27に出力して、加算増幅器(電源)27で基準電流値ベクトルI0に電流補正指令値ベクトルΔIを加算する際に高次モードによる電流分配ベクトルIHを加算してもよい。また、電流補正指令値演算部26で電流補正指令値ベクトルΔIに高次モードによる電流分配ベクトルIHを加算したものを電流補正指令値ベクトルΔIとして、加算増幅器(電源)27に出力するようにしてもよい。
<<球面調和関数演算部31>>
 球面調和関数演算部31は、磁場計測部22を利用して取得された計測磁場分布を球面調和関数によって展開する。また目標とする磁場分布も球面調和関数に基づき展開する。なお、球面調和関数演算部31は、目標とする磁場分布の均一度や目標とする球面調和関数の強度(各次数項に対する係数)に関する情報を、入力装置34を介して外部から入力されてもよい。
 球面調和関数演算部31が実行する演算を数式化すると式(15)となる。
 BZ(r,θ,φ)=ΣrnΣPn m(cosθ){Anmcos(mφ)+Bnmmsin(mφ)}(15)
 ここで、式(15)の演算は、m=0~n、n=0~∞の範囲について行う。Pn mはルジャンドル陪関数である。rは中心を基点とした位置、θは磁場方向を周回する角度、φは磁場方向との角度である。このように磁場を展開することによって、従来であれば、MRI操作者は係数Anm,Bnmに着目して磁場の状態を把握することが多い。そこで本実施例の磁場調整装置2は、先に説明した特異値分解による磁場調整の内容を、操作者に対して球面調和関数の係数を用いて把握できるようにした。これによって操作者は従来と同様のパラメータに基づき磁場の状態を把握でき、かつ磁場調整は特異値分解による高精度な調整を可能とする。特異値分解によって取得される固有モードと、球面調和関数を展開して取得される各次数項の係数との換算は、演算変換部32において次のとおり実行される。
 <<演算変換部32>>
 演算変換部32は、固有モードと球面調和関数の係数との換算を実行する。たとえば、先に挙げた式(15)において、n=i,m=jとして、その場合の磁場分布を磁場計測点上に関して計算する。その結果、磁場強度のベクトルBZij が取得され、このベクトルBZijと固有モードから取得される磁場分布のベクトルBkとの内積を式(5)の様に計算することによって、Anm,Bnmから特異値分解による固有分布への換算が求まる。また、逆に固有モード磁場分布ukからAnm, Bnmへの換算は、固有分布ukとBZ(r,θ,φ)の内積を磁場計測(評価)面上でθ、φについて積分すれば、その換算が可能となる。その結果、両者は行列式
              P=C(Anm,Bnm)                                                     (16)
の関係に書ける。Pは成分に固有モード強度Pjを持つベクトルであり、(Anm,Bnm)は成分にAij,Bijをもつベクトルである。通常、球面調和関数の展開はi,jともに15程度以下の次数項までを取得するものであって、SVD固有モードは225個程度以下が取得される。従ってCは15x15程度の正方行列とできる。この場合、式16において球面調和関数の各次数項の係数からSVD固有モード強度への換算ができ、かつ逆行列を求めることによってSVD固有モード強度から球面調和関数の強度(各次数項の係数)への換算も出来る。
 この計算を利用することで、操作者に対しては球面調和関数の強度を表示装置33に表示して磁場の状態を提示し、あるいは入力装置34を介して球面調和関数の強度に関する入力を受けつつも、磁場の調整を実行する制御系はSVDの固有モード強度を利用した高精度な磁場調整を可能とする。また、逆に計測した現在磁場やシムコイルの通電出力を固有モード強度から球面調和関数の係数に換算でき、操作者の操作を容易にすることもできる。
 ≪実施例≫
 次に図7から図9を参照して、本実施形態に係る磁場調整装置2を用いた磁場調整の実施例を示す。
 図7(a)は、実施例に係るシムコイルアレイ20の配置を説明する展開図である。なお、横軸は周回方向をラジアンで-π/2~3π/2で示し、縦軸は軸方向位置をメートル(m)単位で示している。個々のシムコイル21は円筒に沿った矩形であり、周回方向には同じ角度の大きさで配置されている。また、シムコイル21同士の間隔は、可能な限り密に配置し、磁場を強く発生できるようにしている。なお、シムコイル21は、必ずしも周回方向に同一の角度で分解して配置する必要は無い。また、図7(a)において、一部のシムコイルには形状を判りやすくするためにマークを付けている。また各シムコイル21には1から30までの番号を付している。
 図7(b)は、実施例に係るシムコイルアレイ20の配置を説明する鳥瞰図である。中心部の小さな円筒面は磁場計測を行う磁場評価面13である。ちなみに、本手法では磁場計測点は任意の位置に取ることが可能である。また、磁場評価面13は、図1の場合とは異なり、円筒面としている。30個のシムコイル21が円筒状に配置されている。この各シムコイル21は、それぞれ電流端子を持っているが、ここでは省略して図示している。また、各シムコイル21は、線材が1ターンではなく通常複数のターン数が巻かれている。これにより、電流を小さくして、電流導入端子を小さくする。また、発熱量の低減でも有利であり、特に超電導線材を用いる場合には有利となる。
