WO2017128297A1 - 压电陶瓷气泵及其构筑方法 - Google Patents

压电陶瓷气泵及其构筑方法 Download PDF

Info

Publication number
WO2017128297A1
WO2017128297A1 PCT/CN2016/072799 CN2016072799W WO2017128297A1 WO 2017128297 A1 WO2017128297 A1 WO 2017128297A1 CN 2016072799 W CN2016072799 W CN 2016072799W WO 2017128297 A1 WO2017128297 A1 WO 2017128297A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
outlet
inlet
pump
pump body
Prior art date
Application number
PCT/CN2016/072799
Other languages
English (en)
French (fr)
Inventor
魏天生
Original Assignee
深圳市兴日生实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市兴日生实业有限公司 filed Critical 深圳市兴日生实业有限公司
Priority to PCT/CN2016/072799 priority Critical patent/WO2017128297A1/zh
Priority to EP16887181.2A priority patent/EP3306090B1/en
Priority to US15/742,495 priority patent/US20180209412A1/en
Publication of WO2017128297A1 publication Critical patent/WO2017128297A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/043Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/01Pressure before the pump inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • F04B53/1047Flap valves the valve being formed by one or more flexible elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/22Arrangements for enabling ready assembly or disassembly

Definitions

  • This invention relates to a variable displacement elastic fluid pump, and more particularly to an air pump for AC electric power to drive piezoelectric ceramic sheet vibration.
  • the prior art piezoelectric ceramic air pump utilizes the tensile bending deformation of the piezoelectric ceramic sheet to cause a change in the volume of the pump chamber, and squeezes the fluid in the chamber to suck and discharge the fluid.
  • the piezoceramic air pump continuously opens and closes the intake valve and the outlet valve to achieve continuous negative pressure suction and pressure discharge.
  • the gas path design of the prior art piezoelectric ceramic air pump usually requires an air suction chamber and an exhaust chamber as a buffer space for inhaling and exhausting, and usually has independent inlet and outlet gas pipes and components, and the loop structure of the gas flowing through is complicated.
  • the internal airflow resistance is too large, which reduces the operating efficiency of the air pump, and the air pump flow is small.
  • the technical problem to be solved by the invention is to avoid the insufficiency of the gas circuit design of the prior art piezoelectric ceramic gas pump, the low resistance, the low operating efficiency of the gas pump, and the small flow rate, and propose a high-performance, small volume pressure.
  • the design of the electric ceramic gas pump includes a pump body, a piezoelectric ceramic crystal film, and inlet and outlet valves; the piezoelectric ceramic crystal film is mounted on the pump body at a central axis,
  • the piezoelectric ceramic air pump constructs a working pump chamber; the pump body is substantially tubular, but the diameter is much larger than the axial length, and at one of its surrounding walls, there is a connection for connecting the working pump chamber and the external air passage, An air outlet; the inlet and outlet valves are installed at the inlet and outlet ports.
  • the piezoelectric ceramic crystal film is only used for one piece; the piezoelectric ceramic crystal film is fixed and fixed on the pump body by the lower pump cover, and is sealed and enclosed to form a working pump cavity.
  • the piezoelectric ceramic crystal film is provided with two pieces, including upper and lower piezoelectric ceramic crystal films; the upper and lower piezoelectric ceramic crystal films are respectively fixed on the pump body by the upper and lower pump covers.
  • the upper and lower piezoelectric ceramic crystal diaphragms are disposed opposite to each other with the outer surface of the metal substrate facing the central axis, and are sealed with the pump body to form a common working pump chamber.
  • the inlet and outlet ports are adjacent or not adjacent to the surrounding wall disposed on one side of the pump body, or the inlet and outlet ports are oppositely disposed on the surrounding walls of the diameter line of the pump body.
  • the piezoelectric ceramic air pump further includes an inlet and outlet member for the inlet and outlet valves (minutes) Do not press on the inlet and outlet ports, so that the inlet and outlet holes on the inlet and outlet parts are connected to the inlet and outlet valves, and the inlet and outlet ports are connected to form an inlet and outlet passage connected with the external air passage;
  • the inlet and outlet valves are independently formed, or are formed into an integrated valve piece having a positioning hole for fitting and positioning on the surrounding wall of the pump body.
  • the piezoelectric ceramic crystal film is sealed with the pump body by a first sealing ring respectively located on one side thereof to form a working pump chamber; the lower pump cover is locked and fixed to the pump body by the second sealing ring.
  • the pump body is provided with a spacer for supporting and isolating and paralleling the upper and lower piezoelectric ceramic crystal diaphragms, and the spacer is provided with an opening adjacent to the inlet and outlet valves, so that the working pump chamber is
  • the upper and lower piezoelectric ceramic crystal films are shared; the upper and lower piezoelectric ceramic crystal films are respectively pressed onto the spacer by means of the third and fourth sealing rings, and are sealed and enclosed by the opening through the opening.
  • the working pump chamber is transversely shaped like a letter U.
  • the inner wall of the pump is coaxially disposed with an annular boss that supports the upper and lower piezoelectric ceramic crystal films and protrudes inward, and the upper and lower piezoelectric ceramic crystal films are respectively sealed by the third and fourth seals.
  • the ring press fits on the annular boss to seal with the pump body to form an oblate working pump chamber; the upper and lower pump covers are respectively press-fitted and fixed to the pump body by the fifth and sixth sealing rings.
  • the end portion of the air outlet on the pump body has a toroidal arc shape, and the air outlet valve is closed when the air outlet valve is closed, and the air outlet valve is closed; the end of the air inlet and outlet of the air inlet and outlet member
  • the toroidal arc is also closed to make the intake valve close when the intake valve is closed and is in line contact with the end of the intake hole.
