WO2017130447A1 - Power conversion device and rotating electric machine driving device - Google Patents

Power conversion device and rotating electric machine driving device Download PDF

Info

Publication number
WO2017130447A1
WO2017130447A1 PCT/JP2016/074082 JP2016074082W WO2017130447A1 WO 2017130447 A1 WO2017130447 A1 WO 2017130447A1 JP 2016074082 W JP2016074082 W JP 2016074082W WO 2017130447 A1 WO2017130447 A1 WO 2017130447A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
timing
section
triangular carrier
Prior art date
Application number
PCT/JP2016/074082
Other languages
French (fr)
Japanese (ja)
Inventor
壮太 佐野
覚 寺島
弘淳 福岡
佐竹 彰
古谷 真一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017563675A priority Critical patent/JP6419361B2/en
Priority to CN201680079809.5A priority patent/CN108633323B/en
Publication of WO2017130447A1 publication Critical patent/WO2017130447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a power conversion device for a rotating electrical machine and a rotating electrical machine driving device using the power conversion device.
  • a means for detecting the phase current is required.
  • a method of calculating the motor current from the DC bus current of the inverter instead of providing a current sensor between the power converter and the motor.
  • a pulse current corresponding to a phase current flowing in a DC bus of a power converter main circuit in accordance with switching of a switching element of each phase is detected by a current detection unit, and the obtained current detection value is obtained. It is disclosed that the phase currents for three phases are detected and reproduced by one current detection means by distributing to each phase from the switching state at the time of detection.
  • Patent Documents 2 and 3 for example, current detection in the first half cycle of the triangular carrier wave and current detection in the second half cycle are alternately performed, and the current detection error is compensated from the current detection value obtained from each, It is disclosed that appropriate current detection can be realized even with an electric motor having a small impedance and a large current ripple.
  • Patent Document 2 In order to realize the above-described conventional method, in Patent Document 2, only an interval that is an integral multiple of the triangular carrier period is detected between the current detection in the first half period of the triangular carrier wave and the current detection in the second half period of the triangular carrier wave. A current detection hold section for holding current detection is provided. In Patent Document 3, detection is performed in the second half of the first period and the first half of the second period among the two carrier signal periods. As a result, the current detection period and the accompanying voltage command update period are 1.5 times or more of the carrier period in Patent Document 2 and twice in Patent Document 3. For this reason, the time resolution of the voltage update is lowered, for example, when a high frequency voltage is output at the time of low carrier driving, and the output voltage accuracy is lowered.
  • the detection accuracy is improved by performing current detection in the first half of the triangular carrier wave and current detection in the second half of the triangular carrier wave at a position symmetrical to the control cycle start point.
  • current ripples are periodically generated at the same place, and noise of the same frequency is generated intensively.
  • the present invention is for solving the above-described problems. Even when the electric motor has a small impedance, the current is detected with high accuracy, and the current is detected and the voltage is updated every one period of the triangular carrier. Also, it is an object of the present invention to provide a power converter capable of minimizing a decrease in output voltage accuracy.
  • the power converter according to the present invention includes a PWM converter that compares a three-phase voltage command with a triangular carrier wave and converts it into a PWM pulse, and a power that drives a switching element based on the PWM pulse and converts a DC voltage into a three-phase AC voltage.
  • the converter main circuit, the DC bus current detector for detecting the current flowing in the DC bus of the power converter main circuit, and the current for two phases are detected by the DC bus current detector at least once in one period of the triangular carrier wave.
  • a timing determination unit that sets two detection timings based on the switching timing of the switching element, and a period of a triangular carrier wave based on a DC bus current value for two phases detected at a timing determined by the timing determination unit
  • a phase current calculation unit that calculates a three-phase AC current value once, and updates a three-phase voltage command based on the three-phase AC current value once in one period of a triangular carrier wave Equipped with a pressure command generating unit,
  • the DC bus current detection unit has one of the monotonically increasing section or the monotonic decreasing section in the first period of two consecutive triangular carrier periods.
  • the DC bus current value is detected in a section of the period that is not detected in the first period of the monotonically increasing section or the monotonically decreasing section in the second period of two consecutive triangular carrier wave periods.
  • Detect The phase current calculation unit calculates a three-phase AC current value based on the two-phase DC bus current value detected by the DC bus current detection unit in the monotonically increasing section and the monotonically decreasing section in the immediately preceding two triangular carrier periods. It is to calculate.
  • the voltage update is performed for each period of the triangular carrier wave period, and the current detection is alternately switched between the monotonically increasing section and the monotonically decreasing section.
  • the voltage update cycle can be shortened.
  • current detection from the DC bus can be performed with high accuracy even during low carrier driving, and a decrease in output voltage accuracy can be minimized.
  • the current detection position in the monotonically increasing section and the monotonically decreasing section is set asymmetrically with respect to the control cycle start point located between them, so that the position of the current ripple is dispersed within the control period, causing noise. Can also be dispersed.
  • FIG. 3 is a block configuration diagram illustrating a hardware configuration of the power conversion device according to the first embodiment. It is a block block diagram which shows the specific structure of the power converter device by Embodiment 1.
  • FIG. It is a flowchart which shows the operation
  • FIG. 5 is a partially enlarged view of the DC bus current waveform diagram shown in FIG. 4.
  • FIG. 10 is a diagram for explaining the operation of the power conversion device according to the second embodiment.
  • FIG. 1 is a block configuration diagram illustrating a hardware configuration of the power conversion device according to the first embodiment.
  • a power converter 10 includes a processor 100, a storage device 101, a power converter main circuit 1, and a DC bus current detector 2 that detects a current flowing through the DC bus 102 as hardware.
  • the storage device 101 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory.
  • the storage device 101 may include an auxiliary storage device such as a hard disk instead of the nonvolatile auxiliary storage device.
  • the processor 100 executes the program input from the storage device 101. Since the storage device 101 includes an auxiliary storage device and a volatile storage device, a program is input to the processor 100 from the auxiliary storage device via the volatile storage device.
  • the processor 100 may output data such as a calculation result to the volatile storage device of the storage device 101, or may store the data in the auxiliary storage device via the volatile storage device.
  • FIG. 2 is a block configuration diagram showing a specific configuration of the power conversion apparatus 10.
  • the power conversion device 10 of the present embodiment has a control unit 6, and the control unit 6 compares a three-phase voltage command with a triangular carrier wave TW and converts it into a PWM pulse.
  • the three-phase voltage command is compared with the triangular carrier wave TW and converted into gate switching timings Sup to Swn, and the current detection point determination for outputting the DC bus current detection timings T A to T D from these gate switching timings Sup to Swn
  • It has a gate switching timing and current detection timing determination unit (hereinafter abbreviated as a timing determination unit) that also serves as means.
  • the PWM converter adds a correction amount to the voltage command on the current detection side of the monotonically increasing section and the monotonically decreasing section so that it can be detected when it is determined that the DC bus current detection is difficult.
  • a current detection section generation unit that subtracts the correction amount from the voltage command.
  • the power converter 10 includes a power converter main circuit 1, a DC bus current detector 2, a detected current storage 3, a phase current calculator 4, and a voltage command generator 5.
  • the power converter main circuit 1 drives the switching elements SW1 to SW6 based on the gate switching timings Sup to Swn to convert the DC voltage into a three-phase AC voltage.
  • the DC bus current detection unit 2 detects a current flowing through the DC bus 102.
  • the detected current storage unit 3 acquires and holds the current value detected by the DC bus current detection unit 2 using the DC bus current detection timings T A to T D.
  • the phase current calculation unit 4 calculates the DC bus current stored in the detection current storage unit 3 as a three-phase AC current value.
  • the voltage command generator 5 updates the three-phase voltage commands Vu to Vw once in one cycle of the triangular carrier wave TW.
  • Rotating machine M is connected to power converter main circuit 1, and the object of this embodiment is to detect a three-phase alternating current flowing between them with DC bus 102.
  • any rotating machine such as a synchronous motor, an induction motor, or a generator may be used.
  • FIG. 2 although the case where the connection of a stator winding is a Y connection is shown, you may use (DELTA) connection.
  • 2 is a processor 100 that executes a program stored in the storage device 101, or a processing circuit such as a system LSI (not shown).
  • the detected current storage unit 3 is realized by a volatile storage device of the storage device 101.
  • a plurality of processors 100 and a plurality of storage devices 101 may execute the function in cooperation, or a plurality of processing circuits may execute the function in cooperation. Further, the above functions may be executed in cooperation with a combination of a plurality of processors 100 and a plurality of storage devices 101 and a plurality of processing circuits.
  • FIG. 3 is a flowchart showing the operation of the timing determination unit.
  • a current detection interval is derived from the difference in the magnitudes of the three-phase voltage commands Vu to Vw generated by the voltage command generation unit 5 (step S301), and in the DC bus 102 in the current detection interval. It is determined whether or not current detection is possible (step S302). When the DC bus current cannot be detected, a correction amount is added to the voltage commands Vu to Vw so that the total value within the voltage update period does not change as described later (step S303).
  • the gate switching timings Sup to Swn of the switching elements SW1 to SW6 of the power converter main circuit 1 are determined from the voltage commands Vu to Vw to which correction amounts are added as necessary (step S304), and the gate switching timings Sup to Swn are used. Then, the DC bus current detection timings T A to T D are determined (step S305), and the DC bus current detection unit 2 detects the current.
  • the power converter main circuit 1 is composed of six switching elements SW1 to SW6 and diodes, and has a role of converting DC power into three-phase AC power. That is, the power converter main circuit 1 constitutes an inverter circuit, and includes a U-phase upper arm switching element SW1, a U-phase lower arm switching element SW2, a V-phase upper arm switching element SW3, a V-phase lower arm switching element SW4, and a W-phase. It is composed of an upper arm switching element SW5 and a W-phase lower arm switching element SW6. Each of the switching elements SW1 to SW6 is driven by receiving signals according to gate switching timings Sup to Swn input from the timing determination unit.
  • a detection element for example, a hall sensor, a resistor, a current transformer, etc.
  • the detected current value Idc is sent to the detected current storage unit 3. 1 and 2, the detection element is provided on the low voltage side of the DC power supply, but may be provided on the high voltage side.
  • the detection current storage unit 3 has a role of acquiring and holding the detection current detected by the DC bus current detection unit 2 at the DC bus current detection timings T A to T D determined by the timing determination unit.
  • FIG. 4 is a diagram for explaining the operation of determining the current detection timings T A to T D performed by the timing determination unit.
  • the switching states of the three-phase switching elements need to be all on or not all off, that is, the so-called non-zero voltage vector switching state interval, that is, It is necessary to select two types from such current detection intervals and perform detection in those intervals.
  • the DC bus current detection timings T A to T D are determined depending on the gate switching timing of the voltage intermediate phase (V phase in the case of FIG.
  • the maximum phase voltage command, the intermediate phase voltage command, and the minimum phase voltage command are defined in order from the largest, but in FIG.
  • the phase voltage command is Vu
  • the intermediate phase voltage command is Vv
  • the minimum phase voltage command is Vw is shown.
  • Bu indicates the maximum phase (U phase) upper arm switch state
  • Bv indicates the intermediate phase (V phase) upper arm switch state
  • Bw indicates the minimum phase (W phase) upper arm switch state.
  • the DC bus current value detected during the first non-zero voltage vector period of the two-phase detection current is IdcA
  • the DC bus current detected during the second non-zero voltage vector period is IdcB
  • T A is the detection timing of the current value IdcA is determined from the gate switching timing Svp of the gate of the intermediate phase (V phase) (TS) before the predetermined time T1.
  • the time T1 is set to a time longer than the time required for current detection.
  • T B is the detection timing of the current value IdcB is determined from the timing T A after a predetermined time T2.
  • the determination of the time T2 takes into account a dead time interval provided in order to prevent the switching element pairs connected in series in the power converter main circuit 1 from conducting at the same time, and the DC bus current is determined as On On of the switching element.
  • the current may vibrate due to a sudden change in voltage associated with the Off operation, and it is necessary to consider the current vibration. That is, if one of the upper arm switching element and the lower arm switching element (for example, SW1 and SW2) is On, the other is in an Off relationship. Is set to On, and the time T2 is determined in consideration of the dead time interval. Furthermore, high-frequency vibration of DC current is generated due to the influence of surge voltage generated when the switching element is switched (refer to current detection impossible section T10).
  • FIG. 4 shows an example of this, and shows a current undetectable section T10 and a current detectable section T11 in the non-zero voltage vector section of the gate switching timings Sup to Swn. That timing T A is determined in the current detectable period T11.
  • a section in which current detection cannot be performed is described as a section in which current detection is not possible.
  • time T2 is the timing T B is set so as not to the current undetectable period. That is, T2> T1 + (current detection impossible section).
  • the current value IdcA indicates the current value of the maximum voltage phase (U phase)
  • the current value IdcB indicates the current value of the minimum voltage phase (W phase).
  • FIG. 5 is a circuit diagram showing a state in which currents Iu, Iv, Iw flow when detecting the current value IdcA
  • FIG. 6 is a circuit showing a state in which currents Iu, Iv, Iw flow when detecting the current value IdcB.
  • the detected current is Iu, that is, the voltage maximum phase (U phase) current.
  • the detected current is Iw, that is, the current of the minimum voltage phase (W phase).
  • arrows indicated by dotted lines indicate the directions of currents flowing in the respective phases.
  • the current is The reflux flows through the diode, and no current is detected by the DC bus current detector 2.
  • the phase current calculation unit 4 calculates the current value of the voltage intermediate phase (V phase) from these two current values IdcA and IdcB. The difference in detection timing between the current value IdcA and the current value IdcB is set as short as possible.
  • timings T C and T D in FIG. 4 indicate detection timings of current values IdcC and IdcD when current detection is performed in the latter half of the triangular carrier wave period, respectively.
  • Timing T C, T D is determined voltage intermediate phase gate switching timing Svn of (V-phase) (TS) to the reference timing T A
  • T B likewise timing T C is the voltage intermediate phase of gate-off of the (V-phase) together is determined from the gate switching timing Svn predetermined time before T1
  • the timing T D is determined after a predetermined time timing T C T2.
  • the current value IdcC indicates the current value of the minimum voltage phase (W phase)
  • the current value IdcD indicates the current value of the maximum voltage phase (U phase).
  • FIG. 7 is a partially enlarged view of the DC bus current waveform diagram shown in FIG. 7
  • a section T70 and a section T71 each indicate a non-zero voltage vector section
  • a current value X indicates an average current value in the non-zero voltage vector section.
  • the detected current storage unit 3 it is necessary for the detected current storage unit 3 to store current values IdcA, IdcB, IdcC, and IdcD for two points (two intervals of a monotonically decreasing interval and a monotonically increasing interval) and a total of four points for two phases.