 シムコイル21の相互の間隔は密にするが、実際には若干の隙間が存在する。これは、絶縁やシムコイル21の固定部品のためである。実際の機器では磁場を制御する位置の半径とコイル配置の円筒面の半径の比は、程度として倍半分程度の比率(1/2程度)である。そのため、若干の隙間がシムコイル21の相互間に存在できる。その隙間の程度は、1/2のさらに1/5程度(=1/10程度)であれば実際上隙間による磁場変動は問題とならない。つまり、隙間が、大きさで1/10程度以下、面積では80%程度以上がシムコイル21で覆われていることがシムコイル21の大きさの条件と考えられる。
 図8は、実施例に係る固有モードの磁場分布を説明するグラフである。図7の例に示すシムコイルアレイ20(シムコイル21)で、磁場評価面13に生成可能な固有モードの磁場分布ujを図8に示す。各図において、横軸は周回方向で、縦軸は軸方向位置である。また、ドットの有無は磁場の符号の正負を示している。また、各図のMODEは、固有モード番号を示し、その下の数値はその固有モードの特異値を示している。また、コイル数(n=30)と同じ数の固有モードが可能であるが、図8には20個の固有モード(m=20)とその磁場分布で示している。
 なお、図8では、軸方向の磁場成分を各固有モードについて分布を示している。しかし、明示してないが、各シムコイル21が半径方向の磁場を生成する方向に向いていることを考えると、半径方向成分の磁場も同様に調整できることは自明である。
 図7に示すように、実施例に係るシムコイルアレイ20は、シムコイル21を円筒面に1層配置したものであるが、第2従来例と同様に、図8に示すように、相互に干渉のない固有モードが多数生成できることが理解できる。なお、固有モードの数は、シムコイル21の数nまたは磁場計測点の数hのいずれか小さい方の値以下である。このため、周回方向および軸方向共に、複数のシムコイル21を配置することにより、固有モードを多数生成することができるようになっている。
 図9は、誤差磁場を調整するシミュレーション例を説明するグラフである。
 図9(a)は、主たる磁場を生成する超電導コイル1a(図1参照)が1個傾いた時の議差磁場を0.5ガウス(5.000×10-5[T])毎の等高線で示す。磁場評価面13は、図7(b)の円筒面上であり、上下方向に±10cm、半径で33.3cmとする。図9(a)に示すように、誤差磁場は、-1.08ガウス(-1.079×10-4[T])から-4.45ガウス(-4.462×10-4[T])で分布して存在している。
 この磁場分布から固有モード強度を計算し、特異値の降順で番号付けして、その強度を×印でプロットした図が図9(c)である。縦軸は残差の固有モード強度、横軸は固有モード番号である。
 図9(c)に示すように、図9(c)のグラフは右下がりの傾向があり、固有モード番号が大きくなるほど、固有モード強度の大きな成分はなくなっていく。これは、図5および図6において、1~m番目までの固有モードについて磁場制御を行い、高次(m+1~n番目)の磁場制御を行わなくても好適に磁場調整を行うことができることを示している。
 また、図9(c)において丸印が付いた固有モード成分について補正すると、大きな成分はなくなる。その補正する成分の強度から考えて、数100分の1の残差磁場となると期待できる。このように、図9(c)から大きな寄与の固有モードを選択して磁場補正に考慮する。これは、図6のモード選択部26aの処理に相当する。仮に、全ての固有モード(1~m番目)を補正しようとすると、各シムコイル21の電流が過大と成りやすいので、磁場調整に寄与の大きい固有モードを選択する意味は大きく、図9(c)のグラフはその選択に利用する。
 図9(b)に、丸印が付いた固有モード成分について補正した場合の残差磁場分布を示す。ここでは、残差磁場を0.01ガウス(1.000×10-6[T])毎の等高線で示す。図9(b)に示すように、残差磁場は、0.016ガウス(+1.631×10-6[T])から-0.017ガウス(-1.735×10-6[T])で分布して存在している。即ち、残差磁場は、±2μT以下の大きさで、よく補正できていることが判る。
≪変形例≫
 なお、本実施形態に係る磁石装置1および磁場調整装置2は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
 図10(a)は第1変形例に係るシムコイルアレイ20の展開図であり、(b)(c)は第1変形例に係るシムコイルアレイ20の固有モードの磁場分布の例である。
