WO2017130656A1 - 偏光板の製造方法 - Google Patents

偏光板の製造方法 Download PDF

Info

Publication number
WO2017130656A1
WO2017130656A1 PCT/JP2017/000252 JP2017000252W WO2017130656A1 WO 2017130656 A1 WO2017130656 A1 WO 2017130656A1 JP 2017000252 W JP2017000252 W JP 2017000252W WO 2017130656 A1 WO2017130656 A1 WO 2017130656A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing
resin
optical film
polarizing plate
Prior art date
Application number
PCT/JP2017/000252
Other languages
English (en)
French (fr)
Inventor
恵啓 伊藤
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016242000A external-priority patent/JP2017138582A/ja
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780008381.XA priority Critical patent/CN108603963A/zh
Priority to KR1020187024084A priority patent/KR20180105193A/ko
Publication of WO2017130656A1 publication Critical patent/WO2017130656A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a polarizing plate.
  • liquid crystal displays In recent years, low-power consumption, low-voltage, light-weight and thin liquid crystal displays are rapidly spreading as information display devices such as mobile phones, portable information terminals, computer monitors, and televisions. With the development of liquid crystal technology, liquid crystal displays in various modes have been proposed, and problems with liquid crystal displays such as response speed, contrast, and narrow viewing angle are being solved. In addition, with the spread of mobile liquid crystal displays, for example, when used outdoors, the screen of the liquid crystal display may be viewed with polarized sunglasses. Even when viewing the screen through polarized sunglasses, excellent visibility is required.
  • Patent Documents 1 to 9 Several means for improving the visibility when viewing the screen through polarized sunglasses have been proposed.
  • linearly polarized light emitted from a polarizing plate arranged on the viewing side of an image display element such as a liquid crystal cell is elliptical (or circular).
  • a method in which a retardation plate (for example, a ⁇ / 4 wavelength plate) for conversion to polarized light is disposed on the viewing side of the polarizing plate is employed.
  • Such a retardation plate is stretched and is often laminated directly on the polarizing film via an adhesive layer. Further, the angle between the absorption axis of the polarizing plate and the slow axis of the retardation plate is often arranged at a predetermined angle (for example, 45 °), and the retardation plate is stretched when it is put into a heat resistance test. As a result, the absorption axis of the polarizing film is locally changed and the degree of polarization is lowered.
  • An optical film, a polarizing film, and an adhesive layer are included in this order, and the thickness of the polarizing film is 15 ⁇ m or less, and the angle formed by the absorption axis of the polarizing film and the slow axis of the optical film is approximately 45.
  • a method for producing a polarizing plate having an angle of about 135 ° or about 135 ° The manufacturing method of the polarizing plate which has the process of heat-processing the said optical film, before bonding the said optical film to the said polarizing film.
  • the optical film includes at least one selected from the group consisting of a cyclic polyolefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, or a (meth) acrylic resin.
  • the manufacturing method of the polarizing plate of description [4] The method for producing a polarizing plate according to any one of [1] to [3], further comprising a protective film between the polarizing film and the pressure-sensitive adhesive layer.
  • a method for producing a polarizing plate capable of suppressing a decrease in the degree of polarization due to a shift in the absorption axis of a polarizing film caused by a dimensional change of the optical film during a heat resistance test.
  • the layer structure of the polarizing plate 10 obtained by the manufacturing method of the present invention will be described.
  • the polarizing plate obtained by the production method of the present invention is preferably configured by laminating the optical film 11, the polarizing film 14, and the pressure-sensitive adhesive layer 16 in this order.
  • the angle formed by the absorption axis of the polarizing film 14 and the slow axis of the optical film 11 is approximately 45 ° or approximately 135 °. It is also useful to form the surface treatment layer 20 on the surface of the optical film 11 opposite to the bonding surface with the polarizing film.
  • the optical film 11 is preferably a film containing at least one selected from the group consisting of a cyclic polyolefin resin, a polycarbonate resin, a cellulose resin, a polyester resin, and a (meth) acrylic resin.
  • the polarizing film 14 preferably has a thickness of 15 ⁇ m or less.
  • a polarizing plate 10 having a protective film 15 between the polarizing film 14 and the adhesive 16.
  • the polarizing film 14 is usually a step of uniaxially stretching a polyvinyl alcohol resin film, a step of adsorbing a dichroic dye by dyeing the polyvinyl alcohol resin film with a dichroic dye, and a dichroic dye adsorbed.
  • the polyvinyl alcohol-based resin film is produced through a step of crosslinking with a boric acid aqueous solution and a step of washing with water after the crosslinking treatment with the boric acid aqueous solution.
  • the polyvinyl alcohol resin can be produced by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin may be a copolymer of vinyl acetate and another monomer copolymerizable therewith, in addition to polyvinyl acetate which is a homopolymer of vinyl acetate.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol resin may be modified, for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the film thickness of the polyvinyl alcohol resin raw film is, for example, about 10 to 100 ⁇ m, preferably about 10 to 50 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • uniaxial stretching can also be performed in a plurality of stages shown here.
  • a method of stretching uniaxially between rolls having different peripheral speeds, a method of stretching uniaxially using a hot roll, or the like can be adopted.
  • Uniaxial stretching may be performed by dry stretching in which stretching is performed in the air, or may be performed by wet stretching in which a polyvinyl alcohol-based resin film is stretched using a solvent such as water. The draw ratio is usually about 3 to 8 times.
  • the dyeing of the polyvinyl alcohol resin film with the dichroic dye can be performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye.
  • a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye Specifically, iodine or a dichroic organic dye is used as the dichroic dye.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the content of iodine in this aqueous solution is usually about 0.01 to 1 part by weight per 100 parts by weight of water, and the content of potassium iodide is usually about 0.5 to 20 parts by weight per 100 parts by weight of water. It is.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • a method of immersing and dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic organic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by weight, preferably 1 ⁇ 10 ⁇ 3 to 1 part by weight per 100 parts by weight of water.
  • This aqueous dye solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the temperature of the aqueous dichroic organic dye solution used for dyeing is usually about 20 to 80 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with the dichroic dye can be performed by a method of immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution.
  • the boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably 5 to 12 parts by weight per 100 parts by weight of water.
  • the boric acid-containing aqueous solution preferably contains potassium iodide.
  • the content of potassium iodide in the boric acid-containing aqueous solution is usually about 0.1 to 15 parts by weight, preferably 5 to 12 parts by weight, per 100 parts by weight of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the water washing treatment is usually about 5 to 40 ° C.
  • the immersion time is usually about 1 to 120 seconds.
  • a drying process is performed to obtain a polarizing film.
  • the drying process can be performed using a hot air dryer or a far infrared heater.
  • the temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C.
  • the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the moisture content in the polarizing film is reduced to a practical level.
  • the water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight.
  • the moisture content is less than 5% by weight, the polarizing film loses its flexibility, and may be damaged or broken after drying. On the other hand, if the moisture content exceeds 20% by weight, the thermal stability tends to be insufficient.
  • the polarizing film 14 in which the dichroic dye is adsorbed and oriented on the polyvinyl alcohol-based resin film can be produced.
  • the thickness of the polarizing film 14 is 15 ⁇ m or less.
  • a polarizing film is used.
  • the thickness of the polarizing film 14 is preferably 12 ⁇ m or less.
  • the thickness of the polarizing film is usually 3 ⁇ m or more in that good optical properties can be imparted.
  • the optical film 11 is preferably composed of a material excellent in transparency, mechanical strength, thermal stability, moisture shielding properties and the like.
  • polyolefin resin such as chain polyolefin resin (polypropylene resin, etc.), cyclic polyolefin resin (norbornene resin, etc.); cellulose resin such as cellulose ester resin, such as cellulose triacetate and cellulose diacetate; Polyester resins; polycarbonate resins; (meth) acrylic resins; polystyrene resins; or mixtures and copolymers thereof.
  • the optical film 11 has the following formula: (1) 100 nm ⁇ R e (590) ⁇ 180 nm, (2) 0.5 ⁇ R th (590) / R e (590) ⁇ 0.8, (3) 0.85 ⁇ R e (450) / R e (550) ⁇ 1.00, and (4) 1.00 ⁇ R e (630) / R e (550) ⁇ 1.1 It is preferable that the film satisfies the above.
  • R e (590), R e (450), R e (550), and R e (630) represent in-plane retardation values at measurement wavelengths of 590 nm, 450 nm, 550 nm, and 630 nm, respectively, and R th ( 590) represents a thickness direction retardation value at a measurement wavelength of 590 nm.
  • the screen is viewed from various directions (azimuth angle and polar angle) through polarized sunglasses.
  • the color change at the time can be effectively suppressed, and the visibility of the liquid crystal display can be improved.
  • the color change may be insufficiently suppressed.
  • R e (590) in formula (1) is preferably 105 to 170 nm
  • R th (590) / R e (590) in formula (2) is 0.6 to 0.75
  • R e (450) / R e (550) in the formula (3) is preferably 0.86 to 0.98
  • R e in the formula (4) is preferable.
  • (630) / R e (550) is preferably 1.01 to 1.06.
  • the optical film 11 is a kind of retardation film having a function of converting linearly polarized light emitted from the polarizing film 14 toward the optical film 11 into elliptically polarized light (including a case of circularly polarized light) and emitting the polarized light,
  • the angle between the absorption axis of the polarizing film and the slow axis of the optical film is laminated so as to be about 45 ° or about 135 °. If the formed angle is outside this range, the function of converting linearly polarized light into elliptically polarized light and emitting it cannot be obtained, and as a result, the suppression of the color change may be insufficient.
  • the angle formed is preferably 35 to 55 ° or 125 to 145 °, more preferably 40 to 50 ° or 130 to 140 °.
  • the film 11 preferably includes a cyclic polyolefin-based resin, a polycarbonate-based resin, a cellulose-based resin, a polyester-based resin, a (meth) acrylic resin, or two or more thereof, and the resin component is selected from one or two or more. More preferably, it consists of.
  • chain polyolefin resin examples include a homopolymer of a chain olefin such as a polyethylene resin and a polypropylene resin, and a copolymer composed of two or more chain olefins.
  • Cyclic polyolefin-based resin is a general term for resins that are polymerized using cyclic olefins as polymerization units.
  • Specific examples of cyclic polyolefin resins include ring-opening (co) polymers of cyclic olefins, addition polymers of cyclic olefins, copolymers of cyclic olefins and chain olefins such as ethylene and propylene (typically Are random copolymers), graft polymers obtained by modifying them with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof.
  • norbornene resins using norbornene monomers such as norbornene and polycyclic norbornene monomers as cyclic olefins are preferably used.
  • the cellulose ester resin is an ester of cellulose and a fatty acid.
  • Specific examples of the cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate.
  • these copolymers and those in which a part of the hydroxyl group is modified with other substituents can also be used.
  • cellulose triacetate triacetyl cellulose: TAC is particularly preferable.
  • the polyester-based resin is a resin having an ester bond, and is generally made of a polycondensate of a polyvalent carboxylic acid or a derivative thereof and a polyhydric alcohol.
  • a polyvalent carboxylic acid or a derivative thereof a divalent dicarboxylic acid or a derivative thereof can be used, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate.
  • a divalent diol can be used, and examples thereof include ethylene glycol, propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol.
  • polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethyl terephthalate, and polycyclohexanedimethyl naphthalate.
  • Polycarbonate resin is made of a polymer in which monomer units are bonded via a carbonate group.
  • the polycarbonate-based resin may be a resin called a modified polycarbonate having a modified polymer skeleton, a copolymer polycarbonate, or the like.
  • the (meth) acrylic resin is a resin containing a compound having a (meth) acryloyl group as a main constituent monomer.
  • Specific examples of the (meth) acrylic resin include, for example, poly (meth) acrylic acid esters such as polymethyl methacrylate; methyl methacrylate- (meth) acrylic acid copolymer; methyl methacrylate- (meth) acrylic acid Ester copolymer; methyl methacrylate-acrylate ester- (meth) acrylic acid copolymer; (meth) methyl acrylate-styrene copolymer (MS resin, etc.); methyl methacrylate and alicyclic hydrocarbon group And a copolymer with the compound (for example, methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate- (meth) acrylate norbornyl copolymer, etc.).
  • a polymer based on a poly (meth) acrylic acid C 1-6 alkyl ester such as poly (meth) acrylic acid methyl is used, and more preferably methyl methacrylate is used as a main component (50 to 100). % Methyl methacrylate-based resin is used.
  • the optical film 11 can be produced by stretching a film containing the thermoplastic resin.
  • the stretching treatment include uniaxial stretching and biaxial stretching.
  • the stretching direction include a machine flow direction (MD) of an unstretched film, a direction perpendicular to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD).
  • MD machine flow direction
  • MD machine flow direction
  • MD direction perpendicular to the machine flow direction
  • MD direction oblique to the machine flow direction
  • Biaxial stretching may be simultaneous biaxial stretching in which stretching is performed simultaneously in two stretching directions, or sequential biaxial stretching in which stretching is performed in a predetermined direction and then stretching in another direction.
