WO2013029407A1 - 压电陶瓷驱动式超微型气泵 - Google Patents

压电陶瓷驱动式超微型气泵 Download PDF

Info

Publication number
WO2013029407A1
WO2013029407A1 PCT/CN2012/076663 CN2012076663W WO2013029407A1 WO 2013029407 A1 WO2013029407 A1 WO 2013029407A1 CN 2012076663 W CN2012076663 W CN 2012076663W WO 2013029407 A1 WO2013029407 A1 WO 2013029407A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
piezoelectric ceramic
valve
exhaust
chamber
Prior art date
Application number
PCT/CN2012/076663
Other languages
English (en)
French (fr)
Inventor
杨竹君
胡军
Original Assignee
Yang Zhujun
Hu Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Zhujun, Hu Jun filed Critical Yang Zhujun
Publication of WO2013029407A1 publication Critical patent/WO2013029407A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/06Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having tubular flexible members
    • F04B45/067Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/09Pumps having electric drive
    • F04B43/095Piezoelectric drive

Definitions

  • the present invention relates to a micro air pump, and more particularly to a piezoelectric ceramic driven ultramicro air pump (a so-called piezoelectric pump).
  • the micro air pump has a working medium which is mainly used for gas sampling, gas circulation, vacuum adsorption, vacuum holding, pumping, pumping, pressurizing, oxygenating and the like.
  • Micro air pumps are classified according to their application: micro vacuum pump, micro vacuum pump, micro gas circulation pump, micro air pump, micro oxygen pump, micro gas sampling pump, micro air pump, micro air pump, micro pumping pump, micro Gas-water mixing pump, etc.
  • the working principle of the micro air pump is divided into diaphragm type, electromagnetic type, impeller type, piston type and the like. Its working principle determines the volume of the pump is large (about 100 * 60 * 20 mm) and the weight is large (130g - 350 g), the noise is large, the power consumption is large (5W-20W), and there is electromagnetic interference.
  • the structure consists of two parts: the working pump chamber and the mechanical transmission. The structure is complicated, the maintenance is inconvenient, and the electromechanical integration and the ultra-miniature of the pump body cannot be realized.
  • Diaphragm pumps are generally composed of actuators and valves. According to the power used by the actuators, it can be divided into three types: pneumatic, electric and hydraulic. Its function and characteristics are classified into many types and the structure is also various. Generally, the pump valve is universal and can be pneumatically Actuator matching can also be matched to electric actuators or other actuators.
  • the diaphragm pump is driven by a variable frequency motor and works like a plunger pump. It features: A diaphragm is placed in each of the two symmetric working chambers of the pump, which is connected by a central link. The compressed air enters the valve from the inlet of the pump. Once the end of the stroke is reached, the valve train automatically introduces the compressed air into the other working chamber, pushing the diaphragm to move in the opposite direction, so that the two diaphragms reciprocate continuously and synchronously. Exhausted and discharged.
  • Electromagnetic pump cylinder Electromagnetic pump is a device that uses the interaction between the magnetic field and the current in the conductive fluid to cause the fluid (gas) to be subjected to electromagnetic force to generate a pressure gradient, thereby promoting the movement of the fluid (gas).
  • the electromagnetic pump can be divided into an AC pump and a DC pump according to the power supply form. According to the way of current feeding in liquid metal It is a conductive (conducting) electromagnetic pump and an inductive electromagnetic pump.
  • Conductive electromagnetic pumps use DC or AC. It has a non-magnetic refractory metal tube with a magnet around it and a magnetic line perpendicular to the tube.
  • a mechanical force is generated to force the conductive fluid out of the tube according to the left hand rule.
  • a conductive electromagnetic pump current is directly conducted from an external power source to the liquid metal via electrodes on both sides of the pumping groove.
  • induction pumps inductive multiphase AC is used. The current is induced by an alternating magnetic field.
  • the electromagnetic pump is similar to a common electromagnetic valve. It uses alternating current as the working power. The current forms an alternating fixed magnetic field through the electromagnetic winding, which interacts with the movable pump body to drive the pump body to vibrate and push the liquid (gas) output.
  • Piston pump cylinder The piston pump is also called electric reciprocating pump.
  • the structure is divided into single cylinder and multi-cylinder.
  • the piston pump reciprocates by the piston, which makes the working volume of the pump chamber change periodically, and realizes the suction and discharge of liquid (gas). It consists of a pump chamber, a piston, an inlet and outlet valve, a connecting rod and a transmission. The power is driven to reciprocate the piston in the pump chamber.
  • the liquid (gas) valve opens, the liquid (gas) enters the pump chamber, and the liquid (gas) valve on the piston closes, the liquid (gas) in the upper part of the piston rises upward with the piston; when the piston moves downward
  • the liquid (gas) valve is closed, the valve on the piston is opened, and the liquid (gas) of the pump chamber is pressed into the pump chamber, so that the liquid (gas) and the lifting are repeated, so that the liquid (gas) is continuously discharged.
  • Impeller type centrifugal pump: The impeller type (centrifugal) pump works on the principle that the impeller (blade) driven by a high-speed rotating motor drives the water to rotate, and the water is pumped out to achieve the purpose of transportation.
  • the working principle of the centrifugal air pump is that, by means of the working principle of the centrifugal water pump, two or more single-piece shut-off valves are respectively arranged in the pump chamber, and the eccentric cam is driven by the motor to rotate at a high speed, and the unevenness of the diaphragm of the pumping chamber is changed. Under the cooperation of the single valve, the gas is cut off, and the gas entering the pump chamber is squeezed and discharged to achieve the purpose of transportation.
  • the working principle of the traditional micro-pump determines that the pump body is composed of multiple parts, and the core kinetic device must be laminated with bismuth steel sheet, electromagnetic The iron and copper wire windings are composed, and the pump cavity and the mechanical transmission device are independent and dispersed, which are not easy to integrate, so the structure is complicated and the volume is large, and the pump body miniaturization and electromechanical integration cannot be realized.
  • KP is small, dielectric constant is low, and d33 is low.
  • KP is the electromechanical coupling coefficient of the radial vibration of the piezoelectric ceramic transducer, reflecting the electromechanical conversion rate of the material.
  • the KP size determines the performance of the ceramic sheet, while the KP has a high electromechanical conversion rate.
  • the dielectric constant is the resistance capacitive reactance tested under AC conditions. The AC resistance capacity of the antibody is now on the capacitance, the capacitance is large, the dielectric constant is high, and the dielectric constant is proportional to the capacitance.
  • D33 refers to the piezoelectric transducing coefficient, which represents the magnitude of radial vibration.
  • the ceramic sheet has a polarization direction, which is divided into a positive piezoelectric effect and a negative piezoelectric effect.
  • D33 refers to the vertical negative piezoelectric effect.
  • d33 greatly helps to increase the volume of the pump chamber.
  • the change in the volume of the pump chamber directly affects the throughput of the liquid or gas.
  • valve disc area and the inlet and exhaust valve ports of the pump valve all affect the flow of the pump valve, due to the piezoelectric ceramic
  • the pump valve lacks good follow-up and lags behind the operating frequency of the piezoelectric ceramic chip, which greatly reduces the overall working performance of the piezoelectric pump and affects the fluid. (gas) speed of movement and efficiency of transmission.
  • the object of the present invention is to overcome the deficiencies of the prior art mentioned above.
  • a piezoelectric ceramic piece for manufacturing a micro pump and a micro air pump the applicant develops an electromechanical integration by using a piezoelectric driving method.
  • Piezoelectric ceramic driven ultra-micro air pump Completely change the working principle of traditional micro diaphragm type air pump, micro electromagnetic type air pump, micro impeller type air pump and micro piston type air pump. Achieve structural unit, miniaturization, reduce energy consumption, noise less than 30 ⁇ 40dB, energy saving and environmental protection, easy to install and maintain, Reduce the cost of production; achieve the effect of mechatronics and ultra-miniature pump body.
