WO2017130962A1 - センサ装置 - Google Patents

センサ装置 Download PDF

Info

Publication number
WO2017130962A1
WO2017130962A1 PCT/JP2017/002349 JP2017002349W WO2017130962A1 WO 2017130962 A1 WO2017130962 A1 WO 2017130962A1 JP 2017002349 W JP2017002349 W JP 2017002349W WO 2017130962 A1 WO2017130962 A1 WO 2017130962A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
capacitor
oscillation
oscillation frequency
dielectric constant
Prior art date
Application number
PCT/JP2017/002349
Other languages
English (en)
French (fr)
Inventor
伸之 芦田
飯塚 邦彦
晶 齊藤
満仲 健
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017564267A priority Critical patent/JP6549256B2/ja
Priority to US16/073,628 priority patent/US10718730B2/en
Publication of WO2017130962A1 publication Critical patent/WO2017130962A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2623Measuring-systems or electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Definitions

  • the present invention relates to a sensor device that detects the state of an object to be inspected containing moisture.
  • hydration phenomenon occurs depending on the solute in the aqueous solution.
  • an electrolyte such as NaCl
  • a hydration phenomenon occurs in which water molecules are bound to the solute due to ionization of the solute into ions.
  • the solute is a non-electrolyte such as a sugar
  • a hydration phenomenon occurs through electrostatic force or hydrogen bonding, which is caused by the polarity bias in the solute molecule. Hydration is also a major factor in the activity of macromolecules such as proteins.
  • the complex permittivity of bulk water shown in FIG. 10 (FIG. 2 of Non-Patent Document 3) has a large fluctuation of the imaginary part of the complex permittivity particularly in the frequency region near 100 GHz due to the relaxation phenomenon of bulk water. Since the main component of the living body is water, not only the real part of the complex dielectric constant but also the imaginary part in the frequency region near 100 GHz can be used to check the state of the living body and the biopolymer.
  • a sensor device 101 as shown in FIG. 11 is known as a conventional technique (for example, Non-Patent Documents 1 and 2).
  • the sensor device 101 is formed on an integrated circuit, and includes an oscillation unit 102 and an oscillation frequency detection unit 103.
  • the oscillation unit 102 includes a resistor R1, cross-coupled transistors M1 and M2, and a resonator 104.
  • the resonator 104 includes inductors L1 and L2, two sensing electrodes 105 brought into contact with the device under test 100, and a capacitor C3.
  • the resonance frequency of the resonator 104 is 6 to 30 GHz.
  • the two sensing electrodes 105 are composed of two plate electrodes 111 and 112 each having a rectangular shape.
  • the plate-like electrodes 111 and 112 are formed of the uppermost metal wiring layer of the semiconductor integrated circuit.
  • FIG. 13 shows the structure of the plate electrodes 111 and 112 in the cross section taken along the line AA in FIG.
  • An interlayer insulating film 115 is disposed between the metal wiring layers of the semiconductor integrated circuit.
  • FIG. 13 shows only the uppermost metal wiring layer and the underlying interlayer insulating film 115.
  • the surface of the interlayer insulating film 115 is covered with the surface protective film 114, but the surface protective film 114 is opened in the region where the two plate electrodes 111 and 112 are disposed. Therefore, the exposed upper surfaces of the plate electrodes 111 and 112 are in direct contact with the device under test 100.
  • the operation of the sensor device 101 will be described.
  • the dielectric constant of the device under test 100 in the vicinity of the sensing electrode 105 changes, the parasitic capacitance value to the sensing electrode 105 changes, and the resonance frequency of the resonator 104 changes.
  • a change in the oscillation frequency of the oscillation unit 102 due to a change in the resonance frequency is detected by the oscillation frequency detection unit 103.
  • the sensor device 101 can detect a change in dielectric constant generated in the device under test 100 in the vicinity of the sensing electrode 105 as a change in oscillation frequency.
  • the conventional sensor device 101 can detect a change in the real part of the complex dielectric constant, but cannot detect a change in the imaginary part of the complex dielectric constant.
  • the maximum frequency that can be detected by the sensor device 101 is 30 GHz. Therefore, the sensor device 101 cannot detect the complex dielectric constant with high sensitivity in the frequency region near 100 GHz of the object 100 to be inspected containing moisture.
  • the present invention has been made in view of the above-described problems, and an object thereof is to detect a change of an imaginary part in a complex dielectric constant of an object to be inspected.
  • a sensor device includes an oscillation unit formed in a semiconductor integrated circuit, and an oscillation frequency detection unit that detects an oscillation frequency of the oscillation unit,
  • the unit includes a capacitor connected in series with the device under test, and changes the oscillation frequency according to the complex dielectric constant of the device under test.
  • Embodiment 1 A first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 is a block diagram showing a configuration of a sensor device according to Embodiment 1 of the present invention. As shown in FIG. 1, the sensor device 11 includes an oscillation unit 2 and an oscillation frequency detection unit 3.
  • the oscillation unit 2 is an LC oscillation circuit including a differential circuit 6 and a resonator 4 and is formed as a part of a semiconductor integrated circuit on a semiconductor integrated circuit substrate (not shown).
  • the oscillation frequency of the oscillating unit 2 is preferably in the vicinity of 100 GHz, particularly 30 to 200 GHz.
  • the resonator 4 includes capacitors C0, C11, C12 and an inductor L0.
  • the inductor L0 and the capacitor C0 are connected in parallel.
  • One end of the capacitor C11 is connected to one end of the inductor L0 and the capacitor C0, and one end of the capacitor C12 is connected to the other end of the inductor L0 and the capacitor C0.
  • a device under test 100 is in contact with the other end of each of the capacitors C11 and C12. Thereby, the capacitors C11 and C12 are connected in series with the device under test 100.
  • the resonator 4 functions as a sensor unit that detects the complex dielectric constant by changing the resonance frequency according to the complex dielectric constant of the device under test 100.
  • the capacitor C0 may be formed by a wiring (not shown) or a parasitic capacitance of the differential circuit 6.
  • the oscillation frequency detection unit 3 is a part that detects the oscillation frequency of the oscillation unit 2, and a known frequency detection circuit can be used.
  • the oscillation frequency detector 3 may be formed on the semiconductor integrated circuit substrate or may be formed outside the semiconductor integrated circuit substrate.
  • the differential circuit 6 is a circuit including a differential transistor pair, and is appropriately formed by a known differential circuit such as a differential circuit including a plurality of transistors cross-coupled to each other.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the resonator 4.
  • the resonator 4 is represented by an equivalent circuit shown in FIG.
  • the capacitors C11 and C12 are combined into one as the capacitor C1 in order to simplify the calculation.
  • the oscillation frequency fres of the oscillating unit 2 can be expressed as in Expression (2).
  • FIG. 3 shows the calculation result of the change rate ( ⁇ fres / ⁇ ) of the oscillation frequency with respect to the change of the complex dielectric constant in the capacitance values of the capacitors C11 and C12 (capacitor C1) using the equation (2).
  • C1 is treated as the capacitance value of the capacitor C1.
  • the horizontal axis is a logarithmic display of the reciprocal of the capacitance value.
  • the solid line represents the rate of change of the oscillation frequency ( ⁇ fres / ⁇ r ) with respect to the change of the real part in the complex dielectric constant
  • the broken line represents the rate of change of the oscillation frequency ( ⁇ fres / ⁇ i ).
  • the resonance frequency of the resonator 4 changes.
  • the oscillation frequency detection unit 3 detects a change in the oscillation frequency of the oscillation unit 2 accompanying a change in the resonance frequency.
  • the sensor device 11 detects a change in the complex dielectric constant of the device under test 100 in the vicinity of the oscillation unit 2 as a change in the oscillation frequency.
  • the complex dielectric constant of the device under test 100 containing moisture depends on the state of water as the main component. For this reason, the sensor device 11 can detect the state of water in the device under test 100 based on the oscillation frequency of the oscillation unit 2.
  • the capacitance values of the capacitors C11 and C12 connected in series to the device under test 100 in the resonator 4 are set to values at which ⁇ fres / ⁇ i is approximately the maximum value (the maximum value or a value close to the maximum value). .
  • the hydration state can be detected with high sensitivity. Therefore, the state of the living body and the biopolymer can be known.
  • the sensor device 11 can detect the concentration of the target component of the device under test 100 based on the oscillation frequency of the oscillation unit 2.
  • the blood sugar level in blood is 70 to 130 mg / dl in a healthy human.
  • the blood glucose level fluctuates greatly during the day between fasting and after eating. If the blood glucose level is lower than 70 mg / dl, there is a possibility of hypoglycemia, and if the blood glucose level is higher than 130 mg / dl, there is a possibility of diabetes.
  • the concentration representing the blood glucose level corresponds to the order of mMol / L in terms of moles.
  • the cell becomes structured and the imaginary part of the complex permittivity decreases as the cell ages. Can be determined.
  • the cells when cells are cultured for regenerative medicine, if the cells are cultured on the sensor device 11, it is possible to monitor the situation in which the cells are proliferating. It is also possible to monitor whether the proliferated cells have been alive or have died for some reason. When it is detected that the cells are dead, the cells as the test object 100 can be discarded, and the cell culture can be performed again with the conditions reset. In this way, by performing cell culture on the sensor device 11, it is possible to greatly improve the efficiency of cell culture, and it is possible to greatly improve the efficiency of regenerative medicine and the like.
  • the oscillation part 2 formed on the integrated circuit substrate can be formed with an area of approximately 0.005 to 0.02 square mm at 30 to 200 GHz. Therefore, the sensor device 11 can be made small.
  • the plurality of oscillating units 2 can be arranged with high density. Therefore, it is possible to detect the states of a large number of objects to be inspected 100 at a time, and to detect the states of the objects to be inspected 100 with high spatial resolution.
  • the device under test 100 and the oscillation unit 102 are directly connected using the sensing electrode 105.
  • the oscillation frequency fres is expressed by the equation (3), it does not depend on the imaginary part of the complex dielectric constant. Therefore, a change in the imaginary part of the complex dielectric constant cannot be detected.
  • FIG. 4 is a block diagram illustrating a configuration of the sensor device 12 according to the second embodiment.
  • FIG. 5 is a cross-sectional view showing a structure of a portion including the sensing electrode 5 of the sensor device 12.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the sensor device 12 includes the oscillation frequency detection unit 3 as in the sensor device 11 described above, and includes an oscillation unit 2 ⁇ / b> A instead of the oscillation unit 2 of the sensor device 11.
  • the oscillating unit 2A like the oscillating unit 2, has a differential circuit 6, but is an LC oscillating circuit having a resonator 4A instead of the resonator 4 of the oscillating unit 2, and is provided on a semiconductor integrated circuit substrate. Is formed.
  • the oscillation frequency of the oscillating unit 2A is preferably in the vicinity of 100 GHz, particularly 30 to 200 GHz.
  • the resonator 4A has capacitors C0, C11, C12 and an inductor L0, similarly to the resonator 4 in the oscillation unit 2 described above.
  • the resonator 4 ⁇ / b> A has two sensing electrodes 5. One sensing electrode 5 is connected to one end of the inductor L0 and the capacitor C0, and the other sensing electrode 5 is connected to the other end of the inductor L0 and the capacitor C0.
  • the sensing electrode 5 has a rectangular plate shape like the sensing electrode 105 (see FIG. 12) in the conventional sensor device 101 described above.
  • a plurality of metal wiring layers are provided, and an interlayer insulating film 7 shown in FIG. 5 is disposed between adjacent metal wiring layers.
  • the two sensing electrodes 5 are each composed of two plate-like electrodes 51 and 52 formed by the uppermost metal wiring layer provided on the interlayer insulating film 7.
  • the upper surface of the interlayer insulating film 7 and the uppermost metal wiring layer including the two plate-like electrodes 51 and 52 are covered with the surface protective film 8 of the semiconductor integrated circuit.
  • the device under test 100 is in contact with the upper surface of the surface protective film 8.
  • portions of the surface protective film 8 between the plate-like electrodes 51 and 52 and the device under test 100 function as capacitors C11 and C12.
  • the capacitance values of the capacitors C11 and C12 formed of the surface protective film 8 can be controlled within a certain range according to the shape of the sensing electrode 5 and the thickness of the surface protective film 8.
  • the sensor device 12 according to the present embodiment is different from the sensor device 11 according to the first embodiment in that capacitors C11 and C12 are formed of a surface protective film 8 of a semiconductor integrated circuit.
  • the oscillation frequency of the oscillation unit 2A changes in the same manner as the change in the oscillation frequency of the oscillation unit 2 described in the first embodiment.
  • ⁇ fres / ⁇ i ⁇ 0 when the capacitance values of the capacitors C11 and C12 are sufficiently large.
  • ⁇ fres / ⁇ i seems to have a significant value.
  • the operation of the sensor device 12 is the same as that of the sensor device 11 of the first embodiment, and a change in the complex dielectric constant of the device under test 100 in the vicinity of the oscillation unit 2A is detected as a change in the oscillation frequency.
  • the sensing electrode 5 is opposed to the device under test 100 via capacitors C11 and C12 formed of a semiconductor surface protective film 8 (indirect contact with the device under test 100). ).
  • the resonance frequency changes according to the complex dielectric constant of the device under test 100.
  • the sensor device 12 can detect the state of water corresponding not only to the real part of the complex dielectric constant but also to the imaginary part of the complex dielectric constant, similarly to the sensor device 11 in the first embodiment. Accordingly, the hydration state can be detected with high sensitivity by detecting the change in the imaginary part of the complex dielectric constant in the vicinity of 100 GHz of water, particularly at a frequency of 30 to 200 GHz.
  • the capacitors C11 and C12 connected in series with the device under test 100 are formed by using the surface protective film 8 of the semiconductor integrated circuit. Thereby, the enlargement of the sensor apparatus 12 and the increase in manufacturing cost can be suppressed.
  • FIG. 6 is a block diagram illustrating a configuration of the sensor device 13 according to the third embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a structure of a portion including the sensing electrode 5 of the sensor device 13.
  • components having the same functions as those in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the sensor device 13 includes the oscillation frequency detection unit 3 as in the above-described sensor device 12 of the second embodiment, and includes an oscillation unit 2B instead of the oscillation unit 2A of the sensor device 12.
  • the oscillation unit 2B has a differential circuit 6, but is an LC oscillation circuit having a resonator 4B instead of the resonator 4A of the oscillation unit 2A. Is formed.
  • the oscillation frequency of the oscillator 2B is preferably in the vicinity of 100 GHz, particularly 30 to 200 GHz.
  • the resonator 4B includes a capacitor C0, an inductor L0, and two sensing electrodes 5, similar to the resonator 4A in the oscillation unit 2A described above.
  • the resonator 4B includes MIM (Metal-Insulator-Metal) capacitors MIM1 and MIM2 (capacitor elements).
  • MIM Metal-Insulator-Metal capacitors
  • One end of the MIM capacitor MIM1 is connected to one end of the inductor L0 and the capacitor C0
  • one end of the MIM capacitor MIM2 is connected to the other end of the inductor L0 and the capacitor C0.
  • One sensing electrode 5 is connected to the other end of the MIM capacitor MIM1, and the other sensing electrode 5 is connected to the other end of the MIM capacitor MIM2.
  • the two sensing electrodes 5 are in contact with the device under test 100.
  • a plurality of metal wiring layers are provided, and an interlayer insulating film 7 shown in FIG. 7 is disposed between adjacent metal wiring layers.
  • the sensing electrode 5 is composed of two plate electrodes 51 and 52 formed by the uppermost metal wiring layer provided on the interlayer insulating film 7.
  • MIM capacitors MIM1 and MIM2 are disposed below the plate-like electrodes 51 and 52 in the interlayer insulating film 7, respectively. The arrangement position of the MIM capacitors MIM1 and MIM2 is not limited to below the plate electrodes 51 and 52.
  • the upper surface of the interlayer insulating film 7 is covered with the surface protective film 9 of the semiconductor integrated circuit except for the two plate-like electrodes 51 and 52.
  • the device under test 100 is in direct contact with the plate electrodes 51 and 52 and the upper surface of the surface protective film 9.
  • the sensor device 13 of the present embodiment is different from the sensor device 11 of the first embodiment. The difference is that the sensor device 13 uses MIM capacitors MIM1 and MIM2 formed in a semiconductor integrated circuit in place of the capacitors C11 and C12 as a capacitor in contact with the device under test 100.
  • the oscillation frequency of the oscillation unit 2B changes in the same manner as the change in the oscillation frequency of the oscillation unit 2 described in the first embodiment.
  • the imaginary part of the complex permittivity when the capacitance values of the MIM capacitors MIM1 and MIM2 are sufficiently large, ⁇ fres / ⁇ i ⁇ 0. However, when the capacitance value is decreased, ⁇ fres / ⁇ i has a significant value. The maximum value of ⁇ fres / ⁇ i at a certain capacitance value.
  • the operation of the sensor device 13 is the same as that of the sensor device 11 of the first embodiment, and a change in the complex dielectric constant of the device under test 100 in the vicinity of the oscillation unit 2B is detected as a change in the oscillation frequency.
  • the sensing electrode 5 connected to the MIM capacitors MIM1 and MIM2 is in contact with the device under test 100.
  • the resonance frequency changes according to the complex dielectric constant of the device under test 100.
  • the sensor device 13 can detect the state of water corresponding not only to the real part of the complex dielectric constant but also to the imaginary part of the complex dielectric constant, like the sensor device 11 in the first embodiment. Accordingly, the hydration state can be detected with high sensitivity by detecting the change in the imaginary part of the complex dielectric constant in the vicinity of 100 GHz of water, particularly at a frequency of 30 to 200 GHz.
  • a series capacitor connected in series with the device under test 100 is realized by using MIM capacitors MIM1 and MIM2 of a semiconductor integrated circuit. Thereby, the enlargement of the sensor apparatus 13 and the increase in manufacturing cost can be suppressed.
  • the MIM capacitors MIM1 and MIM2 can be formed on the integrated circuit board separately from the sensing electrode 5. Therefore, the shape of the sensing electrode 5 corresponding to the shape of the device under test 100 and the capacitance value of the capacitor for obtaining a desired ⁇ fres / ⁇ can be individually set. Therefore, the shape of the sensing electrode 5 and the detection sensitivity can be achieved at a high level.
  • the capacitor elements are not limited to the MIM capacitors MIM1 and MIM2.
  • a capacitor element formed on another integrated circuit such as a MOM capacitor or a MOS capacitor having a structure in which an interlayer insulating film is sandwiched between two metal wiring layers may be used as the capacitor element. Even when the capacitor element is constituted by these capacitive elements, the same effect as that obtained when the MIM capacitors MIM1 and MIM2 are used as the capacitor element can be obtained.
  • FIG. 8 is a block diagram illustrating a configuration of the sensor device 14 according to the fourth embodiment.
  • FIG. 9 is a graph showing the change rate of the oscillation frequency with respect to the change of the complex dielectric constant in the capacitance value of the capacitor connected in series to the device under test 100.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the sensor device 14 includes the oscillation frequency detection unit 3 as in the sensor device 11 described above, and includes an oscillation unit 2 ⁇ / b> C instead of the oscillation unit 2 of the sensor device 11.
  • the oscillating unit 2C like the oscillating unit 2, has a differential circuit 6, but is an LC oscillating circuit having a resonator 4C instead of the resonator 4 of the oscillating unit 2, and is formed on an integrated circuit substrate.
  • the oscillation frequency of the oscillation unit 2C is preferably in the vicinity of 100 GHz, particularly 30 to 200 GHz.
  • the resonator 4C includes capacitors C0, C11, C12 and an inductor L0, similarly to the resonator 4 in the oscillation unit 2 described above.
  • the resonator 4C includes capacitors C21 and C22 and switches SW11, SW12, SW21, and SW22 (capacitance value switching unit).
  • one end of the capacitor C11 is connected to one end of the inductor L0 and the capacitor C0 via the switch SW11.
  • One end of the capacitor C12 is connected to the other end of the inductor L0 and the capacitor C0 via the switch SW12.
  • One end of the capacitor C21 is connected to one end of the inductor L0 and the capacitor C0 via the switch SW21, and one end of the capacitor C22 is connected to the other end of the inductor L0 and the capacitor C0 via the switch SW22.
  • the device under test 100 is in contact with the other end of each of the capacitors C21 and C22.
  • the switches SW11, SW12, SW21, SW22 are open / close switches that connect or disconnect each of the capacitors C11, C12, C21, C22 to the inductor L0 and the capacitor C0. Opening and closing of the switches SW11, SW12, SW21, and SW22 is controlled by a control circuit (not shown) provided in the sensor device 14. As shown in Table 1 below, there are seven patterns of combinations of opening and closing of the switches SW11, SW12, SW21, and SW22. In Table 1, “1” represents a closed state (ON), and “0” represents an open state (OFF).
  • the sensor device 14 of the present embodiment is different from the sensor device 11 of the first embodiment.
  • the difference is that the capacitance value of the series capacitor connected in series with the device under test 100 is switched by the switches SW11, SW12, SW21, SW22.
  • the oscillation frequency of the oscillation unit 2C changes in the same manner as the change in the oscillation frequency of the oscillation unit 2 described in the first embodiment.
  • the change in the oscillation frequency becomes the maximum value with respect to the capacitance of a certain series capacitor.
  • C11 and C21 are treated as capacitance values of the capacitors C11 and C21, respectively.
  • C11 and C11 + C21 are set at two points where ⁇ fres / ⁇ i takes a maximum value (state 2 and state 1 in FIG. 9 respectively).
  • State 1 is obtained by pattern (1) shown in Table 1
  • state 2 is obtained by pattern (2), (4) or (6).
  • ⁇ fres / ⁇ i is set to approximately the same maximum value in both state 1 and state 2.
  • ⁇ fres / ⁇ r is state 1 in ⁇ fres / ⁇ r1
  • the state 2 in ⁇ fres / ⁇ r2 becomes, the different values obtained.
  • Capacitance values are set for the capacitors C12 and C22 as well as the capacitors C11 and C21.
  • the capacitance values that can be set are not limited to two.
  • ⁇ fres / ⁇ i is set to be constant in the switched capacity
  • the present invention is not limited to this setting.
  • a plurality of appropriate combinations of ⁇ fres / ⁇ r and ⁇ fres / ⁇ i are prepared, and a desired value can be calculated from the obtained detection values of the plurality of oscillation frequency changes. Good.
  • the operation of the sensor device 14 is the same as that of the sensor device 11 of the first embodiment, and detects a change in the complex dielectric constant of the device under test 100 in the vicinity of the oscillation unit 2C as a change in the oscillation frequency.
  • any one of the capacitors C11, C12, C21, and C22 is connected to the capacitor C0 and the inductor L0 by any one of the closed switches SW11, SW12, SW21, and SW22. Based on the capacitance value of the series capacitor thus obtained, the resonance frequency changes according to the complex dielectric constant of the device under test 100.
  • the sensor device 14 can detect the state of water according to not only the real part of the complex dielectric constant but also the imaginary part of the complex dielectric constant, like the sensor device 11 in the first embodiment. Accordingly, the hydration state can be detected with high sensitivity by detecting the change in the imaginary part of the complex dielectric constant in the vicinity of 100 GHz of water, particularly at a frequency of 30 to 200 GHz.
  • the capacitance value of the series capacitor connected in series with the device under test 100 is switched by the switches SW11, SW12, SW21, and SW22.
  • the sensitivity of the oscillation frequency change to the change between the real part and the imaginary part of the complex permittivity can be switched. Therefore, for the test subject 100, while the constant ⁇ fres / ⁇ i, 2 different ⁇ fres / ⁇ r ( ⁇ fres / ⁇ r1, ⁇ fres / ⁇ r2) can detect a change in the oscillation frequency in .
  • the change of the complex permittivity of the device under test 100 with respect to the imaginary part is canceled out, and only the change with respect to the real part can be calculated.
  • Sensor devices 11 to 14 include an oscillation unit formed in a semiconductor integrated circuit, and an oscillation frequency detection unit that detects an oscillation frequency of the oscillation unit, and the oscillation unit is an object to be inspected.
  • the oscillation frequency is changed according to the complex dielectric constant of the device under test.
  • the complex dielectric constant of the inspected object 100 containing moisture depends on the state of water as the main component. Therefore, the sensor devices 11 to 14 can detect the state of water in the device under test 100 based on the oscillation frequency of the oscillation unit 2. Further, the rate of change of the imaginary part in the complex dielectric constant of the device under test 100 varies depending on the capacitance values of the capacitors C11 and C12 connected in series with the device under test 100. Using this characteristic, a change in the imaginary part in the complex permittivity of the device under test 100 can be detected as a change in the oscillation frequency.
  • the capacitance of the capacitor is such that the rate of change of the oscillation frequency with respect to the change of the imaginary part of the complex dielectric constant of the device under test is a maximum value or a vicinity thereof The value which becomes the value of may be sufficient.
  • the state of water corresponding to the imaginary part of the complex dielectric constant can be detected.
  • the hydration state can be detected with high sensitivity.
  • the capacitor may be formed of a surface protective film of the semiconductor integrated circuit.
  • the sensor device 12 can be prevented from increasing in size and manufacturing cost.
  • the capacitor in the sensor device 13 according to aspect 4 of the present invention, in the aspect 1 or 2, the capacitor may be a capacitor element (MIM capacitors MIM1, MIM2) of the semiconductor integrated circuit.
  • the oscillating unit may further include a capacitance value switching unit that switches a capacitance value of the capacitor.
  • the sensitivity of the oscillation frequency change to the change between the real part and the imaginary part of the complex permittivity can be switched.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

水分を含む被検査体の複素誘電率における虚部の変化を発振周波数の変化として検出する。センサ装置(11)は、半導体集積回路に形成された発振部(2)と、発振部の発振周波数を検出する発振周波数検出部(3)とを備えている。発振部(2)は、被検査体(100)と直列に接続されるキャパシタ(C11,C12)を有し、被検査体(100)の複素誘電率に応じて発振周波数を変化させる。

Description

センサ装置
 本発明は、水分を含む被検査体の状態を検出するセンサ装置に関する。
 水溶液中の溶質に応じて、次のような水和現象が起こることが知られている。NaClの様な電解質である場合には、溶質のイオンへの電離によって、水分子が溶質に束縛される水和現象が起こる。溶質が糖の様な非電解質である場合には、溶質分子中の極性の偏りによって生じる、静電気力や水素結合を介して水和現象が起こる。また、タンパク質などの巨大分子の活性にも水和現象が大きく関わる。
 水溶液中では、水分子がタンパク質に置き換わることにより、バルク水(溶質から十分離れて束縛されない状態の水)が減少するので、バルク水の誘電率がタンパク質の誘電率に変化する。図10(非特許文献3のFig.2)に示すバルク水の複素誘電率は、バルク水の緩和現象によって、特に100GHz近傍の周波数領域で複素誘電率の特に虚部の変動が大きい。生体の主要成分は水であるため、100GHz近傍の周波数領域で複素誘電率の実部だけではなく、虚部をも調べることで、生体および生体高分子の状態を調べることができる。
 高周波数領域での誘電率の変化を検出する技術として、図11に示すようなセンサ装置101が従来技術として知られている(例えば非特許文献1および2)。センサ装置101は、集積回路上に形成されており、発振部102と、発振周波数検出部103とを備えている。発振部102は、抵抗R1と、クロスカップルされたトランジスタM1,M2と、共振器104とで構成されている。共振器104は、インダクタL1,L2、被検査体100と接触させる2つのセンシング電極105、およびキャパシタC3からなる。共振器104の共振周波数は6~30GHzである。
 2つのセンシング電極105は、図12に示すように、それぞれ長方形を成す2つの板状電極111,112で構成されている。図13に示すように、板状電極111,112は、半導体集積回路の最上位メタル配線層で形成されている。図13には、図12のA-A線における矢視断面での板状電極111,112の構造を示している。また、半導体集積回路のメタル配線層の間には層間絶縁膜115が配置される。図13には、便宜上、最上位のメタル配線層と、その下層の層間絶縁膜115のみを示している。層間絶縁膜115の表面は、表面保護膜114で覆われているが、2つの板状電極111,112が配置された領域では表面保護膜114が開口している。このため、板状電極111,112の露出した上面は、被検査体100に直接接触する。
 次に、センサ装置101の動作を説明する。センシング電極105の近傍にある被検査体100の誘電率が変化した場合、センシング電極105への寄生容量値が変化し、共振器104の共振周波数が変化する。共振周波数の変化に伴う発振部102の発振周波数の変化を、発振周波数検出部103で検出する。以上の動作により、センサ装置101は、センシング電極105の近傍にある被検査体100に生じた誘電率の変化を発振周波数の変化として検出することができる。
Chien Jun-Chau, M Anwar, Y Erh-Chia, LP Lee, AM Niknejad,  "6.5/11/17.5/30-GHz high throughput interferometer-based reactance sensors using injection-locked oscillators and ping-pong nested chopping", VLSI Circuits Digest of Technical Papers, 2014 Symposium on, 1-2 Jun-Chau Chien, Anwar, M., Erh-Chia Yeh , Lee, L.P., Niknejad, A.M., "A 6.5/17.5-GHz dual-channel interferometer-based capacitive Sensor in65-nm CMOS for high-speed flow cytometry", Microwave Symposium (IMS), 2014 IEEE MTT-S International, 1-4 H.Yada, M.Nagai, K.Tanaka, "Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy", Chemical Physics Letters, pp.166-170, 2008 T. Arikawa, M. Nagai, K. Tanaka, "Characterizing hydration state in solution using terahertz time-domain attenuated total reflection spectroscopy", Chemical Physics Letters, pp.12-17, 2008
 しかしながら、従来のセンサ装置101では、複素誘電率の実部の変化を検出することはできるが、複素誘電率の虚部の変化を検出することができない。また、センサ装置101が検出できる周波数の最大値は30GHzである。したがって、センサ装置101では、水分を含む被検査体100の100GHz近傍の周波数領域で複素誘電率を感度よく検出することができない。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、被検査体の複素誘電率における虚部の変化を検出することにある。
 上記の課題を解決するために、本発明の一態様に係るセンサ装置は、半導体集積回路に形成された発振部と、前記発振部の発振周波数を検出する発振周波数検出部とを備え、前記発振部は、被検査体と直列に接続されるキャパシタを有し、前記被検査体の複素誘電率に応じて前記発振周波数を変化させる。
 本発明の一態様によれば、被検査体の複素誘電率における虚部の変化を発振周波数の変化として検出することができるという効果を奏する。
本発明の実施形態1に係るセンサ装置の構成を示すブロック図である。 上記センサ装置における共振器の等価回路を示す回路図である。 上記センサ装置において被検査体と直列に接続されるキャパシタの容量値における複素誘電率の変化に対する発振周波数の変化率を示すグラフである。 本発明の実施形態2に係るセンサ装置の構成を示すブロック図である。 図4に示すセンサ装置のセンシング電極を含む部分の構造を示す断面図である。 本発明の実施形態3に係るセンサ装置の構成を示すブロック図である。 図6に示すセンサ装置の上記センシング電極を含む部分の構造を示す断面図である。 本発明の実施形態4に係るセンサ装置の構成を示すブロック図である。 図8に示すセンサ装置において被検査体と直列に接続されるキャパシタの容量値における複素誘電率の変化に対する発振周波数の変化率を示すグラフである。 従来のセンサ装置による周波数と水の複素誘電率の実部および虚部との関係を示すグラフである。 従来のセンサ装置の構成示すブロック図である。 図11に示すセンサ装置におけるセンシング電極の構造を示す斜視図である。 図11に示すセンサ装置の上記センシング電極を含む部分の構造を示す断面図である。
 〔実施形態1〕
 本発明の実施形態1について図1~図3を用いて説明する。
 (センサ装置11の構成)
 図1は、本発明の実施形態1に係るセンサ装置の構成を示すブロック図である。図1に示すように、センサ装置11は、発振部2と、発振周波数検出部3とを備える。
 発振部2は、差動回路6と、共振器4とを備えたLC発振回路であり、図示しない半導体集積回路基板上に半導体集積回路の一部として形成されている。発振部2の発振周波数は、100GHzの近傍、特に30~200GHzであることが好ましい。
 共振器4は、キャパシタC0,C11,C12と、インダクタL0とを有している。インダクタL0およびキャパシタC0は並列に接続されている。キャパシタC11の一端は、インダクタL0およびキャパシタC0の一端に接続され、キャパシタC12の一端は、インダクタL0およびキャパシタC0の他端に接続されている。キャパシタC11,C12のそれぞれの他端には、被検査体100が接触している。これにより、キャパシタC11,C12は、被検査体100と直列に接続される。また、共振器4は、被検査体100の複素誘電率に応じて共振周波数が変化し、複素誘電率を検出するセンサ部として機能する。キャパシタC0は、図示しない配線や、差動回路6の寄生容量によって形成されてもよい。
 発振周波数検出部3は、発振部2の発振周波数を検出する部分であり、公知の周波数検出回路を利用することができる。発振周波数検出部3は、半導体集積回路基板上に形成されてもよいし、半導体集積回路基板外に形成されてもよい。
 差動回路6は、差動トランジスタ対を含む回路であり、例えば、互いにクロスカップルされた複数のトランジスタから成る差動回路のような公知の差動回路によって適宜形成されている。
 (発振部2の発振周波数)
 次に、被検査体100の複素誘電率と発振部の発振周波数との関係について説明する。図2は、共振器4の等価回路を示す回路図である。
 被検査体100が空気の場合に検出される容量をCεとし、被検査体100の比複素誘電率をε+jωεとすると、式(1)の関係が得られる。
Figure JPOXMLDOC01-appb-M000001
 また、被検査体100をキャパシタC2および抵抗R2の並列回路で表し、それぞれの容量値およびコンダクタンス値をそれぞれC2=Cεε、1/R2=ωCεεであるとすると、共振器4は、図2に示す等価回路で表される。
 図2において、計算の簡易化のため、キャパシタC11,C12はキャパシタC1として1つにまとめている。共鳴条件を考慮することにより、発振部2の発振周波数fresは、式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 図3に、キャパシタC11,C12(キャパシタC1)の容量値における複素誘電率の変化に対する発振周波数の変化率(Δfres/Δε)を、式(2)を用いて算出した結果を示す。ここでは、便宜上、C1をキャパシタC1の容量値として扱う。図3において、横軸は、容量値の逆数の対数表示である。図3において、実線が複素誘電率における実部の変化に対する発振周波数の変化率(Δfres/Δε)を表しており、破線が複素誘電率における虚部の変化に対する発振周波数の変化率(Δfres/Δε)を表している。
 Δfres/Δεは、C1が小さくなる(高周波数領域では開放状態に近づく)ほど、C1が十分に大きい場合(高周波数領域では短絡状態)で得られたΔfres/Δεより小さくなる。一方、複素誘電率の虚部に対しては、C1が十分に大きい場合においては、Δfres/Δε≒0であるが、C1を小さくするとΔfres/Δεが有意な値となり、あるC1で発振周波数の変化率が最大値をとなる。したがって、発振周波数の変化率が最大値またはその近傍の値となるようにC1を設定する。
 (センサ装置11の動作)
 次に、センサ装置11の動作を説明する。
 発振部102の近傍にある被検査体100の複素誘電率が変化した場合、共振器4の共振周波数が変化する。発振周波数検出部3は、共振周波数の変化に伴う発振部2の発振周波数の変化を検出する。以上の動作により、センサ装置11は、発振部2の近傍にある被検査体100の複素誘電率の変化を発振周波数の変化として検出する。
 (センサ装置11の効果)
 本実施形態におけるセンサ装置11の効果を説明する。
 水分を含む被検査体100の複素誘電率は、主要成分である水の状態に依存する。このため、センサ装置11は、発振部2の発振周波数に基づき、被検査体100の中の水の状態を検出することができる。特に、共振器4において被検査体100に直列に接続されるキャパシタC11,C12の容量値を、Δfres/Δεが概ね最大値(最大値または最大値の近傍の値)となる値に設定する。これにより、複素誘電率の実部のみならず、複素誘電率の虚部に応じた水の状態を検出することができる。水の100GHzの近傍、特に30~200GHzの周波数での複素誘電率の虚部の変化を検出することで、水和状態を感度よく検出することができる。よって、生体および生体高分子の状態を知ることができる。
 例えば、被検査体100の中の目標成分が多く、水和した状態にある水分子が多いほど、被検査体100の複素誘電率の虚部は小さくなる。このため、センサ装置11は、発振部2の発振周波数に基づき、被検査体100の目標成分の濃度を検出することができる。
 例えば、血液中の血糖値は、健康なヒトで70~130mg/dlである。血糖値は、一日の中でも、空腹時と食事後とで大きく変動する。血糖値が70mg/dlよりも小さければ低血糖症の可能性があり、血糖値が130mg/dlよりも大きければ糖尿病の可能性がある。血糖値を表す濃度は、モル数換算で、mMol/Lのオーダーに相当する。非特許文献4の式(4)を用いて数値計算すると、糖が溶質となる水溶液の誘電率については、mMol/Lオーダーで濃度が変化すると、虚部のみ変わることが分かる。したがって、複素誘電率の虚部の感度が改善されたセンサ装置11を用いれば、血液中の血糖値の変動を測定することが可能である。
 また、例えば、被検査体100が細胞である場合、細胞は老いるほど構造化し、複素誘電率の虚部が低下するので、発振部2の発振周波数に基づき、センサ装置11は細胞の老若を判定することができる。
 また、再生医療用に細胞を培養する場合に、センサ装置11上で培養すれば、培養によって細胞が増殖している状況がモニタリングできる。増殖した細胞がその後生き続けているか、あるいは何らかの要因で死んだかもモニタリングが可能となる。細胞が死んだことが検知できた場合、被検査体100としての細胞を破棄して、条件をリセットした状態で再度細胞培養を行うことが可能となる。この様に、センサ装置11上で細胞培養をすることで、細胞培養の効率を大幅に改善することが可能となり、再生医療等の効率を大幅に改善することが可能となる。
 しかも、細胞を被検査体100としてセンサ装置11に置くか、もしくは細胞培養のためにセンサ装置11上一面に細胞を被検査体100として置いて、温度、pH、薬液等の刺激を与えると、細胞が活性化する。このため、細胞内部の水の分布や水素結合の状況が変化すると、細胞の複素誘電率における虚部が主に変化する。これにより、医学・薬学における薬の効用・副作用の評価に応用可能となる。
 さらに、集積回路基板上に形成された発振部2は、30~200GHzでは、概ね0.005~0.02平方mm程度の面積で形成することができる。それゆえ、センサ装置11を小さくすることができる。また、複数の発振部2を高密度に配置することができる。したがって、一度に多数の被検査体100の状態を検出することや、高い空間分解能で被検査体100の状態を検出することができる。
 これに対して、従来のセンサ装置101(図11参照)においては、被検査体100と発振部102とが、センシング電極105を用いて直接接続されている。この構成に式(2)を適用した場合、一対のセンシング電極105がキャパシタC11,C12(キャパシタC1)に相当するので、C1=∞となる。この場合、発振周波数fresは、式(3)で表されるので、複素誘電率の虚部に依存しない。したがって、複素誘電率の虚部の変化を検出することができない。
Figure JPOXMLDOC01-appb-M000003
 〔実施形態2〕
 本発明の実施形態2について図4および図5を用いて説明する。図4は実施形態2に係るセンサ装置12の構成を示すブロック図である。図5は、センサ装置12のセンシング電極5を含む部分の構造を示す断面図である。なお、本実施形態において、前述の実施形態1における構成要素と同等の機能を有する構成要素については、同一の番号を付記して、その説明を省略する。
 (センサ装置12の構成)
 図4に示すように、センサ装置12は、前述のセンサ装置11と同様、発振周波数検出部3を備え、センサ装置11の発振部2に代えて発振部2Aを備える。
 発振部2Aは、発振部2と同様、差動回路6を有しているが、発振部2の共振器4に代えて共振器4Aを有したLC発振回路であり、半導体集積回路基板上に形成されている。発振部2Aの発振周波数は、100GHzの近傍、特に30~200GHzであることが好ましい。
 共振器4Aは、前述の発振部2における共振器4と同様、キャパシタC0,C11,C12と、インダクタL0とを有している。また、共振器4Aは、2つのセンシング電極5を有している。一方のセンシング電極5は、インダクタL0およびキャパシタC0の一端に接続され、他方のセンシング電極5は、インダクタL0およびキャパシタC0の他端に接続されている。センシング電極5は、前述の従来のセンサ装置101におけるセンシング電極105(図12参照)と同様、長方形の板状を成している。
 半導体集積回路では、複数のメタル配線層が設けられており、隣り合うメタル配線層の間には、図5に示す層間絶縁膜7が配置される。図5では、便宜上、最上位メタル配線層と、その下層の層間絶縁膜7とについてのみ示している。2つのセンシング電極5は、それぞれ、層間絶縁膜7上に設けられた最上位メタル配線層によって形成された2つの板状電極51,52で構成されている。層間絶縁膜7の上面と、2つの板状電極51,52を含む最上位メタル配線層とは、半導体集積回路の表面保護膜8に覆われている。被検査体100は、表面保護膜8の上面に接触する。この状態では、表面保護膜8における板状電極51,52と被検査体100との間の部分は、キャパシタC11,C12として機能する。このように表面保護膜8で形成されたキャパシタC11,C12の容量値は、センシング電極5の形状と表面保護膜8の厚さとに応じて、ある程度の範囲内で制御することが可能である。
 (発振部2Aの発振周波数)
 本実施形態のセンサ装置12は、実施形態1のセンサ装置11に対して、キャパシタC11,C12を半導体集積回路の表面保護膜8で形成していることが異なる。発振部2Aの発振周波数については、実施形態1で説明した発振部2の発振周波数の変化と同様に変化する。複素誘電率の虚部については、キャパシタC11,C12の容量値が十分に大きい場合、Δfres/Δε≒0であるが、当該容量値を小さくすると、Δfres/Δεが有意な値を持つようになり、ある容量値でΔfres/Δεの最大値をもつ。
 (センサ装置12の動作)
 センサ装置12の動作は、実施形態1のセンサ装置11の動作と同じであり、発振部2Aの近傍にある被検査体100の複素誘電率の変化を発振周波数の変化として検出する。
 共振器4Aにおいては、センシング電極5が、半導体の表面保護膜8で形成されたキャパシタC11,C12を介して被検査体100と対向している(間接的に被検査体100と接触している)。これにより、被検査体100の複素誘電率に応じて共振周波数が変化する。
 (センサ装置12の効果)
 本実施形態におけるセンサ装置12の効果を説明する。
 センサ装置12は、実施形態1におけるセンサ装置11と同様、複素誘電率の実部のみならず、複素誘電率の虚部に応じた水の状態を検出することができる。これにより、水の100GHzの近傍、特に30~200GHzの周波数での複素誘電率の虚部の変化を検出することで、水和状態を感度よく検出することができる。
 また、センサ装置12では、被検査体100と直列に接続されるキャパシタC11,C12を半導体集積回路の表面保護膜8を利用することで形成している。これにより、センサ装置12の大型化および製造コストの増大を抑えることができる。
 〔実施形態3〕
 本発明の実施形態3について図6および図7を用いて説明する。図6は、本発明の実施形態3に係るセンサ装置13の構成を示すブロック図である。図7は、センサ装置13のセンシング電極5を含む部分の構造を示す断面図である。なお、本実施形態において、前述の実施形態1および2における構成要素と同等の機能を有する構成要素については、同一の番号を付記して、その説明を省略する。
 (センサ装置13の構成)
 図6に示すように、センサ装置13は、実施形態2の前述のセンサ装置12と同様、発振周波数検出部3を備え、センサ装置12の発振部2Aに代えて発振部2Bを備える。
 発振部2Bは、発振部2Aと同様、差動回路6を有しているが、発振部2Aの共振器4Aに代えて共振器4Bを有したLC発振回路であり、半導体集積回路基板上に形成されている。発振部2Bの発振周波数は、100GHzの近傍、特に30~200GHzであることが好ましい。
 共振器4Bは、前述の発振部2Aにおける共振器4Aと同様、キャパシタC0と、インダクタL0と、2つのセンシング電極5とを有している。また、共振器4Bは、MIM(Metal-Insulator-Metal)キャパシタMIM1,MIM2(キャパシタ素子)を有している。MIMキャパシタMIM1の一端は、インダクタL0およびキャパシタC0の一端に接続され、MIMキャパシタMIM2の一端は、インダクタL0およびキャパシタC0の他端に接続されている。一方のセンシング電極5は、MIMキャパシタMIM1の他端に接続され、他方のセンシング電極5は、MIMキャパシタMIM2の他端に接続されている。また、2つのセンシング電極5は、被検査体100と接触している。
 半導体集積回路では、複数のメタル配線層が設けられており、隣り合うメタル配線層の間には、図7に示す層間絶縁膜7が配置される。図7では、便宜上、最上位メタル配線層と、その下層の層間絶縁膜7とについてのみ示している。センシング電極5は、層間絶縁膜7上に設けられた最上位メタル配線層によって形成された2つの板状電極51,52で構成されている。層間絶縁膜7における板状電極51,52の下方には、それぞれMIMキャパシタMIM1,MIM2が配置されている。MIMキャパシタMIM1,MIM2の配置位置については、板状電極51,52の下方に限定されない。層間絶縁膜7の上面は、2つの板状電極51,52を除いて、半導体集積回路の表面保護膜9に覆われている。被検査体100は、板状電極51,52および表面保護膜9の上面に直接接触する。
 (発振部2Bの発振周波数)
 本実施形態のセンサ装置13は、実施形態1のセンサ装置11に対して相違点がある。その相違点は、センサ装置13が、被検査体100に接触するキャパシタとして、キャパシタC11,C12に代えて半導体集積回路に形成されるMIMキャパシタMIM1,MIM2を用いた点である。発振部2Bの発振周波数については、実施形態1で説明した発振部2の発振周波数の変化と同様に変化する。複素誘電率の虚部については、MIMキャパシタMIM1,MIM2の容量値が十分に大きい場合、Δfres/Δε≒0であるが、当該容量値を小さくすると、Δfres/Δεが有意な値を持ち、ある容量値でΔfres/Δεの最大値をもつ。
 (センサ装置13の動作)
 センサ装置13の動作は、実施形態1のセンサ装置11の動作と同じであり、発振部2Bの近傍にある被検査体100の複素誘電率の変化を発振周波数の変化として検出する。
 共振器4Bにおいては、MIMキャパシタMIM1,MIM2と接続されたセンシング電極5が被検査体100と接触している。これにより、被検査体100の複素誘電率に応じて共振周波数が変化する。
 (センサ装置13の効果)
 本実施形態におけるセンサ装置13の効果を説明する。
 センサ装置13は、実施形態1におけるセンサ装置11と同様、複素誘電率の実部のみならず、複素誘電率の虚部に応じた水の状態を検出することができる。これにより、水の100GHzの近傍、特に30~200GHzの周波数での複素誘電率の虚部の変化を検出することで、水和状態を感度よく検出することができる。
 また、センサ装置13では、被検査体100と直列に接続される直列キャパシタを、半導体集積回路のMIMキャパシタMIM1,MIM2を利用することで実現している。これにより、センサ装置13の大型化および製造コストの増大を抑えることができる。
 さらに、MIMキャパシタMIM1,MIM2は、センシング電極5とは別に、集積回路基板上に形成することができる。したがって、被検査体100の形状に対応するセンシング電極5の形状と、所望のΔfres/Δεを得るためのキャパシタの容量値とを個別に設定することができる。よって、センシング電極5の形状と検出感度とを高い次元で両立することができる。
 なお、本実施形態では、被検査体100と直列に接続されるキャパシタ素子(直列キャパシタ)としてMIMキャパシタMIM1,MIM2を用いることを説明したが、キャパシタ素子はMIMキャパシタMIM1,MIM2に限定されない。例えば、層間絶縁膜を2つのメタル配線層で挟んだ構造のMOMキャパシタやMOSキャパシタなどの他の集積回路上に形成される容量素子をキャパシタ素子として用いてもよい。キャパシタ素子をこれらの容量素子で構成した場合でも、キャパシタ素子としてMIMキャパシタMIM1,MIM2を用い場合と同様の効果が得られる。
 〔実施形態4〕
 本発明の実施形態2について図8および図9を用いて説明する。図8は実施形態4に係るセンサ装置14の構成を示すブロック図である。図9は、被検査体100に直列に接続されるキャパシタの容量値における複素誘電率の変化に対する発振周波数の変化率を示すグラフである。なお、本実施形態において、前述の実施形態1における構成要素と同等の機能を有する構成要素については、同一の番号を付記して、その説明を省略する。
 (センサ装置14の構成)
 図8に示すように、センサ装置14は、前述のセンサ装置11と同様、発振周波数検出部3を備え、センサ装置11の発振部2に代えて発振部2Cを備える。
 発振部2Cは、発振部2と同様、差動回路6を有しているが、発振部2の共振器4に代えて共振器4Cを有したLC発振回路であり、集積回路基板上に形成されている。発振部2Cの発振周波数は、100GHzの近傍、特に30~200GHzであることが好ましい。
 共振器4Cは、前述の発振部2における共振器4と同様、キャパシタC0,C11,C12と、インダクタL0とを有している。また、共振器4Cは、キャパシタC21,C22と、スイッチSW11,SW12,SW21,SW22(容量値切替部)とを有している。
 実施形態1のセンサ装置11におけるキャパシタC11,C12と異なり、キャパシタC11の一端は、スイッチSW11を介してインダクタL0およびキャパシタC0の一端に接続されている。また、キャパシタC12の一端は、スイッチSW12を介してインダクタL0およびキャパシタC0の他端に接続されている。キャパシタC21の一端は、スイッチSW21を介してインダクタL0およびキャパシタC0の一端に接続され、キャパシタC22の一端は、スイッチSW22を介してインダクタL0およびキャパシタC0の他端に接続されている。キャパシタC21,C22のそれぞれの他端には、被検査体100が接触している。
 スイッチSW11,SW12,SW21,SW22は、キャパシタC11,C12,C21,C22のそれぞれを、インダクタL0およびキャパシタC0に接続または切り離す開閉スイッチである。スイッチSW11,SW12,SW21,SW22の開閉は、センサ装置14が備える制御回路(図示せず)によって制御される。スイッチSW11,SW12,SW21,SW22の開閉の組み合わせは、以下の表1に示すように7つのパターンがある。表1において「1」は閉状態(ON)を表し、「0」は開状態(OFF)を表している。
Figure JPOXMLDOC01-appb-T000004
 (発振部2Cの発振周波数)
 本実施形態のセンサ装置14は、実施形態1のセンサ装置11に対して相違点がある。その相違点は、被検査体100と直列に接続される直列キャパシタの容量値をスイッチSW11,SW12,SW21,SW22によって切り替える点である。発振部2Cの発振周波数については、実施形態1で説明した発振部2の発振周波数の変化と同様に変化する。複素誘電率の虚部については、ある直列キャパシタの容量に対して発振周波数の変化が最大値となる。
 ここで、図9を参照して、キャパシタ容量の設定について説明する。なお、便宜上、「C11」および「C21」をそれぞれキャパシタC11,C21の容量値として扱う。C11とC11+C21とをΔfres/Δεが概ね最大値をとる2点に設定する(それぞれ図9の状態2と状態1)。状態1は、表1にて示すパターン(1)により得られ、状態2は、パターン(2)、(4)または(6)により得られる。Δfres/Δεは、状態1および状態2とも概ね同じ最大値に設定されている。一方、Δfres/Δεは、状態1ではΔfres/Δεr1となり、状態2ではΔfres/Δεr2となり、それぞれ異なる値が得られる。キャパシタC12,C22についても、キャパシタC11,C21と同様に容量値が設定される。
 なお、ここでは、2通りの容量値の設定例について説明したが、設定できる容量値は2通りに限らない。また、切り替えられた容量においてΔfres/Δεを一定に設定した例を挙げて説明したが、その設定に限らない。また、検出したい複素誘電率に応じて、適切なΔfres/Δε,Δfres/Δεの複数の組み合わせを用意し、得られた複数の発振周波数変化の検出値から所望の値を算出してもよい。
 (センサ装置14の動作)
 センサ装置14の動作は、実施形態1のセンサ装置11の動作と同じであり、発振部2Cの近傍にある被検査体100の複素誘電率の変化を発振周波数の変化として検出する。
 共振器4Cにおいては、いずれかの閉じたスイッチSW11,SW12,SW21,SW22によって、キャパシタC11,C12,C21,C22のいずれかがキャパシタC0およびインダクタL0に接続される。これにより得られた直列キャパシタの容量値に基づき、被検査体100の複素誘電率に応じて共振周波数が変化する。
 (センサ装置14の効果)
 実施形態4におけるセンサ装置14の効果を説明する。
 センサ装置14は、実施形態1におけるセンサ装置11と同様、複素誘電率の実部のみならず、複素誘電率の虚部に応じた水の状態を検出することができる。これにより、水の100GHzの近傍、特に30~200GHzの周波数での複素誘電率の虚部の変化を検出することで、水和状態を感度よく検出することができる。
 また、センサ装置14では、被検査体100と直列に接続される直列キャパシタの容量値をスイッチSW11,SW12,SW21,SW22によって切り替えている。これにより、複素誘電率の実部と虚部との変化に対する発振周波数変化の感度を切り替えることができる。それゆえ、被検査体100に対して、Δfres/Δεを一定にしながら、2つの異なるΔfres/Δε(Δfres/Δεr1,Δfres/Δεr2)での発振周波数の変化を検出することができる。両者の発振周波数変化の検出の差分をとることで、被検査体100の複素誘電率の虚部に対する変化は相殺され、実部に対する変化のみを算出することができる。
 なお、上述した、被検査体100と直列に接続される直列キャパシタの容量値をスイッチSW11,SW12,SW21,SW22によって切り替える構成については、前述の実施形態1~3にも適用することができる。
 〔まとめ〕
 本発明の態様1に係るセンサ装置11~14は、半導体集積回路に形成された発振部と、前記発振部の発振周波数を検出する発振周波数検出部とを備え、前記発振部は、被検査体と直列に接続されるキャパシタを有し、前記被検査体の複素誘電率に応じて前記発振周波数を変化させる。
 上記の構成によれば、水分を含む被検査体100の複素誘電率は、主要成分である水の状態に依存する。このため、センサ装置11~14は、発振部2の発振周波数に基づき、被検査体100の中の水の状態を検出することができる。また、被検査体100と直列に接続されるキャパシタC11,C12の容量値に応じて、被検査体100の複素誘電率における虚部の変化率が異なる。この特性を利用して、被検査体100の複素誘電率における虚部の変化を発振周波数の変化として検出することができる。
 本発明の態様2に係るセンサ装置11~14は、上記態様1において、前記キャパシタの容量は、前記被検査体の複素誘電率の虚部の変化に対する発振周波数の変化率が最大値またはその近傍の値となる値であってもよい。
 上記の構成によれば、複素誘電率の虚部に応じた水の状態を検出することができる。水の100GHzの近傍、特に30~200GHzの周波数での複素誘電率の虚部の変化を検出することで、水和状態を感度よく検出することができる。
 本発明の態様3に係るセンサ装置12は、上記態様1または2において、前記キャパシタは前記半導体集積回路の表面保護膜によって形成されていてもよい。
 上記の構成によれば、センサ装置12の大型化および製造コストの増大を抑えることができる。
 本発明の態様4に係るセンサ装置13は、上記態様1または2において、前記キャパシタは前記半導体集積回路のキャパシタ素子(MIMキャパシタMIM1,MIM2)であってもよい。
 上記の構成によれば、センサ装置13の大型化および製造コストの増大を抑えることができる。
 本発明の態様5に係るセンサ装置12は、上記態様1から4において、前記発振部は、前記キャパシタの容量値を切り替える容量値切替部をさらに有していてもよい。
 上記の構成によれば、複素誘電率の実部と虚部との変化に対する発振周波数変化の感度を切り替えることができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
  2,2A,2B,2C 発振部
  3 発振周波数検出部
  8 表面保護膜
 11~14 センサ装置
100 被検査体
 C11,C12,C21,C22 キャパシタ
 MIM1,MIM2 MIMキャパシタ(キャパシタ素子)
 SW11,SW12,SW21,SW22 スイッチ(容量値切替部)

Claims (5)

  1.  半導体集積回路に形成された発振部と、
     前記発振部の発振周波数を検出する発振周波数検出部とを備え、
     前記発振部は、被検査体と直列に接続されるキャパシタを有し、前記被検査体の複素誘電率に応じて前記発振周波数を変化させることを特徴とするセンサ装置。
  2.  前記キャパシタの容量は、前記被検査体の複素誘電率の虚部の変化に対する発振周波数の変化率が最大値またはその近傍の値となる値であることを特徴とする請求項1に記載のセンサ装置。
  3.  前記キャパシタは前記半導体集積回路の表面保護膜によって形成されていることを特徴とする請求項1または2に記載のセンサ装置。
  4.  前記キャパシタは前記半導体集積回路のキャパシタ素子であることを特徴とする請求項1または2に記載のセンサ装置。
  5.  前記発振部は、前記キャパシタの容量値を切り替える容量値切替部をさらに有していることを特徴とする請求項1から4のいずれか1項に記載のセンサ装置。
PCT/JP2017/002349 2016-01-29 2017-01-24 センサ装置 WO2017130962A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017564267A JP6549256B2 (ja) 2016-01-29 2017-01-24 センサ装置
US16/073,628 US10718730B2 (en) 2016-01-29 2017-01-24 Sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016558 2016-01-29
JP2016-016558 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130962A1 true WO2017130962A1 (ja) 2017-08-03

Family

ID=59398163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002349 WO2017130962A1 (ja) 2016-01-29 2017-01-24 センサ装置

Country Status (3)

Country Link
US (1) US10718730B2 (ja)
JP (1) JP6549256B2 (ja)
WO (1) WO2017130962A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996183B2 (en) * 2016-07-22 2021-05-04 Sharp Kabushiki Kaisha Detection device and method of controlling detection device
GB2584420A (en) * 2019-05-24 2020-12-09 Univ Of Westminster Method, sensor and system for determining a dielectric property of a sample
KR102236099B1 (ko) * 2019-10-25 2021-04-05 삼성전기주식회사 멀티 터치의 위치 식별이 가능한 터치 센싱 장치 및 전자 기기
TWI779534B (zh) * 2020-03-25 2022-10-01 昇佳電子股份有限公司 電容感測電路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423371A (en) * 1981-09-03 1983-12-27 Massachusetts Institute Of Technology Methods and apparatus for microdielectrometry
JPH04110648A (ja) * 1990-08-31 1992-04-13 Toshiba Corp 集積化感応素子
JPH085590A (ja) * 1994-06-16 1996-01-12 Tdk Corp 湿度センサ
JP2007192622A (ja) * 2006-01-18 2007-08-02 Seiko Instruments Inc 湿度センサおよびそれを有する半導体装置
US20080012578A1 (en) * 2006-07-14 2008-01-17 Cascade Microtech, Inc. System for detecting molecular structure and events
JP2009036644A (ja) * 2007-08-02 2009-02-19 Ulvac Japan Ltd バイオセンサを使用した物性の測定方法
JP2009538433A (ja) * 2006-05-26 2009-11-05 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 容器中のパラメータを監視するシステム及び方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2147240T3 (es) * 1993-08-29 2000-09-01 Silora Television And Electron Detector de la humedad del suelo.
US6703847B2 (en) * 1995-03-15 2004-03-09 Liebrecht Venter Determining the dielectric properties of wood
JP2003004683A (ja) * 2001-06-15 2003-01-08 Denso Corp 容量式湿度センサ
US7439877B1 (en) * 2007-05-18 2008-10-21 Philip Onni Jarvinen Total impedance and complex dielectric property ice detection system
JP5516505B2 (ja) * 2011-05-25 2014-06-11 株式会社デンソー 容量式湿度センサ及びその製造方法
EP2634568A1 (en) * 2012-03-02 2013-09-04 parelectrics UG (haftungsbeschränkt) Non-invasive measurement of dielectric properties of a substance
US8823396B2 (en) * 2013-01-11 2014-09-02 Nokia Corporation Apparatus and associated methods
ITMI20130484A1 (it) * 2013-03-29 2014-09-30 St Microelectronics Srl Dispositivo elettronico integrato per il monitoraggio di umidita' e/o acidita'/basicita' ambientali e/o corrosione

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423371A (en) * 1981-09-03 1983-12-27 Massachusetts Institute Of Technology Methods and apparatus for microdielectrometry
JPH04110648A (ja) * 1990-08-31 1992-04-13 Toshiba Corp 集積化感応素子
JPH085590A (ja) * 1994-06-16 1996-01-12 Tdk Corp 湿度センサ
JP2007192622A (ja) * 2006-01-18 2007-08-02 Seiko Instruments Inc 湿度センサおよびそれを有する半導体装置
JP2009538433A (ja) * 2006-05-26 2009-11-05 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 容器中のパラメータを監視するシステム及び方法
US20080012578A1 (en) * 2006-07-14 2008-01-17 Cascade Microtech, Inc. System for detecting molecular structure and events
JP2009036644A (ja) * 2007-08-02 2009-02-19 Ulvac Japan Ltd バイオセンサを使用した物性の測定方法

Also Published As

Publication number Publication date
JPWO2017130962A1 (ja) 2018-10-04
US10718730B2 (en) 2020-07-21
US20190041348A1 (en) 2019-02-07
JP6549256B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
WO2017130962A1 (ja) センサ装置
US9995701B2 (en) Capacitive sensing apparatuses, systems and methods of making same
EP2336758B1 (en) Capacitive sensor
Macdonald Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation–recombination effects
WO2017077782A1 (ja) センサ回路
Li Study of the humidity-sensing mechanism of CaCu3Ti4O12
WO2014122594A1 (en) An apparatus comprising a flexible substrate and a component supported by the flexible substrate
Mohammadi et al. DROP: A CMOS differential ring-oscillator sensing platform for nano-liter droplet detection
El Gharbi et al. Determination of salinity and sugar concentration by means of a circular-ring monopole textile antenna-based sensor
WO2017010177A1 (ja) センサ装置
Morshidi et al. Inter-digital sensor for non-invasive blood glucose monitoring
JP6676486B2 (ja) 検出方法
JPWO2019017094A1 (ja) センサおよびセンサアレイ
JP2017501529A (ja) センシング
Kakani et al. Open complementary split ring resonator based RF sensor with improved sensitivity for detection and estimation of adulteration in edible oils
Cheng et al. Modulus spectroscopy of grain–grain boundary binary system
Glova et al. Branched versus linear lactide chains for cellulose nanoparticle modification: an atomistic molecular dynamics study
Noreña et al. Dielectric properties of importance in operations of post-harvest of sorghum
Helmy et al. A 1-to-8 GHz miniaturized dielectric spectroscopy system for chemical sensing
JP2014145643A (ja) 成分分析器
Tirado et al. Conductivity dependence of the polarization impedance spectra of platinum black electrodes in contact with aqueous NaCl electrolyte solutions
Dean et al. Electrical properties of biological tissues-an impedance spectroscopy study
Jamaluddin et al. Simple fabricating PCB-based inter digital capacitor for glucose biosensor
Colmiais et al. Graphene LC oscillator for biosensing applications
Kaul et al. Design of microstrip antennas for glucometer application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744192

Country of ref document: EP

Kind code of ref document: A1