JP2008131770A - Power converting device - Google Patents

Power converting device Download PDF

Info

Publication number
JP2008131770A
JP2008131770A JP2006315120A JP2006315120A JP2008131770A JP 2008131770 A JP2008131770 A JP 2008131770A JP 2006315120 A JP2006315120 A JP 2006315120A JP 2006315120 A JP2006315120 A JP 2006315120A JP 2008131770 A JP2008131770 A JP 2008131770A
Authority
JP
Japan
Prior art keywords
current
phase
power converter
voltage
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315120A
Other languages
Japanese (ja)
Other versions
JP4866216B2 (en
Inventor
Shigehisa Aoyanagi
滋久 青柳
Yoshitaka Iwaji
善尚 岩路
Kiyoshi Sakamoto
坂本  潔
Kazuaki Tobari
和明 戸張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Hitachi Industrial Equipment Systems Co Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Hitachi Appliances Inc
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industrial Equipment Systems Co Ltd, Hitachi Appliances Inc, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006315120A priority Critical patent/JP4866216B2/en
Priority to DE102007054050A priority patent/DE102007054050B4/en
Priority to CN200710186499A priority patent/CN100576713C/en
Priority to CN2009101452908A priority patent/CN101582650B/en
Publication of JP2008131770A publication Critical patent/JP2008131770A/en
Application granted granted Critical
Publication of JP4866216B2 publication Critical patent/JP4866216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a harmonic component while DC busbar current is highly precisely detected. <P>SOLUTION: A power converting device is provided with a PWM control part 9 comparing three-phase AC signals Vum<SP>*</SP>, Vvm<SP>*</SP>and Vwm<SP>*</SP>with a triangular wave carrier signal and generating a pulse width modulation wave, a power converter main circuit part 3 driving a switching element by a pulse width modulation wave and converting a DC voltage into a three-phase AC voltage and DC detecting parts 5 and 6 detecting the DC busbar current and reproducing a phase current on a DC input side of the power converter main circuit part. The device is also provided with a voltage command change part 8 adding a correction signal causing an average value of correction quantity at a voltage command change period to be zero or almost zero to the three-phase AC signal by setting an odd number of three or more unit periods when the triangular wave carrier signal monotonously increases or monotonously decreases as a voltage command change period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、直流母線電流を検出して、交流側の電流情報を得る電力変換装置に関する。   The present invention relates to a power conversion device that detects a DC bus current and obtains AC-side current information.

インバータやコンバータ等の電力変換装置では、パルス幅変調(以下、「PWM」と称す。)により、直流−交流変換、あるいは交流−直流変換の機能を実現している。インバータは、同期モータや誘導モータ等の交流電動機(以下、「電動機」と称す)の駆動システムに用いられ、また、コンバータはインバータ等の電源装置として広く用いられている。
インバータを用いて電動機を駆動する場合、電動機の発生トルクを精度よく制御するには、交流電流に含まれる基本波成分のみを精度よく抽出する必要がある。一般に、交流電流には、PWMによる高周波の脈動成分が重畳されているため、例えば交流電流センサを用いる方法等で、基本波成分のみを抽出している(特許文献1)。
近年では、交流電流センサを用いることなく、電力変換装置の直流母線電流を検出して、その検出値から交流電流の情報を抽出する技術が発案されている(特許文献2、特許文献3、特許文献4、特許文献5及び非特許文献1)。これらの技術によれば、ホール素子を用いたカレントトランス(CT)等の交流電流センサを用いる必要がなくなり、装置の構成が簡単、省スペースとなり、製造コストを低減することができる。
特開平6−189578号公報 特開2002−119062号公報 特開2004−64903号公報 特開2001−327173号公報 特開平10−155278号公報 福本哲哉、渡邊幸恵、濱根洋人、林洋一:「1シャント抵抗方式における交流電流演算とリップル補正による波形歪改善方法」半導体電力変換・産業電力電気応用合同研究会、SPC−05−99、pp.1−6(2005年)
In power converters such as inverters and converters, DC-AC conversion or AC-DC conversion functions are realized by pulse width modulation (hereinafter referred to as “PWM”). Inverters are used in drive systems for AC motors (hereinafter referred to as “motors”) such as synchronous motors and induction motors, and converters are widely used as power supply devices such as inverters.
When driving an electric motor using an inverter, it is necessary to extract only the fundamental wave component included in the alternating current with high accuracy in order to control the generated torque of the electric motor with high accuracy. In general, since a high-frequency pulsation component by PWM is superimposed on the alternating current, only the fundamental wave component is extracted by, for example, a method using an alternating current sensor (Patent Document 1).
In recent years, a technique has been proposed in which a DC bus current of a power converter is detected without using an AC current sensor, and information on the AC current is extracted from the detected value (Patent Document 2, Patent Document 3, Patent). Document 4, Patent Document 5, and Non-Patent Document 1). According to these technologies, it is not necessary to use an alternating current sensor such as a current transformer (CT) using a Hall element, the configuration of the apparatus is simple and space-saving, and the manufacturing cost can be reduced.
JP-A-6-189578 JP 2002-119062 A JP 2004-64903 A JP 2001-327173 A JP-A-10-155278 Tetsuya Fukumoto, Yukie Watanabe, Hiroto Sone, Yoichi Hayashi: “Improvement of waveform distortion by AC current calculation and ripple correction in 1-shunt resistance method” Semiconductor Power Conversion / Industrial Power Electrical Application Joint Study Group, SPC-05-99, pp. 1-6 (2005)

特許文献4による方法は、PWM信号を生成する三角波キャリア信号の1周期を前半と後半との期間に分割し、これらの何れか一方の期間で直流母線電流を検出するものである。この直流母線電流は、電力変換器の交流出力電圧が低くなるほど、検出が難しくなるため、前半で交流出力電圧に補正電圧を加算し、出力電圧値自体を大きくして直流母線電流を検出するようにしている。また、後半にて、前半で加算した補正電圧を減算し、前半と後半との平均出力電圧に影響がないようにしている。
しかし、この技術を用いて交流電流を検出した場合には、トルク脈動の発生や、精度の劣化が生じる場合がある。補正電圧を加えることで、本来不要である電流変化が発生してしまい、この電流変化分が「誤差」となって電流検出値に影響し、結果的に、トルク脈動の発生や、トルク精度の劣化を引き起こす。特に、電動機のインダクタンスが小さい場合や、キャリア周波数の低い場合において、補正電圧による電流誤差が発生し易くなり、問題である。
In the method according to Patent Document 4, one period of a triangular wave carrier signal for generating a PWM signal is divided into a first half period and a second half period, and a DC bus current is detected in any one of these periods. This DC bus current is detected more difficult as the AC output voltage of the power converter becomes lower. Therefore, the correction voltage is added to the AC output voltage in the first half, and the output voltage value itself is increased to detect the DC bus current. I have to. In the second half, the correction voltage added in the first half is subtracted so that the average output voltage in the first half and the second half is not affected.
However, when an alternating current is detected using this technique, torque pulsation may occur or accuracy may deteriorate. By applying the correction voltage, an unnecessarily current change occurs, and this current change becomes an "error" and affects the current detection value. As a result, torque pulsation and torque accuracy are reduced. Causes deterioration. In particular, when the inductance of the motor is small or when the carrier frequency is low, a current error due to the correction voltage tends to occur, which is a problem.

加えて、前半及び後半の何れか一方のみの期間で直流母線電流を検出することで生じる電流検出値の偏りが問題点として挙げられる。この問題点は、直流母線電流の検出を時分割で行う場合に、前半と後半とでは検出のタイミングが異なることに起因している。つまり、PWMのスイッチングに起因して発生する電流リプルの値が2つのタイミングで異なるため、何れか一方のみの期間で電流を検出すれば偏りが生じてしまう。これは、特に電流リプルの大きい場合に顕著であり、前記した補正電圧による電流誤差を助長するため、問題である。
また、交流電流再現値の歪み補償については、非特許文献1による方法がある。しかし、この方法は補償演算を検出の度に行う必要があり、演算負荷の増大を招く恐れがある。非特許文献1には、演算負荷を低減した簡易的な補償法も同時に示されている。これは、検出のタイミングが三角波キャリア信号の最大値と最小値とに一致するタイミングに固定されている場合に限って適用可能であり、検出タイミングが異なる方式に対しては適用が困難である。
In addition, the bias of the current detection value caused by detecting the DC bus current in only one of the first half and the second half is a problem. This problem is caused by the fact that the detection timing is different between the first half and the second half when the DC bus current is detected in a time-sharing manner. That is, since the value of the current ripple generated due to PWM switching differs at two timings, if current is detected in only one of the periods, a bias will occur. This is particularly noticeable when the current ripple is large, and is problematic because it promotes the current error caused by the correction voltage.
Further, there is a method according to Non-Patent Document 1 for distortion compensation of the AC current reproduction value. However, in this method, it is necessary to perform the compensation calculation every time it is detected, which may increase the calculation load. Non-Patent Document 1 also shows a simple compensation method with a reduced calculation load. This is applicable only when the detection timing is fixed at a timing that matches the maximum value and the minimum value of the triangular wave carrier signal, and is difficult to apply to systems with different detection timings.