  • the piezoelectric ceramic crystal film further includes an insulating layer and a silver plating layer disposed on the metal substrate, the piezoelectric ceramic layer is disposed between the insulating layer and the silver plating layer, and the electrodes of the piezoelectric ceramic crystal film are respectively separated from the metal base The sheet and the silver plating layer are taken out.
  • the design of the present invention to solve the prior art problem may also be a construction method of a piezoelectric ceramic air pump based on a main body structure including a pump body, a piezoelectric ceramic crystal film, and inlet and outlet valves; the piezoelectric ceramic crystal
  • the diaphragm is mounted centrally in the pump body to construct a working pump chamber for the piezoelectric ceramic air pump; the method includes the following step A: placing the inlet and outlet ports for connecting the working pump chamber and the external air passage adjacent to each other On the side wall of the pump body, the inlet and outlet valves are installed at the inlet and outlet ports.
  • the method for constructing a piezoelectric ceramic air pump further includes the step B: the piezoelectric ceramic crystal film is loaded with two pieces, including upper and lower piezoelectric ceramic crystal films; the upper and lower piezoelectric ceramics; The crystal diaphragms are disposed opposite to each other on the outer surface of the metal substrate, and are sealed with the pump body to form a common working pump chamber.
  • the method for constructing a piezoelectric ceramic air pump further includes the step C: the pump body is provided with a spacer for supporting and isolating and paralleling the upper and lower piezoelectric ceramic crystal films, the spacer being adjacent to the Openings are provided at the inlet and outlet valves, resulting in a reduction in the dead space of the shared working pump chamber and improved pumping efficiency.
  • the method for constructing a piezoelectric ceramic air pump further includes the step D: when the upper and lower piezoelectric ceramic crystal films are applied with an alternating excitation voltage, the two upper and lower piezoelectric ceramic crystal films are at each power source. Axial motion with simultaneous compression or opposite expansion in a half cycle period.
  • the method for constructing the piezoelectric ceramic air pump further includes the step E: pressing the inlet and outlet valves (combined on the inlet and outlet ports respectively, so that the inlet and outlet holes on the inlet and outlet parts are in the same direction and in the outlet;
  • the valve and the inlet and outlet ports are connected to form an inlet and outlet passage connected with the external air passage;
  • the inlet and outlet valves are formed as an integral valve piece, and a positioning hole is arranged thereon for fitting and positioning on the surrounding wall of the pump body .
  • the beneficial effects of the present invention are as follows: 1.
  • An air inlet and outlet port for connecting the working pump chamber and the external air passage is disposed on the surrounding wall of the pump body, and the inlet and outlet air valves are disposed thereon to make the working pump chamber
  • the inlet and outlet gas path with the external fluid is reduced to the extreme, shortening the length of the fluid flowing through the pipeline, reducing the resistance of the fluid pipeline, reducing the dead space of the system, and improving the efficiency of fluid pumping;
  • the number of electric ceramic crystal diaphragms can be configured as one or two pieces according to the flow rate required for practical applications.
  • the two types of piezoelectric ceramic crystal diaphragms can share a plurality of components, which reduces the cost of producing air pumps of different flow rates.
  • FIG. 1 is a schematic plan view of a preferred embodiment of a piezoelectric ceramic air pump according to a first embodiment of the present invention, in which the upper pump cover 21 is partially removed, and the removed portion exhibits a partial cross section;
  • Figure 2 is a schematic exploded perspective view of the exploded state of the preferred embodiment 1;
  • Figure 3 is a schematic perspective view showing the exploded state of the preferred embodiment after the upper and lower pump covers 21 and 23 are removed;
  • Figure 4 is a front elevational view of the D-D section of Figure 1 of the preferred embodiment
  • Figure 5 is a front elevational view of the D-D section of Figure 1 of the preferred embodiment 3;
  • Figure 6 is a front elevational view of the E-E section of Figure 4 or Figure 5;
  • Figure 7 is an enlarged schematic view of a portion A in Figure 1, or a portion J in Figure 13;
  • Figure 8 is a schematic view of Figure 7 in an intake state, in which the direction of the arrow is the direction of intake;
  • Figure 9 is a schematic view of Figure 7 in an outgassing state, in which the direction of the arrow is the direction of the outlet;
  • Figure 10 is a front elevational perspective view of the integrated valve plate 60 of the present invention.
  • Figure 11 is a front elevational front view of the two independently formed intake valve 61 and outlet valve 63 of the present invention.
  • Figure 12 is a schematic exploded view showing the exploded state of the upper and lower pump covers 21 and 23 after the second embodiment is removed;
  • Figure 13 is a top plan view of the orthographic projection of Figure 3, in which the upper piezoelectric ceramic crystal film 51 is partially removed, and the removed portion shows a partial cross section;
  • Figure 14 is a schematic elevational view of the preferred embodiment 2 taken along line H-H of Figure 13;
  • Figure 15 is an enlarged front elevational view of the preferred embodiment 2 after the upper and lower pump covers 21 and 23 are removed from the D-D section of Figure 1, which also shows the circuit connection of two piezoelectric ceramic crystal films;
  • Figure 16 is an enlarged front elevational view showing the cross section of the piezoelectric ceramic crystal film 50 of the present invention.
  • the piezoelectric ceramic crystal film 50 is provided with two sheets, an upper piezoelectric ceramic crystal film 51 and a lower piezoelectric ceramic crystal film.
  • the sheet 53 is respectively fixed on the pump body 10 and the inside of the lower part by the upper pump cover 21 and the lower pump cover 23; the upper and lower piezoelectric ceramic crystal diaphragms are arranged opposite to each other with the outer surface of the metal substrate 91.
  • the pump body 10 is sealed and enclosed to form a common working pump chamber 15.