  • the stored current value data is called to the phase current calculation unit 4 at the time of calculation to start the calculation, and the phase current calculation unit 4 obtains the average value of the current of each phase in the current for two phases.
  • the phase current calculation unit 4 calculates a three-phase alternating current from the two-phase detection current stored in the detection current storage unit 3. Based on the three-phase voltage commands Vu, Vv, and Vw generated by the voltage command generator 5, the signs of the two-phase current values are determined. The remaining one-phase current value can be easily obtained from the already obtained two-phase current value by utilizing the fact that the sum of the three-phase current values is zero. From the above calculation, it is possible to detect the three-phase alternating current value flowing through the rotating machine M.
  • the voltage commands Vu, Vv, Vw are determined based on the phase current value, and the phase current is used for monitoring the output of the rotating machine M. It is also used for each part control process.
  • the voltage command generator 5 has a role of generating voltage commands Vu, Vv, and Vw that are three-phase voltage commands to be output to the power converter main circuit 1.
  • Various voltage command generation methods are known depending on the control method of the rotating machine M, but the description is omitted because it is not the essence of the present embodiment.
  • the voltage command generation unit 5 generates voltage commands Vu, Vv, and Vw that are three-phase voltage commands to be output to the timing determination unit (control unit).
  • the timing determination unit control unit
  • each operation content of the timing determination unit shown in the flowchart of FIG. 3 will be described.
  • the current detection section shown in FIG. 4 is obtained from the difference in magnitude between the voltage commands Vu, Vv, and Vw generated by the voltage command generator 5.
  • the current detection interval is determined depending on the difference between the magnitudes of the voltage commands Vu, Vv, and Vw. The smaller the difference is, the shorter the current detection interval is.
  • the DC bus current detection timings T A to T D it is determined whether or not the DC bus current detection timings T A to T D can be determined in the current detection section. Whether or not the DC bus current detection timings T A to T D can be determined is determined by comparing the current detection section T12 and the current detection non-cancellation section T10, and when the current detection section T12 is smaller than the current non-detection section T10 It is determined that detection is impossible. Details will be described below with reference to FIG. When it is determined that the detection is impossible, it is necessary to add a correction amount to the voltage commands Vu, Vv, and Vw so that a current detection section can be secured.
  • FIGS. 8A and 8B are diagrams illustrating an example for securing a current detectable section when it is determined that detection is impossible in the current detection section obtained from the voltage commands Vu, Vv, and Vw.
  • an example is shown in which the DC bus current detection is performed in the monotonically decreasing section of the triangular carrier wave TW, but the same processing can be performed also in the monotonically increasing section.
  • the voltage commands Vu, Vv, and Vw input from the voltage command generator 5 are set to a maximum phase voltage command Vu, an intermediate phase voltage command Vv, and a minimum phase voltage command Vw in descending order.
  • the voltage commands Vu, Vv, Vw and the triangular carrier wave TW are compared to determine the gate switching timings Sup to Swn.
  • the triangular carrier wave period is divided into two on the detection section securing side and the voltage compensation side, and detected on the voltage command on the detection section securing side.
  • the voltage amount ⁇ V is added so that the section can be secured, and the same amount of voltage amount ⁇ V is subtracted from the voltage command on the voltage compensation side.
  • the current detection section becomes larger than the current undetectable period, it is possible to ensure the DC bus current detection timing T B.
  • the voltage amount ⁇ V for securing the detection section is determined depending on the section where current detection is impossible.
  • FIG. 8 shows an example in which the correction amount is added to the intermediate phase voltage command Vv, the correction amount is similarly added to the maximum phase voltage command Vu or the minimum phase voltage command Vw as necessary. Furthermore in FIG. 8 (A) have dealt with the case can not be secured to the timing T B the difference between Vv and Vw is small, even when the difference between the Vu and Vv can not determine the reduced timing T A. At this time, the voltage amount ⁇ V is subtracted from the voltage command on the detection section ensuring side, and the same amount of voltage ⁇ V is added to the voltage command on the voltage compensation side.
  • current detection can be performed even when the difference in magnitude between the phases of the voltage command becomes small. Further, when the magnitude of the voltage command of each phase is switched, for example, even when the voltage command Vv is larger than the voltage command Vu due to driving conditions and the rotating machine M is driven, current detection can be performed. . Also, current detection can be performed under all driving conditions such as low-speed driving where the currents Iu, Iv, and Iw are small. In addition, since the current cannot be detected on the voltage compensation side when the detection section is secured, detection is performed only in one of the pair of the current value IdcA and the current value IdcB or the pair of the current value IdcC and the current value IdcD in one period of the triangular carrier wave. Absent.
  • the update period of the voltage command Vv to which the correction amount ⁇ V is added in order to secure the current detection section needs to be the same as or longer than the triangular carrier wave period.
  • the period of the voltage commands Vu, Vv, and Vw input to the timing determination unit needs to be equal to or longer than the triangular carrier period. .
  • the voltage command Vv to which the correction amount ⁇ V is added as necessary is compared with the triangular carrier wave TW to determine the gate switching timings Sup to Swn for the three phases, and the DC bus current using the gate switching timings Sup to Swn.
  • the detection timings T A to T D are determined, and the detection current detected by the DC bus current detection unit 2 is acquired and held. Further, the gate switching timings Sup to Swn are output to the power conversion unit main circuit 1, the DC bus current detection timings T A to T D are output to the detection current storage unit 3, and the operation of the timing determination unit is terminated.
  • FIG. 9 is a timing chart of current detection processing (E), current calculation processing (F), and voltage command generation processing (G) for a triangular carrier wave period.
  • the current detection process (E) is a process of storing the current value detected by the DC bus current detection unit 2 in the detection current storage unit 3, and the current calculation process (F) is a phase current calculation unit 4.
  • the voltage command generation process (G) is a process of generating the voltage commands Vu, Vv, and Vw by the voltage command generation unit 5.
  • the triangular carrier period is first divided into two sections, a monotonically decreasing section and a monotonically increasing section. One of them is set as a current detection section. The current detection timing is determined within the section, the current is detected, and the detected value is stored. In the next cycle, the current detection interval is the opposite of the current detection interval in the previous cycle, the current is detected in the same manner, and the detected value is stored. That is, in FIG. 9, current detection is performed in the monotonically decreasing section in the first cycle, and current detection is performed in the monotonically increasing section in the second cycle.
  • the current detection value in the monotonic decrease section of the triangular carrier wave TW and the current detection value in the monotonous increase section have errors due to current ripple appearing in positive and negative directions, so the current detection values for the previous two cycles are used.
  • the current detection values for the previous two cycles are used.
  • a three-phase alternating current calculation process (F) is executed once per period of the triangular carrier wave TW by the phase current calculation unit 4.
  • FIG. 9 shows an example in the case of performing in a monotonically decreasing section, it may be performed anywhere such as a monotonically increasing section in one cycle.
  • the current calculated by the phase current calculation unit 4 it is necessary to perform it before the voltage command generation process (G).
  • the three-phase alternating current calculation process (F) is performed using the current stored in the detected current storage unit 3, but as shown in FIG. 9, the current ripple is obtained by using the average value of the current values before and after the first cycle. It is possible to reduce the influence of errors caused by.
  • the average value of the current values IdcA and IdcD stored in the detected current storage unit 3 is the current value of the voltage command maximum phase (U phase), and the average value of the current values IdcB and IdcC is the voltage.
  • the current value of the command minimum phase (W phase) is set, and the current value of the voltage command intermediate phase (V phase) which is the remaining one phase is calculated from the relationship that the total of the current values of the three phases is zero.
  • the voltage command generation process (G) is also executed once every period of the triangular carrier wave.
  • FIG. 9 shows an example in the case of performing in a monotonically decreasing section. As shown in FIG. 9, current detection is performed in the monotonic increase interval and monotone decrease interval of the triangular carrier wave, and averaging is performed using the current detection values of the last two times at the start of each triangular carrier cycle, and the current value is calculated. calculate.
  • the voltage command generation process (G) may or may not use the current value. However, FIG. 9 shows the voltage command generation process (G) when the calculated current is used. At this time, the voltage command generation process (G) needs to be executed after the three-phase alternating current calculation process (F). . It should be noted that the period of the voltage command generation process (G) may be equal to or longer than the triangular carrier period within a range in which a decrease in output voltage accuracy is allowed.
  • the phase current calculation unit 4 performs coordinate conversion on the current detected at each timing at the time of current calculation using the rotation angle of the timing, and averages the results. Corrections are made. As a result, the detection error of the current detection value can be reduced, so that current calculation and voltage command generation processing can be performed every triangular carrier wave period.
  • the current detected at the above timing is transformed into a rotating coordinate system for use in the control.
  • the rotation angle used for the coordinate transformation is influenced by the time lag.
  • an error occurs in the current value on the rotating coordinate. Therefore, in order to eliminate the influence of the difference in the time lag from the detection timing, the current detected at each timing at the time of current calculation is coordinate-transformed using the rotation angle at that timing, and correction is performed to average the results. Yes.
  • FIG. 10 An example is shown in FIG. In FIG. 10, the output when the time lag from the current detection timing in the monotonic increase section described in FIG.
  • FIG. 10 shows a case where a time lag of 0.5 period and 2.0 period of the triangular carrier wave is shown, but the same processing is performed in the case of 1.0 period and 1.5 period. This can reduce the detection error of the current value on the rotating coordinate, so the current is calculated every triangular carrier wave period, and the voltage command is generated with high accuracy when the voltage command generating process is performed using the current value on the rotating coordinate. Is possible.
  • DC bus current values IdcA and IdcB are detected in a monotonically decreasing section (block 150). Then, the three-phase current values Iu1 to Iw1 are calculated by calculation (block 151). Further, coordinate transformation is performed at the rotation angle ⁇ 1 to obtain rotation coordinate system current values Id1 and Iq1 (block 152). On the other hand, in the monotonically increasing section, the DC bus current values IdcC and IdcD are detected (block 200). Then, the three-phase current values Iu2 to Iw2 are calculated by calculation (block 201). Further, coordinate transformation is performed at the rotation angle ⁇ 2 to obtain rotation coordinate system current values Id2 and Iq2 (block 202). Finally, the rotating coordinate system current values Id and Iq are obtained by averaging based on Id1, Iq1, Id2, and Iq2 (block 300).
  • the voltage commands Vu, Vv, and Vw are updated at every triangular carrier cycle necessary for determining whether or not current detection is possible, and current detection that is less affected by current ripple can be performed. It becomes possible. As a result, even when driving at a small triangular carrier frequency with a long triangular carrier cycle, high-accuracy current detection can be performed and a decrease in output voltage accuracy can be minimized. That is, even if the wavelength of the triangular carrier wave TW is increased and the period is increased, the accuracy is improved because detection is performed every period.
  • the triangular carrier wave period, the current detection period, and the voltage update period are the same, and the current detection is alternately detected in the monotonically decreasing section and the monotonically increasing section of the triangular carrier wave TW. Because the time difference between the detection timings can be fixed as small and constant as possible, the output voltage accuracy is reduced while accurately detecting the current in all three phases even when the so-called low carrier driving is performed, where the wavelength of the triangular carrier wave TW is large and the period is large. It is possible to drive a rotating machine that minimizes this.
  • FIG. FIG. 11 is a diagram for explaining the operation of the power conversion device according to the second embodiment.
  • FIG. 11 shows the positional relationship between current detection timings T A to T D determined by the timing determination unit according to the second embodiment.
  • the triangular carrier wave TW is shown in the upper part, and the state of the output voltage vector is shown in the middle part.
  • the output voltage vectors are non-zero voltage vector sections H1 to H16 in which currents for two phases can be detected from the DC bus 102, and zero voltage vector sections J1 to J1 in which current cannot be detected. It consists of J7.
  • a schematic Z of a one-phase current waveform is shown at the bottom.
  • detection timing T A that is determined in the timing decision unit in the control unit 6 and the time T20 to the next triangular carrier wave period beginning S1, so that the time T21 from the triangular carrier wave period beginning S1 to timing T D are different (T20 ⁇ T21).
  • detection timing T B and time T22 until the next triangular carrier wave period beginning S1 is determined after a predetermined time T2 of the detection timing T A with the predetermined time of the detection timing T D from the triangular carrier wave period beginning S1 T2 time T23 to the detection timing T C which is determined before or different (T22 ⁇ T23).
  • the detection timings T C and T D and the time until the next triangular carrier cycle start time S2 and the time from the triangular carrier cycle start time S2 to the detection timings T B and T A are also determined to be different (T24). ⁇ T25).
  • the detection position is different for each triangular carrier wave period, and the position of the current detection section is also different.
  • the position of the non-zero voltage vector section H1 and the position of the non-zero voltage vector section H8 are different, that is, the relative positions of the current detection sections are different.
  • the detected current value is different, the current value calculated by the phase current calculation unit 4 is also different, the voltage command generated from the voltage command generation unit 5 is different, and the gate switching timings Sup to Swn are also different.
  • the shape of the current ripple is deformed every triangular carrier wave period.
  • One example is shown as a one-phase current waveform Z in FIG.
  • current waveforms are different in the first two cycles and the second half of the triangular carrier cycle, and the frequency components of the current ripple derived from the triangular carrier cycle are dispersed. As a result, frequencies that cause noise are dispersed, and annoying noise is suppressed.
  • the power conversion device according to the present invention is useful for a power conversion system that is widely applicable to various electric motors and systems, and is particularly suitable for a power conversion system that is driven at a small triangular carrier frequency.
  • a rotary electric machine can be driven with the rotary electric machine drive device using the power converter device concerning this invention.
  • the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Abstract

When a triangular carrier wave is divided into two intervals, that is, a monotonically increasing interval and a monotonically decreasing interval, a DC bus line current detection unit (2) detects, in a first cycle of two continuous triangular carrier wave cycles, a DC bus line current value in one of the monotonically increasing interval and the monotonically decreasing interval, and detects, in the second cycle thereof, a DC bus line current value in the other interval in which the DC bus line current value has not been detected in the first cycle. A phase current calculation unit (4) calculates three-phase AC current values on the basis of two-phase DC bus-line current values that are each detected by the DC bus line current detection unit (2) in the monotonically increasing interval and the monotonically decreasing interval in the most recent two continuous triangular carrier wave cycles.