  • the object of the invention is also to modify the electrical parameters of the piezoelectric ceramic transducer sheet, improve the pump valve, optimize the pump chamber, increase the electronic components, improve the electromechanical conversion rate of the piezoelectric ceramic transducer sheet, and the working performance of the background art and the pump.
  • Load pressure It is compact in structure, easy to install and maintain, reduces production costs, and is suitable for industrial production.
  • the invention has the characteristics of simple structure, fast response, small volume, light weight, no noise, high pressure, no pressure, no pollution, good anti-reverse effect, convenient installation and use.
  • the piezoelectric ceramic driven ultra-micro air pump is composed of a pump body assembled with a pump body, and is characterized in that: the pump body is composed of a pump lower cover 1 and a pump base 5 fixedly connected with the pump casing assembly, and the pump core is a piezoelectric ceramic transducer piece. 2.
  • the peripheral seal of the piezoelectric ceramic transducer sheet 2 is elastically fixed in the pump body, and the pump body is also equipped with a one-way intake valve 7 and a one-way exhaust valve 8; the inlet valve of the intake valve 7 is the intake air.
  • the intake cavity 26 is in communication with the pump body assembly gap, and the cavity at the exhaust outlet of the exhaust valve 8 is an exhaust cavity 27, the exhaust cavity 27 is connected to the pump nozzle exhaust port; the intake air located in the pump body
  • the valve 7 corresponds to the center of the vibration amplitude of the piezoelectric ceramic transducer sheet 2.
  • the piezoelectric ceramic driven ultra-micro air pump is characterized in that: the pump body is composed of a pump lower cover 1 and a pump upper cover 6 respectively sealed and fixedly connected with the pump base 5, and the piezoelectric ceramic transducer sheet 2 as a pump core
  • the sealing raft in the periphery of the pump seat 5 is elastically fixed together with the pump lower cover 1 to form a sealed independent working pump chamber 25, and the pump seat 5 is connected with a one-way air inlet valve 7 and a one-way exhaust valve 8, wherein the intake valve 7 corresponds to the center of the vibration amplitude of the piezoelectric ceramic transducer sheet 2;
  • the inlet chamber of the intake valve 7 is the intake chamber 26 in the upper cover 6 of the pump,
  • the air inlet chamber 26 communicates with the pump body assembly gap, and the air chamber at the exhaust valve outlet of the exhaust valve 8 is the exhaust chamber 27 in the upper cover 6 of the pump, and the exhaust chamber 27 communicates with the pump nozzle in the upper cover 6 of the pump.
  • any one of the piezoelectric ceramic-driven ultra-micro air pumps is characterized in that: the pump body is composed of a pump lower cover 1 and a pump upper cover 6 respectively sealed and fixedly connected with the pump base 5, and the piezoelectric ceramic transducer is used as a pump core.
  • the periphery of the sheet 2 is elastically fixed under the clamping of the pump housing 5 and the pump lower cover 1 to form a sealed independent working pump chamber 25, and the pump seat 5 is connected with a one-way air inlet valve.
  • the intake valve 7 corresponds to the center of the vibration amplitude of the piezoelectric ceramic transducer sheet 2;
  • the inlet chamber of the intake valve 7 is the inlet chamber of the upper cover 6 of the pump 26,
  • the intake chamber 26 is in communication with the pump body assembly gap, and the cavity at the exhaust outlet of the exhaust valve 8 is the exhaust chamber 27 in the upper cover 6 of the pump, and the exhaust chamber 27 communicates with the pump nozzle in the upper cover 6 of the pump Exhaust port;
  • the power line 12 of the mains part is changed to the power plug 14, and the power plug 14 is fixed to the pump body;
  • the above-mentioned piezoelectric ceramic-driven ultra-micro air pump having an independent working pump chamber 25 that can be directly plugged into the power supply .
  • the piezoelectric ceramic driven ultra-micro air pump is characterized in that: the pump body is composed of a pump lower cover 1 and a pump base 5 fixedly connected with the pump casing assembly, where the pump casing assembly refers to the exhaust connecting member 18 and the A pump.
  • a piezoelectric ceramic transducer sheet 2 the two side cavities constituting the piezoelectric ceramic transducer sheet 2 are two independently operated double air pump chambers 25; two of the pump lower cover 1 and the pump base 5 are respectively mounted a separate one-way intake valve 7, the two intake valves 7 and the piezoelectric ceramic transducer sheet 2 have the largest vibration center corresponding to each other; the pump lower cover 1 and the pump seat 5 are connected to the exhaust port at the air outlet
  • the air outlet connector 18 is provided with two independent one-way exhaust valves 8, and the pump nozzle 20 is sealingly connected to the pump base 5.
  • the air inlets of the two intake valves 7 are the pump seats 5 And an intake chamber 26 in the lower cover 1 of the pump, the two intake chambers 26 are in communication with the pump body assembly gap, and the two exhaust valves 8 are exhausted at the exhaust outlet An exhaust chamber 27 on the exhaust connecting member 18, the exhaust chamber 27 communicates with the exhaust port of the pump nozzle 20; the power cord 12 is snapped onto the A pump casing 15 and is pressed by the B pump casing 16 and the A pump casing 15
  • the connection is fixed and integrated; the above-mentioned overall composition has a piezoelectric ceramic transducer sheet 2, and two independently operated dual-pump chambers 25 of piezoelectric ceramic-driven ultra-micro air pumps.
  • the piezoelectric ceramic driven ultra-micro air pump is characterized in that: the power line is connected to the A pump casing 15 12 is fixedly passed through the rubber sealing block 17, and the rubber sealing block 17 is pressed into the hole in the pump lower cover 1 to be sealed and fixed.
  • any one of the piezoelectric ceramic-driven ultra-micro air pumps is characterized in that: the intake valve 7 and the exhaust valve 8 are double-cantilever valve plate structures with unequal arm lengths, or double-arm lengths Cantilever beam valve structure, or umbrella valve structure; its valve material is silicone rubber, valve body specific gravity 0.95 - 1. 4 g / m 3 , thickness between 0.30 - 0.8 mm, Shore hardness of 48-56 degrees between.
  • any one of the piezoelectric ceramic-driven ultra-micro air pumps is characterized in that: a capacitor 9, a resistor 10 and a fuse 11 are connected in series in the pump body, and one end of the capacitor 9 is connected to the power source 12, and the fuse 11 is connected at one end.
  • the silver layer 24 of the electric ceramic transducer sheet 2, the power supply line 12 or the power supply end of the power plug 14 is connected to the metal substrate 21 of the piezoelectric ceramic transducer sheet 2.
  • the piezoelectric ceramic-driven ultra-micro air pump is characterized in that: the piezoelectric ceramic transducer sheet 2 is composed of a metal substrate 22 bonded to a ceramic sheet 22 having a front and back silver layer 24, and the whole is round.
  • any one of the piezoelectric ceramic-driven ultra-micro air pumps characterized in that: the pump chamber 25 is a regular cavity or an irregular cavity under static; the regular cavity shape The disk is in the shape of a disk; the irregular cavity is a disk having a large side and a small cavity, and the cavity space at the exhaust valve 8 is larger than the cavity space at the intake valve 7.
  • any one of the piezoelectric ceramic-driven ultra-micro air pumps described is characterized in that: the main technical indicators are:
  • Sweep range l ⁇ 6KHz
  • Air pump volume length 62 ⁇ 10 mm x width 50 ⁇ 5 mm 16 ⁇ 2mm; weight: 12 ⁇ 18g; noise: less than 30 ⁇ 40dB; power consumption: 1 ⁇ 1.5W.
  • the piezoelectric ceramic transducer sheet 2 can be used as a power member without changing the size, and is used in a variety of micro air pumps of the above different types, and the piezoelectric ceramic air pump includes: Electric ultra-miniature negative pressure pump, piezoelectric ultra-miniature vacuum pump, piezoelectric ultra-micro gas circulation pump, piezoelectric ultra-micro gas pump, piezoelectric ultra-micro gas sampling pump, piezoelectric ultra-micro air pump, piezoelectric Ultra-micro pump, piezoelectric ultra-micro pumping pump.