  • the pump body 10 is provided with a parallel and parallel piezoelectric ceramic crystal film for supporting and isolating.
  • the spacer 14 is provided with an opening 16 adjacent to the inlet and outlet valves, so that the working pump chamber 15 is shared by the upper and lower piezoelectric ceramic crystal films; upper and lower piezoelectric ceramic crystals
  • the diaphragms are respectively pressed onto the spacers 14 by means of a third sealing ring 55 and a fourth sealing ring 57.
  • the opening 16 is sealed with the pump body 10 to form a working pump chamber 15 having a transversely cross-shaped letter U. .
  • the spacer (14) is provided with an opening (16) adjacent to the inlet and outlet valves, so that the shared working pump chamber (15) has a dead space reduced, and the pumping efficiency is improved.
  • the inner wall of the pump body 10 is coaxially disposed to support the upper and lower piezoelectric ceramic crystals.
  • a ring-shaped boss 12 projecting inwardly and inwardly, and the upper and lower piezoelectric ceramic crystal films are respectively pressed onto the annular boss 12 by a third sealing ring 55 and a fourth sealing ring 57 and a pump
  • the body 10 is sealed to form an oblate working pump chamber 15.
  • the upper pump cover 21 and the lower pump cover 23 are press-fitted to the pump body 10 by means of the fifth seal ring 25 and the sixth seal ring 27, respectively.
  • the piezoelectric ceramic crystal film 50 is only used in one piece; the piezoelectric ceramic crystal film 50 is locked and fixed to the pump body by the lower pump cover 23. At 10, it is sealed and enclosed to form a working pump chamber 15.
  • the piezoelectric ceramic crystal film 50 is sealed and enclosed by the first sealing ring 59 on one side thereof to form the working pump chamber 15; the lower pump cover 23 is locked and fixed by the second sealing ring 29 On the pump body 10.
  • the air inlet 17 and the air outlet 18 are adjacent to a wall disposed on one side of the pump body 10; the inlet and outlet member 70 respectively sets the intake valve 61 and the outlet valve 63 Pressing on the inlet and outlet ports, so that the air inlet hole 71 and the air outlet hole 73 of the inlet and outlet member 70 are respectively connected to the inlet and outlet valves, and the inlet and outlet ports are connected to form an air inlet coupled with the external air passage.
  • Channel 81 and outlet passage 83 may also be oppositely disposed on the surrounding walls of the diameter line of the pump body 10.
  • the intake passage 81 has an intake valve movable space 82 on the side of the switch of the intake valve 61; the outlet passage 83 has an outlet valve movable space 84 on the side of the outlet of the outlet valve 63.
  • FIG. 8 is a schematic view showing the intake state of the piezoelectric ceramic air pump.
  • the direction of the arrow in the figure is the direction of the intake air; when the air is injected, that is, when the vibration of the piezoelectric ceramic diaphragm 50 is deformed outward, the volume of the working pump chamber 15 is increased.
  • a negative pressure is formed in the working pump chamber 15, the intake valve 61 is opened by the negative pressure, the outlet valve 63 is suctioned by the negative pressure, and the external fluid sequentially flows through the intake valve 61 and the intake port 71 into the working pump chamber 15.
  • FIG. 9 is a schematic view showing the state of the gas output of the piezoelectric ceramic air pump.
  • the direction of the arrow in the figure is the direction of the air outlet; when the air is injected, that is, when the piezoelectric ceramic diaphragm 50 is deformed into the working pump chamber 15, the working pump chamber 15 is The volume is reduced, a positive pressure is formed in the working pump chamber 15, the intake valve 61 is closed by the positive pressure, the outlet valve 63 is opened by the positive pressure, and the fluid in the working pump chamber 15 sequentially flows through the outlet hole 73 and the outlet valve 63.
  • the intake valve 61 and the outlet valve 63 are combined into an integral valve plate 60; in some embodiments as shown in FIG. 11, the intake valve 61 and the outlet valve 63 are independent, It is also possible to share the intake valve 61 and the outlet valve 63, that is, the intake valve 61 and the outlet valve 63 are the same member.
  • the intake valve 61, the outlet valve 63 or the integrated valve plate 60 have positioning holes 66 for fitting and positioning on the surrounding wall of the pump body 10, so that the intake valve 61 and the pump body 10 are provided.
  • the air inlet 17 on the side wall is accurately aligned so that the air outlet valve 63 can be accurately aligned with the air outlet 18 on the side wall of the pump body 10.
  • the piezoelectric ceramic crystal film 50 further includes an insulating layer 92 and a silver plating layer 94 disposed on the metal substrate 91, and a piezoelectric layer.
  • the ceramic layer 93 is disposed between the insulating layer and the silver plating layer, and the electrodes of the piezoelectric ceramic crystal film are taken out from the metal substrate 91 and the silver plating layer 94, respectively.
  • the construction method of the piezoelectric ceramic air pump when the upper and lower piezoelectric ceramic crystal films are applied with an alternating excitation voltage, the two upper and lower piezoelectric ceramic crystal films are in a half cycle period of each power supply.
  • the piezoelectric ceramic gas pump of the prior art has a small flow rate and a flow rate of 0.3 to 0.5 L/min.
  • the piezoelectric ceramic air pump adopting the technical scheme of the invention has a reasonable gas path layout and improves the operating efficiency of the air pump, and is highly efficient. Micro-small air pump.
  • the preferred design example of the present invention and the prior art electroceramic air pump are subjected to comparative tests under the same conditions, and the results are as shown in Table 1 below: the preferred embodiment of the present invention designs a sample, although the number of piezoelectric ceramic diaphragms is Two, but the actual power consumption is less than twice that of the unimorph ceramic diaphragm, and the output flow rate is greater than twice the flow rate of the unimorph ceramic diaphragm pump. It can be seen that the technical solution of the present invention is superior to the existing one. Technology, flow output capabilities and energy efficiency are also superior to the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

