WO2017128823A1 - 一种spr检测系统及方法 - Google Patents

一种spr检测系统及方法 Download PDF

Info

Publication number
WO2017128823A1
WO2017128823A1 PCT/CN2016/107235 CN2016107235W WO2017128823A1 WO 2017128823 A1 WO2017128823 A1 WO 2017128823A1 CN 2016107235 W CN2016107235 W CN 2016107235W WO 2017128823 A1 WO2017128823 A1 WO 2017128823A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
spr
light
scanning
spectral
Prior art date
Application number
PCT/CN2016/107235
Other languages
English (en)
French (fr)
Inventor
邵永红
屈军乐
陈开强
曾佑君
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2017128823A1 publication Critical patent/WO2017128823A1/zh
Priority to US15/992,182 priority Critical patent/US10393657B2/en
Priority to US16/504,964 priority patent/US10578554B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning

Definitions

  • the invention belongs to the field of biological detection technology, and more particularly to an SPR detection system and method.
  • SPR Surface Plasmon Resonance, surface plasmon resonance technology can be used for molecular recognition, specific reactions, kinetic parameter measurement of intermolecular reactions, etc., and has a wide range of applications.
  • Spectral diagnosis SPR technology has a large dynamic range, high sensitivity and the maturity of the optical and electromechanical equipment involved. Therefore, it has attracted extensive research by scholars at home and abroad.
  • the SPR resonance wavelength position cannot be directly and accurately measured. Since the corresponding intensity can be equal to zero, the value of the region near it is basically submerged in the noise, and the sensitivity of the SPR technique is particularly sensitive to the spectral resolving power, and the spectral position resolving power is usually required. It reaches 0.01 nm.
  • the resonance wavelength will move, and the magnitude of the movement is related to the concentration and molecular weight of the reaction molecule.
  • concentration is 5 ug/ml
  • range of movement is about 2-3 nm.
  • the reaction time is about 5 minutes.
  • a time resolution of less than 1 second is usually required.
  • the simultaneous diagnosis of SPR resonance wavelengths at various sites is the bottleneck of spectral diagnosis SPR technology.
  • the former uses a monochromator to scan the wavelength of the incident light, and uses a two-dimensional detector such as a CCD camera to simultaneously record the light intensity at each wavelength.
  • each image corresponds to A wavelength
  • the corresponding pixel of each image constitutes a curve of intensity as a function of the spectrum, that is, an SPR spectral profile corresponding to a point on the sensing surface, and analogously, all pixels form a series of SPR spectral profiles in the above manner
  • each The curve corresponds to one pixel of the SPR sensing surface
  • the minimum value of each SPR spectral contour is the resonant light wavelength of the pixel
  • the series of SPR spectral profiles are obtained by continuously repeating the same fixed spectral range.
  • a change in the minimum value of each SPR spectral profile can be used to obtain a change in the refractive index of the sensor surface to achieve SPR sensing measurements. Since the splitting in the monochromator is mainly realized by a rotating grating, it is impossible to scan periodically due to mechanical scanning mode, inertia of the rotating component, etc. Moreover, for the entire sensing surface, the thickness of the sensing film and the incident angle of the light are different ( The poor collimation of the white light source, as well as the prism dispersion, etc., and the probe molecule type and concentration factors are inconsistent in the resonance spectrum of the sensor chip, and the inconsistent movement occurs with the intermolecular interaction.
  • the latter uses a spectrometer to perform fast spectral analysis of reflected light with a fast enough measurement speed.
  • the reflected light at different positions of the sensing film is separately introduced into different spectrometers for parallel detection, but one position is required for each position.
  • Spectrometers are costly and cannot achieve high-density sensor chip monitoring and imaging inspection.
  • the prior art has the following technical problems: no technology can realize parallel fast scanning technology of SPR spectral curves of all the sites of the two-dimensional sensor chip, and cannot quickly acquire SPR of all the sites of the two-dimensional sensor chip.
  • the spectral curve can not realize the fast parallel monitoring of the resonance wavelength of all the sites of the two-dimensional sensor chip, and the prior art also has the disadvantage that the sensitivity of the sensing sensitivity of the two-dimensional chip is poor.
  • an object of the present invention is to provide an SPR detection system and method, which aims to reduce the scanning spectral range by performing local spectral scanning on the resonance spectrum curve near the resonance wavelength; Spectral range feedback to track the resonance spectrum in real time and improve the diagnostic speed of the resonance wavelength; the traditional wide spectral range scans the entire SPR spectral curve for a long time (obtaining an SPR spectral curve for at least tens of seconds), while some molecules have shorter interaction times.
  • Traditional wide-spectral scanning cannot meet the problem of real-time monitoring of molecular interactions. This technology aims to solve the problem of real-time monitoring of molecular interactions.
  • the invention provides an SPR detection system, comprising: a light source for transmitting continuous broadband light; a first collimating lens group for collimating and focusing the broadband light; and a multimode optical fiber MF, the incident The end is disposed on an output focal plane of the first collimating lens group for coupling light that is focused by the first collimating lens group; and the second collimating lens group is disposed on an input focal plane thereof An exit end of the multimode optical fiber MF for collimating and focusing the coupled light; an aperture stop DA located on an output focal plane of the second collimating lens group for The focused light of the two collimating lens groups is spatially filtered to obtain the focused light; the lens L5 is disposed at a confocal surface with the second collimating lens group for collimating the focused spot; the liquid crystal may be An optical filter for filtering broadband light emitted by the light source to obtain narrow-band light; a polarizing plate P1 for polarizing the narrow-band light to obtain incident light of a polarization
  • the first collimating lens group includes a lens L1 and a lens L2 which are disposed coaxially in this order.
  • the second collimating lens group includes a lens L3 and a lens L4 which are coaxially disposed in this order.
  • the liquid crystal tunable optical filter performs spectral scanning output according to a specified working mode, and the surface array detector simultaneously records the reflection of the SPR sensing unit corresponding to each output spectrum.