Description

電力変換装置及び回転電機駆動装置Power conversion device and rotating electrical machine drive device
 本発明は、回転電機の電力変換装置及び当該電力変換装置を用いた回転電機駆動装置に関するものである。 The present invention relates to a power conversion device for a rotating electrical machine and a rotating electrical machine driving device using the power conversion device.
 相電流を用いたフィードバック制御により電動機を駆動する電力変換装置では、相電流の検出手段が必要となる。コスト低減の為、電力変換装置と電動機の間に電流センサを設けるのではなく、インバータの直流母線電流より電動機電流を計算する方法が従来よりあった。例えば特許文献1には、各相のスイッチング素子のスイッチングに伴って電力変換部主回路の直流母線に流れる相電流相当のパルス状電流を、電流検出手段により検出し、得られた電流検出値を検出時のスイッチング状態から各相に分配することにより、一つの電流検出手段で3相分の相電流を検出及び再現することが開示されている。 In the power converter that drives the motor by feedback control using the phase current, a means for detecting the phase current is required. In order to reduce the cost, there has been a method of calculating the motor current from the DC bus current of the inverter instead of providing a current sensor between the power converter and the motor. For example, in Patent Document 1, a pulse current corresponding to a phase current flowing in a DC bus of a power converter main circuit in accordance with switching of a switching element of each phase is detected by a current detection unit, and the obtained current detection value is obtained. It is disclosed that the phase currents for three phases are detected and reproduced by one current detection means by distributing to each phase from the switching state at the time of detection.
 但し上記方法では相電流の電流リプルの中心を検出することが困難であるため、電流検出精度が低下するという問題があった。そこで、例えば特許文献2、3では三角搬送波1周期の前半半周期における電流検出と後半半周期における電流検出を交互に行い、各々から得られた電流検出値から電流検出誤差を補償することで、インピーダンスが小さく、電流リプルの大きい電動機でも適切な電流検出を実現可能とすることが開示されている。 However, since it is difficult to detect the center of the current ripple of the phase current in the above method, there is a problem that the current detection accuracy is lowered. Therefore, in Patent Documents 2 and 3, for example, current detection in the first half cycle of the triangular carrier wave and current detection in the second half cycle are alternately performed, and the current detection error is compensated from the current detection value obtained from each, It is disclosed that appropriate current detection can be realized even with an electric motor having a small impedance and a large current ripple.
特開平11-004594JP-A-11-004594 特開2010-11639JP 2010-11639 A 特開2013-55772JP2013-55772A
 前述の従来方法を実現するために、特許文献2では、三角搬送波1周期前半の半周期における電流検出と三角搬送波1周期後半の半周期における電流検出の間に三角搬送波周期の整数倍の区間だけ電流検出を保留する電流検出保留区間を設けている。また、特許文献3では、キャリア信号2周期のうち1周期目の後半、2周期目の前半に検出を行っている。この結果、電流検出周期とそれに伴う電圧指令更新周期が特許文献2ではキャリア周期の1.5倍以上、特許文献3では2倍となる。このため、低キャリア駆動時において、高周波数の電圧出力を行う場合など電圧更新の時間分解能が低下し、出力電圧精度が低下していた。また特許文献2では、三角搬送波1周期前半における電流検出と三角搬送波1周期後半における電流検出を制御周期開始地点に対して対称となる位置において行うことにより検出精度向上を実現しているが、このような方法では電流リプルが周期的に同じ場所に発生し、同一周波数の騒音が集中的に発生していた。 In order to realize the above-described conventional method, in Patent Document 2, only an interval that is an integral multiple of the triangular carrier period is detected between the current detection in the first half period of the triangular carrier wave and the current detection in the second half period of the triangular carrier wave. A current detection hold section for holding current detection is provided. In Patent Document 3, detection is performed in the second half of the first period and the first half of the second period among the two carrier signal periods. As a result, the current detection period and the accompanying voltage command update period are 1.5 times or more of the carrier period in Patent Document 2 and twice in Patent Document 3. For this reason, the time resolution of the voltage update is lowered, for example, when a high frequency voltage is output at the time of low carrier driving, and the output voltage accuracy is lowered. Further, in Patent Document 2, the detection accuracy is improved by performing current detection in the first half of the triangular carrier wave and current detection in the second half of the triangular carrier wave at a position symmetrical to the control cycle start point. In such a method, current ripples are periodically generated at the same place, and noise of the same frequency is generated intensively.
 この発明は上記のような課題を解決するためのものであり、インピーダンスの小さい電動機でも高精度な電流検出を行い、かつ三角搬送波1周期毎に電流検出、電圧更新を行うことで低キャリア駆動時も出力電圧精度の低下を最小限に抑えることを可能とする電力変換装置を提供するものである。 The present invention is for solving the above-described problems. Even when the electric motor has a small impedance, the current is detected with high accuracy, and the current is detected and the voltage is updated every one period of the triangular carrier. Also, it is an object of the present invention to provide a power converter capable of minimizing a decrease in output voltage accuracy.
 この発明に係る電力変換装置は、三相電圧指令を三角搬送波と比較してPWMパルスに変換するPWM変換部と、PWMパルスに基づきスイッチング素子を駆動し直流電圧を三相交流電圧に変換する電力変換部主回路と、電力変換部主回路の直流母線に流れる電流を検出する直流母線電流検出部と、三角搬送波の1周期に少なくとも一回直流母線電流検出部より二相分の電流を検出する二回の検出タイミングをスイッチング素子のスイッチングタイミングに基づいて設定するタイミング決定部と、タイミング決定部によって決められたタイミングで検出された二相分の直流母線電流値に基づいて三角搬送波の1周期に一回三相交流電流値を計算する相電流演算部と、三角搬送波の1周期に一回三相交流電流値に基づき三相電圧指令を更新する電圧指令生成部を備え、
 三角搬送波を単調増加区間および単調減少区間の二つの区間に分けた場合、直流母線電流検出部は連続する2つの三角搬送波周期の内第1周期においては単調増加区間又は単調減少区間の内の一方の区間で直流母線電流値を検出し、かつ連続する2つの三角搬送波周期の内第2周期においては単調増加区間又は単調減少区間の内第1周期で検出されなかった区間で直流母線電流値を検出し、
相電流演算部は直前の連続する2つの三角搬送波周期における単調増加区間及び単調減少区間において直流母線電流検出部でそれぞれ検出された二相の直流母線電流値に基づいて、三相交流電流値を計算するものである。
The power converter according to the present invention includes a PWM converter that compares a three-phase voltage command with a triangular carrier wave and converts it into a PWM pulse, and a power that drives a switching element based on the PWM pulse and converts a DC voltage into a three-phase AC voltage. The converter main circuit, the DC bus current detector for detecting the current flowing in the DC bus of the power converter main circuit, and the current for two phases are detected by the DC bus current detector at least once in one period of the triangular carrier wave. A timing determination unit that sets two detection timings based on the switching timing of the switching element, and a period of a triangular carrier wave based on a DC bus current value for two phases detected at a timing determined by the timing determination unit A phase current calculation unit that calculates a three-phase AC current value once, and updates a three-phase voltage command based on the three-phase AC current value once in one period of a triangular carrier wave Equipped with a pressure command generating unit,
When the triangular carrier wave is divided into two sections, a monotone increasing section and a monotonic decreasing section, the DC bus current detection unit has one of the monotonically increasing section or the monotonic decreasing section in the first period of two consecutive triangular carrier periods. The DC bus current value is detected in a section of the period that is not detected in the first period of the monotonically increasing section or the monotonically decreasing section in the second period of two consecutive triangular carrier wave periods. Detect
The phase current calculation unit calculates a three-phase AC current value based on the two-phase DC bus current value detected by the DC bus current detection unit in the monotonically increasing section and the monotonically decreasing section in the immediately preceding two triangular carrier periods. It is to calculate.
 上記のように構成された電力変換装置によれば、電圧更新を三角搬送波周期の1周期毎に行い、尚且つ電流検出を単調増加区間と単調減少区間において交互に入れ替えるようにしたことにより、従来よりも電圧更新周期を短くすることができる。更に低キャリア駆動時も直流母線からの電流検出を高精度に行い、かつ出力電圧精度の低下を最小限にすることができる。また、単調増加区間と単調減少区間における電流検出位置が、その間に位置する制御周期開始時点に対して非対称に設定されることにより、電流リプルの位置が制御周期内で分散し、騒音の原因となる周波数も分散させることができる。 According to the power conversion device configured as described above, the voltage update is performed for each period of the triangular carrier wave period, and the current detection is alternately switched between the monotonically increasing section and the monotonically decreasing section. Thus, the voltage update cycle can be shortened. Furthermore, current detection from the DC bus can be performed with high accuracy even during low carrier driving, and a decrease in output voltage accuracy can be minimized. In addition, the current detection position in the monotonically increasing section and the monotonically decreasing section is set asymmetrically with respect to the control cycle start point located between them, so that the position of the current ripple is dispersed within the control period, causing noise. Can also be dispersed.
実施の形態1による電力変換装置のハードウエア構成を示すブロック構成図である。FIG. 3 is a block configuration diagram illustrating a hardware configuration of the power conversion device according to the first embodiment. 実施の形態1による電力変換装置の具体的な構成を示すブロック構成図である。It is a block block diagram which shows the specific structure of the power converter device by Embodiment 1. FIG. タイミング決定部による動作を示すフローチャートである。It is a flowchart which shows the operation | movement by a timing determination part. タイミング決定部で実施される電流検出のタイミングを決定する動作を説明するための線図である。It is a diagram for demonstrating the operation | movement which determines the timing of the electric current detection implemented in a timing determination part. 電流を検出する際の電流の流れる状態を示す回路図である。It is a circuit diagram which shows the state through which the electric current at the time of detecting an electric current flows. 電流を検出する際の電流の流れる状態を示す回路図である。It is a circuit diagram which shows the state through which the electric current at the time of detecting an electric current flows. 図4に示された直流母線電流波形図の一部拡大図である。FIG. 5 is a partially enlarged view of the DC bus current waveform diagram shown in FIG. 4. 電流検出可能区間を確保するための一例を説明する線図(A)、(B)である。It is a diagram (A) and (B) explaining an example for securing an electric current detectable section. 三角搬送波周期に対する電流検出処理、電流計算処理、電圧生成処理のタイミングチャートを示す図である。It is a figure which shows the timing chart of the electric current detection process with respect to a triangular carrier wave period, an electric current calculation process, and a voltage generation process. 三角搬送波周期に対する電流検出処理、電流計算処理のタイミングチャートを示す図である。It is a figure which shows the timing chart of the electric current detection process with respect to a triangular carrier wave period, and an electric current calculation process. 実施の形態2による電力変換装置の動作を説明するための線図である。FIG. 10 is a diagram for explaining the operation of the power conversion device according to the second embodiment.
実施の形態1.
 以下、実施の形態1による電力変換装置を図面に基づいて詳細に説明する。図1は実施の形態1に係る電力変換装置のハードウエア構成を示すブロック構成図である。図において、電力変換装置10は、ハードウエアとして、プロセッサ100と、記憶装置101と、電力変換部主回路1と、直流母線102に流れる電流を検出する直流母線電流検出部2を備える。記憶装置101は図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また記憶装置101は、図示していないが、不揮発性の補助記憶装置の代わりにハードディスク等の補助記憶装置を具備してもよい。
Embodiment 1 FIG.
Hereinafter, the power converter according to Embodiment 1 will be described in detail with reference to the drawings. FIG. 1 is a block configuration diagram illustrating a hardware configuration of the power conversion device according to the first embodiment. In the figure, a power converter 10 includes a processor 100, a storage device 101, a power converter main circuit 1, and a DC bus current detector 2 that detects a current flowing through the DC bus 102 as hardware. Although not shown, the storage device 101 includes a volatile storage device such as a random access memory and a nonvolatile auxiliary storage device such as a flash memory. Although not shown, the storage device 101 may include an auxiliary storage device such as a hard disk instead of the nonvolatile auxiliary storage device.
 プロセッサ100は、記憶装置101から入力されたプログラムを実行する。記憶装置101が補助記憶装置と揮発性記憶装置とを具備するため、プロセッサ100には補助記憶装置から揮発性記憶装置を介してプログラムが入力される。またプロセッサ100は演算結果等のデータを記憶装置101の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存させるようにしてもよい。 The processor 100 executes the program input from the storage device 101. Since the storage device 101 includes an auxiliary storage device and a volatile storage device, a program is input to the processor 100 from the auxiliary storage device via the volatile storage device. The processor 100 may output data such as a calculation result to the volatile storage device of the storage device 101, or may store the data in the auxiliary storage device via the volatile storage device.
 図2は電力変換装置10の具体的な構成を示すブロック構成図である。図2に示すように、本実施の形態の電力変換装置10は制御部6を有しており、制御部6は三相電圧指令を三角搬送波TWと比較してPWMパルスに変換するPWM変換部と、三相電圧指令を三角搬送波TWと比較してゲートスイッチングタイミングSup~Swnに変換するとともに、これらゲートスイッチングタイミングSup~Swnから直流母線電流検出タイミングT~Tを出力する電流検出点決定手段の役割も果たすゲートスイッチングタイミング及び電流検出タイミング決定部(以下タイミング決定部と略す)とを有する。又PWM変換部は直流母線電流検出が困難と判定された際に、検出可能となるように単調増加区間と単調減少区間のうち、電流検出を行う側の電圧指令に補正量を加え、もう一方の電圧指令から補正量を引く電流検出区間生成部を有している。更に電力変換装置10は電力変換部主回路1と、直流母線電流検出部2と、検出電流格納部3と、相電流演算部4と、電圧指令生成部5を有している。ここで電力変換部主回路1はゲートスイッチングタイミングSup~Swnに基づきスイッチング素子SW1~SW6を駆動し直流電圧を三相交流電圧に変換する。直流母線電流検出部2は直流母線102に流れる電流を検出する。検出電流格納部3は直流母線電流検出タイミングT~Tを用いて直流母線電流検出部2で検出した電流値を取得し保持する。相電流演算部4は検出電流格納部3に格納された直流母線電流を三相交流電流値に計算する。電圧指令生成部5は三角搬送波TWの1周期において一度、三相電圧指令Vu~Vwを更新する。 FIG. 2 is a block configuration diagram showing a specific configuration of the power conversion apparatus 10. As shown in FIG. 2, the power conversion device 10 of the present embodiment has a control unit 6, and the control unit 6 compares a three-phase voltage command with a triangular carrier wave TW and converts it into a PWM pulse. The three-phase voltage command is compared with the triangular carrier wave TW and converted into gate switching timings Sup to Swn, and the current detection point determination for outputting the DC bus current detection timings T A to T D from these gate switching timings Sup to Swn It has a gate switching timing and current detection timing determination unit (hereinafter abbreviated as a timing determination unit) that also serves as means. In addition, the PWM converter adds a correction amount to the voltage command on the current detection side of the monotonically increasing section and the monotonically decreasing section so that it can be detected when it is determined that the DC bus current detection is difficult. A current detection section generation unit that subtracts the correction amount from the voltage command. Furthermore, the power converter 10 includes a power converter main circuit 1, a DC bus current detector 2, a detected current storage 3, a phase current calculator 4, and a voltage command generator 5. Here, the power converter main circuit 1 drives the switching elements SW1 to SW6 based on the gate switching timings Sup to Swn to convert the DC voltage into a three-phase AC voltage. The DC bus current detection unit 2 detects a current flowing through the DC bus 102. The detected current storage unit 3 acquires and holds the current value detected by the DC bus current detection unit 2 using the DC bus current detection timings T A to T D. The phase current calculation unit 4 calculates the DC bus current stored in the detection current storage unit 3 as a three-phase AC current value. The voltage command generator 5 updates the three-phase voltage commands Vu to Vw once in one cycle of the triangular carrier wave TW.