压电陶瓷气泵,包括泵体、压电陶瓷晶体膜片和进、出气阀;所述压电陶瓷晶体膜片共中轴线地安装于泵体上构建成工作泵腔;泵体大致呈管状,惟直径比轴向长度大得多,在其围壁的一处,设置有用于连接工作泵腔和外部气路的进、出气口;进、出气部件将进、出气阀压合在进、出气口上,进出气孔、进出气阀和进出气口联通形成同外部气路联通的进、出气通道;泵体侧壁上的进出气口,使工作泵腔与外部流体之间的进出气路精简,缩短了流体流经管路的长度,降低了管路阻力,减小了死腔体积,提高了流体泵送的效率;压电陶瓷晶体膜片数量可根据实际应用的流量大小需求灵活配置为一或两片,压电陶瓷气泵的共用多个部件,降低了制作不同功率大小气泵的成本。

Description

压电陶瓷气泵及其构筑方法 技术领域
本发明涉及变容式弹性流体泵,尤其涉及交流电力驱动压电陶瓷片振动的气泵。
背景技术
现有技术压电陶瓷气泵是利用压电陶瓷片的拉伸弯曲变形导致泵腔容积变化,对腔体内的流体产生挤压作用而吸入和排出流体。压电陶瓷气泵在工作过程中进气阀和出气阀不断张开和闭合,实现连续的负压吸入和加压排出。
现有技术压电陶瓷气泵的气路设计,通常需要有吸气腔和排气腔作为吸气和排气的缓冲空间,且通常具有独立的进出气管道和部件,气体流经的回路结构复杂;导致内部的气流阻力偏大,降低了气泵的运行效率,气泵流量偏小。
发明内容
本发明要解决的技术问题在于避免上述现有技术压电陶瓷气泵的气路设计复杂、阻力大导致气泵运行效率偏低、流量偏小的不足之处,而提出一种高效能、小体积压电陶瓷气泵的设计方案,该压电陶瓷气泵,包括泵体、压电陶瓷晶体膜片和进、出气阀;所述压电陶瓷晶体膜片共中轴线地安装于泵体上,为所述压电陶瓷气泵构建了工作泵腔;所述泵体大致呈管状,惟直径比轴向长度大得多,在其围壁的一处,设置有用于连接工作泵腔和外部气路的进、出气口;所述进、出气阀安装在所述进、出气口部位。
所述压电陶瓷晶体膜片只装用一片;该压电陶瓷晶体膜片借助下泵盖卡合固定在泵体上,与之密封围合、构成工作泵腔。
所述压电陶瓷晶体膜片装用两片,包括上、下压电陶瓷晶体膜片;该上、下俩压电陶瓷晶体膜片分别借助上、下泵盖卡合固定在泵体上、下俩部位内侧;所述上、下压电陶瓷晶体膜片以其金属基片外表面共中轴线地相向设置,与泵体密封围合构成共用的工作泵腔。
所述进出气口毗邻或不毗邻设置在泵体一侧的围壁上,或者令所述进、出气口相对设置在泵体直径线两端围壁上。
所述的压电陶瓷气泵,还包括进出气部件,用于将进、出气阀(分 别压合在所述进、出气口上,从而使该进、出气部件上的进、出气孔同进、出气阀和进、出气口贯通,形成同外部气路联接的进、出气通道;所述进、出气阀各自独立成型,或制成一体化阀片,其上有定位孔,用于在泵体围壁上嵌合定位。
所述压电陶瓷晶体膜片借助分别位于其一面的第一密封圈与泵体密封围合构成工作泵腔;所述下泵盖则借助第二密封圈卡合固定在泵体上。
所述泵体内设置有用于支承和隔离上、下压电陶瓷晶体膜片并与之平行的隔离片,该隔离片在邻近所述进出气阀处设置有开口,从而使所述工作泵腔为所述上、下压电陶瓷晶体膜片共用;所述上下压电陶瓷晶体膜片分别借助第三、第四密封圈压合在所述隔离片上,经所述开口与泵体密封围合构成横断面似横置字母U的工作泵腔。
所述泵体内壁上共轴线地设置有支承上、下压电陶瓷晶体膜片、并向内突出的环形凸台,所述上、下压电陶瓷晶体膜片分别借助第三、第四密封圈压合在所述环形凸台上与泵体密封围合构成扁圆形工作泵腔;所述上、下泵盖分别借助第五、第六密封圈压合固定连接在泵体上。
所述泵体上的出气口的端部为环面圆弧状使所述出气阀关闭时与所述出气口端部线接触实现出气阀闭合;所述进出气部件的进气孔的端部亦为环面圆弧状使所述进气阀关闭时与所述进气孔端部线接触实现进气阀闭合。
所述压电陶瓷晶体膜片还包括设置在金属基片上的绝缘层和镀银层,压电陶瓷层设置在绝缘层和镀银层之间,压电陶瓷晶体膜片的电极分别从金属基片和镀银层上引出。
