WO2017130250A1 - 呼吸数検出装置、呼吸数検出方法、及び、プログラム記憶媒体 - Google Patents
呼吸数検出装置、呼吸数検出方法、及び、プログラム記憶媒体 Download PDFInfo
- Publication number
- WO2017130250A1 WO2017130250A1 PCT/JP2016/004681 JP2016004681W WO2017130250A1 WO 2017130250 A1 WO2017130250 A1 WO 2017130250A1 JP 2016004681 W JP2016004681 W JP 2016004681W WO 2017130250 A1 WO2017130250 A1 WO 2017130250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rate detection
- acceleration
- respiration rate
- information
- respiratory
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0022—Monitoring a patient using a global network, e.g. telephone networks, internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7278—Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
Definitions
- the present disclosure relates to a respiratory rate detection device, a respiratory rate detection method, and a program storage medium that detect a respiratory rate from measurement data of an acceleration sensor attached to a body.
- Patent Document 1 discloses a respiration rate detection device that detects a respiration rate from an acceleration sensor attached to the body. This respiration rate detection device synthesizes the accelerations measured by a triaxial acceleration sensor attached to the body, and detects the respiration rate based on the frequency characteristics of the synthesized accelerations. As a result, the respiration rate can be detected even when the respiration component included in the measured acceleration is dispersed on a plurality of axes.
- This disclosure provides a respiration rate detection device that can stably detect the respiration rate of a user with high accuracy regardless of the state of the user.
- the respiratory rate detection device includes an acquisition unit that acquires accelerations in a plurality of different directions obtained by measuring body fluctuations due to user's breathing using an acceleration sensor, and the acquisition unit
- a conversion processing unit that performs conversion processing for converting acceleration in the plurality of directions into a plurality of spectrum information in a frequency domain
- a phase removal unit that removes phase information from the plurality of spectrum information and converts the information into a plurality of amplitude spectra
- a peak detector that detects a peak frequency indicating a respiratory component from the amplitude spectrum obtained by adding the plurality of amplitude spectra, and a respiratory rate calculator that calculates a respiratory rate using the peak frequency Prepare.
- the respiration rate detection device can accurately detect the respiration rate regardless of the user's posture or the like.
- FIG. 1 is a schematic diagram showing an outline of a respiratory rate detection system in the first embodiment.
- FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiration rate detection apparatus according to the first embodiment.
- FIG. 3 is a block diagram illustrating an example of a hardware configuration of the wearable terminal according to the first embodiment.
- FIG. 4 is a schematic diagram showing the direction of fluctuation of the chest accompanying breathing in the sitting or standing position.
- FIG. 5 is a schematic diagram showing the direction of change of the chest accompanying breathing in the supine position.
- FIG. 6 is a block diagram illustrating an example of a functional configuration of the respiratory rate detection system according to the first embodiment.
- FIG. 7 is a sequence diagram showing an example of the operation of the respiratory rate detection system in the first embodiment.
- FIG. 1 is a schematic diagram showing an outline of a respiratory rate detection system in the first embodiment.
- FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiration rate detection apparatus according to
- FIG. 8 is a diagram illustrating acceleration measured by the triaxial acceleration sensor according to the first embodiment.
- FIG. 9 is a graph showing an amplitude spectrum in each direction according to the first embodiment.
- FIG. 10 is a graph showing the amplitude spectrum integrated according to the first embodiment.
- FIG. 11 is a graph showing the combined acceleration of the comparative example.
- FIG. 12 is a graph showing an amplitude spectrum according to the composite acceleration of the comparative example.
- FIG. 13 is a block diagram illustrating an example of a hardware configuration of the respiration rate detection apparatus according to the second embodiment.
- FIG. 14 is a block diagram illustrating an example of a functional configuration of the respiration rate detection apparatus according to the second embodiment.
- FIG. 15 is a flowchart showing the operation of the respiration rate detection apparatus according to the second embodiment.
- FIG. 1 is a schematic diagram showing an outline of a respiratory rate detection system in the first embodiment.
- a respiratory rate detection device 10 clothes 20, and a wearable terminal 30 are shown.
- the respiration rate detection system 1 includes the respiration rate detection device 10 and the wearable terminal 30 among these components.
- the structure of the respiratory rate detection device 10 and the wearable terminal 30 is separated.
- the respiration rate detection system 1 is a system for detecting a user's respiration rate by measuring changes in the body (chest) due to the respiration of the user.
- FIG. 2 is a block diagram illustrating an example of a hardware configuration of the respiration rate detection apparatus according to the first embodiment.
- the respiration rate detection apparatus 10 includes a control device 101, a communication IF (Interface) 102, a display 103, a speaker 104, and an input IF 105.
- the respiratory rate detection apparatus 10 is a mobile terminal capable of communication such as a smartphone or a tablet terminal.
- the respiratory rate detection device 10 is a portable terminal, it may be any device that can communicate, and may be an information terminal such as a PC.
- the control device 101 includes a processor that executes a control program for operating the respiratory rate detection device 10, a volatile storage area (main storage device) that is used as a work area used when the control program is executed, and a control.