 電力変換部主回路1には回転機Mが接続され、その間に流れる三相交流電流を直流母線102で検出することが本実施形態の目的である。ここで接続される回転機Mとしては例えば、同期電動機、誘導電動機、または発電機などどのような回転機を用いてもよい。尚図1、図2の回転機Mにおいては、固定子巻線の接続がY結線である場合を示しているが、Δ結線を使用してもよい。また図2の相電流演算部4、電圧指令生成部5および制御部6におけるタイミング決定部は、記憶装置101に記憶されたプログラムを実行するプロセッサ100、または図示していないシステムLSI等の処理回路により実現される。検出電流格納部3は記憶装置101の揮発性記憶装置により実現される。複数のプロセッサ100および複数の記憶装置101が連携して上記機能を実行してもよいし、複数の処理回路が連携して上記機能を実行してもよい。また、複数のプロセッサ100および複数の記憶装置101と、複数の処理回路との組み合わせにより連携して上記機能を実行してもよい。 Rotating machine M is connected to power converter main circuit 1, and the object of this embodiment is to detect a three-phase alternating current flowing between them with DC bus 102. As the rotating machine M connected here, for example, any rotating machine such as a synchronous motor, an induction motor, or a generator may be used. In addition, in the rotating machine M of FIG. 1, FIG. 2, although the case where the connection of a stator winding is a Y connection is shown, you may use (DELTA) connection. 2 is a processor 100 that executes a program stored in the storage device 101, or a processing circuit such as a system LSI (not shown). The phase current calculator 4, the voltage command generator 5, and the controller 6 in FIG. It is realized by. The detected current storage unit 3 is realized by a volatile storage device of the storage device 101. A plurality of processors 100 and a plurality of storage devices 101 may execute the function in cooperation, or a plurality of processing circuits may execute the function in cooperation. Further, the above functions may be executed in cooperation with a combination of a plurality of processors 100 and a plurality of storage devices 101 and a plurality of processing circuits.
 図3はタイミング決定部による動作を示すフローチャートである。図3に示すように、電圧指令生成部5で生成した3相の電圧指令Vu~Vwの大きさの差から電流検出区間の導出を行い(ステップS301)、前記電流検出区間で直流母線102における電流検出が可能か否か判定する(ステップS302)。直流母線電流検出ができない時は、後で説明するように電圧更新周期内の合計値が変化しないよう、電圧指令Vu~Vwに補正量を加えて検出できるようにする(ステップS303)。必要に応じて補正量を加えた電圧指令Vu~Vwから電力変換部主回路1のスイッチング素子SW1~SW6のゲートスイッチングタイミングSup~Swnを決定し(ステップS304)、ゲートスイッチングタイミングSup~Swnを用いて直流母線電流検出タイミングT~Tを決定し(ステップS305)、直流母線電流検出部2で電流を検出する。 FIG. 3 is a flowchart showing the operation of the timing determination unit. As shown in FIG. 3, a current detection interval is derived from the difference in the magnitudes of the three-phase voltage commands Vu to Vw generated by the voltage command generation unit 5 (step S301), and in the DC bus 102 in the current detection interval. It is determined whether or not current detection is possible (step S302). When the DC bus current cannot be detected, a correction amount is added to the voltage commands Vu to Vw so that the total value within the voltage update period does not change as described later (step S303). The gate switching timings Sup to Swn of the switching elements SW1 to SW6 of the power converter main circuit 1 are determined from the voltage commands Vu to Vw to which correction amounts are added as necessary (step S304), and the gate switching timings Sup to Swn are used. Then, the DC bus current detection timings T A to T D are determined (step S305), and the DC bus current detection unit 2 detects the current.
 電力変換部主回路1は図1、図2に示すように、スイッチング素子SW1~SW6とダイオードを1セットとして6つで構成されており、直流電力を3相交流電力に変換する役割を持つ。即ち電力変換部主回路1はインバータ回路を構成しており、U相上アームスイッチング素子SW1、U相下アームスイッチング素子SW2、V相上アームスイッチング素子SW3、V相下アームスイッチング素子SW4、W相上アームスイッチング素子SW5、W相下アームスイッチング素子SW6から構成されている。そして各スイッチング素子SW1~SW6はタイミング決定部から入力されるゲートスイッチングタイミングSup~Swnによる信号が入力されて駆動される。直流母線電流検出部2は、直流母線102の経路に電流検出のための検出素子(例えばホールセンサ、抵抗、カレントトランス等)が挿入され、両端電圧あるいは出力電圧を必要に応じて増幅器及びバッファ等を介して検出し、検出した電流値Idcを検出電流格納部3に送る。なお図1、2では直流電源の低電圧側に検出素子を設けているが、高電圧側に設けてもよい。 As shown in FIGS. 1 and 2, the power converter main circuit 1 is composed of six switching elements SW1 to SW6 and diodes, and has a role of converting DC power into three-phase AC power. That is, the power converter main circuit 1 constitutes an inverter circuit, and includes a U-phase upper arm switching element SW1, a U-phase lower arm switching element SW2, a V-phase upper arm switching element SW3, a V-phase lower arm switching element SW4, and a W-phase. It is composed of an upper arm switching element SW5 and a W-phase lower arm switching element SW6. Each of the switching elements SW1 to SW6 is driven by receiving signals according to gate switching timings Sup to Swn input from the timing determination unit. In the DC bus current detection unit 2, a detection element (for example, a hall sensor, a resistor, a current transformer, etc.) for current detection is inserted in the path of the DC bus 102, and an amplifier, a buffer, etc. The detected current value Idc is sent to the detected current storage unit 3. 1 and 2, the detection element is provided on the low voltage side of the DC power supply, but may be provided on the high voltage side.
 検出電流格納部3はタイミング決定部で決定した直流母線電流検出タイミングT~Tにおいて、直流母線電流検出部2で検出された検出電流を取得し保持する役割を持つ。図4はタイミング決定部で実施される電流検出のタイミングT~Tを決定する動作を説明するための線図である。直流母線102から二相分の電流を検出するためには三相のスイッチング素子におけるスイッチング状態が全てOn、又は全てOffではない、いわゆる非零電圧ベクトルのスイッチング状態の区間である必要があり、すなわちこのような電流検出区間から二種類選択し、その区間で検出を行う必要がある。直流母線電流検出タイミングT~Tはタイミング決定部内で決定された電圧中間相(図4の場合はV相)のゲートスイッチングタイミングに依存して決定される。電圧指令生成部5で生成される3相の電圧指令Vu,Vv,Vwの内、大きいものから順に最大相電圧指令、中間相電圧指令、最小相電圧指令と定義するが、図4ではそれぞれ最大相電圧指令がVu、中間相電圧指令がVv、最小相電圧指令がVwの場合が示されている。又図4においてBuは最大相(U相)上アームスイッチ状態、Bvは中間相(V相)上アームスイッチ状態、Bwは最小相(W相)上アームスイッチ状態を示している。 The detection current storage unit 3 has a role of acquiring and holding the detection current detected by the DC bus current detection unit 2 at the DC bus current detection timings T A to T D determined by the timing determination unit. FIG. 4 is a diagram for explaining the operation of determining the current detection timings T A to T D performed by the timing determination unit. In order to detect the current of two phases from the DC bus 102, the switching states of the three-phase switching elements need to be all on or not all off, that is, the so-called non-zero voltage vector switching state interval, that is, It is necessary to select two types from such current detection intervals and perform detection in those intervals. The DC bus current detection timings T A to T D are determined depending on the gate switching timing of the voltage intermediate phase (V phase in the case of FIG. 4) determined in the timing determination unit. Of the three-phase voltage commands Vu, Vv, and Vw generated by the voltage command generator 5, the maximum phase voltage command, the intermediate phase voltage command, and the minimum phase voltage command are defined in order from the largest, but in FIG. The case where the phase voltage command is Vu, the intermediate phase voltage command is Vv, and the minimum phase voltage command is Vw is shown. In FIG. 4, Bu indicates the maximum phase (U phase) upper arm switch state, Bv indicates the intermediate phase (V phase) upper arm switch state, and Bw indicates the minimum phase (W phase) upper arm switch state.
 図4において、二相分の検出電流の内、最初に現れる非零電圧ベクトル期間中に検出される直流母線電流値をIdcA、二番目に現れる非零電圧ベクトル期間中に検出される直流母線電流値をIdcBとする。電流値IdcAの検出タイミングであるTは中間相(V相)のゲートオンのゲートスイッチングタイミングSvp(TS)から所定時間T1前に決定される。ここで時間T1は電流検出に必要な時間よりも長い時間に設定する。続いて電流値IdcBの検出タイミングであるTは、タイミングTから所定時間T2後に決定される。ここで時間T2の決定は、電力変換部主回路1の直列接続されたスイッチング素子対が同時に導通することを避けるために設けたデッドタイム区間を考慮し、また直流母線電流は、スイッチング素子のOn,Off動作に伴う電圧急変により電流が振動する場合があり、その電流の振動も考慮する必要がある。即ち上アームのスイッチング素子と下アームスイッチング素子(例えばSW1とSW2)とは一方がOnであれば他方がOffの関係にあり、これらが同時に導通することを避けるために一方をOffにしてから他方をOnにするというデッドタイム区間を設けており、時間T2はデッドタイム区間を考慮して決定される。更にスイッチング素子がスイッチングした際に生じるサージ電圧の影響により直流電流の高周波振動が発生するが(電流検出不可区間T10参照)、このような直流電流の高周波振動が減衰し、振幅振動が所定値以下になるまでの区間も考慮する必要がある。図4ではこの1例を示しており、ゲートスイッチングタイミングSup~Swnの非零電圧ベクトル区間における電流検出不可区間T10と電流検出可能区間T11が示されている。即ち電流検出可能区間T11内においてタイミングTが決められる。以後電流検出の出来ない区間を電流検出不可区間と記述する。 In FIG. 4, the DC bus current value detected during the first non-zero voltage vector period of the two-phase detection current is IdcA, and the DC bus current detected during the second non-zero voltage vector period. Let the value be IdcB. T A is the detection timing of the current value IdcA is determined from the gate switching timing Svp of the gate of the intermediate phase (V phase) (TS) before the predetermined time T1. Here, the time T1 is set to a time longer than the time required for current detection. Then T B is the detection timing of the current value IdcB is determined from the timing T A after a predetermined time T2. Here, the determination of the time T2 takes into account a dead time interval provided in order to prevent the switching element pairs connected in series in the power converter main circuit 1 from conducting at the same time, and the DC bus current is determined as On On of the switching element. , The current may vibrate due to a sudden change in voltage associated with the Off operation, and it is necessary to consider the current vibration. That is, if one of the upper arm switching element and the lower arm switching element (for example, SW1 and SW2) is On, the other is in an Off relationship. Is set to On, and the time T2 is determined in consideration of the dead time interval. Furthermore, high-frequency vibration of DC current is generated due to the influence of surge voltage generated when the switching element is switched (refer to current detection impossible section T10). However, such high-frequency vibration of DC current is attenuated and amplitude vibration is below a predetermined value. It is also necessary to consider the interval until. FIG. 4 shows an example of this, and shows a current undetectable section T10 and a current detectable section T11 in the non-zero voltage vector section of the gate switching timings Sup to Swn. That timing T A is determined in the current detectable period T11. Hereinafter, a section in which current detection cannot be performed is described as a section in which current detection is not possible.
 したがって、時間T2はタイミングTが電流検出不可区間にかからないように設定される。すなわち、T2>T1+(電流検出不可区間)となる。このとき電流値IdcAは電圧最大相(U相)の電流値、電流値IdcBは電圧最小相(W相)の電流値を示す。
図5は電流値IdcAを検出する際の電流Iu、Iv、Iwの流れる状態を示す回路図であり、図6は電流値IdcBを検出する際の電流Iu、Iv、Iwの流れる状態を示す回路図である。図5においては、スイッチング素子SW1、SW4、SW6がOnであり、SW2、SW3、SW5がOffであるので、検出される電流はIu、即ち電圧最大相(U相)の電流となる。又図6においては、スイッチング素子SW1、SW3、SW6がOnであり、スイッチング素子SW2、SW4、SW5がOffであるので、検出される電流はIw、即ち電圧最小相(W相)の電流となる。尚図5、図6において点線で示される矢印は各相に流れる電流の向きを示している。更にゲートスイッチングタイミングSwpとSwnの間においては、上アームのスイッチング素子SW1、SW3、SW5が全てOnであり、下アームのスイッチング素子SW2、SW4、SW6が全てOffであるので、電流は上アームのダイオードを介して還流が流れることとなり、直流母線電流検出部2では電流は検出されない。同様に上アームのスイッチング素子が全てOffの場合もダイオードを介して還流が流れることとなり、直流母線電流検出部2では電流は検出されない。これら二つの電流値IdcA、IdcBから相電流演算部4で電圧中間相(V相)の電流値を算出するが、電流値IdcAと電流値IdcBの検出タイミングの差を可能な限り短く設定する。これは非零電圧ベクトルにより、回転機Mに電流が流れ、時間が経ちすぎると直流母線電流も変化するため、タイミングTとタイミングTが離れると、中間相の電流検出精度が低下するためである。即ち前述したように、直流母線102から二相分の電流を検出するためには三相のスイッチング素子におけるスイッチング状態が全てOn、又は全てOffではない、いわゆる非零電圧ベクトルのスイッチング状態の区間である必要があり、このような電流検出区間から二種類選択し、その区間で検出を行う必要がある。
Thus, time T2 is the timing T B is set so as not to the current undetectable period. That is, T2> T1 + (current detection impossible section). At this time, the current value IdcA indicates the current value of the maximum voltage phase (U phase), and the current value IdcB indicates the current value of the minimum voltage phase (W phase).
FIG. 5 is a circuit diagram showing a state in which currents Iu, Iv, Iw flow when detecting the current value IdcA, and FIG. 6 is a circuit showing a state in which currents Iu, Iv, Iw flow when detecting the current value IdcB. FIG. In FIG. 5, since the switching elements SW1, SW4, and SW6 are On and SW2, SW3, and SW5 are Off, the detected current is Iu, that is, the voltage maximum phase (U phase) current. In FIG. 6, since the switching elements SW1, SW3, SW6 are On and the switching elements SW2, SW4, SW5 are Off, the detected current is Iw, that is, the current of the minimum voltage phase (W phase). . In FIGS. 5 and 6, arrows indicated by dotted lines indicate the directions of currents flowing in the respective phases. Further, between the gate switching timings Swp and Swn, since the switching elements SW1, SW3, SW5 of the upper arm are all On and the switching elements SW2, SW4, SW6 of the lower arm are all Off, the current is The reflux flows through the diode, and no current is detected by the DC bus current detector 2. Similarly, when all the switching elements of the upper arm are OFF, the reflux flows through the diode, and the DC bus current detection unit 2 does not detect the current. The phase current calculation unit 4 calculates the current value of the voltage intermediate phase (V phase) from these two current values IdcA and IdcB. The difference in detection timing between the current value IdcA and the current value IdcB is set as short as possible. This is because the current flows through the rotating machine M due to a non-zero voltage vector, and the DC bus current also changes if time passes too much. Therefore, if the timing T A and the timing T B are separated, the current detection accuracy of the intermediate phase decreases. It is. That is, as described above, in order to detect the current for two phases from the DC bus 102, the switching states of the three-phase switching elements are not all on or all off, so-called non-zero voltage vector switching state intervals. It is necessary to select two types from such current detection intervals, and it is necessary to perform detection in those intervals.
 また図4中のタイミングT,Tはそれぞれ三角搬送波周期の後半で電流検出を行うときの電流値IdcC,IdcDの検出タイミングを示す。タイミングT,Tは電圧中間相(V相)のゲートスイッチングタイミングSvn(TS)を基準に決定し、タイミングT,T同様にタイミングTは電圧中間相(V相)のゲートオフのゲートスイッチングタイミングSvnから所定時間T1前に決定されると共に、タイミングTはタイミングTの所定時間T2後に決定される。このとき電流値IdcCは上記と同様電圧最小相(W相)の電流値、電流値IdcDは電圧最大相(U相)の電流値を示す。これにより三角搬送波周期毎に検出を行う電流検出可能区間側の二相の電流検出タイミングを決定し、そのタイミングで直流母線電流を検出し、検出電流格納部3で検出した電流値IdcA~IdcDを格納することが可能となる。 Further, timings T C and T D in FIG. 4 indicate detection timings of current values IdcC and IdcD when current detection is performed in the latter half of the triangular carrier wave period, respectively. Timing T C, T D is determined voltage intermediate phase gate switching timing Svn of (V-phase) (TS) to the reference timing T A, T B likewise timing T C is the voltage intermediate phase of gate-off of the (V-phase) together is determined from the gate switching timing Svn predetermined time before T1, the timing T D is determined after a predetermined time timing T C T2. At this time, the current value IdcC indicates the current value of the minimum voltage phase (W phase), and the current value IdcD indicates the current value of the maximum voltage phase (U phase). This determines the current detection timing of the two-phase current detection possible section side to be detected for each triangular carrier wave period, detects the DC bus current at that timing, and detects the current values IdcA to IdcD detected by the detection current storage unit 3. It can be stored.
 ここで精度の高い電流検出を行うためには電流リプルの影響を減らす必要がある。即ち直流母線電流値は水平とはならず、図4に示すようにゲートスイッチングタイミングSup~Swp間においては右肩上がりとなり、ゲートスイッチングタイミングSwn~Sun間においては右肩下がりとなっており、これらの影響を減らす必要がある。図7は図4に示された直流母線電流波形図の一部拡大図である。図7において、区間T70、区間T71はそれぞれ非零電圧ベクトル区間を示しており、電流値Xは非零電圧ベクトル区間における平均電流値を示している。図7に示されるように、電流値IdcB,IdcCと、その非零電圧ベクトル区間中の平均電流値Xとは差異があり、その差異はそれぞれ正負逆に現れている。これは電流値IdcA,IdcDにも同じことが言える。そのため電流リプルによる誤差を減らすには電流値IdcA,IdcBと電流値IdcC,IdcDを交互に検出することが必要となる。すなわち三角搬送波TWの単調減少区間と単調増加区間の交互に検出を行い、その検出値の平均値を求める方法が適している。そのため検出電流格納部3では2点(単調減少区間と単調増加区間の2区間)及び2相分の合計4点の電流値IdcA,IdcB,IdcC,IdcDを格納する必要がある。格納した電流値データを演算時に相電流演算部4に呼び出して演算を開始し、相電流演算部4は2相分の電流における各相の電流の平均値を求める。 Here, in order to detect current with high accuracy, it is necessary to reduce the influence of current ripple. That is, the DC bus current value does not become horizontal, but rises to the right between the gate switching timings Sup and Swp as shown in FIG. 4, and falls to the right between the gate switching timings Swn and Sun. Need to reduce the impact of FIG. 7 is a partially enlarged view of the DC bus current waveform diagram shown in FIG. In FIG. 7, a section T70 and a section T71 each indicate a non-zero voltage vector section, and a current value X indicates an average current value in the non-zero voltage vector section. As shown in FIG. 7, there is a difference between the current values IdcB and IdcC and the average current value X in the non-zero voltage vector section, and the differences appear positively and negatively, respectively. The same can be said for the current values IdcA and IdcD. Therefore, in order to reduce the error due to current ripple, it is necessary to detect the current values IdcA and IdcB and the current values IdcC and IdcD alternately. That is, a method is suitable in which the monotonous decrease interval and the monotone increase interval of the triangular carrier wave TW are detected alternately and the average value of the detection values is obtained. Therefore, it is necessary for the detected current storage unit 3 to store current values IdcA, IdcB, IdcC, and IdcD for two points (two intervals of a monotonically decreasing interval and a monotonically increasing interval) and a total of four points for two phases. The stored current value data is called to the phase current calculation unit 4 at the time of calculation to start the calculation, and the phase current calculation unit 4 obtains the average value of the current of each phase in the current for two phases.