本发明要解决现有技术问题的设计方案还可以是一种压电陶瓷气泵的构筑方法,基于包括泵体、压电陶瓷晶体膜片和进、出气阀的主体结构;所述压电陶瓷晶体膜片共中轴线地安装于泵体内,为所述压电陶瓷气泵构建工作泵腔;所述方法包括如下步骤A:将用于连接工作泵腔和外部气路的进、出气口毗邻设置在泵体一侧的围壁上,所述进、出气阀安装在该进、出气口部位。
所述的压电陶瓷气泵的构筑方法,还包括步骤B:所述压电陶瓷晶体膜片装用两片,包括上、下压电陶瓷晶体膜片;所述上、下压电陶瓷 晶体膜片以其金属基片外表面共中轴线地相向设置,与泵体密封围合构成共用的工作泵腔。
所述的压电陶瓷气泵的构筑方法,还包括步骤C:所述泵体内设置有用于支承和隔离上、下压电陶瓷晶体膜片并与之平行的隔离片,该隔离片在邻近所述进、出气阀处设置有开口,致使共用的工作泵腔死腔减小,提高泵送效率。
所述的压电陶瓷气泵的构筑方法,还包括步骤D:所述上、下压电陶瓷晶体膜片被施加交流激励电压时,所述俩上、下压电陶瓷晶体膜片在每个电源半周期时间内同时相向压缩或相背扩张地轴向运动。
所述的压电陶瓷气泵的构筑方法,还包括步骤E:将进、出气阀(分别压合在所述进、出气口上,从而使进、出气部件上的进、出气孔同进、出气阀和进、出气口贯通,形成同外部气路联接的进、出气通道;所述进、出气阀制成一体化阀片,其上有定位孔,用于在泵体围壁上嵌合定位。
同现有技术相比较,本发明的有益效果是:1、在泵体的围壁上设置有用于连接工作泵腔和外部气路的进出气口,其上设置的进出气阀,使得工作泵腔与外部流体之间的进出气路精简到极致,缩短了流体流经管路的长度,降低了流体管路的阻力,也减小了系统的死腔,提高了流体泵送的效率;2、压电陶瓷晶体膜片数量可根据实际应用需要的流量大小配置为一片或两片,这两种压电陶瓷晶体膜片数量不同的气泵可共用多个部件,降低了制作不同流量大小气泵的成本。
附图说明
图1是本发明压电陶瓷气泵优选实施例一至三的正投影俯视示意图,图中上泵盖21做了局部移除,移除部分下展现了局部剖面;
图2是所述优选实施例一的分解状态轴测投影示意图;
图3是所述优选实施例一移除上、下泵盖21和23后的分解状态轴测投影示意图;
图4是所述优选实施例一的图1之D-D剖面正投影示意图;
图5是优选实施例三的图1之D-D剖面正投影示意图;
图6是图4或图5的E-E剖面正投影示意图;
图7是图1中A部,或图13中J部的放大示意图;
图8是图7在进气状态的示意图,图中箭头方向为进气方向;
图9是图7在出气状态的示意图,图中箭头方向为出气方向;
图10是本发明一体化阀片60的正投影主视示意图;
图11是本发明俩独立成型的进气阀61和出气阀63的正投影主视示意图;
图12是优选实施例二移除上、下泵盖21和23后的分解状态轴测投影示意图;
图13是图3的正投影俯视示意图,图中上压电陶瓷晶体膜片51做了局部移除,移除部分下展现了局部剖面;
图14是所述优选实施例二在图13的H-H剖面正投影示意图;
图15是所述优选实施例二在图1的D-D剖面移除上、下泵盖21和23后的正投影放大示意图,该图还表示了两个压电陶瓷晶体膜片电路连接示意;
图16是本发明压电陶瓷晶体膜片50横断面的正投影放大示意图。
具体实施方式
以下结合各附图对本发明的实施方式做进一步详述。
如图1至图4的优选实施例一所涉及的压电陶瓷气泵及其构筑方法中,压电陶瓷晶体膜片50装用两片,上压电陶瓷晶体膜片51和下压电陶瓷晶体膜片53分别借助上泵盖21、下泵盖23卡合固定在泵体10上、下俩部位内侧;上、下压电陶瓷晶体膜片以其金属基片91外表面共中轴线地相向设置,与泵体10密封围合构成共用的工作泵腔15。
如图3和4所示的优选实施例一所涉及的压电陶瓷气泵及其构筑方法中,所述泵体10内设置有用于支承和隔离上、下压电陶瓷晶体膜片并与之平行的隔离片14,该隔离片14在邻近进、出气阀处设置有开口16,从而使所述工作泵腔15为所述上、下压电陶瓷晶体膜片共用;上、下压电陶瓷晶体膜片分别借助第三密封圈55、第四密封圈57压合在所述隔离片14上,经所述开口16与泵体10密封围合构成横断面似横置字母U的工作泵腔15。该隔离片(14)在邻近所述进、出气阀处设置有开口(16),致使共用的工作泵腔(15)死腔减小,提高泵送效率。