  • the intensity of the light is obtained, and a plurality of intensity images are obtained, and the intensity of the pixel composition intensity at the same position of each image as a function of the wavelength of the light is the SPR spectral profile of the position.
  • the invention also provides an SPR detection method, comprising the following steps:
  • step (6) in the wavelength range of the next scan, according to the scan step determined in step (5), under the parameter, the local spectral region is quickly scanned and the two-dimensional image corresponding to the scan spectrum is recorded;
  • step (1) and step (2) the method further includes the steps of: obtaining an average value of the local neighboring pixels in the two-dimensional image, and obtaining a new two-dimensional image with fewer pixels according to the average value.
  • step (2) is specifically:
  • the intensity minimum of each SPR spectral curve that is, the resonant wavelength corresponding to the sensing position, is obtained by fitting and interpolation, respectively.
  • the first distance and the second distance range from 3 nm to 50 nm.
  • the step of determining the scan step in the step (5) is specifically: the step size is a small step length in a wavelength range between the maximum resonance wavelength and the minimum resonance wavelength, such as 0.01 nm to 2 nm, and a large step is adopted outside the region.
  • the length, such as 3nm-20nm, the step size can also be changed.
  • the resonance wavelength change automatically changes the scanning spectral range, realizing the fast spectral SPR detection of the two-dimensional array, and can simultaneously monitor the interaction of various biomolecules in real time, which has the advantages of high throughput and rapid detection.
  • Figure 1 is a complete SPR spectrum curve; where ⁇ a ⁇ b is the minimum and maximum resonance wavelength, respectively, ⁇ 1 , ⁇ 2 is a constant;
  • Figure 2 is a partial SPR spectral curve; where ⁇ ai ⁇ bi is the minimum and maximum resonant wavelength, respectively, ⁇ 1 , ⁇ 2 is a constant;
  • Figure 3 is a schematic diagram of resonance wavelength tracking
  • Figure 4 is a schematic diagram of a spectral diagnosis SPR imaging system
  • the present invention performs local spectral sweeping around the resonance wavelength for the resonance spectrum curve, reducing the scanning spectral range.
  • the present invention further proposes a scanning spectral range feedback technique to track the resonance spectrum in real time and improve the diagnostic speed of the resonance wavelength.
  • the invention provides a step-variable and variably adjustable local characteristic spectral scanning technique with the function of scanning range feedback, which uses only scanning the spectral sub-intervals near the resonance wavelength including the resonance wavelength, and all the resonance wavelengths obtained by the last measurement are used.
  • the maximum resonant wavelength and the minimum resonant wavelength determine the current scanning spectral range, and then find the maximum resonant wavelength and the minimum resonant wavelength of all resonant wavelengths based on the obtained SPR spectral profile of the current scan, and then determine the scanning spectral range of the next scan, in turn Continuously reciprocating, you can dynamically track all SPR wavelengths.
  • each time the scanning range is determined one wavelength range is extended to the long wavelength direction at the maximum resonance wavelength obtained, and one wavelength is extended to the short wavelength direction at the minimum resonance wavelength.
  • the extended wavelength range can be set according to the final SPR local spectral curve. It can be large or small and flexible.
  • the acquisition time is proportional to the number of scanning wavelengths and each wavelength. The product of the scan time, the larger the extension range, the longer the acquisition time.
  • the diagnostic accuracy of resonance wavelength is mainly affected by the spectral scanning range and the density of scanning points near the resonance point
  • a scanning technique with flexible step size, and adopt a small step ( ⁇ 2nm) fine scanning near the resonance point to improve scanning.
  • Accuracy and post-data processing accuracy large-step (>2nm) coarse scanning is used away from the resonance point area to improve the scanning speed, which not only ensures the area, but also achieves high precision.
  • the scanner adopts a fast response molecular mechanism tunable filter, which can complete output wavelength switching in tens of milliseconds or even shorter time, and can electronically switch the scanning area and the step size to ensure the above method is realized.
  • liquid crystals Adjustable filters, electro-optic tunable filters, acousto-optic tunable filters, and FP tunable filters.
  • the specific steps include:
  • the obtained image corresponds to the pixel to form a spectrum-intensity curve, and constitutes a series of SPR complete spectral curves.
  • the image obtained in step 1 can also be averaged for the locally adjacent pixels to form a new two-dimensional image with fewer pixels, and then Obtaining a spectral-intensity curve corresponding to a corresponding pixel of the newly constructed two-dimensional image, thereby obtaining a SPR spectral curve with a higher signal to noise ratio;
  • the maximum resonant wavelength is shifted to a long wavelength by a distance, and the wavelength at this time is the upper limit of the wavelength of the next scanning region, and the minimum resonant wavelength is shifted to a short wavelength direction for a distance, and the wavelength at this time is the lower wavelength limit of the next scanning region. So far, it is determined that the wavelength range of the next scan is in the range from the lower limit of the wavelength to the upper limit of the wavelength; the distance moved in the long-wave direction and the distance moved in the short-wavelength direction may be the same or different, and usually between 3 nm and 50 nm is selected.
  • the step size is a small step length, such as 0.01 nm-2 nm, in the wavelength range between the maximum resonant wavelength and the minimum resonant wavelength determined in step 3, and a large step size, such as 3 nm-20 nm, is used outside the region.
  • the step size can also be changed;
  • step 4 Performing a partial fast scan and recording a corresponding two-dimensional image in the wavelength range determined in step 4, similar to step 1, except that the scanning range and the scanning step are different;
  • step 2-7 is performed to continuously obtain the resonance wavelengths of all the sensing positions at different times to form a resonance wavelength versus time curve.
  • Two-dimensional wavelength-sensitive SPR can also be obtained by taking the resonance wavelength change of each sensing position as a pixel value. Sensing images.
  • the resonance wavelength tracking process is shown in Figure 3.
  • the curve 1-k represents the local SPR spectral curve obtained by scanning at different times.