 相電流演算部4は検出電流格納部3に格納された2相分の検出電流から3相交流電流を計算する。電圧指令生成部5で生成された3相の電圧指令Vu,Vv,Vwに基づいて2相の電流値の符号を決定する。残りの1相の電流値は3相の電流値の総和がゼロであることを利用すれば、既に求めている2相の電流値から容易に求めることが出来る。以上の演算より回転機Mに流れる3相交流電流値の検出が可能となる。この相電流値に基づいて電圧指令Vu,Vv,Vwを決定し、更に相電流は回転機Mの出力監視に用いられる。また各部制御処理に利用される。 The phase current calculation unit 4 calculates a three-phase alternating current from the two-phase detection current stored in the detection current storage unit 3. Based on the three-phase voltage commands Vu, Vv, and Vw generated by the voltage command generator 5, the signs of the two-phase current values are determined. The remaining one-phase current value can be easily obtained from the already obtained two-phase current value by utilizing the fact that the sum of the three-phase current values is zero. From the above calculation, it is possible to detect the three-phase alternating current value flowing through the rotating machine M. The voltage commands Vu, Vv, Vw are determined based on the phase current value, and the phase current is used for monitoring the output of the rotating machine M. It is also used for each part control process.
 電圧指令生成部5は電力変換部主回路1に出力させる三相電圧指令である電圧指令Vu,Vv,Vwを生成する役割を有する。回転機Mの制御方法により様々な電圧指令生成法が知られているが、本実施形態の本質ではないので説明を省略する。電圧指令生成部5はタイミング決定部(制御部)に出力する三相電圧指令である電圧指令Vu,Vv,Vwを生成する。次に図3のフローチャートに示すタイミング決定部の各動作内容について説明する。初めに電圧指令生成部5で生成された電圧指令Vu,Vv,Vwの大きさの差から、図4に示した電流検出区間を求める。電流検出区間は電圧指令Vu,Vv,Vwの大きさの差に依存して決まり、差が小さければ小さいほど電流検出区間は短くなる。 The voltage command generator 5 has a role of generating voltage commands Vu, Vv, and Vw that are three-phase voltage commands to be output to the power converter main circuit 1. Various voltage command generation methods are known depending on the control method of the rotating machine M, but the description is omitted because it is not the essence of the present embodiment. The voltage command generation unit 5 generates voltage commands Vu, Vv, and Vw that are three-phase voltage commands to be output to the timing determination unit (control unit). Next, each operation content of the timing determination unit shown in the flowchart of FIG. 3 will be described. First, the current detection section shown in FIG. 4 is obtained from the difference in magnitude between the voltage commands Vu, Vv, and Vw generated by the voltage command generator 5. The current detection interval is determined depending on the difference between the magnitudes of the voltage commands Vu, Vv, and Vw. The smaller the difference is, the shorter the current detection interval is.
 続いて電流検出区間の中で直流母線電流検出タイミングT~Tを決定することが可能か否か判定する。直流母線電流検出タイミングT~Tの決定が可能かどうかは電流検出区間T12と電流検出不可区間T10を比較することで判定され、電流検出区間T12が電流検出不可区間T10よりも小さいときは検出不可と判定される。詳細は図8を用いて次に説明する。検出不可と判定された場合、電流検出区間を確保できるように電圧指令Vu,Vv,Vwに補正量を付加する必要がある。 Subsequently, it is determined whether or not the DC bus current detection timings T A to T D can be determined in the current detection section. Whether or not the DC bus current detection timings T A to T D can be determined is determined by comparing the current detection section T12 and the current detection non-cancellation section T10, and when the current detection section T12 is smaller than the current non-detection section T10 It is determined that detection is impossible. Details will be described below with reference to FIG. When it is determined that the detection is impossible, it is necessary to add a correction amount to the voltage commands Vu, Vv, and Vw so that a current detection section can be secured.
 図8(A)、(B)は電圧指令Vu,Vv,Vwから求めた電流検出区間では検出不可と判定された場合の電流検出可能区間を確保するための一例を説明する線図である。ここでは三角搬送波TWの単調減少区間で直流母線電流検出を行う時の一例を示しているが、単調増加区間で行うときも同様の処理を行うことが可能である。電圧指令生成部5から入力された電圧指令Vu,Vv,Vwを大きい順に最大相電圧指令Vu、中間相電圧指令Vv、最小相電圧指令Vwとする。この電圧指令Vu,Vv,Vwと三角搬送波TWを比較してゲートスイッチングタイミングSup~Swnを決定するが、電流検出区間が図4に示す電流検出不可区間以下になると検出が困難になる。図8(A)における区間T80においては、電流検出区間が電流検出不可区間より小さいので、直流母線電流検出タイミングTを決定することができないと判定される。 FIGS. 8A and 8B are diagrams illustrating an example for securing a current detectable section when it is determined that detection is impossible in the current detection section obtained from the voltage commands Vu, Vv, and Vw. Here, an example is shown in which the DC bus current detection is performed in the monotonically decreasing section of the triangular carrier wave TW, but the same processing can be performed also in the monotonically increasing section. The voltage commands Vu, Vv, and Vw input from the voltage command generator 5 are set to a maximum phase voltage command Vu, an intermediate phase voltage command Vv, and a minimum phase voltage command Vw in descending order. The voltage commands Vu, Vv, Vw and the triangular carrier wave TW are compared to determine the gate switching timings Sup to Swn. However, detection becomes difficult when the current detection interval is equal to or less than the current detection disabled interval shown in FIG. In the section T80 in FIG. 8 (A), the the current detection section is smaller than the current undetectable period, it is determined that it is not possible to determine the DC bus current detection timing T B.
 そこで、図8(B)に示すように、電流検出区間では検出不可と判定された場合、三角搬送波周期を検出区間確保側と電圧補償側に2分割し、検出区間確保側の電圧指令に検出区間が確保可能となるように電圧量ΔVを加算し、電圧補償側の電圧指令に同じ量の電圧量ΔVを減算する。図8(B)における区間T81は区間T80よりも大きくなるため、電流検出区間が電流検出不可区間より大きくなり、直流母線電流検出タイミングTを確保できる。ここで検出区間を確保するための電圧量ΔVは電流検出不可区間に依存し、決定される。そして補正された電圧指令に合わせてゲートスイッチングタイミングSup~Swnを修正する。これにより各相のスイッチング素子のOn時間の長さを変えることなく、すなわちインバータの出力電圧を変化させることなく、直流母線電流を検出することができる。なお、図8では中間相電圧指令Vvに補正量を付加する例を示したが、必要に応じて最大相電圧指令Vu、又は最小相電圧指令Vwにも同様に補正量を付加する。更には図8(A)においてはVvとVwの差が小さいのでタイミングTを確保できない場合について述べたが、VuとVvとの差が小さくタイミングTを決定できない場合もある。このときには検出区間確保側においては電圧指令に電圧量ΔVを減算し、電圧補償側においては電圧指令に同じ量の電圧量ΔVを加算する。 Therefore, as shown in FIG. 8 (B), when it is determined that detection is not possible in the current detection section, the triangular carrier wave period is divided into two on the detection section securing side and the voltage compensation side, and detected on the voltage command on the detection section securing side. The voltage amount ΔV is added so that the section can be secured, and the same amount of voltage amount ΔV is subtracted from the voltage command on the voltage compensation side. To become larger than the interval T81 the interval T80 in FIG. 8 (B), the current detection section becomes larger than the current undetectable period, it is possible to ensure the DC bus current detection timing T B. Here, the voltage amount ΔV for securing the detection section is determined depending on the section where current detection is impossible. Then, the gate switching timings Sup to Swn are corrected according to the corrected voltage command. As a result, the DC bus current can be detected without changing the length of the On time of the switching elements of each phase, that is, without changing the output voltage of the inverter. Although FIG. 8 shows an example in which the correction amount is added to the intermediate phase voltage command Vv, the correction amount is similarly added to the maximum phase voltage command Vu or the minimum phase voltage command Vw as necessary. Furthermore in FIG. 8 (A) have dealt with the case can not be secured to the timing T B the difference between Vv and Vw is small, even when the difference between the Vu and Vv can not determine the reduced timing T A. At this time, the voltage amount ΔV is subtracted from the voltage command on the detection section ensuring side, and the same amount of voltage ΔV is added to the voltage command on the voltage compensation side.
 上記の動作を行うことで、電圧指令の相間の大きさの差が小さくなっても電流検出を行うことが出来るようになる。更には各相の電圧指令の大小が入れ替わるようなとき、例えば駆動条件により電圧指令Vvが電圧指令Vuより大きくして回転機Mを駆動させるような場合でも電流検出を行うことが出来るようになる。又電流Iu、Iv、Iwが小さな低速駆動時など全ての駆動条件で電流検出を行うことが出来るようになる。また検出区間確保時には電圧補償側では電流検出出来ないため、三角搬送波1周期においては、電流値IdcAおよび電流値IdcBの組か電流値IdcCおよび電流値IdcDの組のいずれか一方でしか検出は行わない。上記に示した通り、電流検出区間確保の為に補正量ΔVを付加する電圧指令Vvの更新周期は三角搬送波周期と同じかそれよりも長い必要がある。また電流検出の可否は基本的に毎周期毎に判定が必要であるため、タイミング決定部に入力される電圧指令Vu,Vv,Vwの周期も三角搬送波周期と同じかそれよりも長い必要がある。 By performing the above operation, current detection can be performed even when the difference in magnitude between the phases of the voltage command becomes small. Further, when the magnitude of the voltage command of each phase is switched, for example, even when the voltage command Vv is larger than the voltage command Vu due to driving conditions and the rotating machine M is driven, current detection can be performed. . Also, current detection can be performed under all driving conditions such as low-speed driving where the currents Iu, Iv, and Iw are small. In addition, since the current cannot be detected on the voltage compensation side when the detection section is secured, detection is performed only in one of the pair of the current value IdcA and the current value IdcB or the pair of the current value IdcC and the current value IdcD in one period of the triangular carrier wave. Absent. As described above, the update period of the voltage command Vv to which the correction amount ΔV is added in order to secure the current detection section needs to be the same as or longer than the triangular carrier wave period. In addition, since it is basically necessary to determine whether or not the current can be detected every period, the period of the voltage commands Vu, Vv, and Vw input to the timing determination unit needs to be equal to or longer than the triangular carrier period. .
 最後に必要に応じて補正量ΔVを付加された電圧指令Vvを三角搬送波TWと比較し、3相それぞれのゲートスイッチングタイミングSup~Swnを決定し、ゲートスイッチングタイミングSup~Swnを用いて直流母線電流検出タイミングT~Tを決定し、直流母線電流検出部2で検出した検出電流を取得し保持する。又ゲートスイッチングタイミングSup~Swnを電力変換部主回路1に出力し、直流母線電流検出タイミングT~Tを検出電流格納部3に出力し、タイミング決定部の動作を終了する。 Finally, the voltage command Vv to which the correction amount ΔV is added as necessary is compared with the triangular carrier wave TW to determine the gate switching timings Sup to Swn for the three phases, and the DC bus current using the gate switching timings Sup to Swn. The detection timings T A to T D are determined, and the detection current detected by the DC bus current detection unit 2 is acquired and held. Further, the gate switching timings Sup to Swn are output to the power conversion unit main circuit 1, the DC bus current detection timings T A to T D are output to the detection current storage unit 3, and the operation of the timing determination unit is terminated.
 上記の通り、電流リプルの影響を受けず、精度の高い電流検出を直流母線電流より行うためには、電流検出を三角搬送波TWの単調減少区間及び単調増加区間の交互で行い、かつ電圧指令Vu,Vv,Vwの更新周期を三角搬送波周期と同じかそれよりも長くする必要がある。その条件下で出力電圧精度の低下を最小限に抑えるためには、電圧指令Vu,Vv,Vwの更新周期を三角搬送波周期と同じにする必要がある。これを実現するための処理について以下説明する。図9は三角搬送波周期に対する電流検出処理(E)、電流計算処理(F)、電圧指令生成処理(G)のタイミングチャートを示す図である。ここで電流検出処理(E)とは、直流母線電流検出部2で検出した電流値を検出電流格納部3に格納する処理であり、電流計算処理(F)とは、相電流演算部4で実施される3相交流電流を計算する処理であり、電圧指令生成処理(G)とは、電圧指令生成部5で電圧指令Vu,Vv,Vwを生成する処理である。 As described above, in order to perform highly accurate current detection from the DC bus current without being affected by the current ripple, the current detection is performed alternately between the monotonically decreasing section and the monotonically increasing section of the triangular carrier wave TW, and the voltage command Vu , Vv, Vw need to be equal to or longer than the triangular carrier period. In order to minimize the decrease in output voltage accuracy under these conditions, the update period of the voltage commands Vu, Vv, Vw needs to be the same as the triangular carrier wave period. Processing for realizing this will be described below. FIG. 9 is a timing chart of current detection processing (E), current calculation processing (F), and voltage command generation processing (G) for a triangular carrier wave period. Here, the current detection process (E) is a process of storing the current value detected by the DC bus current detection unit 2 in the detection current storage unit 3, and the current calculation process (F) is a phase current calculation unit 4. The voltage command generation process (G) is a process of generating the voltage commands Vu, Vv, and Vw by the voltage command generation unit 5.
 前記の通り、電流検出を三角搬送波TWの単調減少区間及び単調増加区間の交互で行うことで、精度の高い電流検出を直流母線電流から行うことが出来る。そのためにはまず初めに三角搬送波周期を単調減少区間と単調増加区間の二つの区間に分ける。そのどちらか一方を電流検出区間とする。その区間内で電流検出タイミングを決定し、電流を検出するとともに、検出値の格納を行う。次の周期では前の周期で電流検出区間とした区間とは逆の区間を電流検出区間とし、同じように電流を検出するとともに、検出値の格納を行う。即ち図9においては第1周期においては単調減少区間で電流検出を行い、第2周期においては単調増加区間で電流検出を行う。ここで前述の通り、三角搬送波TWの単調減少区間の電流検出値と単調増加区間の電流検出値は電流リプルに起因する誤差が正負逆に現れるため、前の二周期分の電流検出値を使うことで、単調減少区間、単調増加区間の検出電流値を得ることが出来、次の相電流演算部4で平均化処理も行うことで、電流リプルに起因する検出誤差の影響を低減することが出来る。 As described above, highly accurate current detection can be performed from the DC bus current by performing current detection alternately in the monotonically decreasing section and the monotonically increasing section of the triangular carrier wave TW. For this purpose, the triangular carrier period is first divided into two sections, a monotonically decreasing section and a monotonically increasing section. One of them is set as a current detection section. The current detection timing is determined within the section, the current is detected, and the detected value is stored. In the next cycle, the current detection interval is the opposite of the current detection interval in the previous cycle, the current is detected in the same manner, and the detected value is stored. That is, in FIG. 9, current detection is performed in the monotonically decreasing section in the first cycle, and current detection is performed in the monotonically increasing section in the second cycle. Here, as described above, the current detection value in the monotonic decrease section of the triangular carrier wave TW and the current detection value in the monotonous increase section have errors due to current ripple appearing in positive and negative directions, so the current detection values for the previous two cycles are used. Thus, it is possible to obtain the detected current values in the monotonically decreasing section and the monotonically increasing section, and by performing the averaging process in the next phase current calculation unit 4, it is possible to reduce the influence of the detection error caused by the current ripple. I can do it.