 図2では、軸方向に配置されるシムコイル21の幅を等しい幅にするものとしているが、これに限られるものではない。図10(a)に示すように、軸方向位置の中心側、即ち、磁場評価面13(磁場利用領域12)に近い側のシムコイル21Bを狭幅にし、遠い側のシムコイル21Aを広幅にしてもよい。このように等しい幅でなくても、図10(b)(c)に一例を示すように、干渉しない固有モードの磁場分布を得ることができ、同様の処理で磁場調整をすることができる。
 図11は、第2変形例に係る磁石装置の構成模式断面図である。
 図1では、シムコイルアレイ20を円筒面2Sに配置するものとして説明したが、これに限られるものではない。
 例えば、円筒面2Saにシムコイルアレイ20を配置してもよい。シムコイルアレイ20を超電導コイル1aの外側に配置することにより、シムコイルアレイ20を超電導コイル1aの内側に配置する(図1参照)場合と比較して、超電導コイル1aを磁場利用領域12(磁場評価面13)に近づけることができるので、超電導コイル1aに流れる電流を小さくすることができる。一方で、シムコイル21が磁場利用領域12(磁場評価面13)から離れるため、シムコイル21に流れる電流は大きくなる。その点では、円筒面2Sに配置することが好ましい。
 また、シムコイル電流面2Sbに配置してもよい。この場合、シムコイルアレイ20は、常伝導のシムコイルアレイとなる。この位置は、磁場利用領域12に近いので、より早い応答が可能であり、また、より大きな磁場を補正できる。
 このように、シムコイルアレイ20の配置は、配置に必要な厚さ、超電導コイル1aの配置領域の余裕、および、目標の補正に必要なシムコイル21の磁場性能を考慮して、適宜選択することができる。
 また、本実施形態に係る磁石装置1および磁場調整装置2は、加速器や磁気共鳴イメージング装置など、磁場を利用する装置に用いることができる。また、本実施形態に係る磁石装置1は、磁場利用領域12に円筒状の領域に静磁場を発生させる磁石装置であり、本実施形態に係る磁場調整装置2は、磁場利用領域12の静磁場精度が向上するように磁場調整する装置であるものとして説明したが、磁石装置1が磁場利用領域12に発生させる磁場は静磁場に限られるものではない。磁場利用領域12にある目標の磁場分布を発生させる磁石装置1および磁場調整装置2であってもよい。また、磁石装置1の超電導コイル1aの中心軸(Z軸)は、水平であるものとして説明したが、これに限られるものではなく、例えば、垂直であってもよい。
 また、本実施形態に係る磁石装置1は、図1に示すように、トンネル状としているが、磁石一般的に形状でもよい。また、図1において、磁場利用領域12は円筒状であるものとして説明したが、これに限られるものではない。例えば、球形状であってもよく、その他の形状であってもよい。また、磁場評価面13は、磁場利用領域12の形状にあわせて、適宜選択すればよい。
1    磁石装置
11   磁場方向
12   磁場利用領域
13   磁場評価面
2    磁場調整装置
20   シムコイルアレイ
21   シムコイル
22   磁場計測部
23   電流生成部
24   固有モード強度演算部
25   残差演算部
26   電流補正指令値演算部
26a  モード選択部
26b  共通給電線電流低減処理部
27   加算増幅器(加算部、電源)
28   記憶部
29   第1給電線
30   第2給電線(共通給電線)
31   球面調和関数演算部
32   演算変換部
33   表示装置
34   入力装置
35   第1演算部
36   第2演算部

Claims (8)

  1.  磁場利用領域における静磁場を調整する複数のシムコイルを有するシムコイルアレイと、
     前記シムコイルを流れる電流の磁場への応答行列の特異値分解で得た固有モードに基づいて、前記シムコイルの電流指令値を決定する第1演算部と、
     決定された前記電流指令値に基づいて、前記シムコイルの電流を制御する電源と、
     前記磁場利用領域における静磁場を球面調和関数によって展開して得られる次数項と、前記固有モードの強度との対応関係を演算する第2演算部と、
     前記第2演算部に接続され、前記電流指令値に基づき通電される前記シムコイルによる前記磁場利用領域における静磁場の変化を、前記球面調和関数の次数項に関する情報として表示する表示装置と、
     を少なくとも備える磁場調整装置。
  2.  前記電源から前記シムコイルへの給電線の一方が、他のシムコイルの給電線の一方と共通する共通給電線として構成される
    ことを特徴とする請求項1に記載の磁場調整装置。
  3.  前記シムコイルアレイは、
     磁石装置の磁場利用領域を取り囲むことともに、前記磁石装置の中心軸を周回方向に取り囲むように配置され、
     周回方向に2個以上、かつ、軸方向にも2個以上の前記シムコイルが配置され、
     各シムコイルが囲む面積の和が、前記シムコイルアレイのコイル面の面積に対して、80%以上となるように密に配置される
    ことを特徴とする請求項1に記載の磁場調整装置。
  4.  前記磁石装置は、超電導磁石装置である
    ことを特徴とする請求項1に記載の磁場調整装置。