また、特許文献5による方法では、キャリア周波数の周期の整数分の1程度を「従属期間」と定義し、この期間内にて、直流母線電流の測定(検出)と補償とを行っている。この方式においても、特許文献4の技術と同様に、従属期間の中で、出力電圧の補正、修正と、直流母線電流の検出とを行っている。その結果として、電圧指令値に対しては従属期間の周期に一致した周波数成分を重畳することになり、交流電流にキャリア信号の周波数成分よりも低い周波数成分が発生する。この低い周波数成分は、キャリア周波数に対して整数分の1になるため、可聴域になる可能性が高い。例えば、インバータに備えられる半導体デバイスとしてはIGBTが広く用いられており、そのキャリア周波数の上限としては20kHz程度である。よって、その整数分の1であれば10kHz以下となり、可聴域になる。可聴域の成分は、電磁騒音となって耳障りな騒音となり、また、交流電流の周波数成分が、機械系の共振周波数に一致すれば、過大な振動が発生し、装置に不具合を起こさせる恐れもある。   Further, in the method according to Patent Document 5, about 1 / integer of the carrier frequency period is defined as a “dependent period”, and DC bus current measurement (detection) and compensation are performed within this period. Also in this method, as in the technique of Patent Document 4, correction and correction of the output voltage and detection of the DC bus current are performed during the dependent period. As a result, a frequency component that coincides with the period of the dependent period is superimposed on the voltage command value, and a frequency component lower than the frequency component of the carrier signal is generated in the alternating current. Since this low frequency component is 1 / integer of the carrier frequency, there is a high possibility that it will be in the audible range. For example, IGBT is widely used as a semiconductor device provided in an inverter, and the upper limit of the carrier frequency is about 20 kHz. Therefore, if it is 1 / integer, it becomes 10 kHz or less and becomes an audible range. The audible component becomes electromagnetic noise and becomes annoying noise, and if the frequency component of the alternating current matches the resonance frequency of the mechanical system, excessive vibration may occur, which may cause malfunction of the device. is there.

そこで、本発明は、直流母線電流を高精度に検出しつつ、高調波成分を抑制することができる電力変換装置を提供することを課題とする。   Then, this invention makes it a subject to provide the power converter device which can suppress a harmonic component, detecting a DC bus current with high precision.

前記課題を解決するため、本発明の電力変換装置は、三相交流信号と三角波キャリア信号とを比較して、パルス幅変調波を生成するPWM制御部と、このパルス幅変調波によってスイッチング素子を駆動し、直流電圧を三相交流電圧に変換する電力変換器回路部と、この電力変換器回路部の直流入力側に、直流母線電流を検出して相電流を再現する電流検出部と、を備える電力変換装置において、前記三角波キャリア信号が単調増加もしくは単調減少となる単位期間が3以上の奇数個分である電圧指令変更周期として、前記電圧指令変更周期における補正量の平均値が略零となるような補正信号を前記三相交流信号に加える電圧指令変更部をさらに備えたことを特徴とする。   In order to solve the above problems, a power converter according to the present invention compares a three-phase alternating current signal and a triangular wave carrier signal to generate a pulse width modulated wave, and a switching element using the pulse width modulated wave. A power converter circuit unit that drives and converts a DC voltage into a three-phase AC voltage, and a current detection unit that detects a DC bus current and reproduces a phase current on the DC input side of the power converter circuit unit; In the power converter provided, the average value of the correction amount in the voltage command change cycle is substantially zero as the voltage command change cycle in which the unit period in which the triangular wave carrier signal monotonously increases or decreases is an odd number of 3 or more. And a voltage command changing unit for adding such a correction signal to the three-phase AC signal.

三角波キャリア信号の単調増加もしくは単調減少となる期間を単位期間とし、この単位期間が3以上連続する奇数個分の期間を一つの周期として、電圧指令値に補正量を加算することにより、直流母線電流に流れるパルス状電流の幅を広げ、高精度な電流検出が可能となる。また、三角波キャリア信号の周期の整数倍にはならない。このため、高調波成分が抑制され、電磁騒音の発生を低減することができる。   By adding a correction amount to the voltage command value with a period in which the triangular wave carrier signal monotonously increases or decreases as a unit period, and an odd number of periods in which the unit period continues for 3 or more as one cycle, The width of the pulsed current flowing in the current is widened, and highly accurate current detection becomes possible. Also, it is not an integral multiple of the period of the triangular wave carrier signal. For this reason, a harmonic component is suppressed and generation | occurrence | production of electromagnetic noise can be reduced.

本発明によれば、直流母線電流を高精度に検出しつつ、高調波成分を抑制することができる。   According to the present invention, harmonic components can be suppressed while detecting a DC bus current with high accuracy.

(第1実施形態)
図1の構成図を用いて、本発明の第1実施形態について説明する。図1の電力変換装置100は、直流電源1と、並列に接続された平滑コンデンサ2と、平滑コンデンサ2の両端電圧がシャント抵抗5を介して入力側に印加された電力変換器主回路部(電力変換器回路部)3と、電力変換器主回路部3の交流出力に接続された交流電動機4と、交流電動機4に取り付けられ、回転子角度信号θを出力する回転子位置センサ12と、マイクロコンピュータ(以下、「マイコン」と称す。)とを備える。
(First embodiment)
A first embodiment of the present invention will be described with reference to the configuration diagram of FIG. A power converter 100 in FIG. 1 includes a DC power source 1, a smoothing capacitor 2 connected in parallel, and a power converter main circuit unit in which a voltage across the smoothing capacitor 2 is applied to the input side via a shunt resistor 5 ( A power converter circuit unit) 3, an AC motor 4 connected to an AC output of the power converter main circuit unit 3, a rotor position sensor 12 attached to the AC motor 4 and outputting a rotor angle signal θ, And a microcomputer (hereinafter referred to as “microcomputer”).

マイコン8は、シャント抵抗5に流れる直流母線電流IDCを入力し、相電流Iuc、Ivc、Iwcを再現する電流検出部6と、再現した相電流Iuc、Ivc、Iwcと任意に外部から与えられる電流指令値Id、Iqとを入力し、回転子角度信号θに応じて第1の電圧指令値Vu、Vv、Vwを出力する電圧指令値作成部7と、第1の電圧指令値Vu、Vv、Vwと電圧指令変更値ΔVuc、ΔVvc、ΔVwcとを加算して、第2の電圧指令値Vum、Vvm、Vwmを出力する電圧指令変更部8と、三相交流信号である第2の電圧指令値Vum、Vvm、Vwmと三角波キャリア信号生成部9aが生成した三角波キャリア信号とを比較することで、スイッチング信号を生成するPWM制御部9といった機能を備える。 The microcomputer 8 receives the DC bus current IDC flowing through the shunt resistor 5 and reproduces the phase currents Iuc, Ivc, and Iwc, and the reproduced phase currents Iuc, Ivc, and Iwc, and the current arbitrarily given from the outside. The command values Id * and Iq * are input, and the voltage command value creating unit 7 that outputs the first voltage command values Vu * , Vv * , and Vw * according to the rotor angle signal θ, and the first voltage command A voltage command change unit 8 that outputs the second voltage command values Vum * , Vvm * , Vwm * by adding the values Vu * , Vv * , Vw * and the voltage command change values ΔVuc, ΔVvc, ΔVwc; a phase AC signal second voltage command value Vum *, Vvm *, by comparing the triangular wave carrier signal Vwm * and the triangular wave carrier signal generator 9a is generated, PWM system for generating a switching signal It has functions such as control unit 9.

電力変換器主回路部3は、スイッチング信号に基づいて半導体素子をスイッチングすることにより、三相交流電圧を出力し、三相電流Iu、Iv、Iwが流れる。また、スイッチング信号は電流検出部6にも供されることで、直流母線電流IDCの検出タイミングを決定する。   The power converter main circuit unit 3 outputs a three-phase AC voltage by switching the semiconductor element based on the switching signal, and three-phase currents Iu, Iv, and Iw flow. The switching signal is also supplied to the current detection unit 6 to determine the detection timing of the DC bus current IDC.

まず、本実施形態の特徴構成である電圧指令変更部8について述べる。
電圧指令変更周期は、三角波キャリアの単調増加期間、あるいは、単調減少期間を一つの単位期間として、これらの連続した奇数個分(n個分)の合計した期間を1周期と定める(図2(a)参照)。電圧指令変更周期には、n個のキャリア周期の半周期期間があり、それらを特定するため、「k番目の半周期期間」とする序数kを定義する(k=1,2,3,・・・,n)。図2は、n=3の場合におけるタイミングチャートである。図2(a)は三角波キャリア信号の波形であり、図2(b)は半周期期間の順番を示す序数kの時間変化であり、図2(c)は電圧指令変更値ΔVucであり、図2(d)は第1の電圧指令値Vu、Vv、Vw、ならびに第2の電圧指令値Vum、Vvm、Vwmである。
First, the voltage command change part 8 which is the characteristic structure of this embodiment is described.
The voltage command change period is defined as one period that is a sum of these consecutive odd number (n), with the monotone increasing period or the monotonic decreasing period of the triangular wave carrier as one unit period (FIG. 2 ( a)). The voltage command change cycle has n carrier cycle half-cycle periods, and in order to identify them, an ordinal number k is defined as “kth half-cycle period” (k = 1, 2, 3,. .., n). FIG. 2 is a timing chart in the case of n = 3. 2A is a waveform of a triangular wave carrier signal, FIG. 2B is a time change of ordinal number k indicating the order of half-cycle periods, FIG. 2C is a voltage command change value ΔVuc, 2 (d) is the first voltage command value Vu * , Vv * , Vw * and the second voltage command value Vum * , Vvm * , Vwm * .

PWM変調を行う最終的な電圧指令は、第2の電圧指令値Vum、Vvm、Vwmであり、これを数式で表すと、次式となる。

Figure 2008131770
The final voltage command for performing PWM modulation is the second voltage command values Vum * , Vvm * , Vwm * , which are expressed by the following equations.
Figure 2008131770

また、電圧指令変更値は、式(2)に基づき、電圧指令変更周期の1周期で時間平均値をゼロ又は略ゼロとする。

Figure 2008131770
これは、電圧指令値作成部7が出力する第1の電圧指令値Vu、Vv、Vwと交流電動機4への印加電圧とに差異を生じさせないためである。
なお、図2(d)では、U相のみに電圧指令変更値ΔVucが加算されている例であり、V相とW相とに関しては、何も補正がなされず、Vvm =V 、ならびに、Vwm =V となっている。 Further, the voltage command change value has a time average value of zero or substantially zero in one cycle of the voltage command change cycle based on the equation (2).
Figure 2008131770
This is because there is no difference between the first voltage command values Vu * , Vv * , Vw * output from the voltage command value creation unit 7 and the voltage applied to the AC motor 4.
FIG. 2D shows an example in which the voltage command change value ΔVuc is added only to the U phase. No correction is made for the V phase and the W phase, and V vm * = V V *. , as well, and has a V wm * = V w *.

次に、本実施形態において最も特徴のある電圧指令変更値の加算方法について述べる。説明の簡単化のため、U相のみに電圧指令変更値ΔVucを加算するものとする。
まず、直流母線電流IDCの検出のために、第1の電圧指令値Vuに対して、補正量ΔEucを加算することがが必要であるものとする(ΔEucの決定方法については、後記する)。
Next, a voltage command change value addition method that is the most characteristic feature of the present embodiment will be described. For simplicity of explanation, it is assumed that the voltage command change value ΔVuc is added only to the U phase.
First, in order to detect the DC bus current IDC, it is necessary to add a correction amount ΔEuc to the first voltage command value Vu * (a method for determining ΔEuc will be described later). .

本実施形態では、nは奇数であることが重要であり、例としてn=3とする。その場合、

Figure 2008131770
として、電圧指令値を変更する。直流母線電流IDCの検出は、序数k=2の期間で行い、このときには、必要な補正電圧ΔEucが加算される。この序数k=2におけるキャリア半周期を「フル電圧補正期間」とする。また、ΔEuc/2が加算される序数k=1、ならびに、序数k=3の期間を「ハーフ電圧補正期間」とする。なお、序数k=2ではΔEucが必要となるが、序数k=1と序数k=3との補正電圧の合計が−ΔEucになればよく、厳密性は問われない。 In the present embodiment, it is important that n is an odd number, and n = 3 as an example. In that case,
Figure 2008131770
As a result, the voltage command value is changed. The detection of the DC bus current IDC is performed in the period of the ordinal number k = 2. At this time, the necessary correction voltage ΔEuc is added. The carrier half cycle in the ordinal number k = 2 is defined as a “full voltage correction period”. Further, the period of the ordinal number k = 1 and the ordinal number k = 3 to which ΔEuc / 2 is added is defined as a “half voltage correction period”. Note that ΔEuc is required when the ordinal number k = 2, but the sum of the correction voltages of the ordinal number k = 1 and the ordinal number k = 3 only needs to be −ΔEuc, and the strictness is not questioned.

特許文献4などの方式では、例えば、三角波の単調増加期間でΔEucを加算して直流母線電流IDCを検出し、次の単調減少期間では、−ΔEucを加えて(加算した分を減算して)、元の電圧指令からの誤差の発生を抑えるようにしている。本実施形態では、直流母線電流IDC検出のため、補正電圧を加える点で特許文献4と一見同じにみえるが、この補正電圧を半分に分割し、分割された補正電圧を検出期間の前後にそれぞれ加算している点で相違する。   In a method such as Patent Document 4, for example, ΔEuc is added during a monotone increasing period of a triangular wave to detect the DC bus current IDC, and −ΔEuc is added (subtracted the added amount) during the next monotonic decreasing period. The generation of errors from the original voltage command is suppressed. In the present embodiment, it seems that the correction voltage is applied to detect the DC bus current IDC. However, the correction voltage is divided in half, and the divided correction voltages are respectively set before and after the detection period. It differs in that it adds.

同様な考えから、n=5の場合には、

Figure 2008131770
あるいは、
Figure 2008131770
のように電圧指令変更値を与える。この場合、式(4)では、序数k=2、あるいは序数k=4にて、電流検出を行うことが可能であり、式(5)では、序数k=3にて電流検出を行うことが可能である。いずれも、電圧指令変更周期の開始時(序数k=1)と終了時(序数k=n)とを「ハーフ電圧補正期間」とし、それ以外は「フル電圧補正期間」としている。 From the same idea, when n = 5,
Figure 2008131770
Or
Figure 2008131770
The voltage command change value is given as follows. In this case, current detection can be performed with ordinal number k = 2 or ordinal number k = 4 in equation (4), and current detection can be performed with ordinal number k = 3 in equation (5). Is possible. In both cases, the start time (ordinal number k = 1) and the end time (ordinal number k = n) of the voltage command change period are set as “half voltage correction period”, and other times are set as “full voltage correction period”.

次に、本実施形態の効果について、図3を用いて説明する。
電圧指令変更部8で求めた第2の電圧指令値Vum、Vvm、Vwmに基づき、PWM制御部9にて三角波比較によるPWM制御が行われる。図3(d)に、PWM制御を行った結果、直流母線電流IDCに発生する電流パルスを示す。
三角波キャリア信号と比較を行う三相電圧指令値に対し、値の大きい順に、電圧最大相、電圧中間相、電圧最小相と定義すると、図3では、
・電圧最大相→U相
・電圧中間相→V相
・電圧最小相→W相
となっている。なお、三相(U相、V相、W相)の何れの相が電圧最大相、電圧中間相、あるいは電圧最小相であるかについては、交流位相によって60度毎に変化する。
Next, the effect of this embodiment is demonstrated using FIG.
Based on the second voltage command values Vum * , Vvm * , and Vwm * obtained by the voltage command changing unit 8, the PWM control unit 9 performs PWM control based on triangular wave comparison. FIG. 3D shows a current pulse generated in the DC bus current IDC as a result of the PWM control.
If the three-phase voltage command value to be compared with the triangular wave carrier signal is defined as a voltage maximum phase, a voltage intermediate phase, and a voltage minimum phase in descending order of values, in FIG.
• Maximum voltage phase → U phase • Intermediate voltage phase → V phase • Minimum voltage phase → W phase Note that which of the three phases (U phase, V phase, and W phase) is the maximum voltage phase, intermediate voltage phase, or minimum voltage phase changes every 60 degrees depending on the AC phase.

直流母線電流IDCには、電圧最大相の電流と、電圧最小相の電流とが時分割で発生することが知られている。三角波キャリア信号の単調増加期間では(図3(a))、電圧最小相の電流IDC1が先に現れ、続いて電圧最大相の電流IDC2が現れる(図3(d))。単調減少期間では(図3(a))、その逆になり、電圧最大相の電流IDC1が先に現れ、続いて電圧最小相の電流IDC2が現れる。   It is known that the maximum voltage phase current and the minimum voltage phase current are generated in the DC bus current IDC in a time-sharing manner. In the monotonically increasing period of the triangular wave carrier signal (FIG. 3A), the current IDC1 of the minimum voltage phase appears first, followed by the current IDC2 of the maximum voltage phase (FIG. 3D). In the monotonously decreasing period (FIG. 3A), the reverse is true, and the current IDC1 of the maximum voltage phase appears first, followed by the current IDC2 of the minimum voltage phase.