 続いて相電流演算部4で3相交流電流計算処理(F)が三角搬送波TWの1周期毎に一度実行される。図9では単調減少区間で行った場合の一例を示しているが、1周期内における単調増加区間などどこで行っても構わない。ただし次の電圧指令生成部5において、相電流演算部4で計算された電流を用いる場合は、電圧指令生成処理(G)の前に行う必要がある。3相交流電流計算処理(F)は検出電流格納部3に格納した電流を用いて行うが、図9に示すように1周期前と2周期前の電流値の平均値を用いることで電流リプルに起因する誤差の影響を減らすことが出来る。具体的な電流計算方法の一例として、検出電流格納部3に格納された電流値IdcAとIdcDの平均値を電圧指令最大相(U相)の電流値、電流値IdcB,IdcCの平均値を電圧指令最小相(W相)の電流値とし、3相の電流値の合計は0という関係から残りの1相である電圧指令中間相(V相)の電流値を算出する。 Subsequently, a three-phase alternating current calculation process (F) is executed once per period of the triangular carrier wave TW by the phase current calculation unit 4. Although FIG. 9 shows an example in the case of performing in a monotonically decreasing section, it may be performed anywhere such as a monotonically increasing section in one cycle. However, in the next voltage command generation unit 5, when the current calculated by the phase current calculation unit 4 is used, it is necessary to perform it before the voltage command generation process (G). The three-phase alternating current calculation process (F) is performed using the current stored in the detected current storage unit 3, but as shown in FIG. 9, the current ripple is obtained by using the average value of the current values before and after the first cycle. It is possible to reduce the influence of errors caused by. As an example of a specific current calculation method, the average value of the current values IdcA and IdcD stored in the detected current storage unit 3 is the current value of the voltage command maximum phase (U phase), and the average value of the current values IdcB and IdcC is the voltage. The current value of the command minimum phase (W phase) is set, and the current value of the voltage command intermediate phase (V phase) which is the remaining one phase is calculated from the relationship that the total of the current values of the three phases is zero.
 最後に出力電圧精度の低下を最小限に抑えるため、電圧指令生成処理(G)も三角搬送波の1周期毎に一度実行される。図9では単調減少区間で行った場合の一例を示す。図9で示されるように三角搬送波の単調増加区間、単調減少区間で電流検出を行い、各三角搬送波周期の開始時に直近二回の電流検出値を用いて平均化の演算を行い、電流値を算出する。また電圧指令生成処理(G)は上記電流値を用いても用いなくても良い。ただし、図9は計算した電流を用いる場合の電圧指令生成処理(G)を示すが、この時は電圧指令生成処理(G)を3相交流電流計算処理(F)の後に実行する必要がある。なお出力電圧精度の低下が許される範囲で電圧指令生成処理(G)の周期を三角搬送波周期以上としてもよい。 Finally, in order to minimize the degradation of the output voltage accuracy, the voltage command generation process (G) is also executed once every period of the triangular carrier wave. FIG. 9 shows an example in the case of performing in a monotonically decreasing section. As shown in FIG. 9, current detection is performed in the monotonic increase interval and monotone decrease interval of the triangular carrier wave, and averaging is performed using the current detection values of the last two times at the start of each triangular carrier cycle, and the current value is calculated. calculate. The voltage command generation process (G) may or may not use the current value. However, FIG. 9 shows the voltage command generation process (G) when the calculated current is used. At this time, the voltage command generation process (G) needs to be executed after the three-phase alternating current calculation process (F). . It should be noted that the period of the voltage command generation process (G) may be equal to or longer than the triangular carrier period within a range in which a decrease in output voltage accuracy is allowed.
 ここで、電流計算処理(F)のタイミングと2つの電流検出タイミングにタイムラグの差異がある。例えば図9において、単調増加区間での電流検出タイミングからのタイムラグにおいては電流計算処理(F)のタイミングに応じて三角搬送波の0.5周期と1.5周期の場合があり、更に単調減少区間での電流検出タイミングからのタイムラグにおいては、電流計算のタイミングに応じて、三角搬送波周期の1周期と2周期の場合がある。この検出タイミングからのタイムラグの差異の影響をなくすため、相電流演算部4は電流計算時に各タイミングで検出した電流をそのタイミングの回転角を用いて座標変換を行い、その結果を平均化するような補正を行っている。これにより電流検出値の検出誤差を低減できるため、三角搬送波周期毎に電流計算、電圧指令生成処理が可能となる。 Here, there is a time lag difference between the timing of the current calculation process (F) and the two current detection timings. For example, in FIG. 9, in the time lag from the current detection timing in the monotonically increasing section, there are cases where the triangular carrier has 0.5 and 1.5 periods depending on the timing of the current calculation process (F), and further, the monotonically decreasing section In the time lag from the current detection timing at, there are cases where the triangular carrier wave period is 1 period and 2 periods depending on the current calculation timing. In order to eliminate the influence of the difference in time lag from the detection timing, the phase current calculation unit 4 performs coordinate conversion on the current detected at each timing at the time of current calculation using the rotation angle of the timing, and averages the results. Corrections are made. As a result, the detection error of the current detection value can be reduced, so that current calculation and voltage command generation processing can be performed every triangular carrier wave period.
 このように制御に用いるために上記タイミングで検出した電流を回転座標系に座標変換を行うが、その際に電流を平均化してから座標変換を行うと、座標変換に用いる回転角がタイムラグの影響を受け、回転座標上の電流値の誤差発生の要因となる。そこでこの検出タイミングからのタイムラグの差異の影響をなくすため、電流計算時に各タイミングで検出した電流をそのタイミングの回転角を用いて座標変換を行い、その結果を平均化するような補正を行っている。図10にその一例を示す。図10では図9で述べた単調増加区間での電流検出タイミングからのタイムラグが三角搬送波の0.5周期で、単調減少区間での電流検出タイミングからのタイムラグが2.0周期である場合の出力3相電流値と回転座標上の電流値を求める手順を示している。ここでは、始めに各タイミングで検出した二相分の電流値からそれぞれのタイミングにおける三相の電流値を演算し求める。 In this way, the current detected at the above timing is transformed into a rotating coordinate system for use in the control. When the current is averaged and then the coordinate transformation is performed, the rotation angle used for the coordinate transformation is influenced by the time lag. As a result, an error occurs in the current value on the rotating coordinate. Therefore, in order to eliminate the influence of the difference in the time lag from the detection timing, the current detected at each timing at the time of current calculation is coordinate-transformed using the rotation angle at that timing, and correction is performed to average the results. Yes. An example is shown in FIG. In FIG. 10, the output when the time lag from the current detection timing in the monotonic increase section described in FIG. 9 is 0.5 period of the triangular carrier wave and the time lag from the current detection timing in the monotone decrease section is 2.0 periods. A procedure for obtaining a three-phase current value and a current value on a rotation coordinate is shown. Here, three-phase current values at the respective timings are calculated from the current values for the two phases detected at the respective timings.
 次にそれぞれのタイミングの三相電流を各相平均化することで、出力する三相電流値を求める。続いて、検出電流を電圧指令生成部5にフィードバックする多くの場合で、三相電流値ではなく、回転座標上の電流値を用いるが、ここで上記出力する三相電流を座標変換し、回転座標上の電流値を算出すると、座標変換に用いる回転角と実際の電流検出を行った時の回転角との間に差異が発生する。そこで、電流検出を行った各単調減少区間もしくは単調増加区間の初めの回転角θ1、θ2を検出もしくは推定し、それぞれのタイミングで検出を行った三相電流値をその区間の各回転角を用いて座標変換を行う。そのようにして求めた各タイミングの回転座標上の電流値Id1,Iq1,Id2,Iq2の平均値を回転座標上の電流値として用いる。図10は三角搬送波の0.5周期と2.0周期のタイムラグを持つ場合を示したが、1.0周期と1.5周期の場合も同様の処理を行う。これにより回転座標上の電流値の検出誤差を低減できるため、三角搬送波周期毎に電流計算し、回転座標上の電流値を用いて電圧指令生成処理を行うときにも精度の高い電圧指令の生成が可能となる。 Next, calculate the three-phase current value to be output by averaging the three-phase current at each timing. Subsequently, in many cases where the detected current is fed back to the voltage command generation unit 5, the current value on the rotating coordinate is used instead of the three-phase current value. When the current value on the coordinates is calculated, a difference occurs between the rotation angle used for coordinate conversion and the rotation angle when actual current detection is performed. Therefore, the first rotation angles θ1 and θ2 of each monotonically decreasing section or the monotonically increasing section where the current is detected are detected or estimated, and the three-phase current value detected at each timing is used for each rotation angle of the section. Coordinate conversion. The average value of the current values Id1, Iq1, Id2, and Iq2 on the rotational coordinates at each timing thus obtained is used as the current value on the rotational coordinates. FIG. 10 shows a case where a time lag of 0.5 period and 2.0 period of the triangular carrier wave is shown, but the same processing is performed in the case of 1.0 period and 1.5 period. This can reduce the detection error of the current value on the rotating coordinate, so the current is calculated every triangular carrier wave period, and the voltage command is generated with high accuracy when the voltage command generating process is performed using the current value on the rotating coordinate. Is possible.
 図10においては、単調減少区間において、直流母線電流値IdcA、IdcBが検出される(ブロック150)。そして演算されることにより3相電流値Iu1~Iw1が算出される(ブロック151)。更に回転角θ1で座標変換されることにより回転座標系電流値Id1、Iq1が得られる(ブロック152)。一方単調増加区間においては直流母線電流値IdcC、IdcDが検出される(ブロック200)。そして演算されることにより3相電流値Iu2~Iw2が算出される(ブロック201)。更に回転角θ2で座標変換されることにより回転座標系電流値Id2、Iq2が得られる(ブロック202)。最後にId1、Iq1、Id2、Iq2を基に平均化されることにより回転座標系電流値Id、Iqを得る(ブロック300)。 In FIG. 10, DC bus current values IdcA and IdcB are detected in a monotonically decreasing section (block 150). Then, the three-phase current values Iu1 to Iw1 are calculated by calculation (block 151). Further, coordinate transformation is performed at the rotation angle θ1 to obtain rotation coordinate system current values Id1 and Iq1 (block 152). On the other hand, in the monotonically increasing section, the DC bus current values IdcC and IdcD are detected (block 200). Then, the three-phase current values Iu2 to Iw2 are calculated by calculation (block 201). Further, coordinate transformation is performed at the rotation angle θ2 to obtain rotation coordinate system current values Id2 and Iq2 (block 202). Finally, the rotating coordinate system current values Id and Iq are obtained by averaging based on Id1, Iq1, Id2, and Iq2 (block 300).
 上記に示すような手順を経ることで、電圧指令Vu,Vv,Vwの更新を電流検出可否判定に最低限必要な三角搬送波周期毎に行い、かつ電流リプルの影響の小さい電流検出を行うことが可能となる。これにより三角搬送波周期が長くなる小さな三角搬送波周波数で駆動する際にも高精度な電流検出を行い、かつ出力電圧精度の低下を最小限に抑えることが可能となる。即ち三角搬送波TWの波長が大きくなり周期が大きくなっても一周期毎に検出するので精度が高くなる。上記のように動作させることにより、三角搬送波周期と電流検出周期、電圧更新周期が同じで、かつ電流検出を三角搬送波TWの単調減少区間と単調増加区間において交互に検出し、また検出する2相の検出タイミングの時間差を可能な限り小さく一定に固定できるため、三角搬送波TWの波長が大きく周期が大きい、いわゆる低キャリア駆動時も3相全て高精度な電流検出をしつつ、出力電圧精度の低下を最小限に抑えた回転機の駆動が可能となる。 Through the procedure as described above, the voltage commands Vu, Vv, and Vw are updated at every triangular carrier cycle necessary for determining whether or not current detection is possible, and current detection that is less affected by current ripple can be performed. It becomes possible. As a result, even when driving at a small triangular carrier frequency with a long triangular carrier cycle, high-accuracy current detection can be performed and a decrease in output voltage accuracy can be minimized. That is, even if the wavelength of the triangular carrier wave TW is increased and the period is increased, the accuracy is improved because detection is performed every period. By operating as described above, the triangular carrier wave period, the current detection period, and the voltage update period are the same, and the current detection is alternately detected in the monotonically decreasing section and the monotonically increasing section of the triangular carrier wave TW. Because the time difference between the detection timings can be fixed as small and constant as possible, the output voltage accuracy is reduced while accurately detecting the current in all three phases even when the so-called low carrier driving is performed, where the wavelength of the triangular carrier wave TW is large and the period is large. It is possible to drive a rotating machine that minimizes this.
 実施の形態2.
 図11は実施の形態2による電力変換装置の動作を説明するための線図である。図11においては、実施の形態2によるタイミング決定部で決定される電流検出タイミングT~Tの位置関係が示されている。図11においては、上部において三角搬送波TWが示されており、中間部において出力電圧ベクトルの状態が示されている。ここで出力電圧ベクトルは前記において説明したように直流母線102から二相分の電流を検出することができる非零電圧ベクトル区間H1~H16と、電流を検出することができない零電圧ベクトル区間J1~J7からなる。更に図11において下部には1相の電流波形の概略Zが示されている。
Embodiment 2. FIG.
FIG. 11 is a diagram for explaining the operation of the power conversion device according to the second embodiment. FIG. 11 shows the positional relationship between current detection timings T A to T D determined by the timing determination unit according to the second embodiment. In FIG. 11, the triangular carrier wave TW is shown in the upper part, and the state of the output voltage vector is shown in the middle part. Here, as described above, the output voltage vectors are non-zero voltage vector sections H1 to H16 in which currents for two phases can be detected from the DC bus 102, and zero voltage vector sections J1 to J1 in which current cannot be detected. It consists of J7. Further, in FIG. 11, a schematic Z of a one-phase current waveform is shown at the bottom.
 制御部6におけるタイミング決定部において決定される検出タイミングTから次の三角搬送波周期開始時点S1までの時間T20と、前記三角搬送波周期開始時点S1からタイミングTまでの時間T21が異なるように決定される(T20≠T21)。前記に伴い検出タイミングTの所定時間T2後に決定される検出タイミングTと次の三角搬送波周期開始時点S1までの時間T22と、前記三角搬送波周期開始時点S1から検出タイミングTの所定時間T2前に決定される検出タイミングTまでの時間T23も異なる(T22≠T23)。また同様に検出タイミングT、Tと次の三角搬送波周期開始時点S2までの時間と、三角搬送波周期開始時点S2から検出タイミングT、Tまでの時間も異なるように決定される(T24≠T25)。 Determined from the detection timing T A that is determined in the timing decision unit in the control unit 6 and the time T20 to the next triangular carrier wave period beginning S1, so that the time T21 from the triangular carrier wave period beginning S1 to timing T D are different (T20 ≠ T21). And detection timing T B and time T22 until the next triangular carrier wave period beginning S1, is determined after a predetermined time T2 of the detection timing T A with the predetermined time of the detection timing T D from the triangular carrier wave period beginning S1 T2 time T23 to the detection timing T C which is determined before or different (T22 ≠ T23). Similarly, the detection timings T C and T D and the time until the next triangular carrier cycle start time S2 and the time from the triangular carrier cycle start time S2 to the detection timings T B and T A are also determined to be different (T24). ≠ T25).
 上記に示すような手順を経ることで、実施の形態1で得られる効果に加え、三角搬送波周期毎に検出位置が異なると共に、更に電流検出区間の位置も異なるようになる。例えば三角搬送波周期開始時点S1を基準にすると、非零電圧ベクトル区間H1の位置と非零電圧ベクトル区間H8の位置が異なることとなり、即ち電流検出区間の相対的位置が異なることとなる。これにより検出電流値が異なり、相電流演算部4で算出される電流値も異なり、電圧指令生成部5から生成される電圧指令が異なり、ゲートスイッチングタイミングSup~Swnも異なってくるので、最終的に電流リプルの形が三角搬送波周期毎に変形することとなる。その一例が図11の1相の電流波形Zとして示されている。図11に示されるように、三角搬送波周期の前半2周期と後半2周期で異なる電流波形となり、三角搬送波周期に由来する電流リプルの周波数成分が分散される。その結果騒音の原因となる周波数が分散し、耳障りな騒音が抑制される。 Through the procedure as described above, in addition to the effect obtained in the first embodiment, the detection position is different for each triangular carrier wave period, and the position of the current detection section is also different. For example, with reference to the triangular carrier cycle start time S1, the position of the non-zero voltage vector section H1 and the position of the non-zero voltage vector section H8 are different, that is, the relative positions of the current detection sections are different. As a result, the detected current value is different, the current value calculated by the phase current calculation unit 4 is also different, the voltage command generated from the voltage command generation unit 5 is different, and the gate switching timings Sup to Swn are also different. In addition, the shape of the current ripple is deformed every triangular carrier wave period. One example is shown as a one-phase current waveform Z in FIG. As shown in FIG. 11, current waveforms are different in the first two cycles and the second half of the triangular carrier cycle, and the frequency components of the current ripple derived from the triangular carrier cycle are dispersed. As a result, frequencies that cause noise are dispersed, and annoying noise is suppressed.
 以上のように、本発明にかかる電力変換装置は、様々な電動機やシステムに広く対応する電力変換システムに有用であり、特に小さな三角搬送波周波数で駆動を行う電力変換システムに適している。そして本発明にかかる電力変換装置を用いた回転電機駆動装置により回転電機を駆動することができる。
 尚本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
As described above, the power conversion device according to the present invention is useful for a power conversion system that is widely applicable to various electric motors and systems, and is particularly suitable for a power conversion system that is driven at a small triangular carrier frequency. And a rotary electric machine can be driven with the rotary electric machine drive device using the power converter device concerning this invention.
It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Claims (8)