  • the local scan range at the start of the reaction is [ ⁇ 0 - ⁇ 1 , ⁇ 0 + ⁇ 2 ], and the corresponding local SPR curve is curve 1 (dotted line).
  • the resonance wavelength will move from ⁇ 0 to ⁇ 1 .
  • the corresponding scanning interval will also automatically change to [ ⁇ 1 - ⁇ 1 , ⁇ 1 + ⁇ 2 ], and the corresponding local SPR curve is curve 2.
  • the refractive index change causes the resonance wavelength to move from ⁇ 1 to ⁇ 2 .
  • the corresponding scanning interval will also automatically change to [ ⁇ 2 - ⁇ 1 , ⁇ 2 + ⁇ 2 ], corresponding to the local SPR curve as curve 3, with this law, cyclic round trip, through the scanning feedback method, to achieve resonance wavelength tracking .
  • the invention also provides an SPR detection system, the structure of which is shown in FIG. 4, comprising: an optical fiber output broadband light source Halogen Lamp, collimating lens group (L1, L2), fast tunable optical filter MF, polarizer, SPR sensing unit, imaging lens group, analyzer and area array detector.
  • the broadband light source is a halogen lamp, a white light source, and a laser-excited phosphor generating light source, emitting a spectrally continuous broadband light of 550 nm to 800 nm, and lenses L1 and L2.
  • the light emitted by the light source is coupled into the multimode fiber MF, and the exit end of the multimode fiber MF is located on the focal plane of the lens L3.
  • the L3 collects and collimates the emitted light, and then converges again in the focus by the lens L4.
  • the aperture stop is located in the focal plane of the lens L4, only the focused spot is allowed to pass, and other stray light is blocked, which plays a spatial filtering role.
  • the lens L5 and the lens L4 have a confocal surface, which is used for collimating aperture diaphragm filtering.
  • Light wave liquid crystal tunable optical filter LCTF for electronically controlled fast arbitrary wavelength filtering, to achieve fast spectral and no mechanical motion of narrow-band spectral (0.1-20nm) scan output
  • polarizer P1 It is used to further increase the degree of polarization of P light, suppress S light, and P-polarized light is irradiated to a thin layer of metal sensing film on the surface of the prism through prism coupling.
  • the P-polarized light reflected by the sensing film is collected by lens L6, and is detected.
  • the lens L7 is coupled to the CCD camera, L6 and L7.
  • the imaging mirror is constructed to image the sensing surface to the CCD camera.
  • the feedback loop is used to feed back the scanned spectral range, ensuring that the computer can set the scan spectral range of the liquid crystal tunable optical filter based on the scan range returned.
  • the liquid crystal tunable optical filter After determining the spectral scanning range, the liquid crystal tunable optical filter will perform spectral scanning output according to the specified working mode, and the CCD camera simultaneously records the light intensity reflected by the sensing film corresponding to each output spectrum, thus obtaining some column intensity images, each The intensity of the pixel composition at the same position of the image varies with the wavelength of the light, that is, the SPR spectral profile of the position.
  • the series of two-dimensional CCD images will form a series of SPR spectral contour curves, and each pixel of the image corresponds to the image.
  • a sensing site on the surface of the sensor membrane, this series of SPR spectral profiles correspond to all sensing sites on the surface of the sensing membrane.
  • an equal step scanning mode the scanning step length is constant within a specified scanning range, and the output center wavelength is continuously changed to realize spectral scanning
  • Variable step size scanning mode the scanning step length changes within the specified scanning range, and fine scanning is performed in a small step (such as 0.01 nm-2 nm) in the vicinity of the resonance point to improve the resonance spectrum diagnostic accuracy in the deviation from the resonance point region.
  • a large step size such as 3nm-20nm
  • the SPR resonance wavelength of each curve is diagnosed by data fitting and interpolation algorithm.
  • a new scanning range can be generated, and there are various methods: (1) Maximum resonance Wavelength and minimum resonance wavelength method, that is, find the minimum resonance wavelength Lamdamin and the maximum resonance wavelength Lamdamax from these resonance wavelengths, and then move the maximum resonance wavelength to the long-wave direction for a distance (such as 8 nm), that is, the corresponding wavelength Lamdamax+8, and the minimum The resonance wavelength shifts to a short wavelength (for example, 8 nm), that is, the corresponding wavelength Lamdamin-8, that is, the new spectral scanning range is [Lamdamin-8, Lamdamax+8]; (2) the resonance wavelength average method, that is, for all The resonance wavelength is averaged to obtain the average resonance wavelength Lamdaave, and the average resonance wavelength is shifted to the long wavelength direction for a distance, that is, the corresponding wavelength is Lamdaave+10
  • the feedback range is used to reset the new scanning range to the liquid crystal tunable optical filter, so that it scans in the new scanning range, and then obtains a set of two-dimensional CCD images, and a corresponding series of new resonant wavelengths, and then regains new
  • the scanning spectrum range therefore, by cycling the above process, a new series of resonance wavelengths can be continuously obtained, and the resonance of the resonance wavelength can be monitored to realize the biomolecular interaction detection on the membrane surface.
  • the dynamic range test is performed on 9 different position points of the sensor chip, and the results show that the dynamic range of each position is the same and the consistency is good.
  • the same concentration of rabbit IgG protein molecules are modified at two sites on the surface of the sensing membrane, and other arbitrary Two sites (no modified protein) as a reference when flowing into PBS In the buffer, no interaction occurs, and the SPR signal is the horizontal baseline (the first curve).
  • the SPR signal curve of the PBS solution changes to a horizontal line segment (the third horizontal line segment), and its amplitude is much higher than the initial segment amplitude (Fig.
  • curve 1 indicates that a molecular interaction has occurred at the site of the modified rabbit IgG.
  • the SPR signal of the site without modification of IgG jumps to the second horizontal line segment, and then passes through the PBS solution curve and returns to the horizontal line segment of the initial phase amplitude (as shown in the curve 3, 4 curve segment in Fig. 6), indicating that there is no Molecular interactions occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种SPR检测系统及方法,该系统利用探测光路形成了包含入射角信息和波长信息的探测图像。测试时,首先进行全谱扫描,获得样品的共振波长。然后通过不断追踪共振波长进行局部光谱扫描,并且根据具体情况控制每个扫描周期的扫描点数缩短扫描时间,进而实时地获得样品的共振波长。当样品折射率发生变化时,其对应的共振波长也发生变化,通过获得共振波长的变化,以此推算出样品的折射率变化量,此即波长调制SPR快速检测。所采用的是局部扫描,并且每个局部扫描周期扫描时间可控,在保证灵敏度的条件下,提高了表面等离子体共振系统的检测速度,实现了快速检测。