  5.  前記シムコイルは、超電導線材からなり、前記超電導磁石装置の超電導コイルを収容する冷媒容器に収容され、
     前記シムコイルごとに永久電流スイッチを備える
    ことを特徴とする請求項4に記載の磁場調整装置。
  6.  前記中心軸の周回方向に巻き回され、前記固有モードのうち高次のモードに基づく電流が通電されるコイルを有する
     ことを特徴とする請求項1に記載の磁場調整装置。
  7.  前記第1演算部は、
     多点の磁場計測データから、特異値分解の固有モードとの内積で、各固有モードの強度である固有モード強度を演算する固有モード強度演算部と、
     前記固有モード強度演算部で演算された各固有モードの固有モード強度と、目標磁場分布に対応する各固有モードの固有モード基準強度との差分である残差を演算する残差演算部と、
     各固有モードの残差に、各固有モードの電流分配と特異値に基づいて決定した係数を積算して、各固有モードにおける各シムコイルに通電する電流の補正値を演算し、該各固有モードにおける各シムコイルに通電する電流の補正値を各シムコイルについて加算して、各シムコイルに通電する電流の補正指令値を演算する電流補正指令値演算部と、
     前記電流補正指令値演算部で演算された前記補正指令値と、基準電流値とを加算して、前記シムコイルの電流指令値を決定する加算部と、を有することで、残差磁場を負帰還制御する
    ことを特徴とする請求項1に記載の磁場調整装置。
  8.  請求項1に記載の磁場調整装置を備える
    ことを特徴とする磁気共鳴イメージング装置。
PCT/JP2017/002663 2016-01-27 2017-01-26 磁場調整装置および磁気共鳴イメージング装置 WO2017131070A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/774,339 US10512418B2 (en) 2016-01-27 2017-01-26 Magnetic field adjustment device and magnetic resonance imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012927A JP6643110B2 (ja) 2016-01-27 2016-01-27 磁場調整装置、および磁気共鳴イメージング装置
JP2016-012927 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017131070A1 true WO2017131070A1 (ja) 2017-08-03

Family

ID=59398997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002663 WO2017131070A1 (ja) 2016-01-27 2017-01-26 磁場調整装置および磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US10512418B2 (ja)
JP (1) JP6643110B2 (ja)
WO (1) WO2017131070A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847195A (zh) * 2018-12-29 2019-06-07 佛山瑞加图医疗科技有限公司 用于磁共振引导的放疗系统的磁场补偿系统和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047083A2 (en) * 2016-09-07 2018-03-15 Texas Tech University System Electric current imaging system
CN110927642B (zh) * 2019-12-05 2021-09-10 湖南迈太科医疗科技有限公司 磁共振成像的匀场控制方法、装置和系统
JP7247130B2 (ja) * 2020-02-26 2023-03-28 株式会社東芝 超電導コイル装置
WO2023081228A1 (en) * 2021-11-08 2023-05-11 The Johns Hopkins University Balanced force shim coil array
US12092714B2 (en) * 2021-11-16 2024-09-17 Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences Shimming method and device, electronic device, and storage medium