  • the stretching process for example, two or more pairs of nip rolls with increased peripheral speed on the outlet side are used to stretch in the longitudinal direction (machine flow direction: MD), or the both ends of the unstretched film are gripped with a chuck and machine flow is performed. It can be performed by spreading in a direction (TD) orthogonal to the direction.
  • the retardation value and the wavelength dispersion can be controlled within the ranges of the above formulas (1) and (2) by adjusting the thickness of the film or adjusting the draw ratio.
  • the chromatic dispersion value can be controlled within the range of the above formulas (3) to (4) by adding a chromatic dispersion adjusting agent to the resin.
  • the thickness of the optical film 11 is not particularly limited as long as the above formulas (1) to (4) are satisfied, but from the viewpoint of thinning the polarizing plate, it is preferably 90 ⁇ m or less, more preferably 60 ⁇ m or less. From the viewpoint, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the ratio of the thickness of the stretched optical film 11 to the thickness of the polarizing film 14 is 1.5 or more. Even if it is a case where it is three or more, the fall of a polarization degree can be suppressed effectively. Usually, the ratio of the thickness of the stretched optical film 11 to the thickness of the polarizing film 14 is 10 or less.
  • the optical film 11 can contain one or more additives such as a lubricant, a plasticizer, a dispersant, a heat stabilizer, an ultraviolet absorber, an infrared absorber, an antistatic agent, and an antioxidant.
  • additives such as a lubricant, a plasticizer, a dispersant, a heat stabilizer, an ultraviolet absorber, an infrared absorber, an antistatic agent, and an antioxidant.
  • a coating layer (surface treatment layer 20) can be provided on the outer surface of the optical film 11 in order to impart desired surface optical properties or other characteristics.
  • Specific examples of the coating layer include a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, and an antifouling layer.
  • the method for forming the coating layer is not particularly limited, and a known method can be used.
  • the protective film 15 is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, and the like.
  • the protective film 15 preferably contains a cellulose resin, a polyolefin resin, or an acrylic resin because the retardation value is easily controlled and easily available.
  • the polyolefin resin here includes a chain polyolefin resin and a cyclic polyolefin resin.
  • the same materials as those used in the optical film can be used.
  • a method for forming a film from the resin as described above a method corresponding to each resin may be appropriately selected.
  • the above-described solvent casting method, melt extrusion method, or the like can be employed.
  • the melt extrusion method is preferably employed from the viewpoint of productivity.
  • a cellulose resin is generally formed into a film by a solvent casting method.
  • the transparent protective film When the liquid crystal cell is in an in-plane switching (IPS) mode, the transparent protective film has a retardation value Rth in the thickness direction of ⁇ in order not to impair the wide viewing angle characteristics inherent in the IPS mode liquid crystal cell. It is preferably in the range of 10 to 10 nm.
  • Examples of the method for controlling the retardation value Rth in the thickness direction of the transparent protective film within the range of ⁇ 10 to 10 nm include a method for minimizing the distortion remaining in the plane and in the thickness direction as much as possible.
  • a method for relaxing residual shrinkage strain in the plane and in the thickness direction generated when the cast resin solution is dried by heat treatment can be employed.
  • the melt extrusion method the distance from the die to the cooling drum is reduced as much as possible in order to prevent the resin film from being drawn from the die and cooled, and the extrusion amount and the rotation speed of the cooling drum are reduced.
  • a method of controlling the film so that the film is not stretched can be employed.
  • the method of relieving the distortion which remains in the obtained film by heat processing similarly to the solvent casting method is also employable.
  • the bonding between the polarizing film and the optical film and the bonding between the polarizing film and the protective film can be performed with an adhesive or a pressure-sensitive adhesive.
  • the adhesive layer that bonds the polarizing film and the optical film and the adhesive layer that bonds the polarizing film and the protective film can have a thickness of about 0.01 to 30 ⁇ m, preferably 0.01. It is ⁇ 10 ⁇ m, more preferably 0.05 to 5 ⁇ m. If the thickness of the adhesive layer is within this range, the polarizing film and the optical film to be laminated and the protective film and the polarizing film are not floated or peeled off, and an adhesive force having no practical problem can be obtained.
  • the pressure-sensitive adhesive layer can have a thickness of about 5 to 50 ⁇ m, preferably 5 to 30 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the polarizing film and the optical film are bonded and the polarizing film and the protective film are bonded, it is also useful to perform a saponification treatment, a corona treatment, a plasma treatment or the like on the polarizing film, the optical film, or the protective film in advance.
  • an appropriate adhesive can be used as appropriate according to the type and purpose of the adherend, and an anchor coating agent can be used as necessary.
  • the adhesive include a solvent-type adhesive, an emulsion-type adhesive, a pressure-sensitive adhesive, a rewet-adhesive, a polycondensation-type adhesive, a solventless-type adhesive, a film-type adhesive, and a hot-melt-type adhesive. Can be mentioned.
  • an aqueous adhesive that is, an adhesive component in which the adhesive component is dissolved or dispersed in water.
  • adhesive components that can be dissolved in water include polyvinyl alcohol resins.
  • An example of an adhesive component that can be dispersed in water is a urethane resin having a hydrophilic group.
  • the water-based adhesive can be prepared by mixing such an adhesive component with water together with an additional additive added as necessary.
  • examples of commercially available polyvinyl alcohol resins that can be used as water-based adhesives include “KL-318”, which is a carboxyl group-modified polyvinyl alcohol sold by Kuraray Co., Ltd.
  • the water-based adhesive can contain a crosslinking agent as necessary.
  • the crosslinking agent include amine compounds, aldehyde compounds, methylol compounds, water-soluble epoxy resins, isocyanate compounds, and polyvalent metal salts.
  • an aldehyde compound such as glyoxal, a methylol compound such as methylol melamine, a water-soluble epoxy resin, or the like is preferably used as a crosslinking agent.
  • the water-soluble epoxy resin is, for example, a polyamide obtained by reacting epichlorohydrin with a polyamide polyamine which is a reaction product of a polyalkylene polyamine such as diethylenetriamine or triethylenetetramine and a dicarboxylic acid such as adipic acid. It can be an epoxy resin.
  • a commercially available water-soluble epoxy resin is “SUMIREZ RESIN (registered trademark) 650 (30)” sold by Taoka Kogyo Co., Ltd.
  • a polarizing plate can be obtained by applying a water-based adhesive to the polarizing film and / or the adhesive surface of the optical film or protective film bonded thereto, and bonding them together, followed by drying treatment. Prior to adhesion, it is also effective to subject the protective film to easy adhesion treatment such as saponification treatment, corona discharge treatment, plasma treatment, or primer treatment to enhance wettability.
  • the drying temperature can be about 50 to 100 ° C., for example. After drying treatment, curing at a temperature slightly higher than room temperature, for example, at a temperature of about 30 to 50 ° C. for about 1 to 10 days is preferable in order to further increase the adhesive strength.
  • Another preferable adhesive is a curable adhesive composition containing an epoxy compound that is cured by irradiation with active energy rays or heating.
  • the curable epoxy compound has at least two epoxy groups in the molecule.
  • the adhesive between the polarizing film and the protective film is performed by irradiating the applied layer of the adhesive composition with an active energy ray or applying heat to the adhesive composition, and a curable epoxy compound contained in the adhesive. It can carry out by the method of hardening. Curing of the epoxy compound is generally performed by cationic polymerization of the epoxy compound. Further, from the viewpoint of productivity, this curing is preferably performed by irradiation with active energy rays.
  • the epoxy compound contained in the curable adhesive composition is preferably one that does not contain an aromatic ring in the molecule.
  • epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
  • the epoxy compound suitably used in such a curable adhesive composition is described in detail in, for example, Japanese Patent Application Laid-Open No. 2004-245925, but the outline is also described here.
  • the hydrogenated epoxy compound is a glycidyl compound obtained by subjecting an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound, to a nuclear hydrogenated polyhydroxy compound obtained by selectively performing a nuclear hydrogenation reaction in the presence of a catalyst and under pressure. It can be etherified.
  • aromatic polyhydroxy compound that is a raw material of the aromatic epoxy compound include bisphenols such as bisphenol A, bisphenol F, and bisphenol S; phenol novolac resin, cresol novolac resin, and hydroxybenzaldehyde phenol novolac resin And novolak type resins; polyhydroxy compounds such as tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol.
  • a glycidyl ether can be obtained by performing a nuclear hydrogenation reaction on such an aromatic polyhydroxy compound and reacting the resulting hydrogenated polyhydroxy compound with epichlorohydrin.
  • Suitable hydrogenated epoxy compounds include hydrogenated glycidyl ether of bisphenol A.
  • the alicyclic epoxy compound is a compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • the “epoxy group bonded to the alicyclic ring” means a bridged oxygen atom —O— in the structure represented by the following formula, wherein m is an integer of 2 to 5.
  • a compound in which one or a plurality of hydrogen atoms in (CH 2 ) m in this formula are bonded to another chemical structure can be an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) m forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • Specific examples of the alicyclic epoxy compound are listed below. Here, the compound names are given first, and then the chemical formulas corresponding to each are shown, and the same reference numerals are given to the compound names and the chemical formulas corresponding thereto.
  • the aliphatic epoxy compound can be an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, diglycidyl ether of propylene glycol; diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; ethylene Polyglycidyl ether of polyether polyol (for example, diglycidyl ether of polyethylene glycol) obtained by adding alkylene oxide (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohol such as glycol, propylene glycol, and glycerin Can be mentioned.
  • alkylene oxide ethylene oxide or propylene oxide
  • the epoxy compound may be used alone or in combination of two or more.
  • the epoxy compound preferably includes an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule.
  • the epoxy compound used in the curable adhesive composition usually has an epoxy equivalent in the range of 30 to 3,000 g / equivalent, and this epoxy equivalent is preferably in the range of 50 to 1,500 g / equivalent.
  • an epoxy compound having an epoxy equivalent of less than 30 g / equivalent is used, there is a possibility that the flexibility of the polarizing plate after curing is lowered or the adhesive strength is lowered.
  • compatibility with other components contained in the adhesive composition may be reduced.
  • cationic polymerization is preferably used as the curing reaction of the epoxy compound.
  • the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation or heating with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates an epoxy group polymerization reaction.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams
  • the cationic polymerization initiator is provided with latency.
  • a cationic polymerization initiator that generates a cationic species or Lewis acid by irradiation of active energy rays and initiates a polymerization reaction of an epoxy group is referred to as a “photo cationic polymerization initiator”, and generates a cationic species or a Lewis acid by heat.
  • the cationic polymerization initiator that initiates the polymerization reaction of the epoxy group is referred to as “thermal cationic polymerization initiator”.
  • the method of curing the adhesive composition by irradiation with active energy rays using a cationic photopolymerization initiator enables curing at normal temperature and humidity, reducing the need to consider the distortion due to heat resistance or expansion of the polarizing film. And it is advantageous in that the protective film and the polarizing film can be satisfactorily bonded.
  • the cationic photopolymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound.
  • the photocationic polymerization initiator examples include aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
  • the compounding amount of the photocationic polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 part by weight or more and preferably 15 parts by weight or less based on 100 parts by weight of the epoxy compound. If the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the epoxy compound, the curing becomes insufficient, and the mechanical strength and adhesive strength of the cured product tend to be reduced.
  • the blending amount of the cationic photopolymerization initiator exceeds 20 parts by weight with respect to 100 parts by weight of the epoxy compound, the ionic substance in the cured product increases, resulting in an increase in the hygroscopic property of the cured product and durability performance. May be reduced.
  • the curable adhesive composition may further contain a photosensitizer as necessary.
  • a photosensitizer By using a photosensitizer, the reactivity of cationic polymerization can be improved, and the mechanical strength and adhesive strength of the cured product can be improved.
  • the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreducible dyes.
  • the amount is preferably in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the curable adhesive composition.
  • a sensitizing aid such as a naphthoquinone derivative may be used for improving the curing rate.
  • thermal cationic polymerization initiator examples include benzylsulfonium salt, thiophenium salt, thioranium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