- the volatile storage area is, for example, a RAM (Random Access Memory).
- the nonvolatile storage area is, for example, a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), or the like.
- the communication IF 102 is a communication interface that communicates with the wearable terminal 30.
- the communication IF 102 may be a communication interface corresponding to the communication module 302 (see later) included in the wearable terminal 30.
- the communication IF 102 is a wireless communication interface that conforms to, for example, the Bluetooth (registered trademark) standard.
- the communication IF 102 may be a wireless LAN (Local Area Network) interface conforming to the IEEE802.11a, b, g, and n standards, or a third generation mobile communication system (3G) or a fourth generation mobile communication system. (4G) or a wireless communication interface conforming to a communication standard used in a mobile communication system such as LTE (registered trademark) may be used.
- the display 103 is a display device that displays a processing result in the control device 101.
- the display 103 is, for example, a liquid crystal display or an organic EL display.
- the speaker 104 is a speaker that outputs a sound decoded from the audio information.
- the input IF 105 is, for example, a touch panel that is arranged on the surface of the display 103 and receives input from the user to a UI (User Interface) displayed on the display 103.
- the input IF 105 may be an input device such as a numeric keypad or a keyboard.
- FIG. 3 is a block diagram illustrating an example of a hardware configuration of the wearable terminal according to the first embodiment.
- the wearable terminal 30 includes an acceleration sensor 301 and a communication module 302.
- the wearable terminal 30 is a small terminal that is fixed to a position corresponding to the chest of the user of the garment 20 with a snap button, double-sided tape, adhesive, thread, or the like. Thereby, the wearable terminal 30 is arrange
- the acceleration sensor 301 is a sensor that detects the acceleration of the wearable terminal 30. Specifically, the acceleration sensor 301 detects the acceleration of the wearable terminal 30 in each direction of three axes (X axis, Y axis, Z axis) orthogonal to each other.
- the left-right direction is the X-axis direction
- the front-rear direction is the Y-axis direction
- the up-down direction is the Z-axis direction.
- the left side is the plus side
- the rear side is the plus side
- the Z axis direction the lower side is the plus side.
- the direction of the axis is not limited to this, and it is sufficient that the body displacement can be measured in a plurality of directions.
- the acceleration sensor 301 detects the movement of the chest caused by the user's breathing as acceleration. Since the movement of the chest during breathing varies depending on the posture of the user and the like, the wearable terminal 30 detects acceleration with a plurality of directional axes using the acceleration sensor 301. Note that the plurality of directional axes are not necessarily three orthogonal axes, and may be two or more axes in a predetermined direction. That is, the acceleration sensor 301 only needs to detect acceleration in directions of two or more axes.
- FIG. 4 is a schematic diagram showing the direction of fluctuation of the chest accompanying breathing when the user is sitting or standing.
- the acceleration sensor 301 detects a change in the chest associated with breathing with acceleration in the Y-axis direction.
- FIG. 5 is a schematic diagram showing the direction of change of the chest accompanying breathing when the user is in the supine position.
- the acceleration sensor 301 detects a change in the chest associated with breathing with acceleration in the Y-axis direction and the Z-axis direction.
- the acceleration sensor 301 of the wearable terminal 30 detects acceleration with a plurality of directional axes.
- the communication module 302 is a communication module that communicates with the respiratory rate detection device 10.
- the communication module 302 may have, for example, a wireless communication interface that conforms to the Bluetooth (registered trademark) standard, or a wireless LAN (Local Area Network) interface that conforms to the IEEE 802.11a, b, g, and n standards. You may have.
- FIG. 6 is a block diagram illustrating an example of a functional configuration of the respiratory rate detection system according to the first embodiment.
- the wearable terminal 30 includes an acceleration measurement unit 31 and a transmission unit 32 as functional configurations.
- Acceleration measurement unit 31 measures body fluctuations caused by the user's breathing with accelerations in a plurality of different directions.
- the acceleration measuring unit 31 measures acceleration in a plurality of directions at a predetermined sampling frequency, and generates acceleration information indicating acceleration changes in time series in each direction.
- the acceleration measuring unit 31 is realized by the acceleration sensor 301, for example.
- the transmission unit 32 transmits the generated acceleration information to the respiration rate detection apparatus 10.
- the transmission unit 32 transmits acceleration information stored in a memory (not shown) to the respiration rate detection apparatus 10 at a predetermined cycle.
- the transmission unit 32 is realized by the communication module 302, for example. That is, the transmission unit 32 transmits the acceleration information to the respiratory rate detection device 10 that is communicatively connected by, for example, Bluetooth (registered trademark).
- the respiration rate detection apparatus 10 includes an acquisition unit 11, a plurality of conversion processing units 12x, 12y, and 12z, a plurality of phase removal units 13x, 13y, and 13z, a peak detection unit 14, and a respiration rate calculation unit 15. .
- the respiratory rate detection device 10 may further include a presentation unit 16.