如图12至14所示的优选实施例二所涉及的压电陶瓷气泵及其构筑方法中中,所述泵体10内壁上共轴线地设置有支承上、下压电陶瓷晶 体膜片、并向内突出的环形凸台12,所述上、下压电陶瓷晶体膜片分别借助第三密封圈55、第四密封圈57压合在所述环形凸台12上与泵体10密封围合构成扁圆形工作泵腔15。
在优选实施例一和二中,上泵盖21、下泵盖23分别借助第五密封圈25、第六密封圈27压合固定连接在泵体10上。
如图1和5所示的压电陶瓷气泵优选实施例三中,所述压电陶瓷晶体膜片50只装用一片;该压电陶瓷晶体膜片50借助下泵盖23卡合固定在泵体10上,与之密封围合、构成工作泵腔15。所述压电陶瓷晶体膜片50借助分别位于其一面的第一密封圈59与泵体10密封围合构成工作泵腔15;所述下泵盖23则借助第二密封圈29卡合固定在泵体10上。
如图1至9所示的一些实施例中,所述进气口17和出气口18毗邻设置在泵体10一侧的围壁上;进出气部件70将进气阀61和出气阀63分别压合在所述进、出气口上,从而使该进出气部件70上的进气孔71、出气孔73分别同进、出气阀和进、出气口贯通,形成同外部气路联接的进气通道81和出气通道83。当然所述进、出气口也可以相对设置在泵体10直径线两端围壁上。
如图7所示进气通道81在进气阀61开关的一侧有进气阀活动空间82;出气通道83在出气阀63开关的一侧有出气阀活动空间84。
如图8所示为压电陶瓷气泵进气状态的示意图,图中箭头方向为进气方向;进气时,即压电陶瓷膜片50振动往外产生形变时,工作泵腔15的容积增大,工作泵腔15内形成负压,进气阀61被负压冲开,出气阀63被负压吸闭,外部流体依次流经进气阀61和进气孔71进入工作泵腔15。
如图9所示为压电陶瓷气泵出气状态的示意图,图中箭头方向为出气方向;进气时,即压电陶瓷膜片50振动向工作泵腔15内产生形变时,工作泵腔15的容积减小,工作泵腔15内形成正压,进气阀61被正压吸闭,出气阀63被正压冲开,工作泵腔15内的流体依次流经出气孔73和出气阀63。
如图10所示的一些实施例中进气阀61和出气阀63联合成一体化阀片60;如图11所示的一些实施例中进气阀61和出气阀63各自独立, 也可以进气阀61和出气阀63共用,即进气阀61和出气阀63是同一个部件。如图10和11所示,进气阀61、出气阀63或一体化阀片60上均有定位孔66用于在泵体10围壁上嵌合定位,使得进气阀61与泵体10侧壁上的进气口17准确对位,使得出气阀63可与泵体10侧壁上的出气口18准确对位。
如图15和16所示的压电陶瓷气泵及其构筑方法中部分实施例中,压电陶瓷晶体膜片50还包括设置在金属基片91上的绝缘层92和镀银层94,压电陶瓷层93设置在绝缘层和镀银层之间,压电陶瓷晶体膜片的电极分别从金属基片91和镀银层94上引出。在所述的压电陶瓷气泵的构筑方法中所述上、下压电陶瓷晶体膜片被施加交流激励电压时,所述俩上、下压电陶瓷晶体膜片在每个电源半周期时间内同时相向压缩或相背扩张地轴向运动。上述压电陶瓷晶体膜片的设置方式及其施加交流激励电压的方式使得膜片挤压工作泵腔内流体的挤压效率提高很多。
现有技术中的压电陶瓷气泵流量小,流量均在0.3~0.5L/min;采用本发明技术方案的压电陶瓷气泵,其气路布局合理,提高了气泵的运行效率,是一种高效能的微小型气泵。本发明优选实施例一方案设计样品和现有技术电陶瓷气泵在相同的条件下进行对比测试,结果如下表1所示:本发明优选实施例一方案设计样品,尽管压电陶瓷膜片数量为两个,但实际功耗却低于单压电陶瓷膜片的两倍,且其输出的流量大于单压电陶瓷膜片气泵的两倍流量,可见本发明所述技术方案效率优于现有技术,流量输出能力和能效也优于现有技术。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
表1
Figure PCTCN2016072799-appb-000001