  • the pump valve is a double cantilever beam valve structure with unequal arm length (see Figure 11a), or an equal-arm long double cantilever beam valve.
  • the structure (see Figure lib) can also be an umbrella valve structure (see Figure 11c).
  • the valve plate is made of silicone rubber, and the valve body has a specific gravity of 0.95 -1.4 g/m 3 .
  • the thickness is between 0.30 and 0.8 mm, and the Shore hardness is between 48 and 56 degrees. According to the working pressure of the load, the specific gravity, hardness and thickness of the pump valve material are adjusted to adapt to the pump valve and the piezoelectric ceramic transducer sheet. The follow-up and cooperation of the (resonant frequency) improve the pumping and sealing performance and working performance of the pressure electric pump.
  • the present invention is provided with a capacitor 9, a resistor 10 and a fuse 11 between the pump base 5 and the upper cover 6 of the pump for changing the alternating voltage applied to the piezoelectric ceramic transducer sheet 2, by adjusting the parameters of the component, Applicable to 100V/50Hz, 60Hz; 115V-120V/60Hz; 220V-230V/50Hz general power grid work, expand the scope of work, fuse 11 is used for product safety protection, to prevent fire and other hazards caused by excessive current during short circuit.
  • the present invention includes an electromechanical pump body that employs another plug structure.
  • the benefit is that the use of raw materials can be saved, space is saved, and the entire pump can be made more compact, practical, compact, and clear.
  • the structure of the present invention includes, but is not limited to, the above structure.
  • the invention completely changes the working principle of the conventional micro diaphragm type air pump, the micro electromagnetic type air pump, the micro impeller type air pump, and the micro piston type air pump, and the piezoelectric pump of the invention adopts a novel fluid drive. It does not require an additional drive motor, but uses the inverse piezoelectric effect of the piezoelectric ceramic transducer to deform the piezoelectric ceramic transducer, and then the displacement of the pump chamber produces a volume change to achieve fluid output, or use piezoelectric ceramics.
  • the transducer sheet produces ripples to transport fluids (including gases and liquids).
  • the traditional micro-pump pump must use a stack of silicon steel sheets, electromagnets, and copper wire windings, and there are more than 60 pump chamber components.
  • the piezoelectric pump structure is single-handed by two one-way.
  • the valve and pump body are composed of only 5-6 parts.
  • the cavity of the pump is both a moving component and a working pump cavity, so it can be called mechatronics.
  • the volume is one-fifth to one-tenth of that of the micro-pump, and the weight is one-tenth to one-twentieth of the micro-pump. It has obvious ultra-fine features and mechatronics. feature.
  • the pressure electric pump valve cantilever beam valve
  • the parameters are tested, and the theoretical flow and over-flow area formulas are derived by finite element simulation.
  • the piezoelectric pump cavity structure design, performance comparison, over-current characteristics, leakage and withstand voltage are tested in combination with experimental data to optimize the pump cavity.
  • the structure improves the overall working efficiency of the piezoelectric pump. Solve the seat disk area and pump valve
  • the structural design of the valve disc area and the inlet and exhaust valve port area of the pump valve (intake valve, exhaust valve) and their mutual reasonable ratio are obtained. It is the conclusion that affects the flow factor of the pump valve, and uses the finite element simulation analysis such as ANSYS software, and combines the experiment to make the pump valve, optimizes the pump cavity, and improves the overall working efficiency of the piezoelectric pump.
  • the piezoelectric ceramic transducer sheet has good mechanical properties, good toughness, large modulus of elasticity, no cracking during operation, stable performance, and safety.
  • the micro air pump using the piezoelectric ceramic transducer sheet has a structural tube, small volume, high efficiency, low noise, low cost, long life, and is especially suitable for scientific research, gas sampling, instrumentation, Chemical analysis, medical devices, medical and health, biomedical, bioengineering, automation, environmental protection, water treatment, precision metrology, laboratory testing, micro flow rationing, micro total analysis systems, chip labs and PCR chips, and many other equipment configurations.
  • gas sampling instrumentation
  • Chemical analysis, medical devices, medical and health biomedical, bioengineering, automation, environmental protection, water treatment, precision metrology, laboratory testing, micro flow rationing, micro total analysis systems, chip labs and PCR chips, and many other equipment configurations.
  • a cantilever beam valve or a loose valve plate structure is adopted; in addition, a special intake hole and an intake port are used, and a gap between the pump bodies is adopted as an intake passage structure. Its structure makes its working noise greatly reduced, especially the valve can prevent its deviation during the movement, the sealing of the valve is further improved, and the noise is further reduced.
  • the characteristics of the piezoelectric pump are:
  • the pump chamber is composed of a piezoelectric vibrator or a piezoelectric ceramic transducer or a piezoelectric ceramic sheet.
  • the piezoelectric ceramic transducer sheet is an important part of the pump cavity and is a dynamic device.
  • the volume is one-fifth to one-tenth of that of the micro-pump
  • the weight is one tenth to one-twentieth of the micro-pump, with obvious ultra-fine characteristics
  • the pump The cavity is both moving
  • the component, which is the working pump cavity can be called mechatronics.
  • Fig. 1 is a perspective view showing the outer appearance of a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view of the structure of Figure 1.
  • Figure 3 is a cross-sectional view of Figure 1.
  • Fig. 4 is a perspective view showing the outer structure of a second embodiment of the present invention.
  • Figure 5 is an exploded perspective view of the structure of Figure 4.
  • Figure 6 is a cross-sectional view of Figure 4.
  • Fig. 7 is a perspective view showing the outline structure of a third embodiment of the present invention.
  • Figure 8 is an exploded perspective view of the structure of Figure 7.
  • Figure 9 is a cross-sectional view of Figure 7.
  • Fig. 10 (a) is a schematic cross-sectional view of the piezoelectric ceramic transducer sheet 2, and Fig.
  • FIG. 10 (b) is a partially enlarged schematic view of Fig. 10 (a).
  • Fig. 11(a) is a front elevational view showing the structure of the unequal arm double cantilever valve of the intake valve 7 and the exhaust valve 8.
  • Figure 11 (b) is a schematic view of the structure of the equal arm long double cantilever beam valve.
  • Figure 11 (c) is a schematic view of the structure of the umbrella valve and its assembly.
  • Fig. 12 is a circuit wiring diagram in the above embodiment.
  • Embodiment 1 see Figures 1-3.
  • the pump body of the embodiment has a pump lower cover 1, a pump base 5 and a pump upper cover 6, and a piezoelectric ceramic transducer sheet 2 is mounted in a cavity formed by assembling the pump base 5 and the pump lower cover 1;
  • the intake port and the exhaust port of 5 are respectively provided with an intake valve 7 and an exhaust valve 8, wherein the intake valve 7 corresponds to the center of the maximum amplitude of the piezoelectric ceramic transducer sheet 2, and the intake valve 7 is intake.
  • the inlet cavity is the inlet chamber 26 in the upper cover 6 of the pump, and the inlet chamber 26 is in communication with the pump body assembly gap; the piezoelectric ceramic transducer sheet 2 and the pump base 5 are provided with a 0-type seal ⁇ A3, Type 0 between the back of the pump base 5 (to the right of the pump base 5 in Figure 3) and the upper cover of the pump Seal ⁇ B4.
  • the pump upper cover 1, the pump base 5 and the pump lower cover 6 are fastened by screws 13 to form a pump body of the integral micropump, and at the same time, the 0-type seal ⁇ A3 and the 0-type seal ⁇ B4 are pressed, so that the piezoelectric ceramic transducer sheet 2
  • the pump seat 5, the intake valve 7 and the exhaust valve 8 together form a sealed, airtight, independently operated pump chamber 25, the shape of which is an irregular symmetrical or asymmetrical shape, the shape being one side
  • the large side has a small disk shape or a disk shape, and its cavity is larger near the exhaust valve 8 and smaller near the intake valve 7.
  • the shape of the pump chamber 25 can also be a regular symmetrical or asymmetrical shape.