  • the curable adhesive composition containing the epoxy compound is preferably cured by photocationic polymerization as described above, but can be cured by thermal cationic polymerization in the presence of the above-mentioned thermal cationic polymerization initiator. Cationic polymerization and thermal cationic polymerization can be used in combination. When photocationic polymerization and thermal cationic polymerization are used in combination, the curable adhesive composition preferably contains both a photocationic polymerization initiator and a thermal cationic polymerization initiator.
  • the curable adhesive composition may further contain a compound that promotes cationic polymerization, such as an oxetane compound or a polyol compound.
  • An oxetane compound is a compound having a 4-membered ring ether in the molecule.
  • the polyol compound may be alkylene glycol including ethylene glycol, hexamethylene glycol, polyethylene glycol or the like, or an oligomer thereof, polyester polyol, polycaprolactone polyol, polycarbonate polyol and the like.
  • the amount is usually 50% by weight or less, preferably 30% by weight or less in the curable adhesive composition.
  • the adhesive may be a composition containing a radically polymerizable (meth) acrylic compound.
  • the (meth) acrylic compound is a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule; obtained by reacting two or more functional group-containing compounds, and at least two in the molecule.
  • (meth) acryloyloxy group-containing compounds such as (meth) acrylate oligomers having (meth) acryloyloxy groups.
  • the adhesive preferably contains a radical photopolymerization initiator.
  • the photo radical polymerization initiator include acetophenone initiator, benzophenone initiator, benzoin ether initiator, thioxanthone initiator, xanthone, fluorenone, camphorquinone, benzaldehyde, anthraquinone and the like.
  • ion trapping agent examples include inorganic compounds including powdered bismuth-based, antimony-based, magnesium-based, aluminum-based, calcium-based, titanium-based, and mixed systems thereof.
  • antioxidant examples include And hindered phenolic antioxidants.
  • the uncured adhesive layer can be cured to bond the polarizing film and the protective film (or optical film).
  • an adhesive coating method for example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be adopted.
  • This curable adhesive composition can basically be used as a solvent-free adhesive that does not substantially contain a solvent, but each coating system has an optimum viscosity range, so that the viscosity is adjusted.
  • a solvent may be contained.
  • the solvent is preferably an organic solvent that dissolves each component including an epoxy compound well without degrading the optical performance of the polarizing film.
  • hydrocarbons typified by toluene, typified by ethyl acetate, etc. Esters can be used.
  • the adhesive composition When the adhesive composition is cured by irradiation with active energy rays, the above-mentioned various types of active energy rays can be used, but since the handling is easy and the amount of irradiation light is easy to control, ultraviolet rays are not emitted. Preferably used. Active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
  • active energy rays such as ultraviolet irradiation intensity and irradiation dose do not affect various optical performance including polarization degree of polarizing film, and various optical performance including transparency and retardation characteristics of protective film. Therefore, it is determined as appropriate so as to maintain an appropriate productivity.
  • the adhesive composition When the adhesive composition is cured by heat, it can be heated by a generally known method. Usually, heating is performed at a temperature higher than the temperature at which the thermal cationic polymerization initiator compounded in the curable adhesive composition generates cationic species and Lewis acid, and the specific heating temperature is, for example, about 50 to 200 ° C. .
  • the pressure-sensitive adhesive layer 16 formed on the surface of the protective film 15 opposite to the bonding surface with the polarizing film 14 is a pressure-sensitive adhesive layer for bonding the polarizing plate to the liquid crystal cell, and is optically transparent. It has only to be excellent in adhesive properties including moderate wettability, cohesiveness, adhesiveness, etc., but more preferable in durability and the like.
  • a pressure-sensitive adhesive (acrylic pressure-sensitive adhesive) containing an acrylic resin is preferable.
  • the acrylic resin contained in the acrylic pressure-sensitive adhesive is a resin mainly composed of alkyl acrylate such as butyl acrylate, ethyl acrylate, isooctyl acrylate, and 2-ethylhexyl acrylate.
  • This acrylic resin is usually copolymerized with a polar monomer.
  • the polar monomer is a compound having a polymerizable unsaturated bond and a polar functional group.
  • the polymerizable unsaturated bond is generally derived from a (meth) acryloyl group, and the polar functional group.
  • the group can be a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, or the like.
  • polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, 2-N, N-dimethylaminoethyl ( Examples include meth) acrylate and glycidyl (meth) acrylate.
  • the acrylic pressure-sensitive adhesive usually contains a crosslinking agent together with the acrylic resin.
  • a crosslinking agent is an isocyanate compound having at least two isocyanato groups (—NCO) in the molecule.
  • additives may be further added to the adhesive.
  • Suitable additives include silane coupling agents and antistatic agents.
  • a silane coupling agent is effective in increasing the adhesive strength with glass.
  • Antistatic agents are effective in reducing or preventing the generation of static electricity.
  • the pressure-sensitive adhesive layer 16 is prepared by preparing a pressure-sensitive adhesive composition in which the above-mentioned pressure-sensitive adhesive component is dissolved in an organic solvent, and directly on either or both of the bonding surfaces (polarizing film or protective film) on which the pressure-sensitive adhesive layer is bonded. Apply the above-mentioned pressure-sensitive adhesive composition to the release treatment surface of the base film made of a resin film that has been subjected to a release treatment by applying and removing the solvent by drying, and remove the solvent to remove the solvent. It can be formed by making it into an agent layer, sticking it to any of the bonding surfaces (polarizing film or protective film), and transferring the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer 16 is formed by the former direct coating method, a resin film (also called a separator) that has been subjected to a release treatment is bonded to the surface, and the pressure-sensitive adhesive layer surface is temporarily protected until use. It is customary.
  • the latter transfer method is often employed from the viewpoint of the handleability of the pressure-sensitive adhesive composition that is an organic solvent solution.
  • the release-treated base film used for forming the pressure-sensitive adhesive layer first is used. It is also advantageous in that it can be used as a separator after being attached to a polarizing plate.
  • the storage elastic modulus of the pressure-sensitive adhesive at 80 ° C. is preferably 5 MPa or less. More preferably, it is 1 MPa or less.
  • the protective film 15 and the pressure-sensitive adhesive layer 16 are bonded together, it is also useful to perform corona treatment, plasma treatment or the like on the surface where the protective film 15 and the pressure-sensitive adhesive layer 16 are bonded together.
  • the polarizing plate 10 is obtained by bonding together the optical film 11, the polarizing film 14, and the protective film 15 with a roll to roll through an adhesive bond layer. Furthermore, a polarizing plate with an adhesive is obtained by forming the adhesive layer 16 on the protective film 15. The polarizing plate with the pressure-sensitive adhesive can be bonded to the liquid crystal cell via the pressure-sensitive adhesive layer 16.
  • the manufacturing method of this invention includes the process of heat-processing the optical film 11 before bonding with the optical film 11 and the polarizing film 14.
  • the film may be heated when the stretching process is performed.
  • the heating process in the manufacturing method of the present invention is different from the heating in the stretching process. Heat treatment is performed on the completed optical film. That is, the optical film is not substantially stretched in the step of heat treatment in the production method of the present invention.
  • the term “not substantially stretched” means that the draw ratio is 1.1 times or less, preferably 1.05 times or less.
  • the heat treatment step is preferably performed within 3 days for bonding the optical film 11 and the polarizing film 14, more preferably within 24 hours, and even more preferably within 60 minutes.
  • the heat treatment step is preferably performed within 3 days for bonding the optical film 11 and the polarizing film 14, more preferably within 24 hours, and even more preferably within 60 minutes.
  • the heat treatment is preferably performed at a temperature of Tg-60 ° C. to Tg ° C. with respect to the glass transition temperature (Tg) of the optical film 11, and is preferably performed at a temperature of Tg-30 ° C. to Tg-5 ° C. More preferred. More preferably, it is Tg-20 ° C to Tg-5 ° C.
  • various methods such as a method of performing a heat treatment in an oven in advance or a method of heating in a thermal drum before being bonded to a polarizing film can be selected.
  • the polarizing plate thus produced has a dimensional change rate D1 in the direction of 45 ° with respect to the absorption axis of the polarizing film and a dimensional change rate D2 in the direction of 135 ° with respect to the absorption axis of the polarizing film when left for 100 hours in an environment of 85 ° C. Both can also be made 0.25% or less, and the polarization degree fall at the time of a heat test can be suppressed.
  • Measurement of thickness Measurement was performed using a digital micrometer “MH-15M” manufactured by Nikon Corporation.
  • the polarizing plate is cut into a size of (100 mm in the direction of 45 °) ⁇ (100 mm in the direction of 135 ° C.) with respect to the absorption axis of the polarizing film, and is left still for one day in an environment of temperature 23 ° C. and humidity 55%. Then, the dimension in the 45 ° direction (L0 (45)) with respect to the absorption axis of the polarizing film and the dimension in the 135 ° direction with respect to the absorption axis of the polarizing film (L0 (135)) are measured. Next, the polarizing plate is allowed to stand in an environment of 85 ° C.
  • Adhesive A A sheet-like adhesive having a thickness of 25 ⁇ m [“P-3132” manufactured by Lintec Corporation] was prepared.
  • Example 1 The optical film A was placed in an oven at 150 ° C. for 3 minutes and subjected to heat treatment. Next, the optical film A subjected to the heat treatment was subjected to a fighting treatment. That is, the heat treatment temperature was Tg-50 ° C.
  • Corona treatment was performed on one side of the protective film.
  • the corona-treated surface of the protective film and the polarizing film were bonded together with the polarizing film and the optical film A with an aqueous adhesive to obtain a polarizing plate.
  • the time from the heat treatment to the optical film A to the bonding to the polarizing film was 30 minutes. Under the present circumstances, it bonded so that the absorption axis of a polarizing plate and the slow axis of the optical film A might be 45 degrees.
  • the adhesive A was laminated
  • the polarization degree of the polarizing plate was 99.994%.
  • the polarizing plate thus prepared was cut into a 40 mm square, and bonded to Corning Eagle XG to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put in an oven at 105 ° C. for 30 minutes.
  • the degree of polarization after the heat test was 99.972%.
  • the polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put into an oven at 85 ° C. for 500 hours.
  • the degree of polarization after the heat test was 99.975%.
  • Example 2 The optical film A was put into an oven having an atmospheric temperature of 200 ° C. for 3 minutes and subjected to heat treatment. That is, the heat treatment temperature was equal to Tg. Next, the optical film A subjected to the heat treatment was subjected to a fighting treatment. Others were the same methods as in Example 1 to obtain a polarizing plate with an adhesive having a layer structure of optical film A / polarizing film / protective film / adhesive layer A. The polarization degree of this polarizing plate was 99.995%.
  • the polarizing plate thus prepared was cut into a 40 mm square, and bonded to Corning Eagle XG to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put in an oven at 105 ° C. for 30 minutes.
  • the degree of polarization after the heat test was 99.980%.
  • the polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put into an oven at 85 ° C. for 500 hours.
  • the degree of polarization after the heat test was 99.981%.
  • Example 3 The optical film B was placed in an oven at 120 ° C. for 3 minutes and subjected to heat treatment. That is, the heat treatment temperature was equal to Tg. Next, the optical film B subjected to the heat treatment was subjected to corona treatment. Except that this optical film B was used in place of the optical film A, a polarizing plate with a pressure-sensitive adhesive comprising the optical film B / polarizing film / protective film / pressure-sensitive adhesive layer A in the same manner as in Example 1. Got. The polarization degree of this polarizing plate was 99.993%.
  • the polarizing plate thus prepared was cut into a 40 mm square, and bonded to Corning Eagle XG to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put in an oven at 105 ° C. for 30 minutes.
  • the degree of polarization after the heat test was 99.985%.
  • the polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put into an oven at 85 ° C. for 500 hours.
  • the degree of polarization after the heat test was 99.987%.
  • the pressure-sensitive adhesive A was laminated on the protective film B side of the obtained polarizing plate to obtain a polarizing plate with a pressure-sensitive adhesive composed of the optical film A / polarizing film / protective film / pressure-sensitive adhesive layer A.
  • the polarization degree of the polarizing plate was 99.995%.
  • the polarizing plate thus prepared was cut into a 40 mm square, and bonded to Corning Eagle XG to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put in an oven at 105 ° C. for 30 minutes.
  • the degree of polarization after the heat test was 99.954%.
  • the polarizing plate was cut into a 40 mm square, and bonded to Eagle XG manufactured by Corning to prepare a sample for heat resistance evaluation.
  • the sample thus prepared was put into an oven at 85 ° C. for 500 hours.
  • the degree of polarization after the heat test was 99.954%.
  • the polarizing plates of Examples 1 to 3 where the heat treatment was performed on the optical film had a smaller decrease in the degree of polarization after the heat resistance test than the polarizing plate of Comparative Example 1 where the heat treatment was not performed. It was.
  • the present invention is useful because it can provide a method for producing a polarizing plate that can suppress a decrease in the degree of polarization due to the shift of the absorption axis of the polarizing film caused by the dimensional change of the optical film during the heat resistance test.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