CN115602438B (zh) * 2022-11-10 2023-06-20 清远市震东电子科技有限公司 一种用于磁耦合电感器的磁芯制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686763A (ja) * 1992-09-08 1994-03-29 Toshiba Corp 磁気共鳴診断装置
WO2007113992A1 (ja) * 2006-03-31 2007-10-11 Hitachi Medical Corporation 磁気共鳴イメージング装置及び方法
JP2012170719A (ja) * 2011-02-23 2012-09-10 Hitachi Medical Corp 磁気共鳴イメージング装置及び磁場補正用コイルの製造方法
JP2013248081A (ja) * 2012-05-31 2013-12-12 Ge Medical Systems Global Technology Co Llc 磁気共鳴装置、画像データ補正方法、およびプログラム
WO2015005109A1 (ja) * 2013-07-09 2015-01-15 株式会社 日立メディコ 磁場調整支援装置、磁場調整支援方法、mri装置および磁石装置
WO2015133352A1 (ja) * 2014-03-06 2015-09-11 株式会社 日立メディコ 磁気共鳴イメージングシステム、静磁場均一度調整システム、磁場均一度調整方法および、磁場均一度調整プログラム
JP2016036420A (ja) * 2014-08-06 2016-03-22 株式会社日立製作所 磁場調整装置、磁石装置および磁場調整方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3083475B2 (ja) 1995-03-13 2000-09-04 日本電子株式会社 補正磁場発生装置
WO2009136643A1 (ja) * 2008-05-09 2009-11-12 株式会社日立製作所 Mri装置用磁場調整
JP5427565B2 (ja) * 2009-11-24 2014-02-26 株式会社日立製作所 Mri装置用磁場調整
JP6039896B2 (ja) 2011-11-02 2016-12-07 株式会社日立製作所 電磁石装置及びシムコイルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686763A (ja) * 1992-09-08 1994-03-29 Toshiba Corp 磁気共鳴診断装置
WO2007113992A1 (ja) * 2006-03-31 2007-10-11 Hitachi Medical Corporation 磁気共鳴イメージング装置及び方法
JP2012170719A (ja) * 2011-02-23 2012-09-10 Hitachi Medical Corp 磁気共鳴イメージング装置及び磁場補正用コイルの製造方法
JP2013248081A (ja) * 2012-05-31 2013-12-12 Ge Medical Systems Global Technology Co Llc 磁気共鳴装置、画像データ補正方法、およびプログラム
WO2015005109A1 (ja) * 2013-07-09 2015-01-15 株式会社 日立メディコ 磁場調整支援装置、磁場調整支援方法、mri装置および磁石装置
WO2015133352A1 (ja) * 2014-03-06 2015-09-11 株式会社 日立メディコ 磁気共鳴イメージングシステム、静磁場均一度調整システム、磁場均一度調整方法および、磁場均一度調整プログラム
JP2016036420A (ja) * 2014-08-06 2016-03-22 株式会社日立製作所 磁場調整装置、磁石装置および磁場調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847195A (zh) * 2018-12-29 2019-06-07 佛山瑞加图医疗科技有限公司 用于磁共振引导的放疗系统的磁场补偿系统和方法

Also Published As

Publication number Publication date
JP2017131359A (ja) 2017-08-03
US20190246939A1 (en) 2019-08-15
US10512418B2 (en) 2019-12-24
JP6643110B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
WO2017131070A1 (ja) 磁場調整装置および磁気共鳴イメージング装置
CN113447699B (zh) 隧道磁电阻环形阵列电流传感器及电流测量方法
CN109765510A (zh) 一种带有圆角的径向超导匀场线圈及其设计方法
Nouri et al. Comparison of magnetic field uniformities for discretized and finite-sized standard cosθ, solenoidal, and spherical coils