  • a capacitor 9, a resistor 10 and a fuse 11 connected in series with each other are mounted between the pump base 5 and the upper cover 6 of the pump.
  • One end of the capacitor 9 connected in series is connected to the power supply of the power line 12, and one end of the fuse 11 is connected to the piezoelectric ceramic transducer. 2.
  • Wiring method Referring to Fig. 12, the capacitor 9 and the resistor 10 are used to change the AC voltage applied to the piezoelectric ceramic transducer sheet 2.
  • the fuse 11 is used for the safety protection of the product to prevent the fire from being caused by excessive current caused by a short circuit.
  • the power cord 12 is snapped onto the pump base 5 and is pressed by the pump lower cover 1 and the pump upper cover 6, one terminal of which is soldered to the metal substrate 21 in the piezoelectric ceramic transducer sheet 2, and the other terminal
  • the outlet hole through the pump base 5 is welded to one terminal of the capacitor 9. See Figure 12 for wiring.
  • the piezoelectric ceramic transducer sheet 2 After the piezoelectric ceramic transducer sheet 2 is energized, the radial stretching motion and the axial telescopic motion are simultaneously performed, and the radial stretching motion and the axial telescopic motion are repeatedly repeated at the same time, thereby changing the volume of the pump chamber 25,
  • the piezoelectric ceramic transducer sheet 2 When the piezoelectric ceramic transducer sheet 2 is outwardly changed, when the volume of the pump chamber 25 is increased, the intake valve 7 is opened, the exhaust valve 8 is closed, and the outside gas enters the pump chamber 25 through the pump body connection gap,
  • the piezoelectric ceramic transducer sheet 2 When the piezoelectric ceramic transducer sheet 2 is changed inward, when the volume of the pump chamber 25 is reduced, the gas is compressed, the pressure of the pump chamber 25 is increased, the intake valve 7 is closed, and the exhaust valve 8 is opened, entering The gas in the pump chamber 25 is discharged through the pump chamber 27 in the pump upper cover 6, and the intake and exhaust are shown
  • the piezoelectric ceramic transducer sheet 2 is composed of a metal substrate 21, a ceramic sheet 22, a glue layer 23 and a silver layer 24, and is made of copper or a metal base made of stainless steel.
  • the sheet 21 is bonded to the ceramic sheet 22 with the silver layer 24 by a glue layer 23 having a silver layer 24 on both sides.
  • the structure of the intake valve 7 and the exhaust valve 8 in this embodiment is an unequal arm length double cantilever The beam valve structure, but the structure of Figs. 11(b) and 11(c) can also be used; Fig. 11(b) is an isometric long double cantilever beam valve structure, and Fig. 11(c) is an umbrella valve structure.
  • the two ends of the valve plate of the intake valve 7 and the exhaust valve 8 are respectively heat-stamped and fixed to the column of the pump base 5, and the umbrella valve of Fig. 11(c) is used.
  • connection structure of the umbrella valve that can move up and down needs to change the structure of the pump base 5 so that the umbrella valve stem seal is sleeved in the hole of the pump seat 5.
  • the structure of the valve in this embodiment includes, but is not limited to, the above structure.
  • Example 2 see Figures 4-6.
  • the power plug 14 is molded and fixed to the pump base 5.
  • One of the tabs is soldered to the capacitor 9 by a wire, and the other tab is soldered to the metal substrate 21 of the piezoelectric ceramic transducer sheet 2.
  • the other structure is the same as that of the pump of Embodiment 1 except that the power cord 12 is replaced by the power plug 14 (only this one specific structure is different).
  • the benefit of using a power plug 14 structure is that it saves on the use of raw materials, saves space, and makes the entire pump look more straightforward.
  • the working principle is the same as that in the embodiment 1.
  • Example 3 see Figures 7-9.
  • This embodiment is a single piezoelectric ceramic transducer 2 double-cavity air pump 25 structure, including a pump lower cover 1 and a pump base 5, which are sealed after the pump base 5 and the pump lower cover 1 and the end exhaust connecting member 18 are assembled.
  • a piezoelectric ceramic transducer sheet 2 is arranged between the pump base 5 and the pump lower cover 1 to form a sealed and independent working pump chamber 25 on both sides of the piezoelectric ceramic transducer sheet 2, the pump lower cover 1 and the pump base 5 is respectively equipped with an intake valve 7, a type 0 seal ⁇ eight 3 and a type 0 seal ⁇ B4; at the upper end of the pump lower cover 1 and the pump seat 5 is provided with an exhaust connection 18, the role of which is The gases of the two pump chambers 25 are brought together; two exhaust valves 8 and a type 0 seal C19 are mounted on the exhaust connection 18.
  • the pump lower cover 1 and the pump base 5 are screwed and connected while pressing the 0-type sealing jaw A3 and the piezoelectric ceramic transducer sheet 2; the pump nozzle 20 is screwed to the pump base 5 (due to the cross section in the figure) Up, so can not see), at the same time press the exhaust connector 18, 0 type seal ⁇ C19 and 0 type seal ⁇ B4; after the above structure is installed, the pump seat 5 is fixed to the B pump casing 16 with the screw 13, and finally The A pump casing 15 is fixed to the B pump casing 16 with screws 13.
  • a piezoelectric ceramic transducer sheet 2, two intake valves 7, two exhaust valves 8 and a pump lower cover 1 and a pump seat 5 respectively form two symmetrical or asymmetrical sealed pump chambers 25, the working principle is the same as the implementation example 1.
  • the power cord 12 is snapped onto the A pump casing 15 and is press-fitted and integrated by the B pump casing 16 and the A pump casing 15. See Figure 12 for wiring.
  • Two leads are soldered to the metal substrate 21 and the silver layer 24 of the piezoelectric ceramic transducer sheet 2, respectively, and are passed through the holes of the rubber sealing block 17, one lead is soldered to one of the terminals of the power supply line 12, and the other is The lead is soldered to one terminal of the capacitor 9.
  • the rubber seal block 17 is pressed into the hole in the lower cover of the pump to seal and fix. Refer to Figure 12 for the pump circuit wiring in this pump embodiment.
  • the object of the present invention further comprises: utilizing a piezoelectric driving structure to realize electromechanical energy conversion into a micro vacuum pump, a micro dry vacuum pump, a micro air pump, a micro air pump, a micro air pump, a micro getter pump, a micro gas boost pump, Micro gas sampling pump, micro gas circulation pump, micro air pump, pump, micro gas and water mixing dual-purpose pumping operation to provide power.
  • a pump of two pump chambers 25 or four pump chambers 25 composed of two piezoelectric ceramic transducer sheets 2, or other micro-pumps having three or more pump chambers 25 having equivalent structures.