Description

一种SPR检测系统及方法 技术领域
本发明属于生物检测技术领域,更具体地,涉及一种 SPR 检测系统及方法。
背景技术
SPR(Surface Plasmon Resonance,表面等离子体共振)技术可以用于分子识别,特异性反应,分子间反应的动力学参数测量等等,具有广泛应用。光谱诊断SPR技术具有大的动态范围、高灵敏度以及涉及的光机电设备成熟,因此,引起了国内外学者广泛研究。但是,SPR共振波长位置无法直接准确测量,由于对应强度理上可以等于零,在其附近的区域值基本淹没在噪声中,而且SPR技术的灵敏度对光谱分辨能力特别敏感,通常要求对光谱位置分辨能力达到0.01nm。而且,随着传感表面分子间动态的相互作用,共振波长将发生移动,移动大小与反应分子浓度和分子量大小有关,对于普通蛋白分子如IgG,浓度为5ug/ml,移动范围约2-3nm,反应时间约5分钟。为了测得共振波长随反应时间变化曲线,即SPR光谱曲线,通常要求时间分辨率小于1秒。特别的,实际通常需要对整个二维传感面进行并行高通量测量,由于传感面不同位置差异会导致各个位点的共振波长不同,因此,如何在1秒内能够对整个传感芯片的各个位点同时进行SPR共振波长进行快速诊断是光谱诊断SPR技术的瓶颈。
目前,有两种SPR诊断方法,一种是牺牲时间,获取高通量测量;另一种是牺牲测量通量,获取高时间分辨。前者采用单色仪扫描入射光波长,利用CCD相机等二维探测器同步记录每个波长下光强度,随着入射波长扫描,一系列强度图被记录,不同时刻对应不同波长,每幅图像对应一个波长,每幅图像的对应像素构成强度随光谱变化的曲线,即对应传感面上某点的SPR光谱轮廓曲线,类推地,由所有像素按照上述方式构成一系列SPR光谱轮廓曲线,每条曲线对应SPR传感面的一个像素点,每条SPR光谱轮廓线的最小值即为该像素点的共振光波长,通过不断反复在同一固定的光谱范围内获取上述一系列SPR光谱轮廓曲线,监测每条SPR光谱轮廓线的最小值的变化,可以获得传感器表面折射率变化,实现SPR传感测量。由于单色仪中分光主要采用旋转的光栅实现,为机械扫描方式,转动元件惯性等因素,无法快速周期扫描;而且,对于整个传感面而言,由于传感膜厚度、光线入射角不同(白光光源准直性差,以及棱镜色散等导致)和探针分子种类和浓度等因素导致的传感芯片各点的共振光谱不一致,而且还是随着分子间相互作用产生不一致的移动,无法预先恰当设定,因此,目前所报道的皆是在固定的整个工作光谱段进行全谱线扫描,以免某些共振波长在测量过程中移除扫描范围,产生测量错误。目前,报道最快的用于光谱诊断SPR的扫描速度为2s/波长,所以获得整个SPR光谱轮廓一次花费的时间相当长,无法满足分子间相互作用的动态监测。
后者,利用光谱仪进行反射光的光谱快速分析,具有足够快的测量速度,为了提高测量通量,将传感膜不同位置反射光分别导入不同的光谱仪,实现并行探测,但每个位置需要一个光谱仪,成本高,而且无法实现高密度传感芯片监测以及成像检测。
综上所述,现有技术存在如下技术问题:没有技术能够实现二维传感芯片的所有位点的SPR光谱曲线的并行快速扫描技术,不能快速获取二维传感芯片的所有位点的SPR光谱曲线,进而无法实现二维传感芯片的所有位点的共振波长快速并行监测,而且现有技术还存在二维芯片各点传感灵敏度一致性差的缺点。
技术问题
针对现有技术的缺陷,本发明的目的在于提供一种SPR检测系统及方法,其目的在于通过对共振光谱曲线在共振波长附近进行局部光谱扫锚,从而减小了扫描光谱范围;并通过扫描光谱范围反馈来实时追踪共振光谱,提高共振波长诊断速度;传统的宽光谱范围扫描整个SPR光谱曲线时间长(获得一条SPR光谱曲线至少是几十秒),而某些分子相互作用时间较短,传统的宽光谱扫描不能满足分子相互作用实时监测的问题,本技术旨在解决分子相互作用实时监测的问题。
技术解决方案
本发明提供了一种SPR检测系统,包括:光源,用于发射光谱连续的宽带光;第一准直透镜组,用于对所述宽带光进行准直后聚焦;多模光纤MF,其入射端设置在所述第一准直透镜组的输出焦平面上,用于对经过所述第一准直透镜组聚焦后的光进行耦合;第二准直透镜组,其输入焦平面上设置有所述多模光纤MF的出射端,用于对耦合后的光进行准直后聚焦;孔径光阑DA,位于所述第二准直透镜组的输出焦平面上,用于对经所述第二准直透镜组聚焦后的光进行空间滤波后获得聚焦的光;透镜L5,与所述第二准直透镜组共焦面设置,用于对所述聚焦光点进行准直处理;液晶可调光学滤波器,用于对光源发出的宽带光进行滤波后获得窄带光;偏振片P1,用于对所述窄带光进行偏振作用,以获得偏振态的入射光;SPR传感单元,包括棱镜、金膜和流通池;所述棱镜对入射光进行耦合后激发所述金膜表面的等离子体共振,由所述流通池使待测样品通过所述金膜表面,从而进行检测;透镜L6,用于对经所述SPR传感单元的反射光进行收集、准直;检偏器P2,用于消除反射光中的杂散光,提高信噪比;透镜L7,用于将偏振光进行汇聚;面阵探测器,置于所述透镜L7的焦面,用于记录汇聚后的光谱的强度;控制模块,输入端用于接收所述面阵探测器采集的光图像,并对其进行处理后输出用于调整所述液晶可调光学滤波器的扫描光谱范围的反馈控制信号。
更进一步地,所述第一准直透镜组包括依次同轴设置的透镜L1和透镜L2。
更进一步地,所述第二准直透镜组包括依次同轴设置的透镜L3和透镜L4。
更进一步地,工作时,当确定光谱扫描范围后,所述液晶可调光学滤波器按照指定工作模式进行光谱扫描输出,由面阵探测器同时记录每个输出光谱对应的SPR传感单元反射的光强度,并获得多个强度图像,每个图像的相同位置的像素组成强度随光波长变化曲线即为该位置的SPR光谱轮廓曲线。
本发明还提供了一种SPR检测方法,包括下述步骤:
(1)在整个工作光谱段上以等步长方式并行扫描并记录对应波长的传感芯片的二维图像;
(2)根据所述二维图像和与图像对应的像素获得对应传感位置的共振波长;
(3)获得所有共振波长中的最大共振波长和最小共振波长;
(4)通过将所述最大共振波长向长波长方向移动第一距离后获得下次扫描区域的波长上限,通过将所述最小共振波长向短波长方向移动第二距离后获得下次扫描区域的波长下限,并根据所述波长上限和所述波长下限获得下次扫描的波长范围;
(5)确定扫描步长;
(6)在所述下次扫描的波长范围内,根据步骤(5)确定的扫描步长,在该参数下对局部光谱区域进行快速扫描并记录该扫描光谱所对应二维图像;
(7)对局部扫描图像,重复执行步骤(2)~(6),获得不同时刻的所有传感位置的共振波长,并获得二维波长敏感SPR 传感图像。
更进一步地,在步骤(1)与步骤(2)之间还包括如下步骤:获得所述二维图像中的局部临近像素的平均值,并根据平均值获得像素更少的新的二维图像。
更进一步地,步骤(2)具体为:
根据所述二维图像和与图像对应的像素获得SPR光谱曲线;
通过拟合和插值分别获得每条SPR光谱曲线的强度最小值,即对应传感位置的共振波长。
更进一步地,步骤(4)中,所述第一距离和所述第二距离的范围为3nm~50nm。
更进一步地,步骤(5)中确定扫描步长具体为:在最大共振波长和最小共振波长之间的波长范围内步长为小步长,如0.01nm-2nm,在该区域以外采用大步长,如3nm-20nm,步长也是可以变化的。
有益效果
通过本发明所构思的以上技术方案,与现有技术相比,由于该技术能够对任意局部光谱区域进行快速扫描,并且根据SPR 共振波长变化自动改变扫描光谱范围,实现了二维阵列的快速光谱SPR 探测,可以同时对多种生物分子的相互作用进行实时地监测,具有高通量、快速检测的优势。
附图说明
图1为完整SPR光谱曲线;其中,λa λb 分别是最小、最大共振波长 , χ1, χ2 为常数;
图2 为局部SPR光谱曲线;其中,λai λbi 分别是最小、最大共振波长, χ1, χ2 为常数;
图3 为共振波长追踪示意图;
图4 为光谱诊断SPR成像系统原理图;
图5 动态范围实验结果;
图6 蛋白相互作用测量曲线。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明针对共振光谱曲线在共振波长附近进行局部光谱扫锚,减小了扫描光谱范围。但采用目前现有的固定扫描范围,若选取我们提出的小的光谱扫描范围,且该范围是固定不变的,那么随着生物反应进行,需要探测共振波长将会逐渐超出扫锚范围,而无法探测,所以目前无法实现小的光谱范围扫描。针对这点,本发明又提出扫描光谱范围反馈技术,来实时追踪共振光谱,提高共振波长诊断速度。
本发明提出一种具有扫描范围反馈的功能的步长灵活可调的局部特征光谱扫描技术,采用只扫描包含共振波长的在共振波长附近的光谱子区间,通过上一次测量获得的所有共振波长中的最大共振波长和最小共振波长确定当前的扫描光谱范围,然后根据获得的当前扫描的SPR光谱轮廓寻找所有共振波长中的最大共振波长和最小共振波长,再确定下一次扫描的扫描光谱范围,依次不断循环往复,可以动态跟踪所有SPR波长。
同时,为了确保所有共振波长始终都在扫描范围内,每次确定扫描范围时,均在所获的最大共振波长处向长波方向扩展一个波长范围,在最小共振波长处向短波长方向扩展一个波长范围,扩展后形成新的波长范围为扫描范围,扩展的波长范围可以根据最终SPR局部光谱曲线获取时间设定,可大可小,十分灵活,该获取时间正比于扫描波长数与每个波长的扫描时间的乘积,扩展范围越大,该获取时间越长。由于共振波长诊断精度主要受光谱扫描范围和共振点附近扫描点密度影响,因此,我们还提出步长灵活可调的扫描技术,在共振点附近采用小步长(≤2nm)精扫描,提高扫描精度和后期数据处理精度,在远离共振点区域采用大步长(>2nm)粗扫描,提高扫描速度,既保证了区域,又实现了高精度。特别的,扫描器采用快速响应的分子机制可调滤波器,能够在几十毫秒甚至更短时间完成输出波长切换,而且能够电控切换扫描区域和步长,保证上述方法实现,目前主要有液晶可调滤光片,电光可调滤光片,声光可调滤光片以及F-P可调滤光片等。
具体步骤包括:
1) 在整个工作光谱段(550nm-750nm)上以等步长方式并行扫描并记录对应波长的传感芯片的二维图像,如图1所示;
2) 将获得的图像对应像素构成光谱-强度曲线,构成一系列SPR完整光谱曲线,也可以将步骤1获得的图像,先对局部临近像素计算平均值,构成像素更少的新的二维图像,然后将新构成的二维图像的对应像素构成光谱-强度曲线,即可获得信噪比更高的SPR光谱曲线;
3) 先后通过拟合和插值分别获得每条SPR曲线的强度最小值,即对应传感位置的共振波长;
4) 比较获得的所有共振波长的最大共振波长和最小共振波长;
5) 将最大共振波长向长波长移动一段距离,此时的波长为下次扫描区域的波长上限,并将最小共振波长向短波长方向移动一段距离,此时的波长为下次扫描区域的波长下限,至此,确定出下次扫描的波长范围为波长下限到波长上限之间范围;向长波方向移动的距离和向短波长方向移动的距离可以相同,也可以不同,通常选择3nm—50nm之间。
6) 确定扫描步长,在步骤3确定的最大共振波长和最小共振波长之间的波长范围内步长为小步长,如0.01nm-2nm,在该区域以外采用大步长,如3nm-20nm,步长也是可以变化的;
7) 在步骤4确定的波长范围内进行局部快速扫描和记录对应二维图像,类似于步骤1,只是扫描范围和扫描步长不同;
8) 针对局部扫描图像,进行步骤2-7,不断获得不同时刻的所有传感位置的共振波长,形成共振波长随时间变化曲线。也可以将每个传感位置的共振波长变化作为像素值,即可获得二维波长敏感SPR 传感图像。
为了简化图像分析,我们以单点为例,进一步说明共振波长追踪过程。共振波长追踪过程如图3所示,随着传感面分子相互作用,传感面的折射率将发生变化,曲线1-k分别代表不同时刻扫描获得局部SPR光谱曲线。反应开始时的局部扫描范围为[λ01,λ02 ],对应局部SPR曲线为曲线1(点线),当折射率变化使共振波长将从λ0移动到λ1,此时对应的扫描区间也将自动变化为[λ11,λ12 ],对应局部SPR曲线为曲线2,此时,折射率变化使共振波长将从λ1移动到λ2,此时对应的扫描区间也将自动变化为[λ21 ,λ22 ],对应局部SPR曲线为曲线3,以此规律,循环往返,通过扫描反馈方法,实现共振波长追踪。
本发明还提供了一种SPR检测系统,其结构如图4所示,包括:光纤输出宽带光源Halogen Lamp,准直透镜组(L1,L2),快速可调光学滤波器MF,起偏器,SPR传感单元,成像透镜组,检偏器和面阵探测器。
宽带光源为卤素灯、白光光源、以及激光激发荧光粉产生光源,发出光谱连续的宽带光550nm-800nm,透镜L1和L2 为准直透镜组,将光源发出的光耦合进入多模光纤MF,多模光纤MF出射端位于透镜L3的焦面上,L3将出射光收集、准直,然后由透镜L4再次汇聚在其焦平面上,孔径光阑位于透镜L4焦平面,仅允许聚焦光点通过,其他杂散光被挡掉,起到空间滤波作用,透镜L5与透镜L4共焦面,用于准直孔径光阑滤波后的光波,液晶可调光学滤波器LCTF用于电控快速任意波长滤波,实现光谱快速无机械运动的窄带光谱(0.1-20nm)扫描输出,偏振片P1 用于进一步提高P光偏振度,抑制S光,P偏振光经棱镜耦合照射到棱镜表面的一薄层金属传感膜,由传感膜反射回的P偏振光经透镜L6收集,经检偏器P2进行检偏,使P偏振光通过,再由透镜L7耦合到CCD相机,L6与L7 构成成像镜组,使传感面成像到CCD相机。反馈回路用于反馈扫描光谱范围,确保计算机能够根据反馈回的扫描范围设置液晶可调光学滤波器的扫描光谱范围。在确定光谱扫描范围后,液晶可调光学滤波器将按照指定工作模式进行光谱扫描输出,CCD相机同时记录每个输出光谱对应的传感膜反射的光强度,这样获得一些列强度图像,每个图像的相同位置的像素组成强度随光波长变化曲线,即该位置的SPR光谱轮廓曲线,这样,这一系列二维CCD图像将构成一系列SPR光谱轮廓曲线,而且图像的每个像素对应着传感膜表面上一个传感位点,这一系列SPR光谱轮廓曲线对应传感膜表面上的所有传感位点。
在本发明实施例中,液晶可调光学滤波器的工作模式有两种,(一)等步长扫描模式,在指定扫描范围内扫描步长不变,不断改变输出中心波长,实现光谱扫描;(二)变步长扫描模式,在指定扫描范围内扫描步长发生变化,在共振点附近区域以小步长(如0.01nm-2nm)精扫描,提高共振光谱诊断精度,在偏离共振点区域采用大步长(如3nm-20nm),提高扫描速度。
根据获得的一系列SPR光谱轮廓曲线,通过数据拟合和插值算法,诊断出每条曲线的SPR共振波长,根据这些共振波长可以产生新的扫描范围,产生方法有多种:(1)最大共振波长和最小共振波长法,即从这些共振波长中找出最小共振波长Lamdamin和最大共振波长Lamdamax,再将最大共振波长向长波方向移动一段距离(如8nm),即对应波长Lamdamax+8,和最小共振波长向短波方向移动一段距离(如8nm),即对应波长Lamdamin-8,即,新的光谱扫描范围为[Lamdamin-8,Lamdamax+8];(2)共振波长平均值法,即对所有共振波长求平均值,获得平均共振波长Lamdaave,将平均共振波长向长波方向移动一段距离,即对应的波长为Lamdaave+10nm,将平均共振波长向短波方向移动一段距离,即对应的波长为Lamdaave-10nm,即,新的光谱扫描范围为[Lamdaave-10,Lamdaave+10];这里,移动距离可以根据测量时间任意确定,如需要快速测量,需要选择小于10nm,如对测量时间没要求,可以选择大的移动距离,如20 nm。