Li et al. In situ calibration of triaxial coils of a vector optically pumped magnetometers based on a particle swarm optimization algorithm
Chen et al. Beam-based calibrations of the BPM offset at C-ADS Injector II
JP3083475B2 (ja) 補正磁場発生装置
Li et al. Key designs of a short-bore and cryogen-free high temperature superconducting magnet system for 14 T whole-body MRI
Ayhan et al. Improved magnetic circuit model for magnetic shielding effectiveness in rogowski coil
Li et al. An analytical approach towards passive ferromagnetic shimming design for a high-resolution NMR magnet
Sanchez et al. Gradient-coil design: A multi-objective problem
JP6429312B2 (ja) 磁場調整装置、磁石装置および磁場調整方法
Chen et al. Simulation and analysis of irregular multicoil B 0 shimming in C-type permanent magnets using genetic algorithm and simulated annealing
Niu et al. A novel design method of independent zonal superconducting shim coil
Nakazono et al. Numerical evaluation on irregular field generated by screening current in high-field REBCO coil for whole-body MRI
US8581586B2 (en) Method of calculating coil pattern, and gradient magnetic field coil
Abel et al. A large ‘Active Magnetic Shield’for a high-precision experiment: nEDM collaboration
Wyszyński et al. Active compensation of magnetic field distortions based on vector spherical harmonics field description
Hobson et al. Designing optimal loop, saddle, and ellipse-based magnetic coils by spherical harmonic mapping
Cheng et al. Design of actively shielded main magnets: an improved functional method
Moon et al. Superelliptical insert gradient coil with a field‐modifying layer for breast imaging
Ahn et al. Magnetic field homogeneity correction algorithm using pseudoinversion formula for NMR imaging
He et al. Analysis of coil element distribution and dimension for matrix gradient coils
He et al. An optimized passive shimming method for bi-planar permanent MRI magnets
Wang et al. Optimal design of bi-planar heater with magnetic field self-suppression configuration based on multi-objective optimization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744300

Country of ref document: EP

Kind code of ref document: A1