Claims (15)

  1. 一种压电陶瓷气泵,包括泵体(10)、压电陶瓷晶体膜片(50)和进、出气阀(61,63);所述压电陶瓷晶体膜片(50)共中轴线地安装于泵体(10)上,为所述压电陶瓷气泵构建工作泵腔(15);其特征在于:
    所述泵体(10)大致呈管状,惟直径比轴向长度大得多,在其围壁的一处,设置有用于连接工作泵腔(15)和外部气路的进、出气口(17,18);
    所述进、出气阀(61,63)安装在所述进、出气口(17,18)部位。
  2. 根据权利要求1所述的压电陶瓷气泵,其特征在于,
    所述压电陶瓷晶体膜片(50)只装用一片;该压电陶瓷晶体膜片(50)借助下泵盖(23)卡合固定在泵体(10)上,与之密封围合、构成工作泵腔(15)。
  3. 根据权利要求1所述的压电陶瓷气泵,其特征在于,
    所述压电陶瓷晶体膜片(50)装用两片,包括上、下压电陶瓷晶体膜片(51,53);该上、下俩压电陶瓷晶体膜片(51,53)分别借助上、下泵盖(21,23)卡合固定在泵体(10)上、下俩部位内侧;
    所述上、下压电陶瓷晶体膜片(51,53)以其金属基片(91)外表面共中轴线地相向设置,与泵体(10)密封围合构成共用的工作泵腔(15)。
  4. 根据权利要求1所述的压电陶瓷气泵,其特征在于,
    所述进、出气口(17,18)毗邻或不毗邻设置在泵体(10)一侧的围壁上,或者令所述进、出气口(17,18)相对设置在泵体(10)直径线两端围壁上。
  5. 根据权利要求1所述的压电陶瓷气泵,其特征在于,
    还包括进出气部件(70),用于将进、出气阀(61,63)分别压合在所述进、出气口(17,18)上,从而使该进、出气部件(70)上的进、出气孔(71,73)同进、出气阀(61,63)和进、出气口(17,18)贯通,形成同外部气路联接的进、出气通道(81,83);所述进、出气阀(61,63)各自独立成型,或制成一体化阀片(60),其上有定位孔(66),用于在泵体(10)围壁上嵌合定位。
  6. 根据权利要求2所述的压电陶瓷气泵,其特征在于,
    所述压电陶瓷晶体膜片(50)借助分别位于其一面的第一密封圈(59) 与泵体(10)密封围合构成工作泵腔(15);所述下泵盖(23)则借助第二密封圈(29)卡合固定在泵体(10)上。
  7. 根据权利要求3所述的压电陶瓷气泵,其特征在于,
    所述泵体(10)内设置有用于支承和隔离上、下压电陶瓷晶体膜片(51,53)并与之平行的隔离片(14),该隔离片(14)在邻近所述进出气阀(61,63)处设置有开口(16),从而使所述工作泵腔(15)为所述上、下压电陶瓷晶体膜片(51,53)共用;
    所述上下压电陶瓷晶体膜片(51,53)分别借助第三、第四密封圈(55,57)压合在所述隔离片(14)上,经所述开口(16)与泵体(10)密封围合构成横断面似横置字母U的工作泵腔(15)。
  8. 根据权利要求3所述的压电陶瓷气泵,其特征在于,
    所述泵体(10)内壁上共轴线地设置有支承上、下压电陶瓷晶体膜片(51,53)、并向内突出的环形凸台(12),所述上、下压电陶瓷晶体膜片(51,53)分别借助第三、第四密封圈(55,57)压合在所述环形凸台(12)上与泵体(10)密封围合构成扁圆形工作泵腔(15);
    所述上、下泵盖(21,23)分别借助第五、第六密封圈(25,27)压合固定连接在泵体(10)上。
  9. 根据权利要求5所述的压电陶瓷气泵,其特征在于,
    所述泵体(10)上的出气口(18)的端部为环面圆弧状使所述出气阀(63)关闭时与所述出气口(18)端部线接触实现出气阀闭合;所述进出气部件(70)的进气孔(71)的端部亦为环面圆弧状使所述进气阀(61)关闭时与所述进气孔(71)端部线接触实现进气阀闭合。
  10. 根据权利要求1所述的压电陶瓷气泵,其特征在于,
    所述压电陶瓷晶体膜片(50)还包括设置在金属基片(91)上的绝缘层(92)和镀银层(94),压电陶瓷层(93)设置在绝缘层和镀银层之间,压电陶瓷晶体膜片的电极分别从金属基片(91)和镀银层(94)上引出。
  11. 一种压电陶瓷气泵的构筑方法,基于包括泵体(10)、压电陶瓷晶体膜片(50)和进、出气阀(61,63)的主体结构;所述压电陶瓷晶体膜片(50)共中轴线地安装于泵体(10)内,为所述压电陶瓷气泵构建工作泵腔(15);所述方法包括如下步骤A:
    将用于连接工作泵腔(15)和外部气路的进、出气口(17,18)毗邻设 置在泵体(10)一侧的围壁上,所述进、出气阀(61,63)安装在该进、出气口(17,18)部位。
  12. 依据权利要求11所述的压电陶瓷气泵的构筑方法,还包括步骤B:
    所述压电陶瓷晶体膜片(50)装用两片,包括上、下压电陶瓷晶体膜片(51,53);所述上、下压电陶瓷晶体膜片(51,53)以其金属基片(91)外表面共中轴线地相向设置,与泵体(10)密封围合构成共用的工作泵腔(15)。
  13. 依据权利要求12所述的压电陶瓷气泵的构筑方法,还包括步骤:
    C.所述泵体(10)内设置有用于支承和隔离上、下压电陶瓷晶体膜片(51,53)并与之平行的隔离片(14),该隔离片(14)在邻近所述进、出气阀(61,63)处设置有开口(16),致使共用的工作泵腔(15)死腔减小,提高泵送效率。
  14. 依据权利要求12或13所述的压电陶瓷气泵的构筑方法,还包括步骤D:
    所述上、下压电陶瓷晶体膜片(51,53)被施加交流激励电压时,所述俩上、下压电陶瓷晶体膜片(51,53)在每个电源半周期时间内同时相向压缩或相背扩张地轴向运动。
  15. 依据权利要求11所述的压电陶瓷气泵的构筑方法,还包括步骤E:
    将进、出气阀(61,63)分别压合在所述进、出气口(17,18)上,从而使进、出气部件(70)上的进、出气孔(71,73)同进、出气阀(61,63)和进、出气口(17,18)贯通,形成同外部气路联接的进、出气通道(81,83);所述进、出气阀(61,63)制成一体化阀片(60),其上有定位孔(66),用于在泵体(10)围壁上嵌合定位。
PCT/CN2016/072799 2016-01-29 2016-01-29 压电陶瓷气泵及其构筑方法 WO2017128297A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/072799 WO2017128297A1 (zh) 2016-01-29 2016-01-29 压电陶瓷气泵及其构筑方法
EP16887181.2A EP3306090B1 (en) 2016-01-29 2016-01-29 Piezoelectric ceramic air pump and construction method thereof
US15/742,495 US20180209412A1 (en) 2016-01-29 2016-01-29 Piezoelectric ceramic air pump and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072799 WO2017128297A1 (zh) 2016-01-29 2016-01-29 压电陶瓷气泵及其构筑方法