  • the pump nozzle 20, the exhaust connecting member 18, the A pump casing 15 and the B pump casing 16 in Fig. 9 are all independent component assemblies, and can of course be fabricated as: pump nozzle 20 and row
  • the gas connection 18 is an integral, self-contained piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种压电陶瓷驱动式超微型气泵,泵体是由泵下盖(1)泵座(5)与泵壳组件固定连接组成,泵芯是压电陶瓷换能片(2)。泵体中还装配单向进气阀(7)和单向排气阀(8);单向进气阀(7)进气入口处空腔是进气腔(26)。进气腔(26)与泵体装配间隙连通,单向排气阀(8)排气出口处空腔是排气腔(27)。泵体中的单向进气阀(7)与压电陶瓷换能片(2)振动幅度最大处中心相对应。该压电陶瓷驱动式超微型气泵结构简单,噪音低且便于安装维护。

Description

压电陶瓷驱动式超微型气泵
【技术领域】
本发明涉及一种微型气泵, 尤其是指一种压电陶瓷驱动式超微型气泵(筒 称压电泵)。
【背景技术】
现有技术中的微型气泵, 工作介质为气态,主要用于气体采样、气体循环、 真空吸附、 真空保压、 抽气、 打气、 增压、 加氧等多种用途的气体输送装置。
微型气泵按用途分为: 微型负压泵, 微型真空泵, 微型气体循环泵, 微型 气泵, 微型加氧泵, 微型气体采样泵, 微型打气泵, 微型抽气泵, 微型抽气打 气两用泵, 微型气水混合泵等。
微型气泵其工作原理分为, 隔膜式、 电磁式、 叶轮式、 活塞式等。 其工作 原理决定了泵的体积较大, (约 100*60*20 mm)重量大 (130g -350 g), 噪音大, 功 耗大(5W-20W ), 有电磁干扰。 其结构由工作泵腔及机械传动两大部分组成泵 体, 结构复杂, 维护不便, 不能实现机电一体化和泵体超微型化。
隔膜泵筒介: 隔膜泵一般由执行机构和阀门组成。 按其所配执行机构使用 的动力, 可以分为气动、 电动和液动三种, 其功能和特性分类^艮多, 结构也多 种多样, 一般来说泵阀是通用的, 既可以与气动执行机构匹配, 也可以与电动 执行机构或其他执行机构匹配。 隔膜泵是由变频电机驱动,工作原理近似于柱塞 泵, 其特点是: 在泵的两个对称工作腔中各装有一块隔膜, 由中心联杆将其连结 成一体。 压缩空气从泵的进气口进入配气阀, 一旦到达行程终点, 配气机构自 动将压缩空气引入另一工作腔, 推动隔膜朝相反方向运动, 从而使两个隔膜连 续同步地往复运动, 介质被挤压排出。
电磁泵筒介:电磁泵是利用磁场和导电流体中电流的相互作用,使流体(气 体) 受电磁力作用而产生压力梯度, 从而推动流体(气体)运动的一种装置。 电磁泵按电源形式可分为交流泵和直流泵。 按液态金属中电流馈给的方式可分 为传导式(电导式) 电磁泵和感应式电磁泵。 电导式电磁泵用直流或交流电。 它有一根非磁性难熔金属制的管, 管周围是磁铁, 磁力线与管垂直。 当通入与 管和磁力线均垂直的电流时, 根据左手定则, 产生机械力把导电流体压送出管。 传导式电磁泵中, 电流由外部电源经泵沟两侧的电极直接传导给液态金属。 感 应泵中, 感应式使用多相交流电。 电流则由交变磁场感应产生。 电磁泵类似普 通电磁阀,它以交流电为工作动力,电流通过电磁绕组形成交变固定磁场 ,与可运 动的泵体形成交互作用,带动泵体振动,推动液体(气体)输出。
活塞泵筒介: 活塞泵又叫电动往复泵, 从结构分为单缸和多缸, 活塞泵 靠活塞往复运动, 使得泵腔工作容积周期变化, 实现吸入和排出液体(气体)。 由泵腔、 活塞、 进出气阀、 连杆和传动装置组成。 靠动力带动活塞在泵腔内作 往复运动。 当活塞向上运动时, 液体(气体) 阀开启, 液体(气体)进入泵腔, 同时活塞上的液体(气体) 阀关闭, 活塞上部的液体(气体) 随活塞向上提升; 当活塞向下运动时, 液体(气体) 阀关闭, 活塞上的阀门开启, 同时泵腔的液 体(气体)压入泵腔, 如此反复进液(气体 )和提升, 使液体 (气体 ) 不断排 出。
叶轮式(离心泵) 筒介: 叶轮式(离心)泵的工作原理是, 由高速旋转的 电机驱动叶轮(叶片) 带动水转动, 将水甩出,从而达到输送的目的。
离心气泵的工作原理是, 借助离心水泵的工作原理, 不同的是在泵腔中分 别设置两个或多个单项截止阀, 由电机带动偏心凸轮高速旋转, 挤压泵腔膜片 的凹凸变化, 在单项阀的配合作用下, 截止气体流动, 使进入泵腔的气体定向 挤压排出, 从而达到输送的目的。
综上所述, 传统的微气泵(包括隔膜式、 电磁式、 叶轮式、 活塞式等)其 工作原理决定了泵体由多部分组成, 其核心趋动器件必须使用矽钢片叠压, 电 磁铁、 铜线绕组组成, 且泵腔和机械传动器件均为独立、 分散设置, 不易集成, 因而结构复杂, 体积较大, 不能实现泵体微型化和机电一体化。
在现有技术中, 本专利申请人在 2005年申请了名称为 "一种用于制造微 型泵的压电陶瓷片和微型气泵" 的专利, 申请号:200510012575.6, 授权公告号: CN100365278C, 该泵存在着流量小、 结构松散, 泵阀设计欠缺, 泵的负载压力 小, 工作效率低问题, 其造成的主要原因是:
1、 压电陶瓷片的主要技术指标中, KP较小, 介电常数低, d33低等因素 所致。 其中 KP是压电陶瓷换能片径向振动的机电耦合系数,反映材料的机电转 换率。 KP 大小决定陶瓷片的工作性能, KP大则机电转换率高。 介电常数是在 交流情况下测试的电阻容抗。 交流电阻容抗体现在电容量上, 容抗大, 介电常 数就高, 介电常数与电容成正比关系。 d33是指压电换能系数, 代表径向振动的 大小。 陶瓷片有极化方向, 分正压电效应和负压电效应。 d33是指垂直的负压电 效应, 压电泵中, d33 大有助于提高泵腔的容积量, 泵腔容积量变化直接影响 液体或气体的吞吐量。 在这三个重要指标中, 原专利技术指标为 KP > 0.60, 介 电常数 K25 °C > 5000, d33=520 ± 30。
2、 阀座圓盘面积和泵阀 (进气阀、 排气阀) 的进、 排气阀口面积之间的 结构设计及其相互合理配比都影响着泵阀的流量, 由于压电陶瓷片 (也称压电 陶瓷换能片)在高频振荡过程中, 泵阀缺乏良好的跟从性, 且滞后于压电陶瓷 片的工作频率, 使压电泵的整体工作性能大大降低, 影响流体(气体)运动速 度和传速效率。
3、 还有其他不太合理的结构, 如有专门的进气道、 压电陶瓷片结构和材 料复杂等。
【发明内容】
本发明的目的是克服以上现有技术存在的不足, 申请人在原来专利 "一种 用于制造微型泵的压电陶瓷片和微型气泵" 的基础上, 利用压电驱动方式研制 一种机电一体化的压电陶瓷驱动式超微型气泵。 彻底改变传统微型隔膜式气泵、 微型电磁式气泵、 微型叶轮式气泵、 微型活塞式气泵的工作原理。 达到结构筒 单、 体积微型化、 降低能耗, 噪音低于 30 ~ 40dB、 节能环保、 便于安装维护、 降低生产成本的目的; 实现机电一体化和泵体超微型化的效果。