通过反馈回路将新的扫描范围重新设置液晶可调光学滤波器,使其在新的扫描范围扫描,进而又获得一组二维CCD图像,以及对应的一系列新的共振波长,再重新获得新的扫描光谱范围,因此,循环上述过程,可以不断获得新的一系列共振波长,通监测共振波长变化,即可实现膜表面生物分子相互作用探测。
如图5所示,针对传感芯片9个不同位置点进行了动态范围测试,结果表明各位置的动态范围相同,一致性好。
为了更进一步地说明本发明实施例提供的SPR检测装置及方法,先结合具体应用实例详述如下:在传感膜表面的两个位点修饰上相同浓度的兔IgG蛋白分子,同时选取其他任意两个位点(没有修饰蛋白)作为参考,当流入PBS 缓冲液时,不发生相互作用,SPR信号为水平基线(第一段曲线),当含羊抗兔IgG蛋白分子的溶液流过传感膜表面时,对应SPR信号发生明显曲线变化,再通入PBS溶液SPR信号曲线变化为水平线段(第三段水平线段),而且其幅值远高于起始段幅值(如图6中曲线1,2 曲线段),说明修饰兔IgG的位点发生了分子相互作用。而没有修饰IgG的位点SPR信号跳变到第二段水平线段,再通入PBS溶液曲线又回到起始阶段幅值的水平线段(如图6中曲线3,4曲线段),说明没有发生分子相互作用。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种SPR检测系统,其特征在于,包括:
    光源(17),用于发射光谱连续的宽带光;
    第一准直透镜组(1,2),用于对所述宽带光进行准直后聚焦;
    多模光纤MF(10),其入射端设置在所述第一准直透镜组的输出焦平面上,用于对经过所述第一准直透镜组聚焦后的光进行耦合;
    第二准直透镜组(3,4),其输入焦平面上设置有所述多模光纤MF的出射端,用于对耦合后的光进行准直后聚焦;
    孔径光阑DA(11),位于所述第二准直透镜组的输出焦平面上,用于对经所述第二准直透镜组聚焦后的光进行空间滤波后获得聚焦的光;
    透镜L5(5),与所述第二准直透镜组共焦面设置,用于对所述聚焦光点进行准直处理;
    液晶可调光学滤波器(12),用于对光源发出的宽带光进行滤波后获得窄带光;
    偏振片P1(8),用于对所述窄带光进行偏振作用,以获得偏振态的入射光;
    SPR传感单元,包括棱镜(13)、金膜(18)和流通池(14);所述棱镜(13)对入射光进行耦合后激发所述金膜(18)表面的等离子体共振,由所述流通池(14)使待测样品通过所述金膜(18)表面,从而进行检测;
    透镜L6(6),用于对经所述SPR传感单元的反射光进行收集、准直;
    检偏器P2(9),用于消除反射光中的杂散光,提高信噪比;
    透镜L7(7),用于将偏振光进行汇聚;
    面阵探测器(15),置于所述透镜L7的焦面,用于记录汇聚后的光谱的强度;
    控制模块(16),输入端用于接收所述面阵探测器采集的光图像,并对其进行处理后输出用于调整所述液晶可调光学滤波器的扫描光谱范围的反馈控制信号。
  2. 如权利要求1所述的SPR检测系统,其特征在于,所述第一准直透镜组包括依次同轴设置的透镜L1和透镜L2。
  3. 如权利要求1所述的SPR检测系统,其特征在于,所述第二准直透镜组包括依次同轴设置的透镜L3和透镜L4。
  4. 如权利要求1-3任一项所述的SPR检测系统,其特征在于,工作时,当确定光谱扫描范围后,所述液晶可调光学滤波器按照指定工作模式进行光谱扫描输出,由面阵探测器同时记录每个输出光谱对应的SPR传感单元反射的光强度,并获得多个强度图像,每个图像的相同位置的像素组成强度随光波长变化曲线即为该位置的SPR光谱轮廓曲线。
  5. 一种SPR检测方法,其特征在于,包括下述步骤:
    (1)在整个工作光谱段上以等步长方式并行扫描并记录对应波长的传感芯片的二维图像;
    (2)根据所述二维图像和与图像对应的像素获得对应传感位置的共振波长;
    (3)获得所有共振波长中的最大共振波长和最小共振波长;
    (4)通过将所述最大共振波长向长波长方向移动第一距离后获得下次扫描区域的波长上限,通过将所述最小共振波长向短波长方向移动第二距离后获得下次扫描区域的波长下限,并根据所述波长上限和所述波长下限获得下次扫描的波长范围;
    (5)确定扫描步长;
    (6)在所述下次扫描的波长范围内,根据步骤(5)确定的扫描步长,在该参数下对局部光谱区域进行快速扫描并记录该扫描光谱所对应二维图像;
    (7)对局部扫描图像,重复执行步骤(2)~(6),获得不同时刻的所有传感位置的共振波长,并获得二维波长敏感SPR 传感图像。
  6. 如权利要求5所述的SPR检测方法,其特征在于,在步骤(1)与步骤(2)之间还包括如下步骤:获得所述二维图像中的局部临近像素的平均值,并根据平均值获得像素更少的新的二维图像。
  7. 如权利要求5或6所述的SPR检测方法,其特征在于,步骤(2)具体为:
    根据所述二维图像和与图像对应的像素获得SPR光谱曲线;
    通过拟合和插值分别获得每条SPR光谱曲线的强度最小值,即对应传感位置的共振波长。
  8. 如权利要求5-7任一项所述的SPR检测方法,其特征在于,步骤(4)中,所述第一距离和所述第二距离的范围为3nm~50nm。
  9. 如权利要求5-8任一项所述的SPR检测方法,其特征在于,步骤(5)中确定扫描步长具体为:在最大共振波长和最小共振波长之间的波长范围内步长为小步长,如0.01nm-2nm,在该区域以外采用大步长,如3nm-20nm,步长也是可以变化的。
PCT/CN2016/107235 2016-01-26 2016-11-25 一种spr检测系统及方法 WO2017128823A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/992,182 US10393657B2 (en) 2016-01-26 2018-05-30 SPR detection system and method
US16/504,964 US10578554B2 (en) 2016-01-26 2019-07-08 Spectrum-scanned SPR imaging detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610053230.3 2016-01-26
CN201610053230.3A CN105486665B (zh) 2016-01-26 2016-01-26 一种spr检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/992,182 Continuation US10393657B2 (en) 2016-01-26 2018-05-30 SPR detection system and method

Publications (1)

Publication Number Publication Date
WO2017128823A1 true WO2017128823A1 (zh) 2017-08-03

Family

ID=55673789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107235 WO2017128823A1 (zh) 2016-01-26 2016-11-25 一种spr检测系统及方法

Country Status (3)

Country Link
US (2) US10393657B2 (zh)
CN (1) CN105486665B (zh)
WO (1) WO2017128823A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486665B (zh) 2016-01-26 2018-07-31 深圳大学 一种spr检测方法
CN106052869B (zh) * 2016-05-18 2018-10-09 中国电子科技集团公司第四十一研究所 一种基于渐变滤光片分光的红外光谱辐射计
CN107764776B (zh) * 2017-04-18 2020-05-05 南京大学 多波长可调式表面等离子体共振成像装置及其应用
CN107219199A (zh) * 2017-07-24 2017-09-29 深圳大学 基于4f系统的新型角度调制spr成像系统
CN109738395A (zh) * 2019-01-11 2019-05-10 重庆大学 应用光色散的spr检测装置及spr检测方法
CN113924474A (zh) * 2019-05-23 2022-01-11 东京毅力科创株式会社 使用高光谱成像的半导体过程的光学诊断
CN110927122B (zh) * 2019-12-05 2022-07-05 深圳大学 一种基于干涉光谱的相位型spr检测装置及方法
CN110927121B (zh) * 2019-12-05 2022-07-05 深圳大学 一种基于白光干涉光谱的相位型spr检测装置及方法
CN111812063B (zh) * 2020-07-16 2022-11-04 中国计量大学 一种金属漆表面闪光效果的评价方法及测量装置
CN112098371A (zh) * 2020-09-15 2020-12-18 深圳大学 一种基于双波长差值的强度型SPRi传感系统及方法
CN112525862B (zh) * 2020-11-20 2022-06-10 中国科学院空天信息创新研究院 表面电磁模式共振高光谱成像传感器的共振波长确定方法
CN112858223A (zh) * 2021-01-11 2021-05-28 深圳大学 一种基于纳米光热镊技术的spr传感装置及方法
CN113108696A (zh) * 2021-04-06 2021-07-13 合肥埃科光电科技有限公司 一种光源波长扫描光谱共焦传感器
CN114544557A (zh) * 2022-03-03 2022-05-27 南京邮电大学 一种宽光谱高灵敏度高通量生物化学传感器及其传感方法
CN116026760B (zh) * 2022-11-23 2023-10-31 广东工业大学 一种波长型spr传感系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393689A (zh) * 2001-06-21 2003-01-29 周晟 外差干涉式表面等离子体波感测装置及方法
CN101477045A (zh) * 2009-01-16 2009-07-08 南京航空航天大学 基于p偏振光的棱镜spr传感器检测系统
CN101865840A (zh) * 2010-06-07 2010-10-20 深圳国际旅行卫生保健中心 一种表面等离子体共振成像传感系统
EP2623958A1 (en) * 2010-09-30 2013-08-07 Konica Minolta Holdings, Inc. Surface plasmon resonance fluorometry device and surface plasmon resonance fluorometry method
EP2846154A1 (en) * 2012-05-01 2015-03-11 Seiko Epson Corporation Optical device and detection apparatus
CN105486665A (zh) * 2016-01-26 2016-04-13 深圳大学 一种spr检测系统及方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814811C1 (de) * 1998-04-02 1999-08-05 Inst Physikalische Hochtech Ev Anordnung für die Oberflächenplasmonen-Resonanz-Spektroskopie
JP2000180354A (ja) * 1998-12-18 2000-06-30 Mitsubishi Heavy Ind Ltd 表面プラズモン共鳴を利用した有害ハロゲン化合物計測方法
US6330062B1 (en) * 1999-04-30 2001-12-11 Wisconsin Alumni Research Foundation Fourier transform surface plasmon resonance adsorption sensor instrument
DE50112007D1 (de) 2000-02-22 2007-03-22 Santhera Pharmaceuticals Deuts Spr-sensorsystem
US7193711B2 (en) * 2000-07-11 2007-03-20 Maven Technologies, Llc Imaging method and apparatus
WO2004040717A2 (en) * 2002-10-28 2004-05-13 University Of Washington Wavelength tunable surface plasmon resonance sensor
WO2005078415A1 (ja) * 2004-02-13 2005-08-25 Omron Corporation 表面プラズモン共鳴センサー
JP4505279B2 (ja) * 2004-08-02 2010-07-21 富士フイルム株式会社 試料分析用測定装置および測定方法
US7317519B2 (en) * 2004-10-29 2008-01-08 Agilent Technologies, Inc. Swept-angle SPR measurement system
CN100487137C (zh) * 2004-12-30 2009-05-13 南开大学 基于片上pcr的多通道表面等离子共振影像传感器的检测方法
US20090010589A1 (en) * 2005-08-30 2009-01-08 Robertson William M Optical sensor based on surface electromagnetic wave resonance in photonic band gap materials
JP2007263901A (ja) * 2006-03-30 2007-10-11 Dkk Toa Corp 表面プラズモン共鳴測定装置
JP5397577B2 (ja) * 2007-03-05 2014-01-22 オムロン株式会社 表面プラズモン共鳴センサ及び当該センサ用チップ
US20100045996A1 (en) * 2007-03-23 2010-02-25 Canon Kabushiki Kaisha Sensing apparatus
US7570362B2 (en) * 2007-09-28 2009-08-04 Olympus Corporation Optical measurement apparatus utilizing total reflection
US20110188043A1 (en) * 2007-12-26 2011-08-04 Yissum, Research Development Company of The Hebrew University of Jerusalem, Ltd. Method and apparatus for monitoring processes in living cells
JP5344828B2 (ja) * 2008-02-28 2013-11-20 富士フイルム株式会社 センシング装置
CN101294900B (zh) * 2008-05-27 2011-08-24 杭州电子科技大学 高精细度腔表面等离子体共振传感装置
KR100996450B1 (ko) * 2008-08-21 2010-11-25 한국과학기술연구원 표면 플라즈몬 공명의 원리를 이용한 산소센서와 표면 플라즈몬 공명의 원리를 이용한 산소센서가 포함된 산소투과도 측정장치
CN201262615Y (zh) * 2008-09-12 2009-06-24 中国人民解放军第三军医大学 病原微生物快速检测装置
US8982353B2 (en) * 2008-09-30 2015-03-17 Valorisation-Recherche, Limited Partnership High resolution surface plasmon resonance instrument using a dove prism
US20120133943A1 (en) * 2010-11-29 2012-05-31 Norman Henry Fontaine Systems And Methods For Multi-Wavelength SPR Biosensing With Reduced Chromatic Aberration
US8937721B2 (en) * 2011-01-20 2015-01-20 National Institute Of Advanced Industrial Science And Technology Sensing device
CN102253014A (zh) * 2011-04-15 2011-11-23 深圳大学 表面等离子体共振传感检测系统和方法
KR20130061776A (ko) * 2011-12-01 2013-06-12 지에스건설 주식회사 표면 플라즈몬 공명을 이용한 초소형 분자각인 가스센서 장치
WO2013161199A1 (ja) * 2012-04-27 2013-10-31 パナソニック株式会社 光学的センサとその製造方法、及びこれを用いた検出方法
CN103389284B (zh) * 2012-05-09 2016-03-02 深圳大学 表面等离子体共振系统和其检测方法
CN102735617B (zh) * 2012-06-29 2014-06-04 浙江大学 一种超分辨显微方法和装置
CN102944537B (zh) * 2012-10-23 2016-04-06 深圳大学 一种基于spr的检测系统及其检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1393689A (zh) * 2001-06-21 2003-01-29 周晟 外差干涉式表面等离子体波感测装置及方法
CN101477045A (zh) * 2009-01-16 2009-07-08 南京航空航天大学 基于p偏振光的棱镜spr传感器检测系统
CN101865840A (zh) * 2010-06-07 2010-10-20 深圳国际旅行卫生保健中心 一种表面等离子体共振成像传感系统
EP2623958A1 (en) * 2010-09-30 2013-08-07 Konica Minolta Holdings, Inc. Surface plasmon resonance fluorometry device and surface plasmon resonance fluorometry method
EP2846154A1 (en) * 2012-05-01 2015-03-11 Seiko Epson Corporation Optical device and detection apparatus
CN105486665A (zh) * 2016-01-26 2016-04-13 深圳大学 一种spr检测系统及方法

Also Published As

Publication number Publication date
US20180275055A1 (en) 2018-09-27
US20190331599A1 (en) 2019-10-31
CN105486665B (zh) 2018-07-31
US10578554B2 (en) 2020-03-03
CN105486665A (zh) 2016-04-13
US10393657B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2017128823A1 (zh) 一种spr检测系统及方法
JP3303100B2 (ja) 光学センサー
US4905169A (en) Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
WO2015135415A1 (zh) 分光瞳激光差动共焦布里渊-拉曼光谱测量方法及装置
CN106896095B (zh) 复合表面等离子体共振及表面增强拉曼的显微成像技术
CN101915750B (zh) 基于spr干涉成像的生物分子相互作用检测方法及系统
CN1312476C (zh) 空间相位调制干涉阵列检测生物芯片的方法及系统
WO2010062149A2 (en) Multi-channel surface plasmon resonance sensor using beam profile ellipsometry
CN102227626A (zh) 使用道威棱镜的高分辨率表面等离子体共振仪器
CN110927121B (zh) 一种基于白光干涉光谱的相位型spr检测装置及方法
CN107764776B (zh) 多波长可调式表面等离子体共振成像装置及其应用
KR20190118603A (ko) 높은 공간 해상도의 일립소메트리에서 사용하기 위한 시스템 및 방법
TWI322887B (en) Apparatus and method for detecting surface plasmon resonance
CN1963464A (zh) 全内反射式椭偏成像装置和成像方法
EP1593955A2 (en) Wavelength-tuned intensity measurement with a surface plasmon resonance sensor
CN107219199A (zh) 基于4f系统的新型角度调制spr成像系统
CN116256377A (zh) 基于圆二向色性的暗场共焦显微测量装置与方法
WO2005062008A1 (en) System and method for measuring birefringence in an optical material
CN107219191B (zh) 一种基于傅里叶变换的斜入射光反射差装置
CN209264563U (zh) 一种折射率显微测量系统
CN104237169B (zh) 一种基于外场调制的spr检测系统的检测方法
CN100538338C (zh) 试样中的配体的分析方法和分析试样中的配体的装置
CN112098371A (zh) 一种基于双波长差值的强度型SPRi传感系统及方法
TWI707133B (zh) 表面電漿影像化的方法及裝置
CN215833252U (zh) 一种基于数字微镜器件的波长调制型spr传感器及spr检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16887694

Country of ref document: EP

Kind code of ref document: A1