図3の例では、n=3とし、U相にΔVucを加算し、W相にはΔVwcを加算し、電圧指令値を変更している。この結果、序数k=2の期間で直流母線電流IDCのパルス幅が広がっていることがわかる。さらに、序数k=2のときの三角波キャリア信号が、単調増加と単調減少とで交互に入れ替わっていることがわかる(図3(a),(b))。これは、電圧指令変更期間をキャリアの半周期間の「奇数個(図3では、n=3)」としているためである。この結果、直流母線電流IDCの検出時の三角波キャリア信号は、一義的でなくなり(「単調増加のときのみ、あるいは単調減少のときのみしか検出しない」ことを、一義的と云う)、バランスの取れた電流検出が可能となる。この結果、特許文献4のような不具合がなくなり、電流検出精度が大幅に向上する。   In the example of FIG. 3, n = 3, ΔVuc is added to the U phase, ΔVwc is added to the W phase, and the voltage command value is changed. As a result, it can be seen that the pulse width of the DC bus current IDC is widened in the period of the ordinal number k = 2. Furthermore, it can be seen that the triangular wave carrier signal when the ordinal number k = 2 is alternately switched between monotonic increase and monotonic decrease (FIGS. 3A and 3B). This is because the voltage command change period is set to “odd number (n = 3 in FIG. 3)” between half cycles of the carrier. As a result, the triangular wave carrier signal at the time of detection of the DC bus current IDC is not unique ("only detected when monotonically increasing or monotonically decreasing" is said to be unambiguous) and balanced. Current detection is possible. As a result, the problem as in Patent Document 4 is eliminated, and the current detection accuracy is greatly improved.

また、電圧指令変更周期は、n=3であれば、三角波キャリア周期の1.5倍であり、特許文献5のような整数倍にはならない。すなわち、キャリア周波数を20kHzとすれば、電圧指令変更部8によって加えられる高調波成分は、13.3kHz(=20kHz/1.5)の成分となる。この値は可聴域ではあるものの、人間の耳には聞こえ難くなり、静音効果が大きい。
さらにn=5であれば、高調波成分は、8kHz(=20kHz/2.5)の成分となる。この値は可聴域で、人間の耳に聞こえるので静音効果は犠牲となる。しかし、装置の機械的な共振周波数が13kHz近傍にある場合を仮定すると、高調波成分の周波数をずらすことができ、装置の振動による不具合を回避することができる。
以上より、電圧指令変更部8によって加えられる高調波成分には、電圧指令変更周期を1周期とする周波数成分が重畳されている。この電圧指令変更周期の1周期をTaとし、三角波キャリア信号の1周期をTcとし、nで表せば式(6)となる。

Figure 2008131770
式(6)より、重畳される周波数成分をfaとすれば、Taの逆数になり、式(7)で示される。
Figure 2008131770
なお、式(3)〜式(5)における補正量ΔEucは、以下に示すように、特許文献4と同様の考え方で求めればよい。 Further, if n = 3, the voltage command change cycle is 1.5 times the triangular wave carrier cycle, and is not an integral multiple as in Patent Document 5. That is, if the carrier frequency is 20 kHz, the harmonic component added by the voltage command changing unit 8 is a component of 13.3 kHz (= 20 kHz / 1.5). Although this value is in the audible range, it is difficult for the human ear to hear, and the silent effect is great.
Further, if n = 5, the harmonic component is a component of 8 kHz (= 20 kHz / 2.5). This value is audible and can be heard by the human ear, so the silent effect is sacrificed. However, if it is assumed that the mechanical resonance frequency of the device is in the vicinity of 13 kHz, the frequency of the harmonic component can be shifted, and problems due to vibration of the device can be avoided.
As described above, the frequency component having the voltage command change period as one period is superimposed on the harmonic component added by the voltage command change unit 8. When one cycle of the voltage command change cycle is Ta, one cycle of the triangular wave carrier signal is Tc, and expressed as n, Equation (6) is obtained.
Figure 2008131770
From Equation (6), if the frequency component to be superimposed is fa, it becomes the reciprocal of Ta and is represented by Equation (7).
Figure 2008131770
In addition, what is necessary is just to obtain | require the correction amount (DELTA) Euc in Formula (3)-Formula (5) by the same view as patent document 4, as shown below.

直流母線電流IDCとして流れる電圧最大相電流と電圧最小相電流との電流パルス幅は、それぞれ、電圧中間相と指令値との差で定まる。この電流パルス幅を所定値以上の大きさを確保しないと、電流の検出ができなくなる。
ここでいう「所定値」とは、半導体素子のアーム短絡を防止するためのデッドタイム期間や、スイッチングに起因するリンギングが発生している期間、あるいは、A/D変換器のサンプルホールド時間などを考慮した最小幅であり、ハード的な制約で決まると考えてよい。この電流検出可能な通流幅の最小値を最小パルス幅Tpwと定義する。
The current pulse widths of the maximum voltage phase current and the minimum voltage phase current flowing as the DC bus current IDC are determined by the difference between the voltage intermediate phase and the command value, respectively. The current cannot be detected unless the current pulse width has a predetermined value or more.
Here, the “predetermined value” means a dead time period for preventing an arm short circuit of a semiconductor element, a period in which ringing due to switching occurs, a sample hold time of an A / D converter, or the like. It is the minimum width considered, and it can be considered that it is determined by hardware constraints. The minimum value of the current detection detectable width is defined as the minimum pulse width Tpw.

前記のように、電圧指令値の2相の差電圧が、必ず最小パルス幅Tpwに相当する電圧以上になるように補正を加えることで、電圧最大相、ならびに電圧最小相の電流は検出可能となる。よって、電圧指令変更値として加算される補正量ΔEuc、ΔEvc、ΔEwcは、それぞれ、

Figure 2008131770
の関係になる。各電圧指令値の差分が最小パルス幅Tpwに相当する電圧V(Tpw)以上の大きさであれば、補正量を加える必要はない。
また、本実施形態の方法によれば、最大で2相の電流値しか得られないが、三相交流電動機の場合は、中性点電圧をオープンにするのが一般的であるため、キルヒホッフの第1法則により、式9の関係式を用いて残り1相の電流値を求めることができる。
Figure 2008131770
As described above, by correcting so that the voltage difference between the two phases of the voltage command value is always equal to or greater than the voltage corresponding to the minimum pulse width Tpw, the current of the maximum voltage phase and the minimum voltage phase can be detected. Become. Therefore, the correction amounts ΔEuc, ΔEvc, ΔEwc added as voltage command change values are respectively
Figure 2008131770
It becomes a relationship. If the difference between the voltage command values is not less than the voltage V (Tpw) corresponding to the minimum pulse width Tpw, there is no need to add a correction amount.
Further, according to the method of the present embodiment, only a maximum of two-phase current values can be obtained. However, in the case of a three-phase AC motor, it is common to open the neutral voltage, so Kirchhoff's According to the first law, the current value of the remaining one phase can be obtained using the relational expression of Expression 9.
Figure 2008131770

また、電圧指令値作成部7は、従来の交流電動機制御に用いられる一般的な動作とする。すなわち、電圧指令値作成部7では、電流検出部6で求めた再現電流Iuc、Ivc、Iwcと、任意に与えられる電流指令値Id、Iqから、第1の電圧指令値Vu、Vv、Vwを出力する。ここにおける再現電流Iuc、Ivc、Iwcは、固定子座標系の交流量であるため、一般的には回転座標変換(dq変換)を導入して、電流を直流量として扱い、電流指令値に追従させる電流制御を実現する。それら、電流制御器の出力をdq逆変換することで、交流量である第一の電圧指令座標(回転座標)上の値を計算し、第1の電圧指令値Vu、Vv、Vwを得る。
なお、交流電動機制御には、座標変換を行うため、位相情報が必要であり、同期電動機の場合は、回転子の位置センサが必須となる。また、図1に示すシャント抵抗5は、直流母線電流IDCを検出できればよいのであって、シャント抵抗5の代わりに直流電流センサ(DCCT)等であっても構わない。
Moreover, the voltage command value preparation part 7 is taken as the general operation | movement used for the conventional alternating current motor control. That is, in the voltage command value creation unit 7, the first voltage command values Vu * and Vv are obtained from the reproduced currents Iuc, Ivc and Iwc obtained by the current detection unit 6 and the current command values Id * and Iq * which are arbitrarily given. * And Vw * are output. Since the reproduction currents Iuc, Ivc, and Iwc here are AC amounts in the stator coordinate system, generally, rotational coordinate conversion (dq conversion) is introduced to treat the current as a DC amount and follow the current command value. To achieve current control. The values on the first voltage command coordinates (rotation coordinates), which are AC amounts, are calculated by inversely converting the output of the current controller by dq, and the first voltage command values Vu * , Vv * , Vw * are calculated . Get.
In addition, in order to perform coordinate conversion, AC motor control requires phase information. In the case of a synchronous motor, a rotor position sensor is essential. Further, the shunt resistor 5 shown in FIG. 1 only needs to detect the DC bus current IDC, and may be a DC current sensor (DCCT) or the like instead of the shunt resistor 5.

図4を用いて、n=5とした場合の直流母線電流IDCの波形を説明する。図4(a)は三角波キャリア信号の波形であり、図4(b)は序数kの時間変化であり、図4(c)は電圧指令変更値ΔVucの波形であり、図4(d)は直流母線電流IDCの波形である。直流母線電流IDCには、電圧最大相及び電圧最小相の交流電流にそれぞれ一致した電圧最大相パルスと電圧最小相パルスとが発生する。図4において、式(5)に基づき電圧指令変更値ΔVucを加算する。つまり、序数k=3で補正量ΔEucを加算することで、電圧最大相パルスのパルス幅を最小パルス幅Tpwに一致させている。図4(d)より、最小パルス幅Tpw以上となる電圧最大相パルス(符号1〜5)が5個(つまり、n個)おきに現れ、直流母線電流IDCのパルス周波数に対しては1/nの周波数成分となる。また、電圧指令変更周期の1周期に、最小パルス幅Tpw以上のパルス幅を持った電圧最大相パルスの個数は、ΔVuc=ΔEucとなる個数に等しいので、式(4)の場合には2個、式(5)の場合には1個と変化する。
図4では、三角波キャリア信号の単調増加期間と単調減少期間とから、電圧最大相パルスと電圧最小相パルスとを判別して示した。しかし、電力変換器主回路部3の半導体素子のスイッチング状態を観測すれば、同様に判別することができる。
The waveform of the DC bus current IDC when n = 5 will be described with reference to FIG. 4A shows the waveform of the triangular carrier signal, FIG. 4B shows the time change of the ordinal number k, FIG. 4C shows the waveform of the voltage command change value ΔVuc, and FIG. It is a waveform of DC bus current IDC. In the DC bus current IDC, a voltage maximum phase pulse and a voltage minimum phase pulse respectively corresponding to the AC current of the maximum voltage phase and the minimum voltage phase are generated. In FIG. 4, the voltage command change value ΔVuc is added based on the equation (5). That is, by adding the correction amount ΔEuc with the ordinal number k = 3, the pulse width of the voltage maximum phase pulse is matched with the minimum pulse width Tpw. From FIG. 4 (d), voltage maximum phase pulses (reference numerals 1 to 5) having a minimum pulse width Tpw or more appear every five (that is, n), and the pulse frequency of the DC bus current IDC is 1 / n frequency components. In addition, since the number of voltage maximum phase pulses having a pulse width equal to or greater than the minimum pulse width Tpw in one cycle of the voltage command change cycle is equal to the number of ΔVuc = ΔEuc, two in the case of Expression (4) In the case of equation (5), the number changes to one.
In FIG. 4, the voltage maximum phase pulse and the voltage minimum phase pulse are discriminated from the monotone increase period and the monotone decrease period of the triangular wave carrier signal. However, if the switching state of the semiconductor element of the power converter main circuit unit 3 is observed, it can be similarly determined.

本実施形態によれば、三角波キャリア信号の単調増加もしくは単調減少となる期間を単位期間とし、この単位期間が3以上連続する奇数個分の期間を一つの周期として、電圧指令値に補正量を加算する。これにより、直流母線電流IDCのパルス幅が長くなり、高精度な電流検出が可能となる。すなわち、直流母線電流検出センサのみを用いても、電流検出精度を向上できるため、正確な位置推定が可能であり、従来にないトルク精度が実現できる。また、三角波キャリア信号の周期の整数倍にはならないので、電磁騒音の発生を低減することができる。さらには、加算した単位期間の前後の単位期間で電圧指令値の補正量の1/2を減算することにより、全期間の補正量が平均化される。   According to the present embodiment, a period in which the triangular wave carrier signal is monotonously increased or monotonously decreased is defined as a unit period, and an odd number of periods in which the unit period is three or more consecutive is defined as one period, and the correction amount is set in the voltage command value. to add. As a result, the pulse width of the DC bus current IDC is increased, and highly accurate current detection is possible. That is, even if only the DC bus current detection sensor is used, the current detection accuracy can be improved, so that accurate position estimation is possible, and unprecedented torque accuracy can be realized. Moreover, since it is not an integral multiple of the period of the triangular wave carrier signal, the generation of electromagnetic noise can be reduced. Furthermore, the correction amount for all periods is averaged by subtracting 1/2 of the correction amount of the voltage command value in the unit period before and after the added unit period.

(第2実施形態)
図5の構成図を用いて、本発明の第2実施形態について説明する。図5において、電力変換装置110は、第1実施形態の電力変換装置100の構成に対して、回転子位置センサ12を削除し、代わりに交流電動機4の回転子位置を推定する回転子位置推定演算部10を追加したものである。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to the configuration diagram of FIG. In FIG. 5, the power conversion device 110 deletes the rotor position sensor 12 from the configuration of the power conversion device 100 of the first embodiment, and instead estimates the rotor position of the AC motor 4. The operation unit 10 is added.

回転子位置推定演算部10は、電動機電流Iu、Iv、Iwを再現した再現電流Iuc、Ivc、Iwcを入力として回転子位置の推定演算を行い、回転子推定位置の位相信号θcを出力する。回転子位置推定演算は、第1の電圧指令値Vu、Vv、Vw、交流電動機4の内部抵抗やインダクタンスなどのモータ定数値を用いて演算する。電圧指令値作成部7は、回転子位置推定演算部10から回転子推定位置の位相信号θcを得ることで、電力変換器主回路部3の交流出力の位相を定め、回転子座標系と固定子座標系との相互変換を行う。位置センサレス制御は、交流電動機4の電流に基づいて位置推定を行うため、検出電流の精度が極めて重要である。 The rotor position estimation calculation unit 10 receives the reproduction currents Iuc, Ivc, and Iwc reproducing the motor currents Iu, Iv, and Iw, performs the rotor position estimation calculation, and outputs the rotor estimated position phase signal θc. The rotor position estimation calculation is performed using the first voltage command values Vu * , Vv * , Vw * , and motor constant values such as the internal resistance and inductance of the AC motor 4. The voltage command value creation unit 7 determines the phase of the AC output of the power converter main circuit unit 3 by obtaining the phase signal θc of the rotor estimated position from the rotor position estimation calculation unit 10, and is fixed to the rotor coordinate system. Perform mutual conversion with the child coordinate system. In the position sensorless control, the position is estimated based on the current of the AC motor 4, and therefore the accuracy of the detection current is extremely important.

(第3実施形態)
図6の構成図を用いて、本発明の第3実施形態について説明する。図6において、電力変換装置120は、第2実施形態の電力変換装置110の構成に速度制御部11を追加し、速度制御系を構成している。速度制御部11は、回転子位置推定演算部10の出力である速度推定値ωcと任意に与えられる速度指令値ω1を入力として、d軸電流指令値Id及びq軸電流指令値Iqを出力する。速度推定値ωcは、回転子位置推定演算部10で演算した回転子推定位置の位相信号θcの微分値となる。速度制御部11は、速度指令値ω1と速度推定値ωcとを比較して、速度制御を行う。
(Third embodiment)
A third embodiment of the present invention will be described with reference to the configuration diagram of FIG. In FIG. 6, the power conversion device 120 is configured by adding a speed control unit 11 to the configuration of the power conversion device 110 of the second embodiment to configure a speed control system. The speed control unit 11 receives the estimated speed value ωc output from the rotor position estimation calculation unit 10 and an arbitrarily given speed command value ω1 *, and receives the d-axis current command value Id * and the q-axis current command value Iq *. Is output. The estimated speed value ωc is a differential value of the phase signal θc of the estimated rotor position calculated by the estimated rotor position estimation unit 10. The speed controller 11 compares the speed command value ω1 * with the estimated speed value ωc to perform speed control.

また、速度制御系を構成する場合には、交流電動機4に取り付けた回転子位置センサ12(図1参照)から得られる回転子位置の回転子角度信号(位相信号)θを検出し、この回転子角度信号θを微分して得られる速度検出値ωrを速度推定値ωcの代わりに用いてもよい。本実施形態では、電流の検出精度の向上によってトルク精度が改善されるので、速度制御系の構成においても速度の追従性が向上する。その結果、従来にない速度制御応答を実現できる。   When the speed control system is configured, a rotor angle signal (phase signal) θ obtained from a rotor position sensor 12 (see FIG. 1) attached to the AC motor 4 is detected, and this rotation is detected. The detected speed value ωr obtained by differentiating the child angle signal θ may be used instead of the estimated speed value ωc. In the present embodiment, since the torque accuracy is improved by improving the current detection accuracy, the followability of the speed is improved even in the configuration of the speed control system. As a result, an unprecedented speed control response can be realized.

(第4実施形態)
本発明の第4実施形態について説明する。本実施形態の構成は、図1に示す第1実施形態と同様の構成であるが、異なる点は電圧指令値作成部7にある。第1実施形態における第1の電圧指令値は、3相の電圧指令値を三角波キャリア信号と比較することで、電力変換器主回路部3の半導体素子を3相すべてスイッチングする変調方式に基づいている。しかし、この変調方式では半導体素子のスイッチング損失が3相分発生する課題があり、高効率な運転の妨げになる場合がある。そこで、スイッチング回数を減らすことで損失を低減する二相変調方式が、一般に知られている。二相変調方式とは、1相の上アーム又は下アームをオンとし、残り2相をスイッチングすることで、スイッチング損失を低減し、高効率な運転を可能にする方式である。本実施形態では、電圧指令値作成部7において、二相変調方式に基づく第1の電圧指令値Vu、Vv、Vwを作成することとした。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. The configuration of this embodiment is the same as that of the first embodiment shown in FIG. 1 except that the voltage command value creating unit 7 is different. The first voltage command value in the first embodiment is based on a modulation system that switches all three phases of the semiconductor elements of the power converter main circuit unit 3 by comparing the three-phase voltage command value with the triangular wave carrier signal. Yes. However, in this modulation method, there is a problem that switching loss of the semiconductor element is generated for three phases, which may hinder high-efficiency operation. Therefore, a two-phase modulation method that reduces loss by reducing the number of switching operations is generally known. The two-phase modulation method is a method that reduces the switching loss and enables high-efficiency operation by turning on the upper or lower arm of one phase and switching the remaining two phases. In the present embodiment, the voltage command value creation unit 7 creates the first voltage command values Vu * , Vv * , Vw * based on the two-phase modulation method.

本実施形態における第1の電圧指令値Vu、Vv、Vwのうち1相が三角波キャリア信号の振幅値と一致することで、その相はスイッチングしない。このことから、直流母線電流IDCのパルス電流の波形が第1実施形態に対し変化している。図7に、スイッチングしない相を電圧最小相と定め、n=5の場合における直流母線電流IDCの波形を示す。図7(a)は三角波キャリア信号の波形であり、図7(b)は序数kの時間変化であり、図7(c)は電圧指令変更値ΔVucであり、図7(d)は直流母線電流IDCである。図7において、電圧最大相はU相であり、電圧最大相パルスを検出することを考え、ΔVucは式(5)に基づき定める。 Of the first voltage command values Vu * , Vv * , and Vw * in the present embodiment, one phase matches the amplitude value of the triangular wave carrier signal, so that the phase is not switched. From this, the waveform of the pulse current of the DC bus current IDC is different from that of the first embodiment. FIG. 7 shows the waveform of the DC bus current IDC when the phase that is not switched is defined as the minimum voltage phase and n = 5. FIG. 7A shows the waveform of the triangular carrier signal, FIG. 7B shows the time change of ordinal number k, FIG. 7C shows the voltage command change value ΔVuc, and FIG. 7D shows the DC bus. Current IDC. In FIG. 7, the maximum voltage phase is the U phase, and ΔVuc is determined based on the equation (5) in consideration of detecting the maximum voltage phase pulse.

図7に示す直流母線電流IDCの波形より、電圧最小相パルスは、単調増加期間と単調減少期間とを跨って発生している様子が分かる。それに対して、電圧最大相パルスは、各期間に1個のパルスが発生している。電圧最大相パルスは、序数k=3で補正量ΔEucを加算することで、パルス幅をTpwとしている。図より、最小パルス幅Tpw以上となる電圧最大相パルスが5個、つまり、n個おきに発生する点は第1実施形態に同じであるが、直流母線電流IDCのパルス周波数に対しては2/nの周波数成分となる。また、電圧指令変更周期の1周期に発生するTpw以上のパルス幅を持った電圧最大相パルスの個数は、図7(d)では符号1の1個である。この個数はΔVuc=ΔEucとなる個数に等しいので、ΔVucを式(4)に基づいて定めた場合には2個となる。   It can be seen from the waveform of the DC bus current IDC shown in FIG. 7 that the voltage minimum phase pulse is generated across the monotone increasing period and the monotonic decreasing period. On the other hand, the voltage maximum phase pulse generates one pulse in each period. The voltage maximum phase pulse has an ordinal number k = 3 and the correction amount ΔEuc is added to set the pulse width to Tpw. From the figure, the point that the maximum voltage phase pulse having the minimum pulse width Tpw or more is generated every fifth pulse, that is, every n pulses, is the same as in the first embodiment, but 2 for the pulse frequency of the DC bus current IDC. / N frequency component. Further, the number of maximum voltage phase pulses having a pulse width equal to or greater than Tpw generated in one cycle of the voltage command change cycle is one in FIG. Since this number is equal to the number that satisfies ΔVuc = ΔEuc, when ΔVuc is determined based on Equation (4), the number is two.

また、電圧指令変更部8によって加えられる高調波成分には、電圧指令変更周期を1周期とする周波数成分が重畳される。これは第1実施形態と同様である。よって、本実施形態においても、式(7)に示す高調波成分が重畳されている。
なお、本実施形態は、電圧指令値作成部7の変調方式が第1実施形態と異なるだけであり、構成は同一である。よって、本実施形態の方式は、第2実施形態及び第3実施形態で示した構成についても適用可能である。
In addition, a frequency component having a voltage command change period as one period is superimposed on the harmonic component added by the voltage command change unit 8. This is the same as in the first embodiment. Therefore, also in this embodiment, the harmonic component shown in Formula (7) is superimposed.
The present embodiment is the same as the first embodiment except that the modulation method of the voltage command value creation unit 7 is different from that of the first embodiment. Therefore, the method of the present embodiment can be applied to the configurations shown in the second embodiment and the third embodiment.

(変形例)
本発明は前記した実施形態に限定されるものではなく、例えば以下のような種々の変形が可能である。
(1)前記各実施形態は、直流電圧を三相交流電圧に変換したが、三相交流電圧を直流電圧に変換する回路に適用することができる。この場合には、出力側の直流電流を検出して、入力側の相電流を電流検出部が再現することになる。なお、交流電圧を直流電圧に変換する回路は、例えば、特開2006−67754号公報に記載されている。
(Modification)
The present invention is not limited to the embodiments described above, and various modifications such as the following are possible.
(1) Although each said embodiment converted the DC voltage into the three-phase alternating voltage, it can be applied to the circuit which converts the three-phase alternating voltage into the direct-current voltage. In this case, the direct current on the output side is detected, and the current detection unit reproduces the phase current on the input side. Note that a circuit for converting an AC voltage into a DC voltage is described in, for example, Japanese Patent Application Laid-Open No. 2006-67754.

本発明の第1実施形態における構成図である。It is a block diagram in 1st Embodiment of this invention. 本発明の第1実施形態の電圧指令値の変更方法に関する説明図である。It is explanatory drawing regarding the change method of the voltage command value of 1st Embodiment of this invention. 本発明の第1実施形態の電圧指令値と直流母線電流の関係図である。It is a related figure of voltage command value and direct-current bus current of a 1st embodiment of the present invention. 本発明の第1実施形態の最小パルス幅を持つ直流母線電流パルスの発生に関する説明図である。It is explanatory drawing regarding generation | occurrence | production of the DC bus current pulse with the minimum pulse width of 1st Embodiment of this invention. 本発明の第2実施形態における構成図である。It is a block diagram in 2nd Embodiment of this invention. 本発明の第3実施形態における構成図である。It is a block diagram in 3rd Embodiment of this invention. 本発明の第4実施形態における電圧指令値の変更方法に関する説明図である。It is explanatory drawing regarding the change method of the voltage command value in 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 直流電源
2 平滑コンデンサ
3 電力変換器主回路部(電力変換器回路部)
4 交流電動機
5 シャント抵抗
6 電流検出部
7 電圧指令値作成部
8 電圧指令変更部
9 PWM制御部
9a 三角波キャリア信号生成部
10 回転子位置推定演算部
11 速度制御部
12 回転子位置センサ
100,110,120 電力変換装置
1 DC power supply 2 Smoothing capacitor 3 Power converter main circuit section (power converter circuit section)
DESCRIPTION OF SYMBOLS 4 AC motor 5 Shunt resistance 6 Current detection part 7 Voltage command value preparation part 8 Voltage command change part 9 PWM control part 9a Triangular wave carrier signal generation part 10 Rotor position estimation calculation part 11 Speed control part 12 Rotor position sensor 100,110 , 120 Power converter

Claims (9)

三相交流信号と三角波キャリア信号とを比較して、パルス幅変調波を生成するPWM制御部と、このパルス幅変調波によってスイッチング素子を駆動し、直流電圧を三相交流電圧に変換する電力変換器回路部と、この電力変換器回路部の直流入力側に、直流母線電流を検出して相電流を再現する電流検出部と、を備える電力変換装置において、
前記三角波キャリア信号が単調増加もしくは単調減少となる単位期間が3以上の奇数個分を電圧指令変更周期として、
前記電圧指令変更周期における補正量の平均値が零もしくは略零となるような補正信号を前記三相交流信号に加える電圧指令変更部をさらに備えることを特徴とする電力変換装置。
A PWM controller that compares a three-phase AC signal with a triangular wave carrier signal to generate a pulse-width modulated wave, and a power converter that drives a switching element with this pulse-width modulated wave and converts a DC voltage into a three-phase AC voltage In a power converter comprising: a circuit unit; and a current detection unit that detects a DC bus current and reproduces a phase current on a DC input side of the power converter circuit unit,
A voltage command change period is an odd number of unit periods in which the triangular wave carrier signal monotonously increases or monotonously decreases by 3 or more.
A power conversion device, further comprising: a voltage command change unit that adds a correction signal to the three-phase AC signal so that an average value of correction amounts in the voltage command change period is zero or substantially zero.
前記三相交流信号の補正量は、
前記電圧指令変更周期内の奇数個の補正量のうち、少なくとも1つが、
前記直流母線電流に生じるパルス状電流の通流期間を所定値以上の幅に確保するものであることを特徴とする請求項1に記載の電力変換装置。
The correction amount of the three-phase AC signal is:
At least one of the odd number of correction amounts in the voltage command change period is
The power converter according to claim 1, wherein a duration of a pulsed current generated in the DC bus current is ensured to be equal to or greater than a predetermined value.
前記パルス状電流の通流期間を確保する所定値以上の幅は、
前記電力変換器回路部を構成する半導体素子のスイッチングに起因するリンギング期間と、前記直流母線電流を検出するためのサンプルホールド期間とを合計したパルス幅であることを特徴とする請求項2に記載の電力変換装置。
A width equal to or greater than a predetermined value for ensuring a period for passing the pulsed current is:
3. The pulse width obtained by summing a ringing period resulting from switching of a semiconductor element constituting the power converter circuit unit and a sample hold period for detecting the DC bus current. Power converter.
前記電圧指令変更周期におけるn個の補正量に対して、
{(n+1)/2}番目の前記単位期間の補正量が、前記所定値以上の補正量である
ことを特徴とする請求項2に記載の電力変換装置。
For n correction amounts in the voltage command change period,
The power conversion device according to claim 2, wherein a correction amount of the {(n + 1) / 2} -th unit period is a correction amount equal to or greater than the predetermined value.
前記電圧指令変更周期内の奇数であるn個の前記単位期間の補正量のうち、1番目の補正量と、n番目の補正量との大きさが、
他の期間の補正量の大きさに対して、略1/2であることを特徴とする請求項2に記載の電力変換装置。
Among the n correction amounts of the unit period that are odd numbers in the voltage command change cycle, the magnitudes of the first correction amount and the nth correction amount are:
The power conversion device according to claim 2, wherein the power conversion device is approximately ½ of a correction amount in another period.
前記電流検出部で再現された相電流に基づいて、前記電力変換器回路部の出力の三相電流を制御することを特徴とする請求項1に記載の電力変換装置。   2. The power conversion device according to claim 1, wherein a three-phase current output from the power converter circuit unit is controlled based on the phase current reproduced by the current detection unit. 前記再現した相電流を入力として、前記三相交流電圧によって駆動される交流電動機の回転子位置を推定する回転子位置推定演算部を備え、
推定された前記回転子位置により前記三相交流電圧の位相を決定する
ことを特徴とする請求項1に記載の電力変換装置。
With the reproduced phase current as an input, a rotor position estimation calculation unit that estimates a rotor position of an AC motor driven by the three-phase AC voltage,
The power converter according to claim 1, wherein the phase of the three-phase AC voltage is determined based on the estimated rotor position.
パルス幅変調波によってスイッチング素子を駆動し、直流から交流に変換し、あるいは交流から直流へ電力を変換する電力変換器回路部と、
前記電力変換器回路部の直流側で電流を検出して交流側の相電流を再現する電流検出部と
を備える電力変換装置において、
前記電力変換器回路部の交流側に発生する高調波成分として、前記パルス幅変調波の平均的なパルス周波数と、このパルス周波数の1/nの周波数成分とを含ませることを特徴とする電力変換装置。
A power converter circuit unit for driving a switching element by a pulse width modulation wave, converting from DC to AC, or converting power from AC to DC;
In a power converter comprising: a current detection unit that detects a current on a DC side of the power converter circuit unit and reproduces an AC side phase current;
An electric power characterized by including an average pulse frequency of the pulse width modulated wave and a 1 / n frequency component of the pulse frequency as harmonic components generated on the AC side of the power converter circuit unit Conversion device.
パルス幅変調波によってスイッチング素子を駆動し、直流から交流に電力変換し、あるいは交流から直流に電力変換する電力変換器回路部と、
前記電力変換器回路部の直流側で直流母線電流を検出して相電流を再現する電流検出部とを備える電力変換装置において、
前記電力変換器回路部は、三相のうちの任意の一相のスイッチング動作を停止する間、他の二相がスイッチング動作を行うものであり、
前記電力変換器回路部が交流側に発生する高調波成分として、前記パルス幅変調波の平均的なパルス周波数と、このパルス周波数の2/nの周波数成分とを含ませることを特徴とする電力変換装置。
A power converter circuit unit that drives the switching element by a pulse width modulation wave, converts power from direct current to alternating current, or converts power from alternating current to direct current; and
In a power converter comprising a current detection unit that detects a DC bus current on the DC side of the power converter circuit unit and reproduces a phase current,
While the power converter circuit unit stops the switching operation of any one of the three phases, the other two phases perform the switching operation,
The power converter circuit unit includes an average pulse frequency of the pulse width modulated wave and a 2 / n frequency component of the pulse frequency as harmonic components generated on the AC side. Conversion device.
JP2006315120A 2006-11-22 2006-11-22 Power converter Active JP4866216B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006315120A JP4866216B2 (en) 2006-11-22 2006-11-22 Power converter
DE102007054050A DE102007054050B4 (en) 2006-11-22 2007-11-13 Semiconductor power converter
CN200710186499A CN100576713C (en) 2006-11-22 2007-11-22 Power-converting device
CN2009101452908A CN101582650B (en) 2006-11-22 2007-11-22 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315120A JP4866216B2 (en) 2006-11-22 2006-11-22 Power converter

Publications (2)

Publication Number Publication Date
JP2008131770A true JP2008131770A (en) 2008-06-05
JP4866216B2 JP4866216B2 (en) 2012-02-01

Family

ID=39399915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315120A Active JP4866216B2 (en) 2006-11-22 2006-11-22 Power converter

Country Status (3)

Country Link
JP (1) JP4866216B2 (en)
CN (2) CN101582650B (en)
DE (1) DE102007054050B4 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011639A (en) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2010063316A (en) * 2008-09-05 2010-03-18 Toyota Motor Corp Current detector
WO2010103733A1 (en) 2009-03-09 2010-09-16 株式会社日立産機システム Power conversion device, and method for controlling thereof
WO2010103565A1 (en) * 2009-03-10 2010-09-16 株式会社日立産機システム Ac motor drive device
CN101917157A (en) * 2010-07-29 2010-12-15 东元总合科技(杭州)有限公司 Method for reconstructing phase current of electromotor
JP2011109848A (en) * 2009-11-19 2011-06-02 Ricoh Co Ltd Motor drive control device
CN102315765A (en) * 2010-07-05 2012-01-11 北京动力源科技股份有限公司 New current sampling method for PFC (power factor correction) circuit
JP2012060847A (en) * 2010-09-13 2012-03-22 Mitsubishi Electric Corp Inverter control device
US20120074888A1 (en) * 2010-09-27 2012-03-29 Kabushiki Kaisha Toshiba Motor control device
JP2013153625A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013153632A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013153626A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013162536A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Power conversion device
JP2015015885A (en) * 2013-07-02 2015-01-22 エルエス産電株式会社Lsis Co., Ltd. Apparatus for modifying voltage command for detecting output current in inverter
US9184690B2 (en) 2012-09-18 2015-11-10 Hitachi Automotive Systems Steering, Ltd. Electrically driven power steering system and control apparatus for the same
CN105656362A (en) * 2014-11-13 2016-06-08 沈阳高精数控智能技术股份有限公司 Anti-interference permanent magnetic synchronous motor electric current loop control method
WO2017130447A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power conversion device and rotating electric machine driving device
WO2020059108A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Inverter control device
JPWO2021106205A1 (en) * 2019-11-29 2021-06-03
WO2021106195A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2023243362A1 (en) * 2022-06-17 2023-12-21 工機ホールディングス株式会社 Motor driving device and work machine
JP7406446B2 (en) 2020-04-28 2023-12-27 ローム株式会社 motor control circuit

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557050B2 (en) * 2008-06-13 2010-10-06 トヨタ自動車株式会社 Signal control device
EP2485381B1 (en) * 2009-09-28 2019-05-01 Daikin Industries, Ltd. Phase current detection device and inverter circuit using the same
US8405251B2 (en) * 2010-04-20 2013-03-26 General Electric Company Method and apparatus for reduction of harmonics in a power supply
WO2014026331A1 (en) * 2012-08-15 2014-02-20 深圳市英威腾电气股份有限公司 Phase current reconstruction method and apparatus
JP5908424B2 (en) * 2013-03-25 2016-04-26 日立オートモティブシステムズステアリング株式会社 Motor control device and power steering device
CN105765837B (en) * 2013-11-18 2018-09-28 三菱电机株式会社 Control device for inverter
JP6175704B2 (en) 2014-03-19 2017-08-09 日立オートモティブシステムズ株式会社 Power steering device and control device for power steering device
WO2015177863A1 (en) * 2014-05-20 2015-11-26 三菱電機株式会社 Electric motor control device
JP6239448B2 (en) * 2014-06-18 2017-11-29 株式会社日立製作所 Inverter and drive system using the same
CN106788114B (en) * 2017-01-19 2019-03-01 青岛海尔空调器有限总公司 Inhibit the control method and controller of compressor electric motor bit effect
JP6316481B1 (en) * 2017-04-21 2018-04-25 三菱電機株式会社 Electric motor control device
JP2019080419A (en) * 2017-10-24 2019-05-23 株式会社日立産機システム Power conversion device and control method thereof
JP6982519B2 (en) * 2018-03-07 2021-12-17 サンデンホールディングス株式会社 Power converter
WO2020065918A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Power conversion device
CN109600055B (en) * 2018-12-14 2020-05-15 苏州蓝石新动力有限公司 Method and device for acquiring bus current value of inverter bridge
JP7221802B2 (en) * 2019-06-04 2023-02-14 サンデン株式会社 power converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269880A (en) * 2003-06-19 2005-09-29 Denso Corp Three-phase voltage type pwm inverter device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822146B2 (en) * 1993-07-19 1996-03-04 株式会社日立製作所 Voltage source multi-phase PWM inverter controller
FR2752111B1 (en) * 1996-07-30 1998-10-30 Texas Instruments France METHOD AND DEVICE FOR CONTROLLING INVERTERS
JP3664040B2 (en) * 2000-05-17 2005-06-22 日産自動車株式会社 PWM inverter for motor control
JP3665812B2 (en) * 2000-10-03 2005-06-29 株式会社日立製作所 Pulse width modulation method, apparatus and power converter
JP3931079B2 (en) * 2001-12-14 2007-06-13 松下電器産業株式会社 Electric motor drive device and refrigeration device using the same
JP2004064903A (en) * 2002-07-30 2004-02-26 Hitachi Ltd Controller for synchronous motor, and apparatus using it
JP3675431B2 (en) * 2002-10-01 2005-07-27 松下電器産業株式会社 Electric motor drive device
JP2004304925A (en) * 2003-03-31 2004-10-28 Toshiba Corp Inverter device
JP2004364491A (en) * 2003-05-09 2004-12-24 Sanyo Electric Co Ltd Power supply system and air-conditioning equipment
JP4601044B2 (en) * 2004-08-30 2010-12-22 日立アプライアンス株式会社 Power converter and air conditioner equipped with the power converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269880A (en) * 2003-06-19 2005-09-29 Denso Corp Three-phase voltage type pwm inverter device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011639A (en) * 2008-06-27 2010-01-14 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2010063316A (en) * 2008-09-05 2010-03-18 Toyota Motor Corp Current detector
WO2010103733A1 (en) 2009-03-09 2010-09-16 株式会社日立産機システム Power conversion device, and method for controlling thereof
JP2010213407A (en) * 2009-03-09 2010-09-24 Hitachi Industrial Equipment Systems Co Ltd Power conversion device and control method thereof
CN102326328A (en) * 2009-03-09 2012-01-18 株式会社日立产机系统 Power conversion device, and method for controlling thereof
US8710781B2 (en) 2009-03-09 2014-04-29 Hitachi Industrial Equipment Systems Co., Ltd. Power conversion device and method for controlling thereof
JP5401537B2 (en) * 2009-03-10 2014-01-29 株式会社日立産機システム AC motor drive device
WO2010103565A1 (en) * 2009-03-10 2010-09-16 株式会社日立産機システム Ac motor drive device
JP2011109848A (en) * 2009-11-19 2011-06-02 Ricoh Co Ltd Motor drive control device
CN102315765A (en) * 2010-07-05 2012-01-11 北京动力源科技股份有限公司 New current sampling method for PFC (power factor correction) circuit
CN101917157A (en) * 2010-07-29 2010-12-15 东元总合科技(杭州)有限公司 Method for reconstructing phase current of electromotor
JP2012060847A (en) * 2010-09-13 2012-03-22 Mitsubishi Electric Corp Inverter control device
JP2012070591A (en) * 2010-09-27 2012-04-05 Toshiba Corp Motor controller
US8674652B2 (en) * 2010-09-27 2014-03-18 Kabushiki Kaisha Toshiba Motor control device
US20120074888A1 (en) * 2010-09-27 2012-03-29 Kabushiki Kaisha Toshiba Motor control device
US9209727B2 (en) 2010-09-27 2015-12-08 Kabushiki Kaisha Toshiba Motor control device
JP2013153625A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013153632A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013153626A (en) * 2012-01-26 2013-08-08 Daikin Ind Ltd Power converter control device
JP2013162536A (en) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp Power conversion device
US9184690B2 (en) 2012-09-18 2015-11-10 Hitachi Automotive Systems Steering, Ltd. Electrically driven power steering system and control apparatus for the same
JP2015015885A (en) * 2013-07-02 2015-01-22 エルエス産電株式会社Lsis Co., Ltd. Apparatus for modifying voltage command for detecting output current in inverter
US9595904B2 (en) 2013-07-02 2017-03-14 Lsis Co., Ltd. Apparatus for modifying voltage command for detecting output current in inverter
CN105656362A (en) * 2014-11-13 2016-06-08 沈阳高精数控智能技术股份有限公司 Anti-interference permanent magnetic synchronous motor electric current loop control method
WO2017130447A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power conversion device and rotating electric machine driving device
CN108633323B (en) * 2016-01-28 2021-07-13 三菱电机株式会社 Power conversion device and rotating electric machine drive device
CN108633323A (en) * 2016-01-28 2018-10-09 三菱电机株式会社 Power-converting device and electric rotating machine driving device
JPWO2017130447A1 (en) * 2016-01-28 2018-05-10 三菱電機株式会社 Power conversion device and rotating electrical machine drive device
US11437930B2 (en) 2018-09-21 2022-09-06 Mitsubishi Electric Corporation Inverter control device
JPWO2020059108A1 (en) * 2018-09-21 2021-02-15 三菱電機株式会社 Inverter controller
WO2020059108A1 (en) * 2018-09-21 2020-03-26 三菱電機株式会社 Inverter control device
JPWO2021106205A1 (en) * 2019-11-29 2021-06-03
WO2021106205A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
WO2021106195A1 (en) * 2019-11-29 2021-06-03 三菱電機株式会社 Motor drive device, electric vacuum cleaner, and hand dryer
JPWO2021106195A1 (en) * 2019-11-29 2021-06-03
JP7237197B2 (en) 2019-11-29 2023-03-10 三菱電機株式会社 motor drives, vacuum cleaners and hand dryers
JP7237198B2 (en) 2019-11-29 2023-03-10 三菱電機株式会社 motor drives, vacuum cleaners and hand dryers
JP7406446B2 (en) 2020-04-28 2023-12-27 ローム株式会社 motor control circuit
WO2023243362A1 (en) * 2022-06-17 2023-12-21 工機ホールディングス株式会社 Motor driving device and work machine

Also Published As

Publication number Publication date
CN101582650A (en) 2009-11-18
JP4866216B2 (en) 2012-02-01
DE102007054050B4 (en) 2011-06-22
DE102007054050A1 (en) 2008-06-19
CN100576713C (en) 2009-12-30
CN101582650B (en) 2012-07-04
CN101188387A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP4866216B2 (en) Power converter
JP3666432B2 (en) Power converter and multiphase load drive control method
JP4749874B2 (en) Power conversion device and motor drive device using the same
JP5348153B2 (en) Rotating machine control device
JP6735827B2 (en) Power converter
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JPWO2019008676A1 (en) Inverter device and electric power steering device
EP3522363B1 (en) Control device for power converter
JP2012170277A (en) Power converter and controller of electrically-driven power steering
JP6805035B2 (en) Integrated circuit
JP6124723B2 (en) Current detector for three-phase inverter
CN109728761B (en) Motor drive control device
CN108633323B (en) Power conversion device and rotating electric machine drive device
JP2010246260A (en) Motor control device and method
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
JP6674765B2 (en) Electric motor control device and electric vehicle using the same
JP2017205017A (en) Motor control device of air conditioner, and air conditioner
JP3760768B2 (en) Power converter and multiphase load drive control method
JP2005045990A (en) Device for detecting speed electromotive force and method therefor, and inverter controller and the like
JP6471670B2 (en) Power control method and power control apparatus
JP4446688B2 (en) Multiphase current supply circuit and control method thereof
JP6324615B2 (en) AC rotating machine control device and electric power steering control device
JP3760774B2 (en) Power converter and multiphase load drive control method
WO2022130480A1 (en) Power conversion device
WO2021200236A1 (en) Motor control device, motor system, and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350