本发明目的还有通过修改压电陶瓷换能片的电器参数, 改进泵阀、 优化泵 腔、 增加电子元件、 提高了压电陶瓷换能片的机电转换率和背景技术的工作性 能及泵的负载压力。 使其结构紧凑, 便于安装维护, 降低生产成本, 适宜工业 化生产。 本发明具有结构筒单、 响应速度快、 体积小、 重量轻、 无噪音、 压力 大、 不泻压、 无污染、 止逆效果好、 安装使用方便等特点。 适用于科研、 气体 采样、 仪器仪表、 化工分析、 医疗器械、 医药卫生、 生物医学、 生物工程、 自 动控制、 环保、 水处理、 精密计量、 实验检测、 微流量配给、 微全分析系统、 芯片实验室和 PCR芯片等多种领域和场合。
为了实现上述目的, 本发明的技术解决方案如下: 为了更好地说明和理解 技术内容, 下面所述零部件后带上标号, 故烦同时参看附图和标号说明。
压电陶瓷驱动式超微型气泵,由泵体内装配泵芯组成, 其特征是: 泵体是由 泵下盖 1和泵座 5与泵壳组件固定连接组成, 泵芯就是压电陶瓷换能片 2, 该压 电陶瓷换能片 2周边密封弹性固定在泵体内, 泵体中还装配单向进气阀 7和单 向排气阀 8; 进气阀 7进气入口处空腔就是进气腔 26, 该进气腔 26与泵体装配 间隙连通,排气阀 8排气出口处空腔就是排气腔 27, 该排气腔 27连通泵嘴排气 口; 位于泵体中的进气阀 7与压电陶瓷换能片 2振动幅度最大处中心相对应。
本发明的技术解决方案还包括:
所述的压电陶瓷驱动式超微型气泵, 其特征是: 泵体是由泵下盖 1 和泵上 盖 6分别与泵座 5密封固定连接组成, 作为泵芯的压电陶瓷换能片 2的周边在 泵座 5安装糟内的密封圏与泵下盖 1共同夹持下弹性固定, 其之间形成一个密 封的独立工作的泵腔 25 , 泵座 5上连接单向进气阀 7和单向排气阀 8, 其中进 气阀 7与压电陶瓷换能片 2振动幅度最大处中心相对应; 进气阀 7进气入口处 空腔就是泵上盖 6中的进气腔 26, 该进气腔 26与泵体装配间隙连通, 排气阀 8 排气出口处空腔就是泵上盖 6中的排气腔 27,该排气腔 27连通泵上盖 6中的泵 嘴排气口; 电源线 12 固定在泵体上; 上述整体组成具有一个独立工作泵腔 25 的压电陶瓷驱动式超微型气泵。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 泵体是由泵下盖 1 和泵上盖 6分别与泵座 5密封固定连接组成, 作为泵芯的压电陶瓷换能片 2的 周边在泵座 5安装糟内的密封圏与泵下盖 1共同夹持下弹性固定, 其之间形成 一个密封的独立工作的泵腔 25 , 泵座 5上连接单向进气阀 7和单向排气阀 8 , 其中进气阀 7与压电陶瓷换能片 2振动幅度最大处中心相对应; 进气阀 7进气 入口处空腔就是泵上盖 6中的进气腔 26, 该进气腔 26与泵体装配间隙连通, 排 气阀 8排气出口处空腔就是泵上盖 6中的排气腔 27, 该排气腔 27连通泵上盖 6 中的泵嘴排气口; 市电部分的电源线 12改成电源插头 14, 电源插头 14固定在 泵体上; 上述整体组成具有可直接插电源的一个独立工作泵腔 25的压电陶瓷驱 动式超微型气泵。
所述的压电陶瓷驱动式超微型气泵, 其特征是: 泵体是由泵下盖 1和泵座 5 与泵壳组件固定连接组成,此处泵壳组件指排气连接件 18、 A泵壳 15和 B泵壳 16以及泵嘴 20; 在泵座 5和泵下盖 1以及排气连接件 18之间形成的密封空腔 中, 两侧泵座 5和泵下盖 1之间弹性固定一个压电陶瓷换能片 2, 构成该压电陶 瓷换能片 2的两侧空腔均为两个独立工作的双气泵腔 25; 在泵下盖 1和泵座 5 上分别安装有两个独立的单向进气阀 7,该两个进气阀 7与压电陶瓷换能片 2振 动幅度最大处中心均相互对应; 泵下盖 1和泵座 5上的出气口处连接排气连接 件 18, 该排气连接件 18上安装有两个独立的单向排气阀 8, 泵嘴 20密封连接 在泵座 5上, 两个进气阀 7进气入口处空腔就是泵座 5和泵下盖 1中的进气腔 26, 该两个进气腔 26与泵体装配间隙连通, 两个排气阀 8排气出口处空腔就是 排气连接件 18上的排气腔 27 , 该排气腔 27连通泵嘴 20排气口; 电源线 12卡 接在 A泵壳 15上, 并由 B泵壳 16与 A泵壳 15压紧连接固定一体化; 上述整 体组成具有一个压电陶瓷换能片 2、 两个独立工作的双气泵腔 25的压电陶瓷驱 动式超微型气泵。
所述的压电陶瓷驱动式超微型气泵, 其特征是: 卡接在 A泵壳 15上电源线 12通过橡胶密封块 17固定穿过, 橡胶密封块 17压入泵下盖 1上的孔中密封固 定。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 进气阀 7和排气 阀 8作为阀门结构是不等臂长的双悬臂梁阀片结构, 或者是等臂长的双悬臂梁 阀片结构,或者采用伞形阀结构;其阀片材质为硅橡胶,阀体比重 0.95 - 1. 4 g/m3, 厚度 0.30— 0.8毫米之间, 肖氏硬度在 48-56度之间。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 在泵体中固定相 串联的电容 9、 电阻 10和保险丝 11 , 其电容 9一端连接电源线 12电源, 保险 丝 11一端连接压电陶瓷换能片 2中银层 24,电源线 12的或者电源插头 14的电 源一端连接压电陶瓷换能片 2中的金属基片 21上。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 压电陶瓷换能片 2 是由金属基片 21粘接带有正反两面银层 24的陶瓷片 22构成, 整体呈圓盘状或 者近似圓盘状; 其中的粘接层即胶层 23 , 金属基片 21专指用铜或者用不锈钢制 作的金属基片 21。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 所述的泵腔 25在 静态下是一个规则的腔体或者是一个不规则的腔体; 所说的规则的腔体形状是 圓盘状; 所说的不规则的腔体是一边大一边小的盘状, 且都是在排气阀 8处的 腔体空间大于进气阀 7处的腔体空间。
所述的任意一个压电陶瓷驱动式超微型气泵, 其特征是: 其主要技术指标 特点为:
①机电转换率高, KP > 0.65;
②介电常数高 K25 °C > 6000;
③ D33高, d33 > 560 ± 30;
④机械品质好, 弯曲强度大, 不易龟裂, 脱胶;
⑤陶瓷表面居里温度 > 70°C;
⑥耐压高》 180V; ⑦频率: > 3.20KHz;
⑧电容:>90nF;
⑨电阻: > 61欧姆;
扫频范围: l~6KHz;
频长: 10Hz ;
金属基片 21直径 Φ41ιηιη, 厚度为 0.20 ~ 0.40mm;
陶瓷片 22直径 Φ 35mm, 厚度为 0.20 ~ 0.40mm;
气泵体积: 长 62 ±10 mm x宽 50 ± 5 mm 16 ± 2mm ; 重量: 12~18g; 噪音: 低于 30~40dB; 功耗: 1~1.5W。
本发明的技术解决方案与申请人前一个专利( 200510012575.6,授权公告号: CN100365278C, "一种用于制造微型泵的压电陶瓷片和微型气泵")相比, 其主 要改进的是:
1、 设计制作一种压电陶瓷换能片, 该压电陶瓷换能片经由压电特性良好的 PZT复合材料配制成陶瓷片 22, 与铜或者不锈钢制作的金属基片 21粘接、窑烧 而成, 其主要技术特点见后面所述。
上述本发明经过材料配方改进提高了本发明及陶瓷片 22 三个重要技术指 标, 比原专利技术指标为 KP> 0.60, 介电常数 K25°C >5000, d33=520 ±30, 现 分别提升为: KP>0.65, 介电常数 K25°C >6000, d33=560±30。
可在不改变尺寸的情况下, 以此件压电陶瓷换能片 2 为基准作为动力件, 用在 (制作)上述不同型号的各种各样的微型气泵中, 压电陶瓷气泵包括: 压 电式超微型负压泵, 压电式超微型真空泵, 压电式超微型气体循环泵, 压电式 超微型气泵, 压电式超微型气体采样泵, 压电式超微型打气泵, 压电式超微型 抽气泵, 压电式超微型抽气打气两用泵等。
2、 设计一种特殊的单向导气阀, 该单向阀主要技术特点为: 泵阀是不等臂 长的双悬臂梁阀片结构(参见图 11a),或等臂长双悬臂梁阀片结构(参见图 lib), 也可以是伞形阀结构(参见图 11c )。阀片材质为硅橡胶,阀体比重 0.95 -1.4 g/m3, 厚度 0.30— 0.8毫米之间, 肖氏硬度在 48-56度之间,根据负载工作压力的需要, 调整泵阀材质的比重、 软硬度和厚度, 而适应泵阀与压电陶瓷换能片 (谐振频 率一致 ) 的跟从和配合,提高压电气泵的泵阀密封效果和工作性能。
3、 本发明在泵座 5和泵上盖 6之间装有电容 9、 电阻 10和保险丝 11 , 用 于改变施加在压电陶瓷换能片 2上的交流电压, 通过调整元器件的参数, 可适 用 100V/50Hz、 60Hz; 115V-120V/60Hz; 220V-230V/50Hz的通用电网工作, 扩 大工作使用范围, 保险丝 11用于产品的安全保护, 防止短路时电流过大引起失 火等危险。
4、本发明包括采用另一种插头结构的机电一体化泵体,益处是可以节约原材 料的使用, 节省使用空间, 使整个泵看起来更为筒单、 实用、 紧凑、 明了。
本发明的结构包括但不限于上述结构。
本发明彻底改变了传统微型隔膜式气泵、 微型电磁式气泵、 微型叶轮式气 泵、 微型活塞式气泵的工作原理, 由于本发明压电泵是采用了一种新型流体驱 动器。 它不需要附加驱动电机, 而是利用压电陶瓷换能片的逆压电效应使压电 陶瓷换能片产生变形, 再由变形产生泵腔的容积变化实现流体输出, 或者说利 用压电陶瓷换能片产生波动来传输流体 (包含气体和液体)。 传统的微气泵其核 心趋动器件必须使用矽钢片叠压, 电磁铁、 铜线绕组组成, 且泵腔零部件多达 60多个, 而压电泵结构筒单到则由 2个单向阀和泵体组成, 零部件只有 5-6个。 且泵的腔体既是趋动部件, 又是工作泵腔, 因而可称为机电一体化。 与上述的 微型气泵相比较, 体积是微型气泵的五分之一到十分之一, 重量是微型泵的十 分之一到二十分之一, 具有明显的超微形特征和机电一体化特征。 缩小体积到 045*12mm, 与传统的电磁泵相比, 缩小体积 5-10倍, 减少重量到 12g, 可减 少重为 10-29倍、 降低能耗, 仅需要工作功率 1.3W、 噪音低于 30 ~ 40dB、 节能 环保、 便于安装维护、 降低生产成本。 与上述传统原理、 同等用途的国内微型 泵相比, 降低生产成本 5倍以上; 实现机电一体化和泵体超微型化的效果。
为了提高本发明压电气泵工作性能, 对压电气泵泵阀 (悬臂梁阀片) 结构 等参数进行测试, 通过有限元仿真推导其理论流量及过流面积公式, 同时结合 实验数据对压电泵腔结构设计、 性能对比、 过流特性、 泄漏、 耐压等特性进行 测试, 优化泵腔结构, 提高了压电泵整体工作效率。 解决阀座圓盘面积和泵阀
(进气阀、 排气阀) 的进、 排气阀口面积之间的结构设计及其相互合理配比, 解决由于压电陶瓷换能片在高频振荡过程中, 泵阀缺乏良好的跟从性; 且滞后 于压电陶瓷换能片的工作频率, 使压电泵的整体工作性能大大降低, 影响流体 运动速度和传速效率的问题。
通过推导其理论流量及过流面积公式, 得出了阀座圓盘面积和泵阀 (进气 阀、 排气阀) 的进、 排气阀口面积之间的结构设计及其相互合理配比是影响泵 阀流量因素的结论, 且利用如 ANSYS软件进行有限元仿真分析, 同时结合实验 制作泵阀, 优化泵腔, 提高了压电泵整体工作效率。 该压电陶瓷换能片具有良 好的机械性能, 韧性好, 弹性模量大, 工作时不出现龟裂现象, 性能稳定, 安 全可靠。
扩大了用途范围, 使用该压电陶瓷换能片的微型气泵, 具有结构筒单, 体 积小, 效率高, 噪音小, 成本底, 寿命长, 特别适用于适用于科研、 气体采样、 仪器仪表、 化工分析、 医疗器械、 医药卫生、 生物医学、 生物工程、 自动控制、 环保、 水处理、 精密计量、 实验检测、 微流量配给、 微全分析系统、 芯片实验 室和 PCR芯片等多种设备配置和微小气量供给的场合。
为了本发明的工作噪音大大降低, 采用了悬臂梁阀片或散状阀片结构; 另 外还采用了没有专门的进气孔、 进气道, 而采用泵体之间的间隙作为进气通道 结构, 其结构使其工作噪音大大降低, 尤其是使阀在运动过程中可以防止其偏 移, 使阀的密封进一步提高, 噪音进一步降低。
压电泵的特点是: 泵腔由一片压电振子或者称作压电陶瓷换能片或者压电 陶瓷片组成, 压电陶瓷换能片既是泵腔腔体组成的重要一部分, 又是动力器件, 与上述的微型气泵相比较, 体积是微型气泵的五分之一到十分之一, 重量是微 型泵的十分之一到二十分之一, 具有明显的超微形特征, 且泵的腔体既是趋动 部件, 又是工作泵腔, 因而可称为机电一体化。
【附图说明】
图 1是本发明的实施例 1的外形结构立体示意图。 图 2是图 1结构的分解 示意图。 图 3是图 1的剖视示意图。 图 4是本发明的实施例 2的外形结构立体 示意图。 图 5是图 4结构的分解示意图。 图 6是图 4的剖视示意图。 图 7是本 发明的实施例 3的外形结构立体示意图。 图 8是图 7结构的分解示意图。 图 9 是图 7的剖视示意图。 图 10(a)是压电陶瓷换能片 2的剖视示意图, 图 10(b)是 图 10(a)的局部放大示意图。 图 11(a)是进气阀 7和排气阀 8不等臂长双悬臂梁阀 片结构的主视示意图。 图 11(b)是等臂长双悬臂梁阀片结构示意图。 图 11(c)是伞 形阀及其装配的结构示意图。 图 12是上述实施例中的电路接线图。
上述图中标号说明: 1.泵下盖, 2.压电陶瓷换能片, 3.0型密封圏 A , 4.0 型密封圏 B , 5.泵座, 6.泵上盖, 7.进气阀, 8.排气阀, 9.电容, 10.电阻, 11. 保险丝, 12.电源线, 13.螺釘, 14.电源插头, 15.A泵壳, 16.B泵壳, 17. 橡胶密封块, 18.排气连接件, 19.0型密封圏 C, 20.泵嘴, 21.金属基片, 22. 陶瓷片, 23.胶层 24.银层 25.泵腔, 26.进气腔, 27.排气腔。
【具体实施方式】
为了使本发明便于理解和更加清晰, 下面通过附图和实施例对其作进一步 说明。
实施例 1 , 参看图 1-图 3。 本实施例的泵体有泵下盖 1、 泵座 5和泵上盖 6, 在泵座 5和泵下盖 1装配后构成的空腔中装有压电陶瓷换能片 2;在泵座 5的进 气口和排气口处分别装有进气阀 7和排气阀 8,其中进气阀 7与压电陶瓷换能片 2摆动幅度最大处中心相对应,进气阀 7进气入口处空腔就是泵上盖 6中的进气 腔 26, 该进气腔 26与泵体装配间隙连通; 压电陶瓷换能片 2和泵座 5之间装有 0型密封圏 A3 , 在泵座 5的背面 (图 3泵座 5右侧)和泵上盖 6之间装有 0型 密封圏 B4。 泵上盖 1、 泵座 5和泵下盖 6用螺釘 13紧固连接组成整体微型泵的 泵体, 同时压紧 0型密封圏 A3和 0型密封圏 B4, 这样压电陶瓷换能片 2、 泵座 5、 进气阀 7和排气阀 8共同形成一个密封不漏气的独立工作的泵腔 25 , 泵腔 25形状是一个不规则的对称的或者不对称的形状, 该形状是一边大一边小的盘 状或者圓盘状, 其空腔靠近排气阀 8处较大, 靠近进气阀 7处较小。 泵腔 25的 形状也可以是规则的对称的或者不对称的形状。