Publications (1)

Publication Number Publication Date
WO2017128297A1 true WO2017128297A1 (zh) 2017-08-03

Family

ID=59397200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072799 WO2017128297A1 (zh) 2016-01-29 2016-01-29 压电陶瓷气泵及其构筑方法

Country Status (3)

Country Link
US (1) US20180209412A1 (zh)
EP (1) EP3306090B1 (zh)
WO (1) WO2017128297A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553295B2 (en) 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
US8105282B2 (en) 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
TWI646262B (zh) * 2017-10-27 2019-01-01 研能科技股份有限公司 氣體輸送裝置
US11268506B2 (en) * 2017-12-22 2022-03-08 Iradimed Corporation Fluid pumps for use in MRI environment
CN108833645A (zh) * 2018-09-04 2018-11-16 金丘科技(深圳)有限公司 一种固定装置及手机支架
US20220010789A1 (en) * 2018-09-25 2022-01-13 Sun Automation, Inc. Electrically Powered and Electronically Controlled Diaphragm Ink Pump Apparatus and Method
CN110799753B (zh) * 2018-09-30 2021-06-29 深圳市大疆软件科技有限公司 隔膜泵及农业无人机
CN112727750B (zh) * 2021-01-05 2022-09-06 绍兴泰格机电技术有限公司 一种齿轮泵及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280250A (zh) * 1999-07-07 2001-01-17 张建辉 一种带有三通式出入口的压电陶瓷泵
CN1840903A (zh) * 2005-03-31 2006-10-04 中国科学院空间科学与应用研究中心 一种压电薄膜式流体泵
WO2014105898A1 (en) * 2012-12-26 2014-07-03 Applied Cavitation, Inc. Piezoelectric devices
CN205478232U (zh) * 2016-01-29 2016-08-17 深圳市兴日生实业有限公司 压电陶瓷气泵

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029743A (en) * 1960-04-14 1962-04-17 Curtiss Wright Corp Ceramic diaphragm pump
US3657930A (en) * 1969-06-24 1972-04-25 Bendix Corp Piezoelectric crystal operated pump to supply fluid pressure to hydrostatically support inner bearings of a gyroscope
US7287965B2 (en) * 2004-04-02 2007-10-30 Adaptiv Energy Llc Piezoelectric devices and methods and circuits for driving same
JP2007165664A (ja) * 2005-12-15 2007-06-28 Alps Electric Co Ltd 振動子の配線構造及び圧電ポンプ
JP2007198165A (ja) * 2006-01-24 2007-08-09 Star Micronics Co Ltd ダイヤフラムポンプ
JP4976157B2 (ja) * 2007-02-16 2012-07-18 アルプス電気株式会社 圧電ポンプ及び圧電振動子
WO2009063905A1 (ja) * 2007-11-12 2009-05-22 Nec Corporation 圧電音響素子及び電子機器
CN101550925B (zh) * 2008-03-31 2014-08-27 研能科技股份有限公司 具有多个双腔体致动结构的流体输送装置
US9427505B2 (en) * 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
DE112014002557T5 (de) * 2013-05-24 2016-03-03 Murata Manufacturing Co., Ltd. Vorrichtung zur Ventil- und Flüssigkeitsregelung
US10655620B2 (en) * 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280250A (zh) * 1999-07-07 2001-01-17 张建辉 一种带有三通式出入口的压电陶瓷泵
CN1840903A (zh) * 2005-03-31 2006-10-04 中国科学院空间科学与应用研究中心 一种压电薄膜式流体泵
WO2014105898A1 (en) * 2012-12-26 2014-07-03 Applied Cavitation, Inc. Piezoelectric devices
CN205478232U (zh) * 2016-01-29 2016-08-17 深圳市兴日生实业有限公司 压电陶瓷气泵

Also Published As

Publication number Publication date
EP3306090A4 (en) 2019-01-23
US20180209412A1 (en) 2018-07-26
EP3306090B1 (en) 2020-01-08
EP3306090A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2017128297A1 (zh) 压电陶瓷气泵及其构筑方法
CN208456830U (zh) 微型流体控制装置
CN103925199B (zh) 一种新型叠层式压电隔膜泵
WO2013084909A1 (ja) 気体制御装置
WO2009152775A1 (zh) 一种微型泵
JP5770391B2 (ja) 安全弁装置を含むポンプ装置
TWM528306U (zh) 微型閥門裝置
JP2008038829A (ja) 圧電ポンプ及び圧電振動子
JP2010077976A (ja) ベローズポンプおよびベローズポンプの運転方法
CN105508208B (zh) 压电泵
WO2013029407A1 (zh) 压电陶瓷驱动式超微型气泵
JP2018109407A (ja) 小型流体制御装置
WO2012140931A1 (ja) 流体制御装置およびポンプ接続方法
CN105508207B (zh) 一种钹型泵体压电泵
TW201335483A (zh) 流體輸送裝置
CN203717299U (zh) 一种并联式压电微型泵
CN113898564A (zh) 一种隔膜真空泵
JP6089560B2 (ja) 気体制御装置
US20060269427A1 (en) Miniaturized diaphragm pump with non-resilient seals
JP2008180171A (ja) マイクロポンプ
TW201430217A (zh) 壓電有閥式微泵浦構造
CN103629092A (zh) 一种双级抽气用隔膜泵
CN109931250B (zh) 一种串联腔体阵列式微型压电气体压缩机
CN209876069U (zh) 一种定压减压阀
RU2402689C2 (ru) Сильфонный криогенный нагнетатель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15742495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE