WO2017130834A1 - 三次元形状造形物の製造方法 - Google Patents

三次元形状造形物の製造方法 Download PDF

Info

Publication number
WO2017130834A1
WO2017130834A1 PCT/JP2017/001762 JP2017001762W WO2017130834A1 WO 2017130834 A1 WO2017130834 A1 WO 2017130834A1 JP 2017001762 W JP2017001762 W JP 2017001762W WO 2017130834 A1 WO2017130834 A1 WO 2017130834A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional shaped
cutting
undercut portion
layer
shaped object
Prior art date
Application number
PCT/JP2017/001762
Other languages
English (en)
French (fr)
Inventor
雅憲 森本
阿部 諭
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016145594A external-priority patent/JP6778883B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780008363.1A priority Critical patent/CN108602261B/zh
Priority to US16/073,618 priority patent/US20190001415A1/en
Priority to KR1020187021699A priority patent/KR102238862B1/ko
Priority to DE112017000544.2T priority patent/DE112017000544T5/de
Publication of WO2017130834A1 publication Critical patent/WO2017130834A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional shaped object.
  • this invention relates to the manufacturing method of the three-dimensional shaped molded article which forms a solidified layer by light beam irradiation to a powder layer.
  • a method for producing a three-dimensional shaped object by irradiating a powder material with a light beam has been conventionally known. This method manufactures a three-dimensional shaped object by repeatedly performing powder layer formation and solid layer formation alternately based on the following steps (i) and (ii).
  • the obtained three-dimensional shaped object can be used as a mold.
  • organic resin powder is used as the powder material, the obtained three-dimensional shaped object can be used as various models.
  • a metal powder is used as a powder material and a three-dimensional shaped object obtained thereby is used as a mold.
  • the squeezing blade 23 is moved to form a powder layer 22 having a predetermined thickness on the modeling plate 21 (see FIG. 9A).
  • the solidified layer 24 is formed from the powder layer 22 by irradiating a predetermined portion of the powder layer 22 with the light beam L (see FIG. 9B).
  • a new powder layer 22 is formed on the obtained solidified layer 24, and a light beam is irradiated again to form a new solidified layer 24.
  • the solidified layer 24 is laminated (see FIG.
  • a three-dimensional structure including the laminated solidified layer 24 is formed.
  • a shaped object can be obtained. Since the solidified layer 24 formed as the lowermost layer is connected to the modeling plate 21, the three-dimensional modeled object and the modeling plate 21 form an integrated object, and the integrated object is used as a mold. Can do.
  • the inventors of the present application have found that the following problems may occur when manufacturing a three-dimensional shaped object having a so-called “undercut part”. Specifically, it has been found that when the undercut portion 10 is formed (see FIG. 7A), a larger raised portion 18 can be produced compared to when the undercut portion 10 is not formed (see FIG. 7B). In particular, the inventors of the present application have found that the protruding portion 18 tends to be larger at the periphery of the undercut portion 10 as the inclined form in the undercut portion 10 becomes less vertical (FIGS. 7A to 7A). (See (c)).
  • the squeezing blade 23 (see FIG. 8 (a)) used for forming the next powder layer hits the ridge 18 (see FIG. 8 (b)).
  • a part of the solidified layer 24 in the formation region of the cut portion 10 may be stripped off along with the raised portion 18 (see FIG. 8C). Therefore, a desired powder layer may not be formed on the solidified layer 24.
  • the object of the present invention is to provide a method for more efficiently producing a three-dimensional shaped object having an undercut portion.
  • a method for producing a three-dimensional shaped object comprising: Prior to the implementation of such a method, there is provided a method for manufacturing a three-dimensional shaped object that performs a modeling process for specifying an undercut portion in advance.
  • FIG. 1 (a) schematic perspective view
  • FIG. 1 (b) enlarged schematic sectional view
  • FIG. 2 (c) Surface of the extracted undercut part
  • Sectional views schematically showing various forms of protrusions FIG. 7A: undercut part having a relatively steep angle ⁇
  • FIG. 7B solidified layer peripheral part having a vertical inclination form
  • FIG. 7A undercut part having a relatively steep angle ⁇
  • FIG. 7B solidified layer peripheral part having a vertical inclination form
  • FIG. 9A is a cross-sectional view schematically showing a process aspect of stereolithography combined processing in which the powder sintering lamination method is performed (FIG. 9A: when forming a powder layer, FIG. 9B: when forming a solidified layer, FIG. c): During lamination
  • the perspective view which showed the composition of the optical modeling compound processing machine typically Flow chart showing general operation of stereolithography combined processing machine
  • powder layer means, for example, “a metal powder layer made of metal powder” or “a resin powder layer made of resin powder”.
  • the “predetermined portion of the powder layer” substantially refers to the region of the three-dimensional shaped object to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form a three-dimensional shaped object.
  • solidified layer means “sintered layer” when the powder layer is a metal powder layer, and means “cured layer” when the powder layer is a resin powder layer.
  • the “up and down” direction described directly or indirectly in the present specification is a direction based on the positional relationship between the modeling plate and the three-dimensional shaped object, for example, and is based on the modeling plate.
  • the side on which the shaped object is manufactured is “upward”, and the opposite side is “downward”.
  • FIG. 9 schematically shows a process mode of stereolithographic composite processing
  • FIGS. 10 and 11 are flowcharts of the main configuration and operation of the stereolithographic composite processing machine capable of performing the powder sintering lamination method and the cutting process. Respectively.
  • the stereolithography combined processing machine 1 includes a powder layer forming means 2, a light beam irradiation means 3, and a cutting means 4, as shown in FIG.
  • the powder layer forming means 2 is means for forming a powder layer by spreading a powder such as a metal powder or a resin powder with a predetermined thickness.
  • the light beam irradiation means 3 is a means for irradiating a predetermined portion of the powder layer with the light beam L.
  • the cutting means 4 is a means for cutting the side surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
  • the powder layer forming means 2 mainly includes a powder table 25, a squeezing blade 23, a modeling table 20, and a modeling plate 21.
  • the powder table 25 is a table that can be moved up and down in a powder material tank 28 whose outer periphery is surrounded by a wall 26.
  • the squeezing blade 23 is a blade that can move in the horizontal direction to obtain the powder layer 22 by supplying the powder 19 on the powder table 25 onto the modeling table 20.
  • the modeling table 20 is a table that can be moved up and down in a modeling tank 29 whose outer periphery is surrounded by a wall 27.
  • the modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a base for a three-dimensional modeled object.
  • the light beam irradiating means 3 mainly includes a light beam oscillator 30 and a galvanometer mirror 31 as shown in FIG.
  • the light beam oscillator 30 is a device that emits a light beam L.
  • the galvanometer mirror 31 is means for scanning the emitted light beam L into the powder layer 22, that is, scanning means for the light beam L.
  • the cutting means 4 mainly includes an end mill 40 and a drive mechanism 41 as shown in FIG.
  • the end mill 40 is a cutting tool for cutting the side surface of the laminated solidified layer, that is, the surface of the three-dimensional shaped object.
  • the drive mechanism 41 is means for moving the end mill 40 to a desired location to be cut.
  • the operation of the stereolithography combined processing machine 1 includes a powder layer forming step (S1), a solidified layer forming step (S2), and a cutting step (S3), as shown in the flowchart of FIG.
  • the powder layer forming step (S1) is a step for forming the powder layer 22.
  • the modeling table 20 is lowered by ⁇ t (S11) so that the level difference between the upper surface of the modeling plate 21 and the upper end surface of the modeling tank 29 becomes ⁇ t.
  • the squeezing blade 23 is moved in the horizontal direction from the powder material tank 28 toward the modeling tank 29 as shown in FIG.
  • the powder 19 arranged on the powder table 25 can be transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed (S13).
  • the powder material for forming the powder layer 22 include “metal powder having an average particle diameter of about 5 ⁇ m to 100 ⁇ m” and “resin powder such as nylon, polypropylene, or ABS having an average particle diameter of about 30 ⁇ m to 100 ⁇ m”. it can.
  • the solidified layer forming step (S2) is a step of forming the solidified layer 24 by light beam irradiation.
  • the light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to a predetermined location on the powder layer 22 by the galvano mirror 31 (S22).
  • the powder at a predetermined location of the powder layer 22 is sintered or melted and solidified to form a solidified layer 24 as shown in FIG. 9B (S23).
  • a carbon dioxide laser, an Nd: YAG laser, a fiber laser, an ultraviolet ray, or the like may be used.
  • the powder layer forming step (S1) and the solidified layer forming step (S2) are alternately repeated. As a result, a plurality of solidified layers 24 are laminated as shown in FIG.
  • the cutting step (S3) is a step for cutting the side surface of the laminated solidified layer 24, that is, the surface of the three-dimensional shaped object.
  • the cutting step is started by driving the end mill 40 (see FIG. 9C and FIG. 10) (S31). For example, when the end mill 40 has an effective blade length of 3 mm, a cutting process of 3 mm can be performed along the height direction of the three-dimensional shaped object.
  • the end mill 40 is driven. Specifically, a cutting process is performed on the side surface of the laminated solidified layer 24 while the end mill 40 is moved by the drive mechanism 41 (S32).
  • the present invention is characterized in the pretreatment performed before the production of the three-dimensional shaped object in the above-described powder sintering lamination method.
  • the undercut portion is a portion having a “steep” shape in the three-dimensional shaped object, and performs processing for specifying such a portion in advance.
  • FIG. 1A and FIG. 1B show an undercut portion 10.
  • the “undercut portion” in this specification means a portion having a steep angle 13 as shown in FIG.
  • the “steep angle ⁇ ” indicates an angle (less than 90 degrees) formed by the lower inclined surface 15 of the three-dimensional structure with respect to the horizontal plane 14 as shown in FIG.
  • the larger the steep angle ⁇ the more the undercut portion 10 has a more inclined form.
  • the undercut part 10 is a part of a three-dimensional shape molded article, it is comprised from the laminated solidified layer (refer FIG.1 (b)). Therefore, in a narrow sense, the “undercut portion” has a form in which the other solidified layer 17 projects outward from one solidified layer 16 as shown in FIG. More specifically, in the undercut portion 10, between the line segment connecting the end surface 16 a of one solidified layer 16 and the end surface 17 a of the other solidified layer 17, and the horizontal surface 16 b of the one solidified layer 16.
  • the formed angle ⁇ (steep angle) is less than 90 degrees.
  • the projecting dimension of the other solidified layer 17 from the one solidified layer 16, that is, the overhang dimension (OH dimension) can be expressed by the following equation when the height dimension of each solidified layer is ⁇ t.
  • the one solidified layer 16 and the other solidified layer 17 are not limited to those having a positional relationship adjacent to each other, and may be those having a positional relationship apart from each other.
  • Protrusion dimension (OH dimension) ⁇ t / tan ⁇
  • the modeling process in the present invention can be performed on a computer based on design data (for example, so-called CAD data) of a three-dimensional shaped object.
  • design data for example, so-called CAD data
  • a process for specifying an undercut portion is performed on the CAD.
  • which region corresponds to the surface region of the undercut portion is extracted in the surface region of the three-dimensional shaped object based on the design data of the three-dimensional shaped object to be manufactured.
  • the formation area of the undercut part which can produce a comparatively big protruding part is specified previously.
  • a more appropriate cutting path is required for cutting a predetermined portion of the undercut portion where a relatively large raised portion may occur, specifically, for cutting a contour layer of the solidified layer described later in the formation region of the undercut portion. It can be determined in advance. Therefore, as compared with the case where the ridge occurrence location is confirmed / specified and cutting is sequentially performed on the location, the ridge occurrence location is confirmed / identified and sequential cutting is not necessary for the location as a whole. The time required for cutting is reduced. That is, the manufacturing time of the three-dimensional shaped object is shortened as a whole, and more efficient manufacturing can be realized.
  • the surface of the three-dimensional shaped object model is divided into a plurality of pieces, and based on the direction of the normal vector of each of the divided pieces,
  • the surface is extracted from the surface of the 3D model object. That is, the surface of the undercut portion is extracted based on the normal vector of the surface region obtained from the design data of the three-dimensional shaped object.
  • extraction substantially means to “extract” or “extract” the surface area of the portion corresponding to the undercut portion from the entire surface of the three-dimensional model object as a computer process.
  • the “three-dimensional modeled object model” (three-dimensional modeled object model) in this specification substantially refers to a model form on a computer of the three-dimensional modeled object to be manufactured.
  • a piece in which the direction of the normal vector is downward from the horizontal is regarded as the surface of the undercut portion. That is, only a piece having a normal vector in a predetermined direction is selected from a plurality of normal vectors.
  • horizontal substantially refers to a direction perpendicular to the stacking direction of the solidified layer.
  • the direction in the width direction of the solidified layer corresponds to a “horizontal” direction.
  • a plurality of slice planes are extracted from the three-dimensional model object, the outline of the portion corresponding to the undercut portion of the extracted outline of each slice plane is specified, and a plurality of points are determined from the specified outline. Select and get coordinate information for each selected point. That is, the coordinate information of an arbitrary point of the contour of the portion corresponding to the undercut portion of the three-dimensional shaped object model is obtained by computer processing.
  • the contour upper surface of the solidified layer in the undercut portion is subjected to cutting when the manufacturing method of the three-dimensional shaped object is performed. That is, only the contour upper surface of the solidified layer in the undercut portion where a relatively large raised portion may be produced during the production of the three-dimensional shaped object is subjected to cutting. Such cutting can prevent the squeezing blade used to form the next powder layer from hitting the raised portion. Therefore, it can be avoided that a part of the solidified layer in the undercut portion is stripped off along with the raised portion. As a result, a desired new powder layer can be suitably formed on the solidified layer.
  • the “protrusion” refers to a protrusion (corresponding to an end protuberance) generated in the contour of the solidified layer when a solidified layer is formed from a powder layer using a light beam. In particular, it refers to a protrusion (corresponding to an end raised product) generated in the contour of the solidified layer at a location corresponding to the undercut portion.
  • the powder layer is irradiated with a light beam
  • the surrounding powder region is also irradiated with the light beam, and surface tension that induces bulging is generated by the melting phenomenon. Therefore, it is considered that a raised portion is likely to occur in the outline of the solidified layer.
  • a cutting path is formed based on coordinate information of a plurality of points selected from the outline of a portion corresponding to the undercut portion, and the contour upper surface of the solidified layer in the undercut portion is cut according to the cutting path. Attached to processing. That is, the contour upper surface of the solidified layer in the undercut portion where a relatively large raised portion may be generated during the manufacture of the three-dimensional shaped object is subjected to cutting according to a predetermined cutting processing path. Since the cutting process path is determined in advance, the contour upper surface of the solidified layer in the undercut part where a relatively large raised part may occur during the production of the three-dimensional shaped object can be more efficiently subjected to the cutting process. . Therefore, the cutting time of the contour upper surface of the solidified layer in the undercut portion where a relatively large raised portion can occur can be shortened, and the squeezing blade used to form the next powder layer is raised. Can be avoided.
  • the necessity of cutting the contour upper surface of the solidified layer in the undercut portion is determined according to the steep angle in the undercut portion.
  • the larger the steep angle ⁇ the more vertically inclined the undercut portion 10.
  • the smaller the steep angle ⁇ the less inclined the undercut portion 10 is. (See FIG. 7).
  • the protruding portion 18 tends to be larger as the inclined surface becomes less vertical. Therefore, the size of the protruding portion 18 is indirectly grasped from the steep angle ⁇ , Thereby, it is determined whether or not cutting of the contour upper surface of the solidified layer in the undercut portion is necessary.
  • the steep angle ⁇ in the undercut portion 10 is relatively small (that is, the undercut portion 10 has a less vertical inclination), and the movement of the squeezing blade 23 during formation of the powder layer is inhibited by the raised portion 18. Only when it is determined that the cutting can be performed, the contour upper surface of the solidified layer in the undercut portion 10 may be cut.
  • the steep angle ⁇ in the undercut portion 10 is relatively large (that is, the undercut portion 10 has a more vertical inclined form), and the movement of the squeezing blade 23 during the formation of the powder layer is a raised portion. In the case where it is determined that it is not hindered by 18, it is not necessary to cut the contour upper surface of the solidified layer in the undercut portion 10.
  • the technical idea of the present invention will be described.
  • the present invention is based on a technical idea such as “specify in advance a place where a large raised portion is likely to occur when forming a solidified layer and construct a more suitable cutting path in advance”.
  • the inventor of the present application has found a phenomenon that a relatively large raised portion 18 is likely to occur in the undercut portion 10, and the present invention takes this phenomenon into consideration. Furthermore, the present inventor has also found that when the degree of steepness in the undercut portion 10 changes, the size of the raised portion 18 generated there tends to change, and the undercut portion 10 having such a tendency has been found. In view of this, it is also considered to cope more appropriately.
  • the three-dimensional shaped object can be manufactured more efficiently.
  • the formation region of the undercut portion in advance, it is possible to perform more appropriate cutting when cutting a predetermined portion (corresponding to the contour upper surface of the solidified layer) of the undercut portion where a relatively large raised portion may be generated.
  • a machining path can be determined in advance. Therefore, compared with the case of confirming / specifying the occurrence (occurrence location) of the ridge and sequentially cutting the location, the confirmation / identification of the ridge occurrence location and the sequential cutting of the location are not necessary. As a whole, the time required for cutting is reduced.
  • the present invention can be broadly divided into computer processing performed as pre-processing and production of a three-dimensional shaped object performed as a powder sintering lamination method thereafter.
  • Preprocessing (computer processing)> First, pre-processing performed using a computer prior to manufacturing a three-dimensional shaped object will be described. In the pretreatment, the following (1) and (2) are preferably performed.
  • a modeling process is performed using CAD software before a three-dimensional shaped object is manufactured. Specifically, for example, modeling processing is performed using so-called “STL format” CAD software. Such modeling processing corresponds to computer processing for specifying the undercut portion in advance.
  • the surface of the three-dimensional shaped object model 100 ' is divided into a plurality of pieces 11'.
  • the entire surface of the three-dimensional model object 100 ' is divided into a plurality of geometrical pieces 11'.
  • the entire surface of the three-dimensional model object 100 ′ may be divided into, for example, triangular pieces 11 ′.
  • the direction of the vector perpendicular to the surface of each piece 11 ′ that is, the direction of the normal vector 12 ′ of each piece 11 ′
  • the center coordinate (center point) of each piece 11 ′ is obtained from the vertex coordinates of each piece 11 ′, and then the direction of the vector (normal vector 12 ′) perpendicular to the center coordinate is obtained. .
  • the piece 11 ′ in which the direction of the normal vector 12 ′ is downward from the horizontal is determined as the surface of the undercut portion 10 ′.
  • the piece 11 ′ in which the direction of the normal vector 12 ′ is “upward” from the horizontal is regarded as the surface other than the undercut portion 10 ′ and is not selected.
  • the direction of the normal vector 12 ′ of each of the plurality of pieces 11 ′ is used as an index, and thereby, the surface of the undercut portion 10 ′ from the entire surface of the three-dimensional shaped object model 100 ′. Is extracted.
  • a plurality of slice surfaces 50 ′ are taken out from the three-dimensional shaped object model 100 ′ including the undercut portion 10 ′ in which the formation location is specified.
  • the slice surface 50 ′ is a surface obtained by slicing the three-dimensional model object 100 ′ with a stacking pitch of the solidified layers 24 ′ along the horizontal direction, for example.
  • the outline 60 ′ corresponding to the undercut portion 10 ′ among the outlines 60 ′ of each slice plane 50 ′ is specified (corresponding to the thick line in FIGS. 3B and 3C).
  • an arbitrary plurality of points 70 ′ are selected from the contour 60 ′.
  • the undercut portion 10 extracted by the modeling process described above is used. You can use 'location information.
  • the plurality of points 70 ′ to be selected include, for example, a first point 71 ′ located at one end of the contour 60 ′ of the undercut portion 10 ′ and the other end of the contour 60 ′. It may be a second point 72 ′ located and a third point 73 ′ located between the first point 71 ′ and the second point 72 ′.
  • coordinate information (x n , y n , z n ) of each point 70 ′ is obtained.
  • the coordinate information (x n , y n , z n ) of each point 70 ′ is obtained, it is possible to accurately grasp where each point 70 ′ is located in the three-dimensional shaped object model 100 ′. It can be done. For example, in the case where the first point 71 ′, the second point 72 ′, and the third point 73 ′ are selected as an example, the coordinates of the first point 71 ′, the second point 72 ′, and the third point 73 ′ are given. Get information each.
  • the coordinates of the first point 71 ′ are (x 1 , y 1 , z 1 ), the coordinates of the second point 72 ′ are (x 2 , y 2 , z 2 ), and It is grasped that the coordinates of the third point 73 ′ are (x 3 , y 3 , z 3 ).
  • the z coordinate z 1 of the first point 71 ′ of one slice plane 50 ′ located at a predetermined location, and the first 'and z coordinates z 2 of the third point 73' 2 points 72 z-coordinate z 3 of may be equal.
  • a cutting path 80 'that passes through each point is determined.
  • a cutting path that allows the cutting of the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 to be more efficient at the time of manufacturing a three-dimensional shaped article to be described later is selected (see FIG. 4).
  • the cutting path 80 'that can minimize the moving distance of the cutting tool is determined. Thereby, the time for cutting the outline upper surface 24a of the solidified layer 24 in the undercut part 10 at the time of manufacture of the three-dimensional shaped structure to be described later can be shortened (see FIG. 4).
  • the first to third points are selected from the contour 60 ′ of the undercut portion 10 ′ as described above, for example, the first point 71 ′ ⁇ the third point 73 is used as the path that provides the shortest moving distance of the cutting tool.
  • a cutting path through which the cutting tool can pass sequentially through “ ⁇ second point 72” is selected.
  • a cutting path through which the cutting tool can pass in order of the second point 72 ′ ⁇ the third point 73 ′ ⁇ the first point 71 ′ may be selected.
  • the operating conditions of the cutting tool when cutting the contour upper surface 24a of the solidified layer 24 in the undercut portion 10 at the time of manufacturing a three-dimensional shaped object to be described later are set. It may be determined in advance (see FIG. 4). For example, considering that the dimension of the raised portion that can occur according to the steep angle ⁇ (see FIG. 3A) of the undercut portion 10 ′ changes, for example, “the end mill is rotated clockwise at a speed of 3000 rpm. A combination of the operating condition of “rotate” and the operating condition of “operating the end mill from one end to the other end at a speed of 500 mm / min” may be determined in advance.
  • a cutting path for cutting the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 at the time of manufacture (1) a cutting path for cutting the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 at the time of manufacture and ( 2) A database relating to the operating conditions of the cutting tool is constructed in advance. By constructing the database in advance, it is possible to suitably control the cutting process on the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 at the time of manufacturing a three-dimensional shaped article to be described later (see FIG. 4). .
  • the solidified layer 24 in the formation region of the undercut portion 10 is based on the cutting path determined in advance.
  • the contour upper surface 24a may be subjected to cutting.
  • the solidified layer 24 of the solidified layer 24 at the time of actual cutting may be controlled. More specifically, as the cutting means 4, a numerical control (NC: Numerical Control) machine tool or an equivalent (hereinafter referred to as an NC machine tool) is used, and the coordinates of each point 70 ′ obtained by computer processing are used. Numerical information obtained by program conversion from the information may be instructed to the NC machine tool or the like. Thereby, the cutting path of the end mill 40 which is a component of the cutting means 4 used as an NC machine tool or the like can be suitably controlled.
  • NC Numerical Control
  • a cutting tool that is, a path with the shortest moving distance of the end mill 40 is selected as the “predetermined cutting path” by computer processing
  • the cutting of the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 is performed.
  • the time required for processing can be suitably reduced. As a result, the manufacturing time of the three-dimensional shaped article as a whole can be further shortened.
  • the contour upper surface 24a of the solidified layer 24 in the formation region of the undercut portion 10 may be subjected to cutting processing based on the operating conditions of the cutting means determined prior to that. .
  • the operation of the cutting means 4 may be controlled during actual cutting based on the operating conditions of the cutting means determined in advance by computer processing. More specifically, as the cutting means 4, a numerical control (NC: Numerical Control) machine tool or an equivalent (hereinafter referred to as an NC machine tool or the like) is used, and the operating conditions of the cutting means obtained by computer processing are used. The numerical information obtained by program conversion may be instructed to the NC machine tool or the like.
  • NC Numerical Control
  • the operating conditions of the cutting means determined in advance by the above-described computer processing (the operating conditions of “rotate the end mill clockwise at a speed of 3000 rpm”, and “the end mill from 500 mm / min from one end to the other end)
  • Numerical information obtained by program conversion from a combination of operating conditions of “operating at speed” may be commanded to the NC machine tool or the like.
  • it can control suitably the operating condition of the end mill 40 which is a component of the cutting means 4 used as NC machine tools etc. resulting from operating based on numerical information.
  • the undercut is required when manufacturing a three-dimensional shaped object.
  • the contour upper surface 24a of the solidified layer 24 in the formation region of the portion 10 can be efficiently subjected to cutting. Therefore, the cutting time of the contour upper surface of the solidified layer in the undercut portion where a relatively large raised portion can be generated can be shortened. Moreover, it can avoid that the squeezing blade used in order to form the next powder layer hits a protruding part by this cutting process. Therefore, it can be avoided that the solidified layer in the undercut portion is stripped off along with the raised portion. As a result, a desired new powder layer can be suitably formed on the solidified layer. Therefore, finally, a desired three-dimensional shaped object can be suitably manufactured.
  • the production method of the present invention can be carried out in various modes.
  • the undercut portion 10 when the undercut portion 10 is formed so as to have two different steep angles ⁇ , the undercut portion 10 may have raised portions 18 having different sizes. Specifically, in the case of a predetermined region of the undercut portion 10 having a relatively large steep angle ⁇ , that is, an undercut region having a more vertical inclined form, a smaller raised portion is likely to occur. On the other hand, in the case of a predetermined region of an undercut portion having a relatively small steep angle ⁇ , that is, an undercut region having an inclined shape that is not vertical, a larger raised portion is likely to occur.
  • the undercut region where the steep angle ⁇ is less than 45 degrees tends to cause a bulged portion 18 having a larger size than the undercut region where the steep angle is 45 degrees or more.
  • a region having a small steep angle ⁇ and a region having a large steep angle ⁇ are specified in advance in the undercut portion 10 ′.
  • the description over time is as follows.
  • the entire surface of the three-dimensional model object 100 ′ is divided into a plurality of pieces 11 ′ (see FIG. 2A and FIG. 2B).
  • the direction of the normal vector 12 ′ of each piece 11 ′ is obtained (see FIG. 2B), and the piece 11 ′ whose direction is lower than the horizontal is extracted (see FIG. 2C). .
  • the necessity of cutting may be determined in advance according to, for example, the number of laminated solidified layers.
  • the raised portions generated in the undercut portions of the respective solidified layers tend to increase due to the large number of stacked layers.
  • the cutting path is determined by the computer process of (2) above.
  • the number of solidified layers stacked is less than a predetermined number, it is assumed that the raised portion of the undercut portion of each solidified layer is not so large. Therefore, it may be determined not to determine the cutting process path by the computer process (2).
  • the present invention is not limited to this, and it may be determined whether or not to determine the cutting pass depending on whether or not a value obtained by multiplying the number of solidified layer layers and the solidified layer thickness exceeds a predetermined value. If it does in this way, since the timing which performs a cutting process will be reduced, the three-dimensional shaped molded object which has an undercut part will be manufactured more efficiently.
  • the contour upper surface of the solidified layer in the undercut portion 10 When the contour upper surface of the solidified layer in the undercut portion 10 is subjected to a cutting process at the time of manufacturing the three-dimensional modeled article 100, a raised portion that may occur in the contour of the solidified layer in the undercut portion 10 can be removed from the contour upper surface. . Therefore, it is avoided that the squeezing blade used for forming the next powder layer hits the raised portion, and thus a part of the solidified layer in the undercut portion 10 is entrained by the raised portion. Can be. Therefore, a new powder layer can be suitably formed on the solidified layer. Thereby, a new solidified layer can be suitably formed using the light beam also in the formation region of the undercut portion 10. As a result, the three-dimensional shaped object 100 having the undercut portion 10 can be preferably manufactured.
  • the internal space region 90 is preferably used as a temperature control tube when the three-dimensional shaped object 100 is used as a mold.
  • the temperature adjustment water can be flowed at a desired flow rate to the internal space region 90, and a temperature adjustment function suitable as a mold can be achieved.
  • the outer surface of the three-dimensional modeled object 100 in which the undercut portion 10 can be formed is suitably formed, it is possible to avoid the occurrence of cracks in the outer surface, which is also suitable for external influences (for example, external pressure). Can withstand.
  • a raised portion may remain on the outer surface (side surface) of the three-dimensional shaped article 100 on which the undercut portion 10 can be formed.
  • post-processing such as cutting may be suitably performed on the outer surface (side surface) of the three-dimensional shaped object 100 on which the undercut portion 10 can be formed.
  • One embodiment of the present invention as described above includes the following preferred modes.
  • First aspect (I) a step of irradiating a predetermined portion of the powder layer with a light beam to sinter or melt solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer
  • a layer and repeating a powder layer formation and a solidified layer formation alternately by a process of irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer an undercut portion is provided.
  • a method for producing a three-dimensional shaped object comprising: Prior to the implementation of the method, a method for manufacturing a three-dimensional shaped object, in which a modeling process for specifying the undercut portion in advance is performed.
  • Second aspect In the first aspect, in the modeling process, the surface of the model of the manufactured three-dimensional shaped object is divided into a plurality of pieces, and based on the direction of the normal vector of each of the plurality of pieces, A method for manufacturing a three-dimensional shaped object, wherein the surface of the undercut portion is extracted from the surface of the model of the three-dimensional shaped object.
  • Third aspect In the second aspect, in the extraction, the three-dimensional shaped article manufacturing method, wherein the piece in which the normal vector is oriented downward from the horizontal is regarded as the surface of the undercut portion.
  • Fourth aspect In any one of the first to third aspects, a plurality of slice planes are taken out from the model of the manufactured three-dimensional shaped object, and correspond to the undercut portion in the outline of each slice plane taken out.
  • the method for producing a three-dimensional shaped article wherein the contour upper surface of the solidified layer in the undercut portion is subjected to a cutting process when the method is performed.
  • Sixth aspect In a fifth aspect subordinate to the fourth aspect, a tertiary path is formed based on the coordinate information, and the contour upper surface of the solidified layer in the undercut portion is subjected to the cutting process according to the cutting path. Manufacturing method of original shaped object.
  • Seventh aspect In the fifth aspect or the sixth aspect of the three-dimensional shaped object, the necessity of the cutting of the contour upper surface of the solidified layer in the undercut portion is determined according to a steep angle in the undercut portion. Production method.
  • Various articles can be manufactured by carrying out the manufacturing method of a three-dimensional shaped object according to an embodiment of the present invention.
  • the powder layer is an inorganic metal powder layer and the solidified layer is a sintered layer
  • the resulting three-dimensional shaped article is a plastic injection mold, a press mold, a die-cast mold, It can be used as a mold such as a casting mold or a forging mold.
  • the powder layer is an organic resin powder layer and the solidified layer is a hardened layer
  • the obtained three-dimensional shaped article can be used as a resin molded product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

アンダーカット部を有して成る三次元形状造形物をより効率的に製造可能な方法を提供するために、本発明の一実施形態では、(i)粉末層の所定箇所に光ビームを照射して所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および(ii)得られた固化層の上に新たな粉末層を形成し、新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程によって粉末層形成および固化層形成を交互に繰り返して行う三次元形状造形物の製造方法が供される。特に、本発明の製造方法では、三次元形状造形物の製造に先立って、アンダーカット部を予め特定するためのモデル化処理を行う。

Description

三次元形状造形物の製造方法
 本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層への光ビーム照射によって固化層を形成する三次元形状造形物の製造方法に関する。
 光ビームを粉末材料に照射することを通じて三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)は、従来より知られている。かかる方法は、以下の工程(i)および(ii)に基づいて粉末層形成と固体層形成とを交互に繰り返し実施して三次元形状造形物を製造する。
 (i)粉末層の所定箇所に光ビームを照射し、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、同様に光ビームを照射して更なる固化層を形成する工程。
 このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能となる。粉末材料として無機質の金属粉末を用いる場合、得られる三次元形状造形物を金型として使用することができる。一方、粉末材料として有機質の樹脂粉末を用いる場合、得られる三次元形状造形物を各種モデルとして使用することができる。
 粉末材料として金属粉末を用い、それによって得られる三次元形状造形物を金型として使用する場合を例にとる。図9に示すように、まず、スキージング・ブレード23を動かして造形プレート21上に所定厚みの粉末層22を形成する(図9(a)参照)。次いで、粉末層22の所定箇所に光ビームLを照射して粉末層22から固化層24を形成する(図9(b)参照)。引き続いて、得られた固化層24の上に新たな粉末層22を形成して再度光ビームを照射して新たな固化層24を形成する。このようにして粉末層形成と固化層形成とを交互に繰り返し実施すると固化層24が積層することになり(図9(c)参照)、最終的には積層化した固化層24から成る三次元形状造形物を得ることができる。最下層として形成される固化層24は造形プレート21と結合した状態になるので、三次元形状造形物と造形プレート21とは一体化物を成すことになり、その一体化物を金型として使用することができる。
特表平1-502890号公報
 本願発明者らは、いわゆる“アンダーカット部”を有する三次元形状造形物を製造する場合、以下の問題が生じ得ることを見出した。具体的には、アンダーカット部10を形成する場合(図7(a)参照)、それを形成しない場合(図7(b)参照)と比べて大きい隆起部18が生じ得ることを見出した。特に、本願発明者らは、アンダーカット部10における傾斜形態がより垂直でなくなるほど、アンダーカット部10の周縁において隆起部18がより大きく生じる傾向があることを見出した(図7(a)~(c)参照)。
 特に大きな隆起部18が生じる場合、次なる粉末層の形成のために用いるスキージング・ブレード23(図8(a)参照)が隆起部18に当たってしまい(図8(b)参照)、それによってアンダーカット部10の形成領域における固化層24の一部が隆起部18に同伴してもぎ取られてしまうおそれがあり得る(図8(c)参照)。そのため、固化層24上に所望の粉末層を形成できなくなり得る。
 以上の事から、アンダーカット部10を有する三次元形状造形物を製造する場合、アンダーカット部10の形成領域における隆起部18を除去する切削加工が必要となる。隆起部18の発生を確認し、当該隆起部18が発生した部分に切削加工を逐次施すことが考えられるが、そのような逐次の切削加工では効率的な三次元形状造形物の製造が阻害される虞がある。具体的には、逐次の切削加工は隆起部18の発生箇所を総括的に捉えているとはいえない。
 本発明は、かかる事情に鑑みて為されたものである。すなわち、本発明の目的は、アンダーカット部を有して成る三次元形状造形物をより効率的に製造するための方法を提供することである。
 上記目的を達成するために、本発明の一実施形態では、
 (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
 (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層形成および固化層形成を交互に繰り返し行うことによって、アンダーカット部を有して成る三次元形状造形物を製造するための方法であって、
 かかる方法の実施に先立って、アンダーカット部を予め特定するためのモデル化処理を行う、三次元形状造形物の製造方法が提供される。
 本発明の製造方法では、アンダーカット部を有して成る三次元形状造形物をより効率的に製造することができる。
アンダーカット部の概略図(図1(a):概略斜視図、図1(b):拡大概略断面図) アンダーカット部を特定するモデル化処理を模式的に示した斜視図(図2(a):三次元形状造形物のモデル形態、図2(b):ピース分割された三次元形状造形物のモデル形態、図2(c):抽出されたアンダーカット部の表面) 切削加工パスを決定する処理を模式的に示した図(図3(a):アンダーカット部を含む三次元形状造形物モデル、図3(b):アンダーカット部を含む三次元形状造形物モデルから取り出した複数のスライス面、図3(c):アンダーカット部の形成領域における固化層の輪郭の切削加工パスの決定) アンダーカット部の形成領域の固化層上面を切削加工に付す態様を模式的に示した斜視図(図4(a):切削加工前、図4(b):切削加工後) 隆起部が生じたアンダーカット部を模式的に示した断面図 内部空間領域を有する三次元形状造形物を模式的に示した断面図 隆起部の種々の発生形態を模式的に示した断面図(図7(a):急峻角度θが相対的に大きいアンダーカット部、図7(b):垂直な傾斜形態を有する固化層周縁部、図7(c):急峻角度θが相対的に小さいアンダーカット部) 隆起部が生じた状態でスキージング・ブレードを用いて次なる粉末層を形成する態様を模式的に示した断面図(図8(a):隆起部接触前、図8(b):隆起部接触時、図8(c):隆起部接触後) 粉末焼結積層法が実施される光造形複合加工のプロセス態様を模式的に示した断面図(図9(a):粉末層形成時、図9(b):固化層形成時、図9(c):積層途中) 光造形複合加工機の構成を模式的に示した斜視図 光造形複合加工機の一般的な動作を示すフローチャート
 以下では、図面を参照して本発明の一実施形態をより詳細に説明する。図面における各種要素の形態および寸法は、あくまでも例示にすぎず、実際の形態および寸法を反映するものではない。
 本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を意味している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に指している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を意味し、粉末層が樹脂粉末層である場合には「硬化層」を意味している。
 また、本明細書で直接的または間接的に説明される“上下”の方向は、例えば造形プレートと三次元形状造形物との位置関係に基づく方向であって、造形プレートを基準にして三次元形状造形物が製造される側を「上方向」とし、その反対側を「下方向」とする。
[粉末焼結積層法]
 まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。特に粉末焼結積層法において三次元形状造形物の切削処理を付加的に行う光造形複合加工を例として挙げる。図9は、光造形複合加工のプロセス態様を模式的に示しており、図10および図11は、粉末焼結積層法と切削処理とを実施できる光造形複合加工機の主たる構成および動作のフローチャートをそれぞれ示している。
 光造形複合加工機1は、図10に示すように、粉末層形成手段2、光ビーム照射手段3および切削手段4を備えている。
 粉末層形成手段2は、金属粉末または樹脂粉末などの粉末を所定厚みで敷くことによって粉末層を形成するための手段である。光ビーム照射手段3は、粉末層の所定箇所に光ビームLを照射するための手段である。切削手段4は、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための手段である。
 粉末層形成手段2は、図9に示すように、粉末テーブル25、スキージング・ブレード23、造形テーブル20および造形プレート21を主に有して成る。粉末テーブル25は、外周が壁26で囲まれた粉末材料タンク28内にて上下に昇降できるテーブルである。スキージング・ブレード23は、粉末テーブル25上の粉末19を造形テーブル20上へと供して粉末層22を得るべく水平方向に移動できるブレードである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内にて上下に昇降できるテーブルである。そして、造形プレート21は、造形テーブル20上に配され、三次元形状造形物の土台となるプレートである。
 光ビーム照射手段3は、図10に示すように、光ビーム発振器30およびガルバノミラー31を主に有して成る。光ビーム発振器30は、光ビームLを発する機器である。ガルバノミラー31は、発せられた光ビームLを粉末層22にスキャニングする手段、すなわち、光ビームLの走査手段である。
 切削手段4は、図10に示すように、エンドミル40および駆動機構41を主に有して成る。エンドミル40は、積層化した固化層の側面、すなわち、三次元形状造形物の表面を削るための切削工具である。駆動機構41は、エンドミル40を所望の切削すべき箇所へと移動させる手段である。
 光造形複合加工機1の動作について詳述する。光造形複合加工機1の動作は、図11のフローチャートに示すように、粉末層形成ステップ(S1)、固化層形成ステップ(S2)および切削ステップ(S3)から構成されている。粉末層形成ステップ(S1)は、粉末層22を形成するためのステップである。かかる粉末層形成ステップ(S1)では、まず造形テーブル20をΔt下げ(S11)、造形プレート21の上面と造形タンク29の上端面とのレベル差がΔtとなるようにする。次いで、粉末テーブル25をΔt上げた後、図9(a)に示すようにスキージング・ブレード23を粉末材料タンク28から造形タンク29に向かって水平方向に移動させる。これによって、粉末テーブル25に配されていた粉末19を造形プレート21上へと移送させることができ(S12)、粉末層22の形成が行われる(S13)。粉末層22を形成するための粉末材料としては、例えば「平均粒径5μm~100μm程度の金属粉末」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレンまたはABS等の樹脂粉末」を挙げることができる。粉末層22が形成されたら、固化層形成ステップ(S2)へと移行する。固化層形成ステップ(S2)は、光ビーム照射によって固化層24を形成するステップである。かかる固化層形成ステップ(S2)においては、光ビーム発振器30から光ビームLを発し(S21)、ガルバノミラー31によって粉末層22上の所定箇所へと光ビームLをスキャニングする(S22)。これによって、粉末層22の所定箇所の粉末を焼結又は溶融固化させ、図9(b)に示すように固化層24を形成する(S23)。光ビームLとしては、炭酸ガスレーザ、Nd:YAGレーザ、ファイバレーザまたは紫外線などを用いてよい。
 粉末層形成ステップ(S1)および固化層形成ステップ(S2)は、交互に繰り返して実施する。これにより、図9(c)に示すように複数の固化層24が積層化する。
 積層化した固化層24が所定厚みに達すると(S24)、切削ステップ(S3)へと移行する。切削ステップ(S3)は、積層化した固化層24の側面、すなわち、三次元形状造形物の表面を削るためのステップである。エンドミル40(図9(c)および図10参照)を駆動させることによって切削ステップが開始される(S31)。例えば、エンドミル40が3mmの有効刃長さを有する場合、三次元形状造形物の高さ方向に沿って3mmの切削処理を行うことができるので、Δtが0.05mmであれば60層分の固化層24が積層した時点でエンドミル40を駆動させる。具体的には駆動機構41によってエンドミル40を移動させながら、積層化した固化層24の側面に対して切削処理を施すことになる(S32)。このような切削ステップ(S3)の最終では、所望の三次元形状造形物が得られているか否かを判断する(S33)。所望の三次元形状造形物が依然得られていない場合では、粉末層形成ステップ(S1)へと戻る。以降、粉末層形成ステップ(S1)~切削ステップ(S3)を繰り返し実施して更なる固化層の積層化および切削処理を実施することによって、最終的に所望の三次元形状造形物が得られる。
[本発明の製造方法]
 本発明は、上述した粉末焼結積層法において、三次元形状造形物の製造に先立って行う前処理に特徴を有している。
 具体的には、三次元形状造形物の製造に先立って、アンダーカット部を予め特定するためのモデル化処理を行う。アンダーカット部は、三次元形状造形物において“急峻”な形態を有する箇所であるところ、かかる箇所を予め特定するための処理を行う。
 図1(a)および図1(b)には、アンダーカット部10が示されている。本明細書における「アンダーカット部」は、広義には図1(a)に示すように急峻角度13を有する部分を意味している。「急峻角度θ」は、図1(a)に示されるように三次元造形物の下側傾斜面15が水平面14に対して成す角度(90度未満)を指している。図示する態様から分かるように、本明細書においては、急峻角度θが大きい値であるほど、アンダーカット部10がより垂直な傾斜形態を有することになる。
 アンダーカット部10は、三次元形状造形物の一部分であるので、積層された固化層から構成されている(図1(b)参照)。従って、狭義にいえば「アンダーカット部」は、図1(b)に示すように、一方の固化層16から他方の固化層17が外側に突出するような形態を有している。より具体的には、アンダーカット部10においては、一方の固化層16の端面16aと他方の固化層17の端面17aとを結ぶ線分と、当該一方の固化層16の水平面16bとの間に形成される角度θ(急峻角度)が90度未満となっている。ここで、一方の固化層16からの他方の固化層17の突出寸法、すなわち、オーバーハング寸法(OH寸法)は、各固化層の高さ寸法がΔtである場合、下式で表すことができる。なお、ここでいう一方の固化層16および他方の固化層17は必ずしも互いに隣接する位置関係を有するものに限らず、それらが互いに離隔した位置関係を有するものであってもよい。
[式1]
 突出寸法(OH寸法)=Δt/tanθ
 本発明におけるモデル化処理は、三次元形状造形物の設計データ(例えば、いわゆるCADデータ)に基づいてコンピュータ上で行うことができる。三次元形状造形物のCADデータを用いる場合、かかるCAD上にてアンダーカット部を特定する処理が行われることになる。具体的には、本発明におけるモデル化処理では、製造される三次元形状造形物の設計データに基づき三次元形状造形物の表面領域においてどの領域がアンダーカット部の表面領域に相当するのかを抽出する。本発明では、相対的に大きな隆起部が生じ得るアンダーカット部の形成領域が予め特定されている。そのため、相対的に大きな隆起部が生じ得るアンダーカット部の所定箇所に対する切削加工、具体的にはアンダーカット部の形成領域における後述の固化層の輪郭上面に対する切削加工に際してより適切な切削加工パスを予め決定することが可能となる。従って、隆起部発生箇所を確認/特定して当該箇所に切削加工を逐次施す場合と比べて、隆起部発生箇所の確認/特定と当該箇所に対する逐次の切削が必要ないことに起因して全体として切削加工に要する時間が減じられる。つまり、三次元形状造形物の製造時間が全体として短くなり、より効率的な製造が実現され得る。
 ある好適な態様では、モデル化処理において、三次元形状造形物モデルの表面を複数のピースに分割し、その分割された複数のピースの各々の法線ベクトルの向きに基づいて、アンダーカット部の表面を三次元形状造形物モデルの表面から抽出する。つまり、三次元形状造形物の設計データから得られる表面領域の法線ベクトルに基づいてアンダーカット部の表面を抽出する。ここでいう「抽出」とは、コンピュータ処理として、三次元形状造形物モデルの表面全体からアンダーカット部に相当する部分の表面領域を“取り出す”又は“抜き出す”ことを実質的に意味している。なお、本明細書でいう「三次元形状造形物モデル(三次元形状造形物のモデル)」とは、製造される三次元形状造形物のコンピュータ上におけるモデル形態を実質的に指す。
 好ましくは、かかる抽出に際して、法線ベクトルの向きが水平よりも下向きとなるピースをアンダーカット部の表面とみなす。つまり、複数の法線ベクトルのなかでも所定の向きの法線ベクトルを有するピースのみを選択する。ここでいう「水平」とは、固化層の積層方向に対して垂直となる向きを実質的に指す。より具体的な例でいえば、固化層の幅方向における向きが“水平”な向きに相当する。
 ある好適な態様では、三次元形状造形物モデルから複数のスライス面を取り出し、取り出した各スライス面の輪郭のうちアンダーカット部に相当する部分の輪郭を特定し、特定した輪郭から複数のポイントを選択し、選択した各ポイントの座標情報を得る。つまり、コンピュータ処理にて三次元形状造形物モデルのうちアンダーカット部に相当する部分の輪郭の任意のポイントの座標情報を得る。
 ある好適な態様では、三次元形状造形物の製造方法の実施時において、アンダーカット部における固化層の輪郭上面を切削加工に付す。つまり、三次元形状造形物の製造時に相対的に大きな隆起部が生じ得るアンダーカット部における固化層の輪郭上面のみを切削加工に付す。かかる切削加工により、次なる粉末層を形成するために用いるスキージング・ブレードが隆起部に当たることを回避でき得る。そのため、アンダーカット部における固化層の一部が隆起部に同伴してもぎ取られてしまうことを回避でき得る。その結果、固化層上に所望の新たな粉末層を好適に形成でき得る。なお、本明細書でいう「隆起部」とは、光ビームを用いて粉末層から固化層を形成する際に固化層の輪郭に生じる突起物(端部隆起物に相当)のことを指しており、特にいえばアンダーカット部に相当する箇所における固化層の輪郭に生じる突起物(端部隆起物に相当)を指す。特定の理論に拘束されるわけではないが、粉末層に光ビームが照射される際、周辺の粉末領域にも光ビームが照射されることになり、溶融現象により隆起を誘発する表面張力が発生するので固化層の輪郭に隆起部が生じ易いと考えられる。
 ある好適な態様では、アンダーカット部に相当する部分の輪郭から選択した複数のポイントの座標情報に基づき切削加工パスを形成し、当該切削加工パスに従い、アンダーカット部における固化層の輪郭上面を切削加工に付す。つまり、三次元形状造形物の製造時に相対的に大きな隆起部が生じ得るアンダーカット部における固化層の輪郭上面を、予め決定した切削加工パスに従い切削加工に付す。切削加工パスが予め決定されているため、三次元形状造形物の製造時に相対的に大きな隆起部が生じ得るアンダーカット部における固化層の輪郭上面をより効率的に切削加工に付すことができ得る。そのため、相対的に大きな隆起部が生じ得るアンダーカット部における固化層の輪郭上面の切削加工時間を短くすることができ得ると共に、次なる粉末層を形成するために用いるスキージング・ブレードが隆起部に当たることを回避でき得る。
 ある好適な態様では、アンダーカット部における急峻角度に応じて、アンダーカット部における固化層の輪郭上面の切削加工の要否を判断する。アンダーカット部10では急峻角度θが大きい値であるほど、アンダーカット部10がより垂直な傾斜形態を有する一方、急峻角度θが小さい値であるほど、アンダーカット部10がより垂直でない傾斜形態を有する(図7参照)。この点、アンダーカット部10では、その傾斜面がより垂直でなくなるほど隆起部18がより大きく生じる傾向があるところ、そのような隆起部18の大きさを急峻角度θから間接的に把握し、それによって、アンダーカット部における固化層の輪郭上面の切削加工の要否を判断する。例えば、アンダーカット部10における急峻角度θが比較的小さく(すなわち、アンダーカット部10がより垂直でない傾斜形態を有し)、粉末層形成時のスキージング・ブレード23の移動が隆起部18によって阻害され得ると判断される場合のみアンダーカット部10における固化層の輪郭上面の切削加工を施してよい。逆にいえば、アンダーカット部10における急峻角度θが比較的大きく(すなわち、アンダーカット部10がより垂直な傾斜形態を有し)、粉末層形成時のスキージング・ブレード23の移動が隆起部18によって阻害されないと判断される場合、アンダーカット部10における固化層の輪郭上面の切削加工を施さなくてよい。
<本発明の技術的思想>
 本発明の技術的思想について説明しておく。本発明は『固化層形成時に大きい隆起部が生じると考えられる箇所を予め特定し、より好適な切削加工パスを予め構築しておく』といった技術的思想に基づいている。
 本願発明者は、アンダーカット部10では比較的大きい隆起部18が生じ易いといった現象を見出しており、本発明はかかる現象に鑑みている。更にいえば、アンダーカット部10では急峻の程度が変わると、そこに生じる隆起部18のサイズが変わる傾向があることも本願発明者は見出しており、そのような傾向を有するアンダーカット部10に対してより好適に対処することにも鑑みている。
 本発明の技術的思想に基づけば、サイズのより大きい隆起部が生じ得るアンダーカット部の形成領域が予め特定されるため、三次元形状造形物の製造をより効率的に行うことができる。
 具体的には、当該アンダーカット部の形成領域の予めの特定により、相対的に大きな隆起部が生じ得るアンダーカット部の所定箇所(固化層の輪郭上面に相当)に対する切削加工に際してより適切な切削加工パスを予め決定することが可能となる。従って、隆起部の発生(発生箇所)を確認/特定して当該箇所に切削加工を逐次施す場合と比べて、隆起部発生箇所の確認/特定と当該箇所に対する逐次の切削が必要ないことに起因して全体として切削加工に要する時間が減じられる。端的に言えば、隆起部の発生箇所を確認/特定した後における逐次の切削対応ではなく、相対的に大きな隆起部が生じ得るアンダーカット部の所定箇所に対する切削対応を「事前」に把握している点に利点を有する。以上の事から、三次元形状造形物の製造時間が全体として短くなり、より効率的な製造が実現され得る。
 以下、本発明の一実施形態に係る三次元形状造形物の製造方法について、より具体的に説明する。本発明は、前処理として行うコンピュータ処理と、その後にて粉末焼結積層法として行う三次元形状造形物の製造とに大きく分けることができる。
《前処理(コンピュータ処理)》
 まず、三次元形状造形物の製造に先立ってコンピュータを用いて行う前処理について説明する。かかる前処理は、好ましくは以下の(1)および(2)が行われる。
(1)アンダーカット部の特定
 まず、三次元形状造形物を製造する前にCADソフトを用いてモデル化処理を行う。具体的には、例えばいわゆる“STL形式”のCADソフトを用いてモデル化処理を行う。このようなモデル化処理は、アンダーカット部を予め特定するためのコンピュータ処理に相当する。
 モデル化処理に際しては、図2(a)および図2(b)に示すように、三次元形状造形物モデル100’の表面を複数のピース11’へと分割する。好ましくは、三次元形状造形物モデル100’の表面全体を複数の幾何学形状のピース11’に分割する。図示するように、三次元形状造形物モデル100’の表面全体を例えば三角形状のピース11’へと分割してよい。
 複数のピース11’に分割した後、図2(b)に示されるように、各ピース11’の面に対して垂直なベクトルの向き、すなわち、各ピース11’の法線ベクトル12’の向きをピース11’毎に求める。具体的には、各ピース11’の各々の頂点座標から各ピース11’の中心座標(中心点)を求め、次いで当該中心座標に対して垂直なベクトル(法線ベクトル12’)の向きを求める。
 法線ベクトル12’の向きをピース11’毎に求めた後、図2(b)および図2(c)に示すように、法線ベクトル12’の向きが水平よりも下向きとなるピース11’のみを選び出す。ここで、本発明では法線ベクトル12’の向きが下向きとなるピース11’をアンダーカット部10’における表面と判断する。なお、図示していないが、法線ベクトル12’の向きが水平よりも“上向き”となるピース11’については、アンダーカット部10’以外の表面であると見なし、選び出さない。
 このように、本発明では、複数のピース11’の各々の法線ベクトル12’の向きを指標としており、それによって、三次元形状造形物モデル100’の表面全体からアンダーカット部10’の表面を抽出している。
(2)切削加工パスの決定
 アンダーカット部10’を特定した後、かかるアンダーカット部10’の所定箇所(固化層の輪郭上面に相当)に対する切削加工パスを決定するコンピュータ処理を行う。かかる処理に際しては、必要に応じて例えばCAD/CAMソフトなどを用いてよい。
 まず、図3(a)および図3(b)に示すように、形成箇所を特定したアンダーカット部10’を含む三次元形状造形物モデル100’から複数のスライス面50’を取り出す。当該スライス面50’は、例えば水平方向に沿って固化層24’の積層ピッチで三次元形状造形物モデル100’をスライスすることで得られる面である。複数のスライス面50’を取り出した後、図3(b)および図3(c)に示すように、各スライス面50’の輪郭60’のうち、アンダーカット部10’に相当する輪郭60’を特定する(図3(b)および図3(c)内の太線に相当)。アンダーカット部10’における輪郭60’を特定した後、当該輪郭60’から任意の複数のポイント70’を選択する。なお、アンダーカット部10’に相当する輪郭60’が、スライス面50’の輪郭60’のうちいずれの箇所に位置するかを特定するに際しては、上述のモデル化処理により抽出したアンダーカット部10’の位置情報を活用してよい。選択する複数のポイント70’としては、図3(c)に示すように、例えば、アンダーカット部10’の輪郭60’の一端に位置する第1ポイント71’、当該輪郭60’の他端に位置する第2ポイント72’、および第1ポイント71’と第2ポイント72’との間に位置する第3ポイント73’であってよい。
 任意の複数のポイント70’を選択した後においては、各ポイント70’の座標情報(x、y、z)を得る。各ポイント70’の座標情報(x、y、z)を得ると、各ポイント70’が三次元形状造形物モデル100’のいずれの箇所に位置するかを精度良く空間把握することができ得る。例えば、上述の第1ポイント71’、第2ポイント72’および第3ポイント73’を選択する場合を例に挙げると、第1ポイント71’、第2ポイント72’および第3ポイント73’の座標情報をそれぞれ得る。具体的には、第1ポイント71’の座標が(x、y、z)であること、第2ポイント72’の座標が(x、y、z)であること、および第3ポイント73’の座標が(x、y、z)であることを把握する。なお、上述のように水平方向に沿って三次元形状造形物モデル100’をスライスする場合、所定箇所に位置する1枚のスライス面50’の第1ポイント71’のz座標zと、第2ポイント72’のz座標zと、第3ポイント73’のz座標zは等しくなり得る。
 各ポイントの座標情報を得た後、各ポイントをそれぞれ通る切削加工パス80’を決定する。好ましくは、後述の三次元形状造形物の製造時にてアンダーカット部10の形成領域の固化層24の輪郭上面24aに対する切削加工がより効率的となり得る切削加工パスを選択する(図4参照)。具体的には、切削工具の移動距離が最短となり得る切削加工パス80’を決定する。これにより、後述の三次元形状造形物の製造時においてアンダーカット部10における固化層24の輪郭上面24aを切削加工するための時間を短くし得る(図4参照)。例えば、上述のようにアンダーカット部10’の輪郭60’から第1~第3ポイントを選択する場合、切削工具の移動距離が最短となるパスとして、例えば第1ポイント71’⇒第3ポイント73’⇒第2ポイント72’を順に切削工具が通過し得る切削加工パスを選択する。これに限定されることなく、例えば第2ポイント72’⇒第3ポイント73’⇒第1ポイント71’を順に切削工具が通過し得る切削加工パスを選択してよい。
 更に、上述の切削加工パス80’の決定と併せて、後述の三次元形状造形物の製造時においてアンダーカット部10における固化層24の輪郭上面24aを切削加工する際の切削工具の操作条件を予め決定してよい(図4参照)。例えば、アンダーカット部10’の急峻角度θ(図3(a)参照)に応じて生じ得る隆起部の寸法が変わることを考慮して、例えば「エンドミルを3000回転/分の速度で時計回りに回転させる」という操作条件、および「エンドミルを一端から他端まで500mm/分の速度で動作させる」という操作条件を組み合わせたものを予め決定してよい。
 以上の事からも、三次元形状造形物の製造に先立って、製造時にてアンダーカット部10の形成領域における固化層24の輪郭上面24aに切削加工を付すための(1)切削加工パスおよび(2)切削工具の操作条件に関するデータベースを予め構築しておく。当該データベースを予め構築しておくことで、後刻の三次元形状造形物の製造時にアンダーカット部10の形成領域における固化層24の輪郭上面24aに対する切削加工を好適に制御でき得る(図4参照)。
《粉末焼結積層法の実施時》
 次に、三次元形状造形物の製造時における実施態様について説明する。
 三次元形状造形物の製造時においては、図4(a)および図4(b)に示すようにそれに先立って決定した切削加工パスに基づいて、アンダーカット部10の形成領域における固化層24の輪郭上面24aを切削加工に付してよい。
 具体的には、コンピュータ処理にて予め決定した切削加工パス80’(図3(c)参照)を形成するための各ポイント70’の座標情報に基づき、実際の切削加工時において固化層24の輪郭上面24aに対する切削手段4の切削加工パスを制御してよい。より具体的には、切削手段4として、数値制御(NC:Numerical Control)工作機械またはそれに準ずるもの(以下、NC工作機械等という。)を用い、コンピュータ処理にて得た各ポイント70’の座標情報からプログラム変換した数値情報を、当該NC工作機械等に対して命令してよい。これにより、NC工作機械等として用いる切削手段4の構成要素であるエンドミル40の切削加工パスを好適に制御でき得る。
 コンピュータ処理にて「予め決定した切削加工パス」として、切削工具、すなわちエンドミル40の移動距離が最短となるパスを選択した場合、アンダーカット部10の形成領域における固化層24の輪郭上面24aの切削加工に要する時間を好適に減じることができ得る。その結果として、全体として三次元形状造形物の製造時間をより短縮することができ得る。
 また、三次元形状造形物の製造時においては、それに先立って決定した切削手段の操作条件に基づいて、アンダーカット部10の形成領域における固化層24の輪郭上面24aを切削加工に付してよい。
 具体的には、コンピュータ処理にて予め決定した切削手段の操作条件に基づき、実際の切削加工時において切削手段4の動作を制御してよい。より具体的には、切削手段4として、数値制御(NC:Numerical Control)工作機械またはそれに準ずるもの(以下、NC工作機械等という。)を用い、コンピュータ処理にて得た切削手段の操作条件からプログラム変換した数値情報を、当該NC工作機械等に対して命令してよい。例えば、上述のコンピュータ処理にて予め決定した切削手段の操作条件(「エンドミルを3000回転/分の速度で時計回りに回転させる」という操作条件、および「エンドミルを一端から他端まで500mm/分の速度で動作させる」という操作条件を組み合わせたもの)からプログラム変換した数値情報を、当該NC工作機械等に対して命令してよい。これにより、数値情報に基づき動作することに起因して、NC工作機械等として用いる切削手段4の構成要素であるエンドミル40の操作条件を好適に制御でき得る。
 以上の事からも、NC工作機械等として用いる切削手段4の構成要素であるエンドミル40の切削加工パスおよび操作条件を好適に制御でき得るため、三次元形状造形物の製造時においては、アンダーカット部10の形成領域における固化層24の輪郭上面24aを効率的に切削加工に付すことができ得る。そのため、相対的に大きな隆起部が生じ得るアンダーカット部における固化層の輪郭上面の切削加工時間を短くすることができ得る。また、かかる切削加工により、次なる粉末層を形成するために用いるスキージング・ブレードが隆起部に当たることを回避でき得る。そのため、アンダーカット部における固化層が隆起部に同伴してもぎ取られてしまうことを回避でき得る。その結果、固化層上に所望の新たな粉末層を好適に形成でき得る。従って、最終的に所望の三次元形状造形物を好適に製造することができ得る。
 本発明の製造方法は種々の態様で実施することができる。
<急峻角度に基づく切削加工の態様>
 例えば、本発明では、アンダーカット部における傾斜の程度に応じて、アンダーカット部における固化層の輪郭上面の切削加工の要否を予め判断してよい。
 図5に示すように、例えば2つの異なる急峻角度θを有するようにアンダーカット部10が形成される場合、アンダーカット部10では互いに異なるサイズの隆起部18が発生し得る。具体的には、急峻角度θが相対的に大きいアンダーカット部10の所定領域、すなわち、より垂直な傾斜形態となるアンダーカット領域の場合では、より小さな隆起部が生じ易い。一方、急峻角度θが相対的に小さいアンダーカット部の所定領域、すなわち、より垂直でない傾斜形態のアンダーカット領域の場合では、より大きな隆起部が生じ易い。あくまでも例示にすぎないが、急峻角度θが45度未満となるアンダーカット領域では、急峻角度が45度以上となるアンダーカット領域と比べて、サイズの大きい隆起部18が生じ易い傾向がある。
 上記の如くの傾向ゆえ、上記(1)の特定においては、アンダーカット部10’のうち急峻角度θが小さい領域と急峻角度θが大きい領域とを予め特定する。経時的に説明すると次のようになる。三次元形状造形物モデル100’の表面全体を複数のピース11’に分割する(図2(a)および図2(b)参照)。次に、各ピース11’の法線ベクトル12’の向きを求めて(図2(b)参照)、かかる向きが水平よりも下向きとなるピース11’を抽出する(図2(c)参照)。下向きの法線ベクトル12’を有するピース11’を抽出した後、当該法線ベクトル12’の向きと水平との間に形成される角度の違いから、急峻角度θが小さいアンダーカット領域か、あるいは急峻角度θが大きいアンダーカット領域かを判断する。
 例えば急峻角度θがより大きいアンダーカット領域、すなわち、アンダーカット部がより垂直な傾斜形態となる領域の場合、隆起部のサイズが相対的に小さいことが想定され、その領域における固化層の輪郭上面を切削加工に付さないといった判断を行ってよい。これにより、三次元形状造形物の製造時において、切削加工を施す領域がより限定的となるため、アンダーカット部における固化層の輪郭上面の切削加工時間を減じることができる。従って、最終的には三次元形状造形物の製造時間をより短くすることができ、アンダーカット部を有して成る三次元形状造形物がより効率的に製造される。
<固化層の積層数に基づく切削加工の態様>
 本発明では、例えば固化層の積層数に応じて切削加工の要否を予め判断してもよい。
 具体的には、固化層の積層数が所定数を上回る場合、積層数が多いことに起因して各固化層のアンダーカット部に生じる隆起部が大きくなる傾向がある。かかる場合、粉末層形成時のスキージング・ブレードの移動が隆起部によって阻害され得るので、上記(2)のコンピュータ処理で切削加工パスを決定する判断を行ってよい。一方、固化層の積層数が所定数を下回る場合、各固化層のアンダーカット部の隆起部はあまり大きくなっていないと想定される。従って、上記(2)のコンピュータ処理で切削加工パスを決定しない判断を行ってよい。これに限定されず、固化層の積層数と固化層厚みとを乗じた値が所定値を上回るか否かによって切削加工パスを決定するか否かの判断を行ってもよい。このようにすると、切削加工を施すタイミングが減じられるので、アンダーカット部を有して成る三次元形状造形物がより効率的に製造される。
 最後に、三次元形状造形物の製造時にアンダーカット部における固化層の輪郭上面を切削加工に付した場合の効果について説明する。
 三次元形状造形物100の製造時にアンダーカット部10における固化層の輪郭上面を切削加工に付すと、アンダーカット部10における固化層の輪郭に生じ得る隆起部を当該輪郭上面から取り除くことができ得る。そのため、次なる粉末層の形成のために用いるスキージング・ブレードが隆起部に当たってしまい、それによってアンダーカット部10における固化層の一部が隆起部に同伴してもぎ取られてしまうことを回避することができ得る。そのため、固化層上に新たな粉末層を好適に形成することができ得る。これにより、アンダーカット部10の形成領域においても光ビームを用いて新たな固化層を好適に形成することができ得る。その結果、アンダーカット部10を有した三次元形状造形物100を好適に製造することができ得る。
 一例を挙げると、図6に示すようにアンダーカット部10が形成され得る内部空間領域90の形成面の一部(上側部分)および/または三次元形状造形物100の外面を好適に形成することができ得る。アンダーカット部10が形成され得る内部空間領域90の形成面の一部が好適に形成されると、三次元形状造形物100を金型として用いる場合、内部空間領域90を温調管として好適に用いることができ得る。つまり、内部空間領域90に対して温調水を所望流量で流すことができ、金型として好適な温調機能が奏され得る。また、アンダーカット部10が形成され得る三次元形状造形物100の外面が好適に形成されると、当該外面にクラックが生じることが回避され得るため、外部からの影響(例えば外圧)にも好適に耐えることができ得る。なお、アンダーカット部10における固化層の輪郭上面のみを切削加工に付すと、アンダーカット部10が形成され得る三次元形状造形物100の外面(側面)に隆起部が残存し得る。この場合、当該アンダーカット部10が形成され得る三次元形状造形物100の外面(側面)を切削加工等の後加工を好適に行ってよい。
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。
 なお、上述のような本発明の一実施形態は、次の好適な態様を包含している。
第1態様
 (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
 (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
により粉末層形成および固化層形成を交互に繰り返し行うことによって、アンダーカット部を有して成る三次元形状造形物を製造するための方法であって、
 前記方法の実施に先立って、前記アンダーカット部を予め特定するためのモデル化処理を行う、三次元形状造形物の製造方法。
第2態様
 上記第1態様において、前記モデル化処理において、前記製造される前記三次元形状造形物のモデルの表面を複数のピースに分割し、該複数のピースの各々の法線ベクトルの向きに基づいて、前記三次元形状造形物の前記モデルの前記表面から前記アンダーカット部の表面を抽出する、三次元形状造形物の製造方法。
第3態様
 上記第2態様において、前記抽出に際して、前記法線ベクトルの向きが水平よりも下向きとなる前記ピースを前記アンダーカット部の前記表面とみなす、三次元形状造形物の製造方法。
第4態様
 上記第1態様~第3態様のいずれかにおいて、前記製造される前記三次元形状造形物の前記モデルから複数のスライス面を取り出し、取り出した各スライス面の輪郭のうち前記アンダーカット部に相当する部分の輪郭を特定し、特定した該輪郭から複数のポイントを選択し、選択した各ポイントの座標情報を得る、三次元形状造形物の製造方法。
第5態様
 上記第1態様~第4態様のいずれかにおいて、前記方法の実施時において、前記アンダーカット部における前記固化層の輪郭上面を切削加工に付す、三次元形状造形物の製造方法。
第6態様
 上記第4態様に従属する第5態様において、前記座標情報に基づき切削加工パスを形成し、該切削加工パスに従い、前記アンダーカット部における前記固化層の前記輪郭上面を前記切削加工に付す、三次元形状造形物の製造方法。
第7態様
 上記第5態様又は第6態様において、前記アンダーカット部における急峻角度に応じて、該アンダーカット部における前記固化層の前記輪郭上面の前記切削加工の要否を判断する、三次元形状造形物の製造方法。
 本発明の一実施形態に係る三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、『粉末層が無機質の金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。一方、『粉末層が有機質の樹脂粉末層であって、固化層が硬化層となる場合』では、得られる三次元形状造形物を樹脂成形品として用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2016-016090号(出願日:2016年1月29日、発明の名称:「三次元形状造形物の製造方法」)、および日本国特許出願第2016-145594号(出願日:2016年7月25日、発明の名称:「三次元形状造形物の製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
  100  三次元形状造形物
  100’ 三次元形状造形物モデル(三次元形状造形物のモデル)
  10’  三次元形状造形物モデルのアンダーカット部
  10   三次元形状造形物のアンダーカット部
  11’  ピース
  12’  法線ベクトル
  13   急峻角度
  19   粉末
  22   粉末層
  24   固化層
  24a  固化層の輪郭上面
   L   光ビーム

Claims (7)

  1.  (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
     (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
    により粉末層形成および固化層形成を交互に繰り返し行うことによって、アンダーカット部を有して成る三次元形状造形物を製造するための方法であって、
     前記方法の実施に先立って、前記アンダーカット部を予め特定するためのモデル化処理を行う、三次元形状造形物の製造方法。
  2. 前記モデル化処理において、前記製造される前記三次元形状造形物のモデルの表面を複数のピースに分割し、該複数のピースの各々の法線ベクトルの向きに基づいて、前記三次元形状造形物の前記モデルの前記表面から前記アンダーカット部の表面を抽出する、請求項1に記載の三次元形状造形物の製造方法。
  3. 前記抽出に際して、前記法線ベクトルの向きが水平よりも下向きとなる前記ピースを前記アンダーカット部の前記表面とみなす、請求項2に記載の三次元形状造形物の製造方法。
  4. 前記製造される前記三次元形状造形物の前記モデルから複数のスライス面を取り出し、取り出した各スライス面の輪郭のうち前記アンダーカット部に相当する部分の輪郭を特定し、特定した該輪郭から複数のポイントを選択し、選択した各ポイントの座標情報を得る、請求項1に記載の三次元形状造形物の製造方法。
  5. 前記方法の実施時において、前記アンダーカット部における前記固化層の輪郭上面を切削加工に付す、請求項4に記載の三次元形状造形物の製造方法。
  6. 前記座標情報に基づき切削加工パスを形成し、該切削加工パスに従い、前記アンダーカット部における前記固化層の前記輪郭上面を前記切削加工に付す、請求項5に記載の三次元形状造形物の製造方法。
  7. 前記アンダーカット部における急峻角度に応じて、該アンダーカット部における前記固化層の前記輪郭上面の前記切削加工の要否を判断する、請求項5に記載の三次元形状造形物の製造方法。
PCT/JP2017/001762 2016-01-29 2017-01-19 三次元形状造形物の製造方法 WO2017130834A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780008363.1A CN108602261B (zh) 2016-01-29 2017-01-19 三维形状造型物的制造方法
US16/073,618 US20190001415A1 (en) 2016-01-29 2017-01-19 Method for manufacturing three-dimensionally shaped object
KR1020187021699A KR102238862B1 (ko) 2016-01-29 2017-01-19 삼차원 형상 조형물의 제조 방법
DE112017000544.2T DE112017000544T5 (de) 2016-01-29 2017-01-19 Verfahren zum Herstellen eines dreidimensionalen Formgegenstands

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016016090 2016-01-29
JP2016-016090 2016-01-29
JP2016-145594 2016-07-25
JP2016145594A JP6778883B2 (ja) 2016-01-29 2016-07-25 三次元形状造形物の製造方法

Publications (1)

Publication Number Publication Date
WO2017130834A1 true WO2017130834A1 (ja) 2017-08-03

Family

ID=59398989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001762 WO2017130834A1 (ja) 2016-01-29 2017-01-19 三次元形状造形物の製造方法

Country Status (1)

Country Link
WO (1) WO2017130834A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889902A (zh) * 2018-09-11 2020-03-17 北京京东尚科信息技术有限公司 一种三维建模的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044693A1 (fr) * 2006-10-10 2008-04-17 Shofu Inc. Système et programme de création de données de modélisation et procédé de fabrication
WO2012160811A1 (ja) * 2011-05-23 2012-11-29 パナソニック株式会社 三次元形状造形物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044693A1 (fr) * 2006-10-10 2008-04-17 Shofu Inc. Système et programme de création de données de modélisation et procédé de fabrication
WO2012160811A1 (ja) * 2011-05-23 2012-11-29 パナソニック株式会社 三次元形状造形物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889902A (zh) * 2018-09-11 2020-03-17 北京京东尚科信息技术有限公司 一种三维建模的方法和装置
CN110889902B (zh) * 2018-09-11 2024-01-12 北京京东尚科信息技术有限公司 一种三维建模的方法和装置

Similar Documents

Publication Publication Date Title
CN108602261B (zh) 三维形状造型物的制造方法
JP6443698B2 (ja) 三次元形状造形物の製造方法
JP5877471B2 (ja) 三次元形状造形物の製造方法
JP5539347B2 (ja) 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
JP5230264B2 (ja) 三次元形状造形物の製造方法
JP6411601B2 (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
KR101648442B1 (ko) 3차원 형상 조형물의 제조 방법
CN107848212B (zh) 三维形状造型物的制造方法
KR102145781B1 (ko) 3차원 형상 조형물의 제조 방법
JP6200599B1 (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
JP2004277881A (ja) 三次元形状造形物の製造方法及びその装置
US20180200795A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
EP3466566A1 (en) Method for producing three-dimensional shaped article
KR20160123387A (ko) 3차원 형상 조형물의 제조 방법
JP4867790B2 (ja) 三次元形状造形物の製造方法
WO2017130834A1 (ja) 三次元形状造形物の製造方法
WO2018003798A1 (ja) 三次元形状造形物の製造方法
JP6726858B2 (ja) 三次元形状造形物の製造方法
WO2020218567A1 (ja) 三次元形状造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112017000544

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744064

Country of ref document: EP

Kind code of ref document: A1