- the acquisition unit 11 receives acceleration information transmitted by the transmission unit 32 of the wearable terminal 30. That is, the acquisition unit 11 communicates with the wearable terminal 30 that includes the acceleration sensor 301 and is worn on the user's body. Thereby, the acquisition part 11 acquires the acceleration information which shows the acceleration of a mutually different direction obtained by measuring the fluctuation
- FIG. The acquisition unit 11 is realized by the control device 101 and the communication IF 102, for example.
- the conversion processing units 12x, 12y, and 12z perform conversion processing for converting acceleration in a plurality of directions indicated by the acceleration information acquired by the acquisition unit 11 into a plurality of spectrum information of frequencies.
- the conversion processing unit 12x performs the conversion process on the acceleration in the X-axis direction.
- the conversion processing unit 12y performs the conversion process on the acceleration in the Y-axis direction.
- the conversion processing unit 12z performs the conversion process on the acceleration in the Z-axis direction.
- the conversion processing units 12x, 12y, and 12z perform fast Fourier transform (FFT Fourier Transform: FFT) processing on the acceleration values in each direction, thereby converting the information into the frequency domain spectrum information in each direction. That is, since spectrum information in each direction is obtained in this way, three pieces of spectrum information are obtained.
- FFT fast Fourier transform
- the conversion processing units 12x, 12y, and 12z are not particularly limited. For example, even if the FFT processing is performed with a time width (about 2 seconds to 20 seconds) for about 1 to 10 cycles of the respiratory cycle. Good. This time width indicates a period when the FFT process is repeatedly performed. Here, if the time width during which the FFT processing is performed is shortened, the followability to the change in respiratory rate is improved, but it reacts sensitively to noise such as body movement. On the other hand, if the time width is lengthened, the resistance to noise such as body movement increases, but the followability to changes in respiratory rate decreases. Therefore, it is desirable that the time width for performing the FFT process is determined by appropriately adjusting. Further, when performing the FFT processing, it is desirable to use a window function such as a Hanning window.
- a window function such as a Hanning window.
- the conversion processing units 12x, 12y, and 12z are realized by the control device 101, for example.
- the phase removal units 13x, 13y, and 13z remove phase information from the spectrum information converted into the frequency domain by the conversion processing units 12x, 12y, and 12z, and extract amplitude spectra.
- the phase removal unit 13x removes the phase information from the spectrum information in the X-axis direction and converts it into an amplitude spectrum.
- the phase removal unit 13y removes the phase information from the spectrum information in the Y-axis direction and converts it into an amplitude spectrum.
- the phase removal unit 13z removes the phase information from the spectrum information in the Z-axis direction and converts it into an amplitude spectrum.
- the phase removal units 13x, 13y, and 13z remove the phase information from the spectrum information in the frequency domain in each direction and convert it into an amplitude spectrum in each direction. Thereby, since the amplitude spectrum of each direction is obtained, three amplitude spectra are obtained. Therefore, it is possible to remove the phase difference of the fluctuation component of respiration included in the acceleration in each direction.
- the phase removal units 13x, 13y, and 13z are realized by the control device 101, for example.
- the peak detector 14 superimposes the respiratory components included in each direction by adding the three amplitude spectra from which the phase information has been removed by the phase removers 13x, 13y, and 13z, and calculates the amplitude from the superimposed amplitude spectrum.
- the frequency that takes the peak value of the spectrum is detected as the peak frequency Fp.
- the peak detector 14 may set the detection range of the peak frequency Fp of the amplitude spectrum as a preset frequency band. For example, the peak detection unit 14 may detect the peak frequency Fp in a detection range of 0.08 [Hz] to 0.5 [Hz] when the respiratory rate per minute is 5 to 30 times. By setting the detection range for detecting the peak frequency Fp in this way, the peak detection unit 14 can prevent erroneous detection when noise is mixed outside the detection range.
- the peak detection unit 14 is realized by the control device 101, for example.
- the respiration rate calculation unit 15 calculates the respiration rate Rc [bpm: Breath Per Minute] using the peak frequency Fp [Hz] of the acceleration amplitude spectrum detected by the peak detection unit 14.
- the respiration rate calculation unit 15 is realized by the control device 101, for example.
- the presentation unit 16 displays an image or character information indicating the respiration rate calculated by the respiration rate calculation unit 15.
- the presentation unit 16 may output a sound indicating the calculated respiration rate.
- the presentation unit 16 may be realized by, for example, the control device 101 and the display 103, or may be realized by the control device 101 and the speaker 104.
- FIG. 7 is a sequence diagram showing an example of a respiratory rate detection method in the respiratory rate detection system 1 of the first embodiment.
- the acceleration measuring unit 31 measures the movement (variation) of the user's chest as triaxial acceleration (S11).
- FIG. 8 is a graph showing an example of triaxial acceleration (acceleration information) measured by the acceleration measuring unit.
- the horizontal axis represents time
- the vertical axis represents acceleration.
- the fluctuation component due to respiration is mainly included in the acceleration in the X-axis direction and the acceleration in the Y-axis direction, and from FIG. 8, the cycle Tr is about 4 seconds (0.25 [Hz]). I understand that.
- the transmission unit 32 transmits acceleration information to the respiration rate detection apparatus 10 (S12).
- the acquisition part 11 acquires the acceleration of each direction which acceleration information shows by receiving the acceleration information transmitted by the transmission part 32 of the wearable terminal 30 (S21).
- the conversion processing units 12x, 12y, and 12z perform FFT processing on the acquired accelerations in a plurality of directions on the spectrum information in the frequency domain for each of the plurality of directions (S22). Specifically, the conversion processing unit 12x converts the acceleration xn in the X-axis direction into spectrum information Xk in the frequency domain by FFT processing using Expression 1a. Further, the conversion processing unit 12y converts the acceleration yn in the Y-axis direction into spectrum information Yk in the frequency domain by FFT processing using Expression 1b. Also, the conversion processing unit 12z converts the acceleration zn in the Z-axis direction into the frequency domain spectrum information Zk by FFT processing using Expression 1c.
- N represents the number of points to be subjected to FFT processing
- n represents a sample number
- k represents an FFT processing index
- the phase removal units 13x, 13y, and 13z remove the phase information from the spectrum information Xk, Yk, and Zk in the frequency domain in each direction (S23). Specifically, the phase removal unit 13x calculates the amplitude spectrum AXk that is an absolute value by removing the phase information from the spectrum information Xk obtained by converting the acceleration xn in the X-axis direction into the frequency domain using Equation 2a. To do. Further, the phase removal unit 13y calculates the amplitude spectrum AYk that is an absolute value by removing the phase information from the spectrum information Yk obtained by converting the acceleration yn in the Y-axis direction into the frequency domain using Expression 2b.
- phase removing unit 13z calculates the amplitude spectrum AZk which is an absolute value by removing the phase information from the spectrum information Zk obtained by converting the acceleration zn in the Z-axis direction into the frequency domain using Expression 2c (S23). ).
- FIG. 9 is a graph showing the amplitude spectrum in each direction calculated from the acceleration in each direction shown in FIG.
- the horizontal axis indicates the frequency
- the vertical axis indicates the intensity.
- the solid line indicates the amplitude spectrum AXk in the X-axis direction
- the dotted line indicates the amplitude spectrum AYk in the Y-axis direction
- the one-dot difference line indicates the amplitude spectrum AZk in the Z-axis direction.
- the amplitude spectra AXk, AYk, and AZk in each direction contain a lot of respiratory components near the frequency of 0.25 [Hz]. I understand.
- the peak detector 14 adds the amplitude spectra AXk, AYk, and AZk in each direction, and calculates the peak frequency Fp that takes the peak value of the amplitude spectrum Ak obtained by the addition. It calculates using 4 and Formula 5 (S24).
- argmax_k represents a function for calculating k that maximizes Ax
- Fs represents a sampling frequency of measurement of the acceleration sensor 301.
- the sampling frequency Fs is not particularly limited, but is desirably sufficiently higher than the upper limit (several Hz) of the respiratory frequency.
- FIG. 10 is a graph showing the amplitude spectrum Ak obtained by integrating (adding) the amplitude spectra in each direction.
- the horizontal axis indicates the frequency
- the vertical axis indicates the intensity.
- the integrated amplitude spectrum Ak has a peak frequency Fp in the vicinity of 0.25 Hz which is a respiration frequency. By calculating the peak frequency Fp, the respiration rate of the user can be detected with high accuracy.
- the respiration rate calculation unit 15 calculates the respiration rate Rc [bpm] per minute using the detected peak frequency Fp and Equation 6 (S25).
- the respiration rate Rc is about 15 [times / min].
- x, y, and z respectively indicate accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction at a certain time
- G indicates an acceleration that is a combination of x, y, and z.
- the respiratory components included in each direction can be integrated.
- the combined acceleration G may be a fluctuation other than the respiratory component.
- Equation 7 An example in which the combined acceleration G of accelerations in the X-axis direction, the Y-axis direction, and the Z-axis direction in FIG. 8 is calculated using Equation 7 will be described with reference to FIG.
- FIG. 11 is a graph showing the combined acceleration of the comparative example.
- the horizontal axis indicates time
- the vertical axis indicates the resultant acceleration G.
- the composite acceleration G has components of a respiratory component period Tr and a period Te included in the X-axis direction and Y-axis direction accelerations.
- a false peak other than the respiratory component may appear due to the influence of the posture or the like.
- FIG. 12 is a graph showing an amplitude spectrum according to the composite acceleration of the comparative example.
- the horizontal axis represents frequency and the vertical axis represents intensity.
- the peak frequency Fp ′ appears in the vicinity of 0.37 Hz. Further, in the amplitude spectrum of the resultant acceleration G, there is no clear peak around 0.25 Hz, which is the original respiratory frequency.
- the respiration rate Rc ′ is about 22 [times / min].
- the synthesized acceleration G calculated by Expression 7 the occurrence of a phase difference in time-series data of acceleration in each direction is influenced by the user's posture and the like, so that the respiratory frequency is erroneously detected. There is a case.
- the respiration rate detection apparatus 10 includes the acquisition unit 11, the conversion processing units 12x, 12y, and 12z, the phase removal units 13x, 13y, and 13z, the peak detection unit 14, and the respiration calculation unit 15. .
- the acquisition unit 11 acquires accelerations in a plurality of directions different from each other, which are obtained by measuring the fluctuation of the body due to the user's breathing by the acceleration sensor 301.
- the conversion processing units 12x, 12y, and 12z perform conversion processing for converting accelerations in a plurality of directions acquired by the acquisition unit 11 into a plurality of pieces of spectrum information in the frequency domain.
- the phase removal units 13x, 13y, and 13z remove phase information from a plurality of pieces of spectrum information and convert it into a plurality of amplitude spectra.
- the peak detector 14 adds a plurality of amplitude spectra, and detects a peak frequency Fp indicating a respiratory component from the amplitude spectrum obtained by the addition.
- the respiration rate calculation unit 15 calculates the respiration rate using the peak frequency Fp.
- the respiratory rate can be detected stably.
- the wearable terminal 30 is fixed to the chest of the garment 20.
- the wearable terminal 30 is not limited to this, and may be any position that can measure the displacement of the body accompanying breathing.
- the wearable terminal 30 is fixed to the abdomen. May be.
- FIG. 13 is a block diagram illustrating an example of a hardware configuration of the respiration rate detection apparatus according to the second embodiment.
- the respiration rate detection apparatus 10A performs all processes in the respiration rate detection method. That is, the respiration rate detection apparatus 10A according to the second embodiment further includes the acceleration sensor 106 as compared with the respiration rate detection apparatus 10 according to the first embodiment.
- the acceleration sensor 106 has the same configuration as the acceleration sensor 301.
- Other configurations are the same as those in the first embodiment, and thus the same reference numerals are given and description thereof is omitted.
- the respiration rate detection device 10 ⁇ / b> A may not include the display 103 and the communication IF 102. Further, the respiration rate detection apparatus 10A is realized by a small terminal fixed to the clothes 20 shown in FIG.
- FIG. 14 is a block diagram illustrating an example of a functional configuration of the respiration rate detection apparatus according to the second embodiment.
- the acquiring unit 11 ⁇ / b> A is realized by an acceleration sensor 106.
- the acquisition unit 11A acquires a plurality of accelerations by measuring body fluctuations due to the user's breathing with accelerations in a plurality of different directions.
- FIG. 15 is a flowchart illustrating an example of a respiration rate detection method in the respiration rate detection apparatus according to the second embodiment.
- step S12 and step S21 are omitted in the sequence diagram described in FIG.
- the respiratory rate detection device 10A performs step S22 after performing step S11. Therefore, the respiration rate detection apparatus 10A performs processing related to acquisition of acceleration, conversion processing (FFT processing), removal of phase information, detection of peak frequency, and calculation of respiration rate.
- FFT processing conversion processing
- the conversion process to the frequency domain is not limited to the FFT process, and may be a DFT (Discrete Fourier Transform) process, a DCT (Discrete Cosine Transform) process, a wavelet transform process, or the like.
- DFT Discrete Fourier Transform
- DCT Discrete Cosine Transform
- the respiration rate Rc calculated as described above may be transmitted to a server (not shown) via a network. Or you may make it accumulate
- respiration rate detection device can accurately detect the respiration rate regardless of the state of the user's posture
- the acceleration sensor attached to the body It is useful as a respiration rate detection device, a respiration rate detection method, and a program storage medium that detect respiration rate from the measured data.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Signal Processing (AREA)
- Mathematical Physics (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
以下、図1~図12を用いて、実施の形態1を説明する。
図1は、実施の形態1における呼吸数検出システムの概略を示す模式図である。
呼吸数検出装置のハードウェア構成について図2を用いて説明する。
図3は、実施の形態1におけるウェアラブル端末のハードウェア構成の一例を示すブロック図である。
次に、呼吸数検出システム1の機能構成について図6を用いて説明する。
以上のように構成された呼吸数検出システム1について、その動作を図7を用いて以下に説明する。つまり、呼吸数検出システム1において行われる呼吸数検出方法について説明する。
以上のように、呼吸数検出装置10は、取得部11と、変換処理部12x、12y、12zと、位相除去部13x、13y、13zと、ピーク検出部14と、呼吸算出部15とを備える。取得部11は、ユーザの呼吸による身体の変動が加速度センサ301により測定されることにより得られた、互いに異なる複数の方向の加速度を取得する。変換処理部12x、12y、12zは、取得部11により取得された複数の方向の加速度を周波数領域の複数のスペクトル情報に変換する変換処理を行う。位相除去部13x、13y、13zは、複数のスペクトル情報から位相情報を除去し、複数の振幅スペクトルに変換する。ピーク検出部14は、複数の振幅スペクトルを加算し、加算することにより得られた振幅スペクトルから呼吸成分を示すピーク周波数Fpを検出する。呼吸数算出部15は、ピーク周波数Fpを用いて呼吸数を算出する。
以下、図13~図15を用いて、実施の形態2を説明する。
図13は、実施の形態2に係る呼吸数検出装置のハードウェア構成の一例を示すブロック図である。
図15は、実施の形態2に係る呼吸数検出装置における呼吸数検出方法の一例を示すフローチャートである。
10、10A 呼吸数検出装置
11、11A 取得部
12x、12y、12z 変換処理部
13x、13y、13z 位相除去部
14 ピーク検出部
15 呼吸数算出部
16 提示部
20 衣服
30 ウェアラブル端末
31 加速度測定部
32 送信部
101 制御装置
102 通信IF
103 ディスプレイ
104 スピーカ
105 入力If
106、301 加速度センサ
302 通信モジュール
AXk、AYk、AZk、Ak 振幅スペクトル
Fp、Fp’ ピーク周波数
Claims (8)
- ユーザの呼吸による身体の変動が加速度センサにより測定されることにより得られた、互いに異なる複数の方向の加速度を取得する取得部と、
前記取得部により取得された前記複数の方向の加速度を周波数領域の複数のスペクトル情報に変換する変換処理を行う変換処理部と、
前記複数のスペクトル情報から位相情報を除去し、複数の振幅スペクトルに変換する位相除去部と、
前記複数の振幅スペクトルを加算し、加算することにより得られた振幅スペクトルから呼吸成分を示すピーク周波数を検出するピーク検出部と、
前記ピーク周波数を用いて呼吸数を算出する呼吸数算出部とを備える、
呼吸数検出装置。 - 前記変換処理部は、前記複数の方向の加速度のそれぞれについて、当該方向の加速度を高速フーリエ変換処理により前記複数のスペクトル情報に変換する、
請求項1に記載の呼吸数検出装置。 - 前記変換処理部は、呼吸周期の1周期から10周期分の時間幅で、前記変換処理を行う、
請求項1または2に記載の呼吸数検出装置。 - 前記ピーク検出部は、0.08Hz~0.5Hzの検出範囲で前記ピーク周波数を検出する、
請求項1に記載の呼吸数検出装置。 - 前記取得部は、前記加速度センサを有する端末であって、前記ユーザの身体に装着される端末と通信することにより、前記端末から前記複数の方向の加速度を取得し、
前記呼吸数検出装置は、前記端末と構造が分離されている、
請求項1から4のいずれか1項に記載の呼吸数検出装置。 - 前記取得部は、前記加速度センサからなり、
前記呼吸数検出装置は、前記加速度の取得、前記変換処理、前記位相情報の除去、前記ピーク周波数の検出、および、前記呼吸数の算出にかかる処理を行う、
請求項1から4のいずれか1項に記載の呼吸数検出装置。 - ユーザの呼吸による身体の変動が加速度センサにより測定されることにより得られた、互いに異なる複数の方向の加速度を取得するステップと、
取得した前記複数の方向の加速度を周波数領域の複数のスペクトル情報に変換するステップと、
前記複数のスペクトル情報から位相情報を除去し、複数の振幅スペクトルに変換するステップと、
前記複数の振幅スペクトルを加算し、加算することにより得られた振幅スペクトルから呼吸成分を示すピーク周波数を検出するステップと、
前記ピーク周波数を用いて呼吸数を算出するステップとを含む、
呼吸数検出方法。 - ユーザの呼吸による身体の変動が加速度センサにより測定されることにより得られた、互いに異なる複数の方向の加速度を取得するステップと、
取得した前記複数の方向の加速度を周波数領域の複数のスペクトル情報に変換するステップと、
前記複数のスペクトル情報から位相情報を除去し、複数の振幅スペクトルに変換するステップと、
前記複数の振幅スペクトルを加算し、加算することにより得られた振幅スペクトルから呼吸成分を示すピーク周波数を検出するステップと、
前記ピーク周波数を用いて呼吸数を算出するステップとを含む呼吸数検出方法をコンピュータに実行させるためのプログラムを記録した、
プログラム記憶媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017536362A JP6455827B2 (ja) | 2016-01-29 | 2016-10-25 | 呼吸数検出装置、呼吸数検出方法、及び、プログラム記憶媒体 |
CN201680019236.7A CN107405106B (zh) | 2016-01-29 | 2016-10-25 | 呼吸次数检测装置、呼吸次数检测方法及程序存储介质 |
EP16887839.5A EP3409194B1 (en) | 2016-01-29 | 2016-10-25 | Respiration rate detection apparatus, respiration rate detection method, and program storage medium |
US15/716,907 US10602961B2 (en) | 2016-01-29 | 2017-09-27 | Respiration rate determining apparatus, respiration rate determining method, and program recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-015230 | 2016-01-29 | ||
JP2016015230 | 2016-01-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/716,907 Continuation US10602961B2 (en) | 2016-01-29 | 2017-09-27 | Respiration rate determining apparatus, respiration rate determining method, and program recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130250A1 true WO2017130250A1 (ja) | 2017-08-03 |
Family
ID=59398958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004681 WO2017130250A1 (ja) | 2016-01-29 | 2016-10-25 | 呼吸数検出装置、呼吸数検出方法、及び、プログラム記憶媒体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10602961B2 (ja) |
EP (1) | EP3409194B1 (ja) |
JP (1) | JP6455827B2 (ja) |
CN (1) | CN107405106B (ja) |
WO (1) | WO2017130250A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110327036A (zh) * | 2019-07-24 | 2019-10-15 | 东南大学 | 从穿戴式心电中提取呼吸信号和呼吸频率的方法 |
JP2020156593A (ja) * | 2019-03-25 | 2020-10-01 | トッパン・フォームズ株式会社 | 呼吸数検出装置及び呼吸数検出方法 |
JP7268928B1 (ja) | 2022-12-02 | 2023-05-08 | 株式会社PetVoice | 呼吸数推定システム、呼吸数推定サーバ、呼吸数推定方法、及び呼吸数推定プログラム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10383545B2 (en) * | 2016-09-29 | 2019-08-20 | Daegu Gyeongbuk Institute Of Science And Technology | Apparatus and method for determining bio-information of target using impulse radar |
US11013416B2 (en) * | 2018-01-26 | 2021-05-25 | Bose Corporation | Measuring respiration with an in-ear accelerometer |
CN108784703B (zh) * | 2018-07-05 | 2021-02-02 | 西南石油大学 | 一种中老年人可穿戴式呼吸监测方法 |
GB2578471B (en) * | 2018-10-29 | 2023-01-04 | Pneumowave Ltd | Condition detector |
CN115429253A (zh) * | 2022-09-15 | 2022-12-06 | 苏州众智初心健康科技有限公司 | 融合呼吸检测方法、装置、运动服装及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247374A (ja) | 2005-05-18 | 2006-09-21 | Matsushita Electric Works Ltd | 睡眠診断装置および睡眠時無呼吸検査装置 |
JP2007151617A (ja) * | 2005-11-30 | 2007-06-21 | Medical Electronic Science Inst Co Ltd | 生体情報モニタシステム |
US20110257489A1 (en) * | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20150265161A1 (en) * | 2014-03-19 | 2015-09-24 | Massachusetts Institute Of Technology | Methods and Apparatus for Physiological Parameter Estimation |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6081742A (en) * | 1996-09-10 | 2000-06-27 | Seiko Epson Corporation | Organism state measuring device and relaxation instructing device |
JP4345489B2 (ja) | 2004-01-14 | 2009-10-14 | 株式会社デンソー | 呼吸モニタ装置 |
US7306564B2 (en) | 2003-11-26 | 2007-12-11 | Denso Corporation | Breath monitor |
US9066679B2 (en) * | 2004-08-31 | 2015-06-30 | University Of Washington | Ultrasonic technique for assessing wall vibrations in stenosed blood vessels |
US7766841B2 (en) | 2005-05-18 | 2010-08-03 | Panasonic Electric Works Co., Ltd. | Sleep diagnosis device |
CN101843489A (zh) * | 2009-03-26 | 2010-09-29 | 深圳市理邦精密仪器有限公司 | 一种呼吸信号处理方法 |
EP2263532A1 (en) | 2009-06-05 | 2010-12-22 | Koninklijke Philips Electronics N.V. | Motion determination apparatus |
JP5797208B2 (ja) | 2010-02-11 | 2015-10-21 | コーニンクレッカ フィリップス エヌ ヴェ | 呼吸信号を決定するための方法と装置 |
CN102657530A (zh) * | 2012-04-26 | 2012-09-12 | 沈阳工业大学 | 一种基于距离域滤波的人体呼吸频率检测方法 |
US9872634B2 (en) * | 2013-02-08 | 2018-01-23 | Vital Connect, Inc. | Respiratory rate measurement using a combination of respiration signals |
US20160007864A1 (en) * | 2014-07-11 | 2016-01-14 | Kadence Lab, Llc | System and method for lactic threshold and entrainment detection |
CN105147293A (zh) * | 2015-08-21 | 2015-12-16 | 姚丽峰 | 实现呼吸频率测量的系统及方法 |
EP3375368B1 (en) * | 2015-11-10 | 2020-06-17 | Nippon Telegraph and Telephone Corporation | Respiration frequency estimating method and device |
-
2016
- 2016-10-25 WO PCT/JP2016/004681 patent/WO2017130250A1/ja active Application Filing
- 2016-10-25 CN CN201680019236.7A patent/CN107405106B/zh active Active
- 2016-10-25 EP EP16887839.5A patent/EP3409194B1/en active Active
- 2016-10-25 JP JP2017536362A patent/JP6455827B2/ja active Active
-
2017
- 2017-09-27 US US15/716,907 patent/US10602961B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006247374A (ja) | 2005-05-18 | 2006-09-21 | Matsushita Electric Works Ltd | 睡眠診断装置および睡眠時無呼吸検査装置 |
JP2007151617A (ja) * | 2005-11-30 | 2007-06-21 | Medical Electronic Science Inst Co Ltd | 生体情報モニタシステム |
US20110257489A1 (en) * | 2010-04-19 | 2011-10-20 | Sotera Wireless, Inc. | Body-worn monitor for measuring respiratory rate |
US20150265161A1 (en) * | 2014-03-19 | 2015-09-24 | Massachusetts Institute Of Technology | Methods and Apparatus for Physiological Parameter Estimation |
Non-Patent Citations (2)
Title |
---|
LIU, GUAN-ZHENG ET AL.: "Estimation of Respiration Rate from Three-Dimensional Acceleration Data Based on Body Sensor Network", TELEMEDICINE AND E-HEALTH, vol. 17, no. 9, November 2011 (2011-11-01), pages 705 - 711, XP055084098 * |
PECHPRASARN, THANAKIJ: "Estimation of Respiratory Rate from Smartphone's Acceleration Data", 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS, AND INFORMATION TECHNOLOGY, 15 May 2013 (2013-05-15), pages 1 - 5, XP032435996 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020156593A (ja) * | 2019-03-25 | 2020-10-01 | トッパン・フォームズ株式会社 | 呼吸数検出装置及び呼吸数検出方法 |
JP7220605B2 (ja) | 2019-03-25 | 2023-02-10 | トッパン・フォームズ株式会社 | 呼吸数検出装置及び呼吸数検出方法 |
CN110327036A (zh) * | 2019-07-24 | 2019-10-15 | 东南大学 | 从穿戴式心电中提取呼吸信号和呼吸频率的方法 |
CN110327036B (zh) * | 2019-07-24 | 2021-11-30 | 东南大学 | 从穿戴式心电中提取呼吸信号和呼吸频率的方法 |
JP7268928B1 (ja) | 2022-12-02 | 2023-05-08 | 株式会社PetVoice | 呼吸数推定システム、呼吸数推定サーバ、呼吸数推定方法、及び呼吸数推定プログラム |
JP2024080536A (ja) * | 2022-12-02 | 2024-06-13 | 株式会社PetVoice | 呼吸数推定システム、呼吸数推定サーバ、呼吸数推定方法、及び呼吸数推定プログラム |
Also Published As
Publication number | Publication date |
---|---|
CN107405106A (zh) | 2017-11-28 |
JPWO2017130250A1 (ja) | 2018-02-01 |
JP6455827B2 (ja) | 2019-01-23 |
CN107405106B (zh) | 2020-06-16 |
EP3409194A1 (en) | 2018-12-05 |
EP3409194B1 (en) | 2019-12-04 |
US20180035916A1 (en) | 2018-02-08 |
US10602961B2 (en) | 2020-03-31 |
EP3409194A4 (en) | 2018-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6455827B2 (ja) | 呼吸数検出装置、呼吸数検出方法、及び、プログラム記憶媒体 | |
US9782087B2 (en) | Heart rate estimating apparatus and method | |
US9576500B2 (en) | Training supporting apparatus and system for supporting training of walking and/or running | |
JP2012503194A (ja) | 加速度計からの測定値を処理する方法 | |
EP3310249B1 (en) | Robust heart rate estimation | |
EP3298955A1 (en) | Method and system for determining postural balance of a person | |
CN108135514B (zh) | 心率校正 | |
JP6056389B2 (ja) | 心拍推定装置、心拍推定方法及びプログラム | |
US20160157718A1 (en) | Choosing a heart rate monitor for a wearable monitoring device | |
JP6358333B2 (ja) | 発汗心拍推定システム、発汗心拍推定装置及び発汗心拍推定方法 | |
JP6424424B2 (ja) | 行動推定装置及び活動量計 | |
US10561343B2 (en) | Index deriving device, wearable device, and mobile device | |
JP6440137B1 (ja) | 呼吸状態推定装置、呼吸状態推定方法、及び、プログラム記録媒体 | |
CN105982658B (zh) | 生理信息侦测方法及装置 | |
US20160213286A1 (en) | Electronic device, monitoring and feedback system on thoracoabdominal motion and method thereof | |
US11925458B2 (en) | Motion state monitoring system, training support system, motion state monitoring method, and program | |
JP2016182164A (ja) | 生体信号処理装置、生体信号処理プログラム、生体信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体、生体信号処理方法 | |
JP5812185B2 (ja) | 揺らぎ検出装置および揺らぎ検出方法 | |
JP2011250945A (ja) | 歩行解析方法、歩行解析システム及び歩行解析装置 | |
US20180133104A1 (en) | Cardiopulmonary resuscitation (cpr) feedback systems and methods | |
US20220054044A1 (en) | Motion state monitoring system, training support system, motion state monitoring method, and program | |
Vadai et al. | On-water measurement and analysis system for estimating kayak paddlers' performance | |
US20240099627A1 (en) | Force estimation from wrist electromyography | |
WO2017111793A1 (en) | Frequency domain adaptive motion cancel-lation filter | |
JP6448459B2 (ja) | 回転状態算出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017536362 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16887839 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016887839 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016887839 Country of ref document: EP Effective date: 20180829 |