[課題]耐熱試験時に光学フィルムの寸法変化によって引き起こされる偏光フィルムの吸収軸のズレによる偏光度低下を抑制すること。 [解決手段]光学フィルム、偏光フィルムおよび粘着剤層をこの順に含み、前記偏光フィルムの厚みが15μm以下であって、前記偏光フィルムの吸収軸と前記光学フィルムの遅相軸とのなす角度が略45°又は略135°である偏光板の製造方法であって、前記光学フィルムを前記偏光フィルムへ貼合する前に、前記光学フィルムを加熱処理する工程を有する偏光板の製造方法。

Description

偏光板の製造方法
 本発明は、偏光板の製造方法に関するものである。
 近年、消費電力が低く、低電圧で動作し、軽量でかつ薄型の液晶ディスプレイが、携帯電話、携帯情報端末、コンピュータ用のモニター、テレビなど、情報用表示デバイスとして急速に普及してきている。液晶技術の発展に伴い、さまざまなモードの液晶ディスプレイが提案され、応答速度やコントラスト、狭視野角といった液晶ディスプレイの問題点が解消されつつある。また、モバイル用の液晶ディスプレイの普及に伴い、例えば屋外等で使用する場合には、偏光サングラスをかけた状態で液晶ディスプレイの画面を視認することがあり、このような場合にも液晶ディスプレイには、偏光サングラス越しに画面を見ても視認性に優れることが求められる。
 偏光サングラス越しに画面を見たときの視認性を改善するための手段が従来いくつか提案されている(特許文献1~9)。
特開2009-122454号公報 特開2011-107198号公報 特開2011-215646号公報 特開2012-230390号公報 特開平03-174512号公報 特開2013-231761号公報 特開2011-113018号公報 特開2013-182162号公報 特開2013-200445号公報
 偏光サングラス越しに画面を見たときの視認性を改善するための方法としては、液晶セルのような画像表示素子の視認側に配置される偏光板から出射される直線偏光を楕円(又は円)偏光に変換するための位相差板(例えばλ/4波長板)を上記偏光板の視認側に配置する方法(特許文献1~9)がとられる。
 しかし、このような位相差板は延伸処理されており、偏光フィルムに直接接着剤層を介して積層されていることが多い。また、偏光板の吸収軸と位相差板の遅相軸とがなす角度が所定の角度(例えば45°)に配置されていることが多く、耐熱試験に投入した際に延伸された位相差板が斜めに寸法変化することで偏光フィルムの吸収軸が局所的に変化し偏光度が低下するという問題点があった。
[1]光学フィルム、偏光フィルムおよび粘着剤層をこの順に含み、前記偏光フィルムの厚みが15μm以下であって、前記偏光フィルムの吸収軸と前記光学フィルムの遅相軸とのなす角度が略45°又は略135°である偏光板の製造方法であって、
 前記光学フィルムを前記偏光フィルムへ貼合する前に、前記光学フィルムを加熱処理する工程を有する偏光板の製造方法。
[2]前記加熱処理が、前記光学フィルムのガラス転移温度(Tg)に対して、Tg-30℃~Tg-5℃の温度で行われる[1]に記載の偏光板の製造方法。
[3]前記光学フィルムは、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂又は(メタ)アクリル系樹脂からなる群から選ばれる少なくとも一種を含む、[1]または[2]に記載の偏光板の製造方法。
[4]前記偏光フィルムと前記粘着剤層との間にさらに保護フィルムを有する[1]~[3]のいずれかに記載の偏光板の製造方法。
 本発明によれば、耐熱試験時に光学フィルムの寸法変化によって引き起こされる偏光フィルムの吸収軸のズレによる偏光度低下を抑制できる偏光板の製造方法を提供することができる。
本発明に係る偏光板の層構成を示す断面模式図の一例である。 本発明の製造方法により得られる偏光板における軸方向の関係を示す平面図の一例である。
 図1を参照して、本発明の製造方法により得られる偏光板10の層構成を説明する。本発明の製造方法により得られる偏光板は、光学フィルム11、偏光フィルム14および粘着剤層16とこの順に積層されて構成されることが好ましい。偏光フィルム14の吸収軸と光学フィルム11の遅相軸とのなす角度は略45°又は略135°である。光学フィルム11における偏光フィルムとの貼合面とは反対側の面には表面処理層20を形成することも有用である。
 また、光学フィルム11は、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂及び(メタ)アクリル系樹脂からなる群から選ばれる少なくとも一種を含むフィルムであることが好ましい。
 偏光フィルム14は、厚みが15μm以下であることが好ましい。
 また本発明によれば、偏光フィルム14と粘着剤16の間にさらに保護フィルム15を有する偏光板10も提供される。
 以下、本発明の偏光板の製造方法に用いる部材について詳細に説明する。
[偏光フィルム14]
 偏光フィルム14は、通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理して架橋させる工程、及びホウ酸水溶液による架橋処理後に水洗する工程を経て、製造される。
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより製造できる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体であることもできる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用可能である。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000程度である。
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系樹脂原反フィルムの膜厚は、例えば10~100μm程度、好ましくは10~50μm程度である。
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。もちろん、ここに示した複数の段階で一軸延伸を行うこともできる。一軸延伸には、周速の異なるロール間で一軸に延伸する方法や、熱ロールを用いて一軸に延伸する方法などが採用できる。また一軸延伸は、大気中で延伸を行う乾式延伸により行ってもよいし、水等の溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸により行ってもよい。延伸倍率は、通常3~8倍程度である。
 ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液にポリビニルアルコール系樹脂フィルムを浸漬する方法により行うことができる。二色性色素として、具体的にはヨウ素や二色性有機染料が用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水に浸漬して膨潤させる処理を施しておくことが好ましい。
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液におけるヨウ素の含有量は、水100重量部あたり、通常0.01~1重量部程度であり、ヨウ化カリウムの含有量は、水100重量部あたり、通常0.5~20重量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
 一方、二色性色素として二色性の有機染料を用いる場合は、通常、水溶性の二色性有機染料を含む水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液における二色性有機染料の含有量は、水100重量部あたり、通常1×10-4~10重量部程度であり、好ましくは1×10-3~1重量部である。この染料水溶液は、硫酸ナトリウムのような無機塩を染色助剤として含有していてもよい。染色に用いる二色性有機染料水溶液の温度は、通常20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常10~1,800秒程度である。
 二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬する方法により、行うことができる。ホウ酸含有水溶液におけるホウ酸の含有量は、水100重量部あたり、通常2~15重量部程度であり、好ましくは5~12重量部である。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液はヨウ化カリウムを含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの含有量は、水100重量部あたり、通常0.1~15重量部程度であり、好ましくは5~12重量部である。ホウ酸含有水溶液への浸漬時間は、通常60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により、行うことができる。水洗処理における水の温度は、通常5~40℃程度である。また浸漬時間は、通常1~120秒程度である。
 水洗後は乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光フィルム中の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光フィルムの可撓性が失われ、乾燥後に損傷したり、破断したりすることがある。また水分率が20重量%を超えると、熱安定性が不足する傾向にある。
 以上のようにして、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向した偏光フィルム14を製造することができる。
 光学フィルム11の寸法変化によって引き起こされる偏光フィルム14の吸収軸のズレによる偏光度低下を抑制するためには、偏光フィルム14自体の収縮力も低く設定することが好ましく、本発明では厚みが15μm以下の偏光フィルムを使用する。偏光フィルム14の収縮力をより低く抑えるためには、偏光フィルム14の厚さを12μm以下とすることが好ましい。良好な光学特性を付与できるという点で、偏光フィルムの厚みは通常3μm以上である。
 [光学フィルム11]
 本発明に用いる偏光板において、光学フィルム11としては、特に、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる材料で構成することが好ましい。例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;セルローストリアセテート、セルロースジアセテートのようなセルロースエステル系樹脂等のセルロース系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂;(メタ)アクリル系樹脂;ポリスチレン系樹脂;又はこれらの混合物、共重合物等を挙げることができる。
 光学フィルム11は、下記式:
 (1)100nm≦Re(590)≦180nm、
 (2)0.5<Rth(590)/Re(590)≦0.8、
 (3)0.85≦Re(450)/Re(550)<1.00、及び
 (4)1.00<Re(630)/Re(550)≦1.1
を満たすフィルムであることが好ましい。式中、Re(590)、Re(450)、Re(550)、Re(630)はそれぞれ、測定波長590nm、450nm、550nm、630nmにおける面内位相差値を表し、Rth(590)は測定波長590nmにおける厚み方向位相差値を表す。これらの面内位相差値及び厚み方向位相差値は、温度23℃、相対湿度55%の環境下にて測定される。
 光学フィルム11の面内位相差値Re、厚み方向位相差値Rthは、面内遅相軸方向の屈折率をnx、面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率をny、厚み方向の屈折率をnz、光学フィルム11の厚みをdとするとき、下記式:
 Re=(nx-ny)×d
 Rth=[{(nx+ny)/2}-nz]×d
で定義される。
 上記式(1)~(4)の位相差特性及び波長分散特性を示す光学フィルム11を視認側に配置した液晶ディスプレイにおいて、偏光サングラス越しに様々な方向(方位角及び極角)から画面を見たときの色味変化を有効に抑制することができ、液晶ディスプレイの視認性を向上させることができる。これに対して、上記式(1)~(4)のいずれか1以上を満たさない場合には、上記色味変化の抑制が不十分となることがある。
 色味変化をより効果的に抑制する観点から、式(1)におけるRe(590)は105~170nmであることが好ましく、式(2)におけるRth(590)/Re(590)は0.6~0.75であることが好ましく、式(3)におけるRe(450)/Re(550)は0.86~0.98であることが好ましく、式(4)におけるRe(630)/Re(550)は1.01~1.06であることが好ましい。
 光学フィルム11は、偏光フィルム14から光学フィルム11に向けて出射された直線偏光を楕円偏光(円偏光である場合を含む)に変換して出射する機能を有する1種の位相差フィルムであり、この機能を発現させるために、偏光フィルムの吸収軸と光学フィルムの遅相軸とのなす角度は、略45°又は略135°となるように積層される。なす角度がこの範囲外である場合には、直線偏光を楕円偏光に変換して出射する機能が得られず、その結果、上記色味変化の抑制が不十分となることがある。なす角度は、好ましくは35~55°又は125~145°であり、より好ましくは40~50°又は130~140°である。
 上記式(1)~(4)の位相差特性及び波長分散特性を付与しやすく、また、透湿度が比較的低いことから光学積層体の耐湿性や耐湿熱性を向上させることができるので、光学フィルム11は、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂若しくは(メタ)アクリル系樹脂又はこれらの2以上を含むことが好ましく、樹脂成分がこれらから選択される1又は2以上からなることがより好ましい。
 鎖状ポリオレフィン系樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂のような鎖状オレフィンの単独重合体のほか、2種以上の鎖状オレフィンからなる共重合体を挙げることができる。
 環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称である。環状ポリオレフィン系樹脂の具体例を挙げれば、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレンのような鎖状オレフィンとの共重合体(代表的にはランダム共重合体)、及びこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、並びにそれらの水素化物等である。中でも、環状オレフィンとしてノルボルネンや多環ノルボルネン系モノマー等のノルボルネン系モノマーを用いたノルボルネン系樹脂が好ましく用いられる。
 セルロースエステル系樹脂は、セルロースと脂肪酸とのエステルである。セルロースエステル系樹脂の具体例は、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートを含む。また、これらの共重合物や、水酸基の一部が他の置換基で修飾されたものを用いることもできる。これらの中でも、セルローストリアセテート(トリアセチルセルロース:TAC)が特に好ましい。
 ポリエステル系樹脂はエステル結合を有する樹脂であり、多価カルボン酸又はその誘導体と多価アルコールとの重縮合体からなるものが一般的である。多価カルボン酸又はその誘導体としては2価のジカルボン酸又はその誘導体を用いることができ、例えばテレフタル酸、イソフタル酸、ジメチルテレフタレート、ナフタレンジカルボン酸ジメチル等が挙げられる。多価アルコールとしては2価のジオールを用いることができ、例えばエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール等が挙げられる。