  1. 三相電圧指令を三角搬送波と比較してPWMパルスに変換するPWM変換部と、
    上記PWMパルスに基づきスイッチング素子を駆動し直流電圧を三相交流電圧に変換する電力変換部主回路と、
    上記電力変換部主回路の直流母線に流れる電流を検出する直流母線電流検出部と、
    上記三角搬送波の1周期に少なくとも一回上記直流母線電流検出部より二相分の電流を検出する二回の検出タイミングを上記スイッチング素子のスイッチングタイミングに基づいて設定するタイミング決定部と、
    上記タイミング決定部によって決められたタイミングで検出された上記二相分の上記直流母線の電流値に基づいて上記三角搬送波の1周期に一回三相交流電流値を計算する相電流演算部と、
    上記三角搬送波の1周期に一回上記三相交流電流値に基づき上記三相電圧指令を更新する電圧指令生成部を備え、
    上記三角搬送波を単調増加区間および単調減少区間の二つの区間に分けた場合、上記直流母線電流検出部は連続する2つの三角搬送波周期の内第1周期においては上記単調増加区間又は上記単調減少区間の内の一方の区間で上記直流母線の電流値を検出し、かつ上記連続する2つの三角搬送波周期の内第2周期においては上記単調増加区間又は上記単調減少区間の内上記第1周期で検出されなかった区間で上記直流母線の電流値を検出し、
    上記相電流演算部は直前の上記連続する2つの三角搬送波周期における上記単調増加区間及び上記単調減少区間において上記直流母線電流検出部でそれぞれ検出された二相の上記直流母線の電流値に基づいて、上記三相交流電流値を計算する電力変換装置。
    A PWM converter that converts the three-phase voltage command to a triangular carrier wave and converts it into a PWM pulse;
    A power converter main circuit for driving a switching element based on the PWM pulse and converting a DC voltage into a three-phase AC voltage;
    A DC bus current detection unit for detecting a current flowing in a DC bus of the power converter main circuit;
    A timing determination unit that sets two detection timings for detecting a current for two phases from the DC bus current detection unit at least once in one period of the triangular carrier wave based on the switching timing of the switching element;
    A phase current calculation unit that calculates a three-phase AC current value once in one period of the triangular carrier wave based on the current value of the DC bus for the two phases detected at the timing determined by the timing determination unit;
    A voltage command generator that updates the three-phase voltage command once in one period of the triangular carrier wave based on the three-phase AC current value;
    In the case where the triangular carrier wave is divided into two sections, a monotone increasing section and a monotonic decreasing section, the DC bus current detection unit has the monotonically increasing section or the monotonically decreasing section in the first period of two consecutive triangular carrier periods. The current value of the DC bus is detected in one of the sections, and in the second period of the two continuous triangular carrier periods, the first period of the monotonically increasing section or the monotonically decreasing section is detected in the first period. Detect the current value of the DC bus in the section that was not,
    The phase current calculation unit is based on the current values of the two-phase DC buses detected by the DC bus current detection unit in the monotonically increasing section and the monotonically decreasing section in the immediately preceding two triangular carrier periods. The power converter which calculates the said three-phase alternating current value.
  2. 上記直流母線電流検出部は上記三角搬送波周期の上記単調増加区間と上記単調減少区間の各区間において上記二相分の電流を検出し、上記相電流演算部は上記二相分の電流における各相の電流の平均を求める請求項1に記載の電力変換装置。 The DC bus current detection unit detects the current of the two phases in each of the monotonically increasing section and the monotonically decreasing section of the triangular carrier wave period, and the phase current calculation unit is configured to detect each phase in the current of the two phases. The power converter of Claim 1 which calculates | requires the average of the electric current of.
  3. 上記三角搬送波周期の上記単調増加区間と上記単調減少区間のうち、電流検出を行う側の区間の上記三相電圧指令に補正量を加え、上記検出タイミングを確保し、電流検出を行わない側の区間の上記三相電圧指令から上記補正量を引き、
    あるいは電流検出を行う側の区間の上記三相電圧指令から補正量を引き、電流検出を行わない側の区間の上記三相電圧指令に上記補正量を加える電流検出区間生成部を備える請求項1または請求項2に記載の電力変換装置。
    A correction amount is added to the three-phase voltage command for the current detection side of the monotonic increase interval and the monotone decrease interval of the triangular carrier wave period, the detection timing is ensured, and the current detection is not performed. Subtract the correction amount from the three-phase voltage command of the section,
    Or a current detection section generating unit that subtracts a correction amount from the three-phase voltage command in a section on which current detection is performed and adds the correction amount to the three-phase voltage command in a section on which current detection is not performed. Or the power converter device of Claim 2.
  4. 上記タイミング決定部は、上記三相電圧指令の大きさが二番目である電圧中間相に関わる上記スイッチング素子のスイッチングタイミングTSに基づいて一相目の検出タイミングを上記スイッチングタイミングTSから予め定められた時間T1前に設定するとともに、二相目の検出タイミングを上記一相目の検出タイミングから予め定められた時間T2後に決定し、
    上記時間T1は電流検出に必要な時間よりも長く設定されるとともに、
    上記時間T2は上記電力変換部主回路の直列接続された上記スイッチング素子対が同時に導通することを避けるために設けたデッドタイム区間と、上記スイッチング素子がスイッチングした際に生じる直流電流の高周波振動が減衰し、振幅振動が所定値以下になるまでの区間との和よりも大きな値とする請求項1から請求項3のいずれか1項に記載の電力変換装置。
    The timing determination unit determines a detection timing of the first phase from the switching timing TS based on the switching timing TS of the switching element related to the voltage intermediate phase whose magnitude of the three-phase voltage command is second. And setting before the time T1, and determining the detection timing of the second phase after a predetermined time T2 from the detection timing of the first phase,
    The time T1 is set longer than the time required for current detection,
    The time T2 includes a dead time interval provided in order to avoid simultaneous conduction of the switching element pairs connected in series in the power converter main circuit, and high-frequency oscillation of a direct current generated when the switching element is switched. The power conversion device according to any one of claims 1 to 3, wherein the power conversion device has a value that is greater than a sum of a period until the vibration is attenuated and the amplitude vibration is equal to or less than a predetermined value.
  5. 上記単調増加区間における上記二相分の電流検出タイミングから次の三角搬送波周期開始時点までの時間と上記三角搬送波周期開始時点から上記単調減少区間における上記二相分の電流検出タイミングまでの時間が異なり、
    更には上記単調減少区間における上記二相分の電流検出タイミングから次の三角搬送波周期開始時点までの時間と上記三角搬送波周期開始時点から上記単調増加区間における上記二相分の電流検出タイミングまでの時間が異なる請求項2から請求項4のいずれか1項に記載の電力変換装置。
    The time from the current detection timing of the two phases in the monotonically increasing section to the start time of the next triangular carrier cycle is different from the time from the start of the triangular carrier period to the current detection timing of the two phases in the monotonically decreasing section. ,
    Furthermore, the time from the current detection timing for the two phases in the monotonically decreasing section to the start time of the next triangular carrier cycle and the time from the start of the triangular carrier cycle to the current detection timing for the two phases in the monotonically increasing section The power converter device according to any one of claims 2 to 4, which are different from each other.
  6. 上記相電流演算部による電流計算のタイミングと、上記単調増加区間及び上記単調減少区間における上記直流母線電流検出部による電流検出タイミングとの間のタイムラグに差異が生じる場合、上記相電流演算部による電流計算時に各タイミングで検出した電流をそのタイミングの回転角を用いて座標変換を行い、各タイミングの回転座標上の電流値の平均値を求める請求項2から請求項5のいずれか1項に記載の電力変換装置。 If there is a difference in the time lag between the current calculation timing by the phase current calculation unit and the current detection timing by the DC bus current detection unit in the monotonically increasing section and the monotonically decreasing section, the current by the phase current calculating section The current detected at each timing at the time of calculation is subjected to coordinate conversion using the rotation angle at that timing, and an average value of current values on the rotation coordinates at each timing is obtained. Power converter.
  7. 上記タイムラグは上記単調増加区間において電流検出を行った場合は上記三角搬送波の0.5周期と1.5周期であり、上記単調減少区間において電流検出を行った場合は上記三角搬送波の1周期と2周期である請求項6に記載の電力変換装置。 The time lag is 0.5 period and 1.5 period of the triangular carrier wave when current detection is performed in the monotonically increasing section, and one period of the triangular carrier wave is performed when current detection is performed in the monotonically decreasing section. The power conversion device according to claim 6, wherein there are two cycles.
  8. 請求項1から請求項7のいずれか1項に記載の電力変換装置を用いて回転電機を駆動する回転電機駆動装置。 A rotating electrical machine drive device that drives the rotating electrical machine using the power conversion device according to any one of claims 1 to 7.
PCT/JP2016/074082 2016-01-28 2016-08-18 Power conversion device and rotating electric machine driving device WO2017130447A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563675A JP6419361B2 (en) 2016-01-28 2016-08-18 Power conversion device and rotating electrical machine drive device
CN201680079809.5A CN108633323B (en) 2016-01-28 2016-08-18 Power conversion device and rotating electric machine drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-013892 2016-01-28
JP2016013892 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130447A1 true WO2017130447A1 (en) 2017-08-03

Family

ID=59397696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074082 WO2017130447A1 (en) 2016-01-28 2016-08-18 Power conversion device and rotating electric machine driving device

Country Status (3)

Country Link
JP (1) JP6419361B2 (en)
CN (1) CN108633323B (en)
WO (1) WO2017130447A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059108A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Inverter control device
CN111726051A (en) * 2019-03-22 2020-09-29 日本电产株式会社 Motor drive control device, motor system, and air blowing device
EP3930169A4 (en) * 2019-02-19 2022-03-02 Mitsubishi Electric Corporation Power conversion device and electric power steering device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685452B1 (en) * 2019-05-16 2020-04-22 三菱電機株式会社 Control device for rotating electric machine
DE112020003026T5 (en) * 2019-06-26 2022-03-10 Kabushiki Kaisha Toyota Jidoshokki Control device for an electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131770A (en) * 2006-11-22 2008-06-05 Hitachi Ltd Power converting device
JP2010011639A (en) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2013055772A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Electric power conversion device, freezing air conditioner and control method of electric power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769953B (en) * 2010-01-14 2012-10-17 东元总合科技(杭州)有限公司 Phase current detection method of motor based on direct-current bus current
CN102510261B (en) * 2011-10-27 2016-06-22 东元总合科技(杭州)有限公司 Method for reconstructing phase current of electromotor based on symmetrical PWM carrier wave
US9413163B2 (en) * 2014-06-19 2016-08-09 Texas Instruments Incorporated Motor fault detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131770A (en) * 2006-11-22 2008-06-05 Hitachi Ltd Power converting device
JP2010011639A (en) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2013055772A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Electric power conversion device, freezing air conditioner and control method of electric power conversion device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059108A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Inverter control device
JPWO2020059108A1 (en) * 2018-09-21 2021-02-15 三菱電機株式会社 Inverter controller
CN112673564A (en) * 2018-09-21 2021-04-16 三菱电机株式会社 Inverter control device
US11437930B2 (en) 2018-09-21 2022-09-06 Mitsubishi Electric Corporation Inverter control device
EP3930169A4 (en) * 2019-02-19 2022-03-02 Mitsubishi Electric Corporation Power conversion device and electric power steering device
CN111726051A (en) * 2019-03-22 2020-09-29 日本电产株式会社 Motor drive control device, motor system, and air blowing device

Also Published As

Publication number Publication date
JPWO2017130447A1 (en) 2018-05-10
CN108633323A (en) 2018-10-09
CN108633323B (en) 2021-07-13
JP6419361B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6419361B2 (en) Power conversion device and rotating electrical machine drive device
JP6735827B2 (en) Power converter
JP4866216B2 (en) Power converter
JP4749874B2 (en) Power conversion device and motor drive device using the same
JP6250222B2 (en) Power converter
US20130257332A1 (en) Electric motor driving apparatus having failure detection circuit, and failure detection method for the electric motor driving apparatus having failure detection circuit
JPWO2019008676A1 (en) Inverter device and electric power steering device
JP2007151344A (en) Magnetic pole position estimating method, motor speed estimating method, and motor controller
US11218107B2 (en) Control device for power converter
JP5514660B2 (en) Load control device
CN111656669B (en) Control device
JP5615671B2 (en) Motor control device and motor control system
JP6233428B2 (en) Motor control device and motor control method
US20200136536A1 (en) Method for detecting magnetic field location in electric motor
JP6407175B2 (en) Power converter control device
JP2019057981A (en) Motor control integrated circuit
JP5428796B2 (en) Motor drive control device
JP5853644B2 (en) Line current detection device and power conversion system
JP2021164279A (en) Motor controller, motor system, and motor control method
JP2010239834A (en) Inverter control circuit for synchronous motor and synchronous motor controller equipped with the inverter control circuit
JP5473071B2 (en) Load control device
JP6494809B2 (en) Inverter control device
JP2012205370A (en) Controller for motor
JP2020048381A (en) Motor control device, motor system and inverter control method
WO2021106609A1 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888033

Country of ref document: EP

Kind code of ref document: A1