 ポリエステル系樹脂の具体例は、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、ポリシクロヘキサンジメチルナフタレートを含む。
 ポリカーボネート系樹脂は、カルボナート基を介してモノマー単位が結合された重合体からなる。ポリカーボネート系樹脂は、ポリマー骨格を修飾したような変性ポリカーボネートと呼ばれる樹脂や、共重合ポリカーボネート等であってもよい。
 (メタ)アクリル系樹脂は、(メタ)アクリロイル基を有する化合物を主な構成モノマーとする樹脂である。(メタ)アクリル系樹脂の具体例は、例えば、ポリメタクリル酸メチルのようなポリ(メタ)アクリル酸エステル;メタクリル酸メチル-(メタ)アクリル酸共重合体;メタクリル酸メチル-(メタ)アクリル酸エステル共重合体;メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体;(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂等);メタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等)を含む。好ましくは、ポリ(メタ)アクリル酸メチルのようなポリ(メタ)アクリル酸C1-6アルキルエステルを主成分とする重合体が用いられ、より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。
 上記熱可塑性樹脂を含むフィルムを延伸することにより、光学フィルム11を作製することができる。延伸処理としては、一軸延伸や二軸延伸等が挙げられる。延伸方向としては、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向(MD)に斜交する方向等が挙げられる。二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。延伸処理は、例えば出口側の周速を大きくした2対以上のニップロールを用いて、長手方向(機械流れ方向:MD)に延伸したり、未延伸フィルムの両側端をチャックで把持して機械流れ方向に直交する方向(TD)に広げたりすることで行うことができる。この際、フィルムの厚みを調整したり、延伸倍率を調整したりすることによって、位相差値及び波長分散を上記式(1)~(2)の範囲内に制御することが可能である。また、樹脂に波長分散調整剤を添加したりすることによって、波長分散値を上記式(3)~(4)の範囲内に制御することが可能である。
 光学フィルム11の厚みは、上記式(1)~(4)を充足する限り特に制限されないが、偏光板の薄膜化の観点から、好ましくは90μm以下、より好ましくは60μm以下であり、また取り扱いの観点から、好ましくは5μm以上、より好ましくは10μm以上である。
 本発明の製造方法によれば、光学フィルム11に加熱処理が施されていることから、偏光フィルム14の厚みに対する延伸された光学フィルム11の厚みの比が、1.5以上である場合であっても、3以上である場合であっても効果的に偏光度の低下を抑制することができる。通常、偏光フィルム14の厚みに対する延伸された光学フィルム11の厚みの比は10以下である。
 光学フィルム11は、滑剤、可塑剤、分散剤、熱安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、酸化防止剤のような添加剤を1種又は2種以上含有することができる。
 また、所望の表面光学特性又はその他の特徴を付与するために、光学フィルム11の外面にコーティング層(表面処理層20)を設けることができる。コーティング層の具体例は、ハードコート層、防眩層、反射防止層、帯電防止層、防汚層を含む。コーティング層を形成する方法は特に限定されず、公知の方法を用いることができる。
[保護フィルム15]
 保護フィルム15としては、特に、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる材料で構成することが好ましい。保護フィルム15としては、レターデーション値の制御が容易で、入手も容易であることから、セルロース系樹脂、ポリオレフィン系樹脂又はアクリル系樹脂を含むことが好ましい。ここでいうポリオレフィン系樹脂は、鎖状ポリオレフィン系樹脂及び環状ポリオレフィン系樹脂を包含する。
セルロース系樹脂、環境オレフィン系樹脂またはアクリル系樹脂としては、上記光学フィルムで用いたものと同様のものを用いることができる。
 以上のような樹脂からフィルムに製膜する方法は、それぞれの樹脂に応じた方法を適宜選択すればよく、例えば、先に述べた溶剤キャスト法、溶融押出法などが採用できる。なかでもポリオレフィン系樹脂やアクリル系樹脂に対しては、生産性の観点から溶融押出法が好ましく採用される。一方、セルロース系樹脂は溶剤キャスト法によって製膜されるのが一般的である。
 液晶セルが横電解(IPS:In-Plane Switching)モードである場合、そのIPSモード液晶セルが本来有する広視野角特性を損なわないために、透明保護フィルムは、厚み方向の位相差値Rthが-10~10nmの範囲にあることが好ましい。
 透明保護フィルムの厚み方向の位相差値Rthを-10~10nmの範囲内に制御する方法としては、フィルムを作製するときに、面内及び厚み方向に残留するゆがみを極力小さくする方法が挙げられる。例えば、上記溶剤キャスト法においては、その流延樹脂溶液を乾燥するときに生じる面内及び厚み方向の残留収縮歪みを、熱処理によって緩和させる方法などが採用できる。一方、上記溶融押出法においては、樹脂フィルムをダイから押し出し、冷却するまでの間に延伸されることを防ぐため、ダイから冷却ドラムまでの距離を極力縮めるとともに、押出し量と冷却ドラムの回転速度をフィルムが延伸されないよう制御する方法などが採用できる。また、溶剤キャスト法と同様に、得られたフィルムに残留する歪みを熱処理によって緩和させる方法も採用できる。
 [接着剤層、粘着剤層]
  偏光フィルムと光学フィルムとの貼合および偏光フィルムと保護フィルムとの貼合は、接着剤または粘着剤により貼合することができる。
 偏光フィルムと光学フィルムとを貼合する接着剤層および偏光フィルムと保護フィルムとを貼合する接着剤層は、その厚さを0.01~30μm程度とすることができ、好ましくは0.01~10μm、さらに好ましくは0.05~5μmである。接着剤層の厚さがこの範囲にあれば、積層される偏光フィルムと光学フィルムおよび保護フィルムと偏光フィルムとの間に浮きや剥がれを生じず、実用上問題のない接着力が得られる。粘着剤層を使用する場合、粘着剤層は、その厚さを5~50μm程度とすることができ、好ましくは5~30μm、さらに好ましくは10~25μmである。
 偏光フィルムと光学フィルムとの貼合および偏光フィルムと保護フィルムとの貼合に際しては、偏光フィルムや光学フィルム、保護フィルムに予めケン化処理、コロナ処理、プラズマ処理などを行うことも有用である。
 接着剤層の形成には、被着体の種類や目的に応じて、適宜、適切な接着剤を用いることができ、また必要に応じてアンカーコート剤を用いることもできる。接着剤として、例えば、溶剤型接着剤、エマルジョン型接着剤、感圧性接着剤、再湿性接着剤、重縮合型接着剤、無溶剤型接着剤、フィルム状接着剤、ホットメルト型接着剤などが挙げられる。
 好ましい接着剤の一つとして、水系接着剤、すなわち、接着剤成分が水に溶解又は分散しているものを挙げることができる。水に溶解可能な接着剤成分の例を挙げると、ポリビニルアルコール系樹脂がある。また、水に分散可能な接着剤成分の例を挙げると、親水基を有するウレタン系樹脂がある。水系接着剤は、このような接着剤成分を、必要に応じて配合される追加の添加剤とともに、水に混合して調製することができる。水系接着剤となりうる市販のポリビニルアルコール系樹脂の例を挙げると、株式会社クラレから販売されているカルボキシル基変性ポリビニルアルコールである“KL-318”などがある。
 水系接着剤は、必要に応じて架橋剤を含有することができる。架橋剤の例を挙げると、アミン化合物、アルデヒド化合物、メチロール化合物、水溶性エポキシ樹脂、イソシアネート化合物、多価金属塩などがある。ポリビニルアルコール系樹脂を接着剤成分とする場合は、グリオキザールをはじめとするアルデヒド化合物、メチロールメラミンをはじめとするメチロール化合物、水溶性エポキシ樹脂などが、架橋剤として好ましく用いられる。
ここで水溶性エポキシ樹脂は、例えば、ジエチレントリアミンやトリエチレンテトラミンのようなポリアルキレンポリアミンとアジピン酸のようなジカルボン酸との反応物であるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂であることができる。水溶性エポキシ樹脂の市販品の例を挙げると、田岡工業株式会社から販売されている“スミレーズレジン(登録商標) 650(30)”などがある。
 偏光フィルム及び/又はそこに貼合される光学フィルムや保護フィルムの接着面に、水系接着剤を塗布し、両者を貼り合わせた後、乾燥処理を施すことにより、偏光板を得ることができる。接着に先立って、保護フィルムには、ケン化処理、コロナ放電処理、プラズマ処理、又はプライマー処理のような易接着処理を施し、濡れ性を高めておくことも有効である。乾燥温度は、例えば50~100℃程度とすることができる。乾燥処理後、室温よりもやや高い温度、例えば30~50℃程度の温度で1~10日間程度養生することは、接着力を一層高めるうえで好ましい。
 もう一つの好ましい接着剤として、活性エネルギー線の照射又は加熱により硬化するエポキシ化合物を含有する硬化性接着剤組成物が挙げられる。ここで硬化性のエポキシ化合物は、分子内に少なくとも2個のエポキシ基を有するものである。この場合、偏光フィルムと保護フィルムとの接着は、当該接着剤組成物の塗布層に対して、活性エネルギー線を照射するか、又は熱を付与し、接着剤に含有される硬化性のエポキシ化合物を硬化させる方法により行うことができる。エポキシ化合物の硬化は、一般に、エポキシ化合物のカチオン重合により行われる。また生産性の観点から、この硬化は活性エネルギー線の照射により行うことが好ましい。
 耐候性、屈折率、カチオン重合性などの観点から、硬化性接着剤組成物に含有されるエポキシ化合物は、分子内に芳香環を含まないものであることが好ましい。分子内に芳香環を含まないエポキシ化合物として、水素化エポキシ化合物、脂環式エポキシ化合物、脂肪族エポキシ化合物などが例示できる。このような硬化性接着剤組成物に好適に用いられるエポキシ化合物は、例えば、特開2004-245925号公報で詳細に説明されているが、ここでも概略を説明することとする。
 水素化エポキシ化合物は、芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物に触媒の存在下及び加圧下で選択的に核水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物を、グリシジルエーテル化したものであることができる。芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物としては、例えば、ビスフェノールA、ビスフェールF、及びビスフェノールSのようなビスフェノール類;フェノールノボラック樹脂、クレゾールノボラック樹脂、及びヒドロキシベンズアルデヒドフェノールノボラック樹脂のようなノボラック型の樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、及びポリビニルフェノールのような多官能型の化合物などが挙げられる。このような芳香族ポリヒドロキシ化合物に核水素化反応を行い、得られる核水添ポリヒドロキシ化合物にエピクロロヒドリンを反応させることにより、グリシジルエーテル化することができる。好適な水素化エポキシ化合物として、水素化されたビスフェノールAのグリシジルエーテルが挙げられる。
 脂環式エポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。「脂環式環に結合したエポキシ基」とは、次式に示される構造における橋かけの酸素原子-O-を意味し、この式中、mは2~5の整数である。
Figure JPOXMLDOC01-appb-C000001
 この式における(CH2)中の水素原子を1個又は複数個取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となりうる。また、脂環式環を形成する(CH2)中の1個又は複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。脂環式エポキシ化合物のなかでも、オキサビシクロヘキサン環(上式においてm=3のもの)や、オキサビシクロヘプタン環(上式においてm=4のもの)を有するエポキシ化合物は、優れた接着性を示すことから好ましく用いられる。以下に、脂環式エポキシ化合物の具体的な例を掲げる。ここでは、まず化合物名を挙げ、その後、それぞれに対応する化学式を示すこととし、化合物名とそれに対応する化学式には同じ符号を付す。
 A:3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、
 B:3,4-エポキシ-6-メチルシクロヘキシルメチル 3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、
 C:エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 D:ビス(3,4-エポキシシクロヘキシルメチル) アジペート、
 E:ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル) アジペート、
 F:ジエチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、 G:エチレングリコールビス(3,4-エポキシシクロヘキシルメチルエーテル)、
 H:2,3,14,15-ジエポキシ-7,11,18,21-テトラオキサトリスピロ[5.2.2.5.2.2]ヘンイコサン、
 I:3-(3,4-エポキシシクロヘキシル)-8,9-エポキシ-1,5-ジオキサスピロ[5.5]ウンデカン、
 J:4-ビニルシクロヘキセンジオキサイド、
 K:リモネンジオキサイド、
 L:ビス(2,3-エポキシシクロペンチル)エーテル、
 M:ジシクロペンタジエンジオキサイドなど。
Figure JPOXMLDOC01-appb-C000002
 脂肪族エポキシ化合物は、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテルであることができる。より具体的には、プロピレングリコールのジグリシジルエーテル;1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;エチレングリコール、プロピレングリコール、及びグリセリンのような脂肪族多価アルコールにアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル(例えばポリエチレングリコールのジグリシジルエーテル)などが挙げられる。
 硬化性接着剤組成物において、エポキシ化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。なかでもこのエポキシ化合物は、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物を含むことが好ましい。
 硬化性接着剤組成物に用いられるエポキシ化合物は、通常30~3,000g/当量の範囲内のエポキシ当量を有し、このエポキシ当量は好ましくは50~1,500g/当量の範囲である。エポキシ当量が30g/当量を下回るエポキシ化合物を用いた場合には、硬化後の偏光板の可撓性が低下したり、接着強度が低下したりする可能性がある。一方、3,000g/当量を超えるエポキシ当量を有する化合物では、接着剤組成物に含有される他の成分との相溶性が低下する可能性がある。
 反応性の観点から、エポキシ化合物の硬化反応としてカチオン重合が好ましく用いられる。そのためには、エポキシ化合物を含む硬化性接着剤組成物には、カチオン重合開始剤を配合するのが好ましい。カチオン重合開始剤は、可視光線、紫外線、X線、及び電子線のような活性エネルギー線の照射又は加熱によって、カチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させる。作業性の観点から、カチオン重合開始剤には潜在性が付与されていることが好ましい。以下、活性エネルギー線の照射によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「光カチオン重合開始剤」といい、熱によってカチオン種又はルイス酸を発生し、エポキシ基の重合反応を開始させるカチオン重合開始剤を「熱カチオン重合開始剤」という。
 光カチオン重合開始剤を用い、活性エネルギー線の照射により接着剤組成物の硬化を行う方法は、常温常湿での硬化が可能となり、偏光フィルムの耐熱性又は膨張による歪を考慮する必要が減少し、保護フィルムと偏光フィルムとを良好に接着できる点において有利である。また、光カチオン重合開始剤は、光で触媒的に作用するため、エポキシ化合物に混合しても保存安定性や作業性に優れる。
 光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩、鉄-アレン錯体などを挙げることができる。光カチオン重合開始剤の配合量は、エポキシ化合物100重量部に対し、通常0.5~20重量部であり、好ましくは1重量部以上、また好ましくは15重量部以下である。
光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して0.5重量部を下回ると、硬化が不十分になり、硬化物の機械的強度や接着強度が低下する傾向にある。
一方、光カチオン重合開始剤の配合量が、エポキシ化合物100重量部に対して20重量部を超えると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、耐久性能が低下する可能性がある。
 光カチオン重合開始剤を用いる場合、硬化性接着剤組成物は、必要に応じてさらに光増感剤を含有することができる。光増感剤を用いることで、カチオン重合の反応性を向上させ、硬化物の機械的強度や接着強度を向上させることができる。光増感剤としては、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。光増感剤を配合する場合、その量は、硬化性接着剤組成物100重量部に対して0.1~20重量部の範囲内とすることが好ましい。また、硬化速度向上のために、ナフトキノン誘導体のような増感助剤を用いてもよい。
 一方、熱カチオン重合開始剤としては、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、アミンイミドなどを挙げることができる。
 エポキシ化合物を含有する硬化性接着剤組成物は、先述のとおり光カチオン重合によって硬化させることが好ましいが、上記の熱カチオン重合開始剤を存在させ、熱カチオン重合によって硬化させることもできるし、光カチオン重合と熱カチオン重合を併用することもできる。光カチオン重合と熱カチオン重合を併用する場合、硬化性接着剤組成物には、光カチオン重合開始剤と熱カチオン重合開始剤の両方を含有させることが好ましい。
 また、硬化性接着剤組成物は、オキセタン化合物やポリオール化合物など、カチオン重合を促進させる化合物をさらに含有してもよい。オキセタン化合物は、分子内に4員環エーテルを有する化合物である。オキセタン化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常5~95重量%、好ましくは5~50重量%である。またポリオール化合物は、エチレングリコールやヘキサメチレングリコール、ポリエチレングリコールなどを包含するアルキレングリコール又はそのオリゴマー、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオールなどでありうる。ポリオール化合物を配合する場合、その量は、硬化性接着剤組成物中に、通常50重量%以下、好ましくは30重量%以下である。
 また接着剤は、ラジカル重合性である(メタ)アクリル系化合物を含有する組成物であってもよい。(メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー;官能基含有化合物を2種以上反応させて得られ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー等の(メタ)アクリロイルオキシ基含有化合物を挙げることができる。
 この場合、接着剤は、光ラジカル重合開始剤を含有することが好ましい。光ラジカル重合開始剤としては、例えば、アセトフェノン系開始剤、ベンゾフェノン系開始剤、ベンゾインエーテル系開始剤、チオキサントン系開始剤、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノン等を挙げることができる。
 さらに、接着剤は、その接着性を損なわない限り、他の添加剤、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、増感剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤などを含有することができる。イオントラップ剤としては、例えば、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、カルシウム系、チタン系、これらの混合系などを包含する無機化合物が挙げられ、酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤などが挙げられる。
 接着剤を、偏光フィルム又は保護フィルムの接着面、あるいはこれら双方の接着面に塗工した後、接着剤の塗工された面で貼合し、活性エネルギー線を照射するか又は加熱することにより未硬化の接着剤層を硬化させて、偏光フィルムと保護フィルム(または光学フィルム)とを接着させることができる。接着剤の塗工方法としては、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなど、種々の塗工方式が採用できる。
 この硬化性接着剤組成物は、基本的には、溶剤を実質的に含まない無溶剤型接着剤として用いることができるが、各塗工方式には各々最適な粘度範囲があるため、粘度調整のために溶剤を含有させてもよい。溶剤は、偏光フィルムの光学性能を低下させることなく、エポキシ化合物をはじめとする各成分を良好に溶解する有機溶剤であることが好ましく、例えば、トルエンに代表される炭化水素類、酢酸エチルに代表されるエステル類などを用いることができる。
 活性エネルギー線の照射により接着剤組成物の硬化を行う場合、活性エネルギー線としては先述した各種のものを用いることができるが、取扱いが容易で、照射光量などの制御もしやすいことから、紫外線が好ましく用いられる。活性エネルギー線、例えば紫外線の照射強度や照射量は、偏光フィルムの偏光度をはじめとする各種光学性能、及び保護フィルムの透明性や位相差特性をはじめとする各種光学性能に影響を及ぼさない範囲で、適度の生産性が保たれるように適宜決定される。
 熱により接着剤組成物の硬化を行う場合は、一般的に知られた方法で加熱することができる。通常は、硬化性接着剤組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行われ、具体的な加熱温度は、例えば50~200℃程度である。
[粘着剤層16]
 保護フィルム15における偏光フィルム14との貼合面とは反対側の面に形成される粘着剤層16は、偏光板を液晶セルに貼合するための粘着剤層であり、光学的な透明性に優れ、適度な濡れ性、凝集性、接着性などを包含する粘着特性に優れるものであればよいが、さらに耐久性などに優れるものが好ましい。具体的には、粘着剤層16を形成する粘着剤として、アクリル系樹脂を含有する粘着剤(アクリル系粘着剤)が好ましい。
 アクリル系粘着剤に含有されるアクリル系樹脂は、アクリル酸ブチル、アクリル酸エチル、アクリル酸イソオクチル、及びアクリル酸2-エチルヘキシルのようなアクリル酸アルキルエステルを主要なモノマーとする樹脂である。このアクリル系樹脂には通常、極性モノマーが共重合されている。極性モノマーとは、重合性不飽和結合及び極性官能基を有する化合物であり、ここで重合性不飽和結合は、(メタ)アクリロイル基に由来するものとするのが一般的であり、また極性官能基は、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基などでありうる。極性モノマーの具体例を挙げると、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリルアミド、2-N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートなどがある。
 またアクリル系粘着剤には、通常、アクリル系樹脂とともに架橋剤が配合されている。
架橋剤の代表例として、分子内に少なくとも2個のイソシアナト基(-NCO)を有するイソシアネート化合物を挙げることができる。
 粘着剤には、さらに各種の添加剤が配合されていてもよい。好適な添加剤として、シランカップリング剤や帯電防止剤などが挙げられる。シランカップリング剤は、ガラスとの接着力を高めるうえで有効である。帯電防止剤は、静電気の発生を低減又は防止するうえで有効である。
 粘着剤層16は、以上のような粘着剤成分が有機溶剤に溶解してなる粘着剤組成物を調製し、これを接着する貼合面(偏光フィルムもしくは保護フィルム)のいずれかもしくは両方に直接塗布し、溶剤を乾燥除去する方法によって、あるいは、離型処理が施された樹脂フィルムからなる基材フィルムの離型処理面に上記の粘着剤組成物を塗布し、溶剤を乾燥除去して粘着剤層とし、これを貼合面(偏光フィルムもしくは保護フィルム)のいずれかに貼着し、粘着剤層を転写する方法によって、形成できる。前者の直接塗工法によって粘着剤層16を形成した場合は、その表面に離型処理が施された樹脂フィルム(セパレータとも呼ばれる)を貼合し、使用時まで粘着剤層表面を仮着保護するのが通例である。有機溶剤溶液である粘着剤組成物の取扱い性の観点などから、後者の転写法が多く採用されており、この場合は、最初に粘着剤層の形成に用いる離型処理された基材フィルムが、偏光板に貼着した後そのままセパレータとなりうる点からも好都合である。
 耐熱試験において、十分な密着性や寸法安定性を確保するためには、粘着剤の80℃における貯蔵弾性率が5MPa以下であることが好ましい。さらに好ましくは1MPa以下である。
 保護フィルム15と粘着剤層16を貼合する際には、保護フィルム15と粘着剤層16とを貼りあわせる面に、それぞれコロナ処理、プラズマ処理などを行うことも有用である。
[偏光板の製造方法]
 偏光板を製造する方法としては、特に制限されないが、例えば、光学フィルム11と偏光フィルム14と保護フィルム15とを接着剤層を介してロールツーロールで貼りあわせることで偏光板10が得られる。さらに粘着剤層16を保護フィルム15上に形成することで粘着剤付きの偏光板が得られる。粘着剤付きの偏光板は、粘着剤層16を介して液晶セルに貼合することができる。
光学フィルム11は、所望の位相差特性を付与するために延伸処理を施されていることが多いので、例えば、85℃のような高温環境下に置いた場合に寸法変化が大きいことがある。このため、本発明の製造方法は、光学フィルム11と偏光フィルム14と貼合する前に光学フィルム11を加熱処理する工程を含む。なお光学フィルム11を製造する段階で、延伸処理を施す際にもフィルムを加熱することがあるが、本発明の製造方法における加熱処理をする工程は、延伸処理における加熱とは異なり、延伸処理が完了した光学フィルムに対して加熱処理を行う。すなわち本発明の製造方法における加熱処理をする工程において、光学フィルムは実質的に延伸されない。実質的に延伸されないとは、延伸倍率が1.1倍以下であることを意味し、好ましくは1.05倍以下である。
当該加熱処理をする工程は、光学フィルム11と偏光フィルム14とを貼合する3日以内に行うことが好ましく、24時間以内に行うことがより好ましく、60分以内に行うことがさらに好ましい。このように貼合直前に加熱工程を設けることで、光学フィルム11のブロッキングによるしわなどを矯正でき、外観品質に優れた偏光板とすることができる。
 前記加熱処理は、光学フィルム11のガラス転移温度(Tg)に対して、Tg-60℃~Tg℃の温度で行うことが好ましく、Tg-30℃~Tg-5℃の温度で行われることがより好ましい。さらに好ましくは、Tg-20℃~Tg-5℃である。このような加熱処理工程を経ることで、光学フィルム11の高温環境下での寸法変化が抑制される。このため偏光板の耐熱試験での偏光度低下を抑制できると考えられる。
 加熱処理の方法は、オーブンなどで予め加熱処理を行う方法や、偏光フィルムと貼合する前に熱ドラムに抱かせて加熱する方法など、種々の方法を選択することができる。
 こうして作製した偏光板は、85℃の環境下に100hr静置した時の偏光フィルムの吸収軸と45°の方向の寸法変化率D1と偏光フィルムの吸収軸と135°の方向の寸法変化率D2をともに0.25%以下とすることもでき、耐熱試験時の偏光度低下を抑制することができる。
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す部及び%は、特記ないかぎり重量基準である。なお、以下の例における各物性の測定は、次の方法で行った。
(1)厚さの測定:
 株式会社ニコン製のデジタルマイクロメーター“MH-15M”を用いて測定した。
(2)面内レターデーション及び厚み方向レターデーションの測定:
 王子計測機器株式会社製の平行ニコル回転法を原理とする位相差計“KOBRA(登録商標)-WPR”を用い、23℃の温度において、所定の波長での面内レターデーション及び厚み方向レターデーションを測定した。
(3)偏光板の偏光度及び単体透過率の測定:
 積分球付き分光光度計〔日本分光株式会社製の「V7100」、2度視野;C光源〕を用いて測定した。
(4)偏光板の寸法変化率の測定方法
 85℃の環境下に100hr静置した時の偏光フィルムの吸収軸に対して45°の方向の偏光板の寸法変化率D1および偏光フィルムの吸収軸に対して135°の方向の偏光板の寸法変化率D2を測定する方法は、株式会社ニコン製の二次元測定器“NEXIV VMR-12072”を用いて、次の通り測定した。まず、偏光板を偏光フィルムの吸収軸に対して(45°の方向に100mm)×(135℃の方向に100mm)の大きさに裁断し、温度23℃湿度55%の環境下に1日静置し、偏光フィルムの吸収軸に対して45°方向の寸法(L0(45))および偏光フィルムの吸収軸と135°方向の寸法(L0(135))を測定する。次に偏光板を85℃の環境下に100時間静置し、高温環境下に静置した後の偏光フィルムの吸収軸と45°の方向の寸法(L1(45))および偏光フィルムの吸収軸と135°の方向の寸法(L1(135))を測定する。その結果をもとに式(5)及び(6)から寸法変化率D1(%)、D2(%)を求めた。

寸法変化率D1=
[(L0(45)-L1(45))/L0(45) ]×100        (5)寸法変化率D2=
[(L0(135)-L1(135))/L0(135) ]×100     (6)
[製造例1]偏光フィルムの作製
 厚み20μmのポリビニルアルコールフィルム(平均重合度約2400、ケン化度99.9モル%以上)を、乾式延伸により約4倍に一軸延伸し、さらに緊張状態を保ったまま、40℃の純水に40秒間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.052/5.7/100の水溶液に28℃で30秒間浸漬して染色処理を行った。その後、ヨウ化カリウム/ホウ酸/水の重量比が11.0/6.2/100の水溶液に70℃で120秒間浸漬した。引き続き、8℃の純水で15秒間洗浄した後、300Nの張力で保持した状態で、60℃で50秒間、次いで75℃で20秒間乾燥して、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚み7μmの吸収型偏光子を得た。
[製造例2]水系接着剤の作製
 水100重量部に対し、カルボキシル基変性ポリビニルアルコール〔株式会社クラレから入手した商品名「KL-318」〕を3重量部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業株式会社から入手した商品名「スミレーズレジン(登録商標) 650(30)」、固形分濃度30重量%の水溶液〕を1.5重量部添加して、水系接着剤を調製した。
[粘着剤]
粘着剤A:厚み25μmのシート状粘着剤〔リンテック株式会社製の「P-3132」〕を用意した。
[保護フィルム]
 以下の保護フィルムを用意した。
 保護フィルム:日本ゼオン株式会社製の環状ポリオレフィン系樹脂フィルム;ZF14-013(厚み13μm、波長590nmでの面内位相差値=0.5nm、波長590nmでの厚み方向位相差=3.3nm)
[光学フィルム]
光学フィルムA:コニカミノルタ株式会社製のトリアセチルセルロースフィルム;KC4UGR-HC(厚み44μm、波長590nmでの面内位相差値=106nm、波長590nmでの厚み方向位相差=75nm、Rth(590)/Re(590)=0.71、Re(450)/Re(550)=0.96、Re(630)/Re(550)=1.02、ガラス転移温度=200℃)を準備した。
光学フィルムB:日本ゼオン株式会社製のシクロオレフィンポリマーフィルム;ZD12-099063-C1330UHD(厚み28μm、波長590nmでの面内位相差値=97nm、波長590nmでの厚み方向位相差=65nm、Rth(590)/Re(590)=0.67、Re(450)/Re(550)=1.01、Re(630)/Re(550)=0.99、ガラス転移温度=120℃)を準備した。
[実施例1]
 光学フィルムAを150℃のオーブンに3分間投入し、加熱処理を行った。次いで、加熱処理を行った光学フィルムAにケンカ処理を行った。すなわち、加熱処理温度は、Tg-50℃であった。
保護フィルムの一方の面にコロナ処理を行った。保護フィルムのコロナ処理面と偏光フィルムとを、さらに偏光フィルムと光学フィルムAとを水系接着剤で接着し偏光板を得た。
光学フィルムAに加熱処理をしてから、偏光フィルムに貼合するまでの時間は30分間であった。この際、偏光板の吸収軸と光学フィルムAの遅相軸が45°となるように貼合した。
さらに、得られた偏光板の保護フィルム側に粘着剤Aを積層し、光学フィルムA/偏光フィルム/保護フィルム/粘着剤層Aの層構成からなる粘着剤付き偏光板を得た。
偏光板の偏光度は、99.994%であった。
得られた偏光板の寸法変化率D1及びD2は、D1=0.06%、D2=0.21%であった。
 こうして作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを105℃のオーブンに30分間投入した。耐熱試験後の偏光度は、99.972%であった。
 同様に偏光板を、40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを85℃のオーブンに500時間投入した。耐熱試験後の偏光度は、99.975%であった。
[実施例2]
 光学フィルムAを雰囲気温度が200℃のオーブンに3分間投入し、加熱処理を行った。すなわち、加熱処理温度は、Tgに等しかった。次いで、加熱処理を行った光学フィルムAにケンカ処理を行った。その他は実施例1と同様の方法で、光学フィルムA/偏光フィルム/保護フィルム/粘着剤層Aの層構成からなる粘着剤付き偏光板を得た。この偏光板の偏光度は99.995%であった。
 得られた偏光板の寸法変化率D1及びD2は、D1=0.05%、D2=0.15%であった。
 こうして作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを105℃のオーブンに30分間投入した。耐熱試験後の偏光度は、99.980%であった。
 同様に偏光板を、40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを85℃のオーブンに500時間投入した。耐熱試験後の偏光度は、99.981%であった。
[実施例3]
 光学フィルムBを120℃のオーブンに3分間投入し、加熱処理を行った。すなわち、加熱処理温度は、Tgに等しかった。次いで、加熱処理を行った光学フィルムBにコロナ処理を行った。この光学フィルムBを光学フィルムAの代わりに使用したこと以外は、実施例1と同様の方法により、光学フィルムB/偏光フィルム/保護フィルム/粘着剤層Aの層構成からなる粘着剤付き偏光板を得た。この偏光板の偏光度は99.993%であった。
 得られた偏光板の寸法変化率D1及びD2は、D1=0.03%、D2=0.10%であった。
 こうして作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを105℃のオーブンに30分間投入した。耐熱試験後の偏光度は、99.985%であった。
 同様に偏光板を、40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを85℃のオーブンに500時間投入した。耐熱試験後の偏光度は、99.987%であった。
[比較例1]
 保護フィルムの一方の面にコロナ処理を、光学フィルムAにケン化処理を行った。保護フィルムのコロナ処理面と偏光フィルムと光学フィルムAとを、この順に水系接着剤で接着し偏光板を得た。偏光フィルムと光学フィルムAとを貼合する前に、光学フィルムAへ加熱処理は行わなかった。得られた偏光板の吸収軸と光学フィルムの遅相軸は45°となるようにした。さらに、得られた偏光板の保護フィルムB側に粘着剤Aを積層し、光学フィルムA/偏光フィルム/保護フィルム/粘着剤層Aの層構成からなる粘着剤付き偏光板を得た。偏光板の偏光度は、99.995%であった。
得られた偏光板の寸法変化率D1及びD2は、D1=0.07%、D2=0.30%であった。
 こうして作製した偏光板を40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを105℃のオーブンに30分間投入した。耐熱試験後の偏光度は、99.954%であった。
 同様に偏光板を、40mm四方に切り出し、コーニング社製のイーグルXGに貼合し耐熱評価用サンプルを作製した。こうして作製したサンプルを85℃のオーブンに500時間投入した。耐熱試験後の偏光度は、99.954%であった。
Figure JPOXMLDOC01-appb-T000003
 上記表1に示すように、光学フィルムに加熱処理を施した実施例1~3の偏光板は、加熱処理を施さなかった比較例1の偏光板に比べ、耐熱試験後の偏光度低下が小さかった。
 本発明によれば、耐熱試験時に光学フィルムの寸法変化によって引き起こされる偏光フィルムの吸収軸のズレによる偏光度低下を抑制できる偏光板の製造方法を提供することができるので有用である。
 10 偏光板
 11 光学フィルム
 14 偏光フィルム
 15 保護フィルム
 16 粘着剤層
 20 表面処理層
 30 偏光フィルムの吸収軸
 31 偏光フィルムの吸収軸に対して45°の方向
 32 偏光フィルムの吸収軸に対して135°の方向
 33 45°
 34 135°
 40 寸法変化率測定用の偏光板

Claims (4)

  1.  光学フィルム、偏光フィルムおよび粘着剤層をこの順に含み、前記偏光フィルムの厚みが15μm以下であって、前記偏光フィルムの吸収軸と前記光学フィルムの遅相軸とのなす角度が略45°又は略135°である偏光板の製造方法であって、
     前記光学フィルムを前記偏光フィルムへ貼合する前に、前記光学フィルムを加熱処理する工程を有する偏光板の製造方法。
  2.  前記加熱処理が、前記光学フィルムのガラス転移温度(Tg)に対して、Tg-30℃~Tg-5℃の温度で行われる請求項1に記載の偏光板の製造方法。
  3.  前記光学フィルムは、環状ポリオレフィン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ポリエステル系樹脂又は(メタ)アクリル系樹脂からなる群から選ばれる少なくとも一種を含む、請求項1または2に記載の偏光板の製造方法。
  4.  前記偏光フィルムと前記粘着剤層との間にさらに保護フィルムを有する請求項1~3のいずれかに記載の偏光板の製造方法。
PCT/JP2017/000252 2016-01-29 2017-01-06 偏光板の製造方法 WO2017130656A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780008381.XA CN108603963A (zh) 2016-01-29 2017-01-06 偏振板的制造方法
KR1020187024084A KR20180105193A (ko) 2016-01-29 2017-01-06 편광판의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016015252 2016-01-29
JP2016-015252 2016-01-29
JP2016242000A JP2017138582A (ja) 2016-01-29 2016-12-14 偏光板の製造方法
JP2016-242000 2016-12-14

Publications (1)

Publication Number Publication Date
WO2017130656A1 true WO2017130656A1 (ja) 2017-08-03

Family

ID=59398130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000252 WO2017130656A1 (ja) 2016-01-29 2017-01-06 偏光板の製造方法

Country Status (1)

Country Link
WO (1) WO2017130656A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066125A1 (ja) * 2018-09-25 2020-04-02 日東電工株式会社 偏光板およびその製造方法、ならびに該偏光板を含む画像表示装置
JP2021043421A (ja) * 2019-09-13 2021-03-18 住友化学株式会社 光学積層体およびそれを用いた表示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154261A (ja) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd セルロースアセテートフイルム、その製造方法、光学補償シートおよび液晶表示装置
WO2003102639A1 (en) * 2002-05-30 2003-12-11 Zeon Corporation Optical laminate
JP2006341393A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp セルロースアシレート樹脂フィルムの製造方法
JP2006341394A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp 熱可塑性樹脂フィルムの製造方法
JP2009134224A (ja) * 2007-04-11 2009-06-18 Nitto Denko Corp 積層光学フィルムおよびその製造方法
US20140204460A1 (en) * 2012-05-30 2014-07-24 Lg Chem, Ltd Polarizer, manufacturing method for the same and display device employing thereof
WO2015159679A1 (ja) * 2014-04-16 2015-10-22 コニカミノルタ株式会社 偏光板、偏光板の製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
US20160062012A1 (en) * 2014-09-03 2016-03-03 Samsung Sdi Co., Ltd. Polarizing plate and liquid crystal display comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154261A (ja) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd セルロースアセテートフイルム、その製造方法、光学補償シートおよび液晶表示装置
WO2003102639A1 (en) * 2002-05-30 2003-12-11 Zeon Corporation Optical laminate
JP2006341393A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp セルロースアシレート樹脂フィルムの製造方法
JP2006341394A (ja) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp 熱可塑性樹脂フィルムの製造方法
JP2009134224A (ja) * 2007-04-11 2009-06-18 Nitto Denko Corp 積層光学フィルムおよびその製造方法
US20140204460A1 (en) * 2012-05-30 2014-07-24 Lg Chem, Ltd Polarizer, manufacturing method for the same and display device employing thereof
WO2015159679A1 (ja) * 2014-04-16 2015-10-22 コニカミノルタ株式会社 偏光板、偏光板の製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
US20160062012A1 (en) * 2014-09-03 2016-03-03 Samsung Sdi Co., Ltd. Polarizing plate and liquid crystal display comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066125A1 (ja) * 2018-09-25 2020-04-02 日東電工株式会社 偏光板およびその製造方法、ならびに該偏光板を含む画像表示装置
CN112789528A (zh) * 2018-09-25 2021-05-11 日东电工株式会社 偏光板及其制造方法、以及包含该偏光板的图像显示装置
JPWO2020066125A1 (ja) * 2018-09-25 2021-08-30 日東電工株式会社 偏光板およびその製造方法、ならびに該偏光板を含む画像表示装置
CN112789528B (zh) * 2018-09-25 2023-08-29 日东电工株式会社 偏光板及其制造方法、以及包含该偏光板的图像显示装置
JP7376494B2 (ja) 2018-09-25 2023-11-08 日東電工株式会社 偏光板およびその製造方法、ならびに該偏光板を含む画像表示装置
JP2021043421A (ja) * 2019-09-13 2021-03-18 住友化学株式会社 光学積層体およびそれを用いた表示装置

Similar Documents

Publication Publication Date Title
WO2018193729A1 (ja) 偏光板および液晶パネル
WO2017047408A1 (ja) 複合偏光板及びそれを用いた液晶パネル
TW201734515A (zh) 偏光板組及液晶面板
JP2017083820A (ja) 偏光板および液晶パネル並びに偏光板の製造方法
CN106873068B (zh) 偏振板和图像显示装置
JP2021036328A (ja) 偏光板のセットおよび液晶パネル
WO2017130656A1 (ja) 偏光板の製造方法
WO2017047405A1 (ja) 複合偏光板及びそれを用いた液晶パネル
WO2017047406A1 (ja) 複合偏光板及びそれを用いた液晶パネル
CN106990471B (zh) 偏振板和液晶面板
JP2017138582A (ja) 偏光板の製造方法
KR101748531B1 (ko) 편광판 세트 및 액정 패널
CN109298479B (zh) 偏光板组及液晶面板
CN106873069B (zh) 偏振板和液晶面板
WO2009125717A1 (ja) 複合偏光板およびこれを用いた液晶表示装置
JP2017125949A (ja) 高輝度偏光板およびそれを用いた液晶表示装置
WO2017047407A1 (ja) 複合偏光板及びそれを用いた液晶パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187024084

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024084

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 17743890

Country of ref document: EP

Kind code of ref document: A1