在泵座 5和泵上盖 6之间镶嵌装有彼此相串联的电容 9、 电阻 10和保险丝 11 , 其相串联的电容 9一端连接电源线 12电源, 保险丝 11一端连接压电陶瓷 换能片 2, 接线方式参见图 12, 电容 9和电阻 10用于改变施加在压电陶瓷换能 片 2上的交流电压, 保险丝 11用于产品的安全保护, 防止短路时电流过大引起 失火等危险。
电源线 12卡接在泵座 5上, 并由泵下盖 1和泵上盖 6压紧, 其一个接线端 焊接在压电陶瓷换能片 2中的金属基片 21上, 另一个接线端穿过泵座 5上的出 线孔与电容 9的一个端子焊接。 接线方式参见图 12。
压电陶瓷换能片 2通电工作后, 同时作径向拉伸运动的和轴向的伸缩运动, 径向拉伸运动和轴向伸缩运动同时反复重复进行,从而改变泵腔 25体积的大小, 当压电陶瓷换能片 2向外换起时, 就是泵腔 25体积增大时, 进气阀 7打开, 排 气阀 8关闭, 外面的气体通过泵体连接缝隙进入泵腔 25内, 不需要过滤网; 当 压电陶瓷换能片 2向内换起时, 就是泵腔 25体积减小时, 气体被压缩, 泵腔 25 压力增大, 进气阀 7关闭, 排气阀 8打开, 进入泵腔 25内的气体通过泵上盖 6 中排气腔 27泵嘴排出, 进气和排气见箭头所示。 通过这样反复有规律的高频率 运动, 从而实现输出一定压力和流量的气体。
参见图 10(a)和图 10(b) , 压电陶瓷换能片 2的结构由金属基片 21、 陶瓷片 22、 胶层 23和银层 24构成, 由铜或者由不锈钢制作的金属基片 21用胶层 23 粘接带有银层 24的陶瓷片 22, 陶瓷片 22两个面均有银层 24。
参见图 11(a), 本实施例中的进气阀 7和排气阀 8的结构是不等臂长双悬臂 梁阀片结构, 但也可以采用图 11(b)和图 11(c)的结构; 图 11(b)是等臂长双悬臂 梁阀片结构, 图 11(c)是伞形阀结构。 上述图 11(a)和 11(b)中进气阀 7和排气阀 8 的阀片的两端分别热铆固定在泵座 5的柱子上, 当采用图 11(c)的伞形阀时, 可 上下运动的伞形阀的连接结构需要改变泵座 5 的结构, 使其伞形阀柄密封套接 在泵座 5孔中。 本实施例中阀的结构包括但不限于上述结构。
实施例 2, 参见图 4-图 6。 本实施例中仅在接通市电部分改成插头结构, 取 代实施例 1中的电源线 12。 电源插头 14模塑固定在泵座 5上。 其中一个插片通 过引线焊接到电容 9上, 另一个插片通过引线焊接到压电陶瓷换能片 2的金属 基片 21上。 接线方式参考图 12, 除了只是用电源插头 14取代电源线 12 (仅仅 这一个具体结构不同) 以外, 其它结构均同实施例 1中的泵。 采用电源插头 14 结构的益处是可以节约原材料的使用, 节省使用空间, 使整个泵看起来更为筒 单明了。 工作原理同实施例 1。
实施例 3, 参见图 7-图 9。 本实施例是单个压电陶瓷换能片 2双腔气泵 25 结构, 包括泵下盖 1和泵座 5, 在泵座 5和泵下盖 1以及端部排气连接件 18装 配后构成密封的空腔中, 在泵座 5和泵下盖 1之间装有压电陶瓷换能片 2, 构成 压电陶瓷换能片 2两边密封且独立的工作泵腔 25, 泵下盖 1和泵座 5上分别装 有进气阀 7、 0型密封圏八3和0型密封圏 B4; 在泵下盖 1和泵座 5的上端面出 气口处装有排气连接件 18, 其作用是将两个泵腔 25的气体汇集到一起; 在排气 连接件 18上安装有两个排气阀 8和 0型密封圏 C19。 泵下盖 1和泵座 5用螺釘 紧固连接, 同时压紧 0型密封圏 A3和压电陶瓷换能片 2; 泵嘴 20用螺釘紧固 连接到泵座 5上(由于不在图中截面上, 故看不见), 同时压紧排气连接件 18、 0型密封圏 C19和 0型密封圏 B4;上述结构安装好后用螺釘 13把泵座 5固定到 B泵壳 16上, 最后把 A泵壳 15用螺釘 13安装固定到 B泵壳 16上。 一个压电 陶瓷换能片 2、 两个进气阀 7、 两个排气阀 8分别和泵下盖 1与泵座 5形成 2个 对称的或者不对称的密封泵腔 25, 工作原理同实施例 1。
在泵下盖 1和 A泵壳 15之间装有电容 9、 电阻 10和保险丝 11 , 其接线方 式参见图 12。 作用同实施例 1。
电源线 12卡接在 A泵壳 15上,并由 B泵壳 16与 A泵壳 15压紧连接固定 一体化。 接线方式参见图 12。 压电陶瓷换能片 2的金属基片 21和银层 24上分 别焊接两根引线, 并从橡胶密封块 17的孔中穿出, 一根引线与电源线 12其中 一个端子焊接, 另一根引线与电容 9的一个端子焊接。 橡胶密封块 17压入泵下 盖 1上的孔中, 起密封固定作用。 该泵实施例中的泵电路接线方式参考图 12。
需要说明的是:
1、 本发明的目的还包括, 利用压电驱动结构方式实现机电能量转换为微型 真空泵, 微型干式真空泵, 微型气泵, 微型抽气泵, 微型打气泵, 微型吸气泵, 微型气体增压泵, 微型气体采样泵, 微型气体循环泵, 微型充气泵, 泵, 微型 气水混合两用泵送作业提供动力。
2、 以上仅为本发明之较佳实施例, 但其并不限制本发明的实施范围, 即不 偏离本发明的权利要求所作之等同变化与修饰, 仍应属于本发明之保护范围。 如采用两个压电陶瓷换能片 2组成的两个泵腔 25或者四个泵腔 25的 型泵, 或者还有其他等同结构组成 3个至多个泵腔 25的微型泵。
3、 在实施例 3中, 图 9中的泵嘴 20、 排气连接件 18、 A泵壳 15和 B泵壳 16都是各自独立的零件装配, 当然也可制作成: 泵嘴 20和排气连接件 18为一 体的独立件。

Claims

权利要求
1、 压电陶瓷驱动式超微型气泵,由泵体内装配泵芯组成, 其特征是: 泵体是 由泵下盖 (1 )和泵座(5) 与泵壳组件固定连接组成, 泵芯就是压电陶瓷换能 片 (2), 该压电陶瓷换能片 (2)周边密封弹性固定在泵体内, 泵体中还装配单 向进气阀( 7 )和单向排气阀( 8 ); 进气阀( 7 )进气入口处空腔就是进气腔( 26 ), 该进气腔(26)与泵体装配间隙连通, 排气阀 (8)排气出口处空腔就是排气腔
(27), 该排气腔(27)连通泵嘴排气口; 位于泵体中的进气阀 (7) 与压电陶 瓷换能片 (2)振动幅度最大处中心相对应。
2、 根据权利要求 1所述的压电陶瓷驱动式超微型气泵, 其特征是: 泵体是 由泵下盖(1)和泵上盖(6)分别与泵座(5) 密封固定连接组成, 作为泵芯的 压电陶瓷换能片 (2) 的周边在泵座(5)安装糟内的密封圏与泵下盖(1 )共同 夹持下弹性固定, 其之间形成一个密封的独立工作的泵腔(25), 泵座(5)上 连接单向进气阀 (7)和单向排气阀 (8); 进气阀 (7)进气入口处空腔就是泵 上盖 (6) 中的进气腔(26), 排气阀 (8)排气出口处空腔就是泵上盖 (6) 中 的排气腔(27), 该排气腔(27)连通泵上盖(6)中的泵嘴排气口; 电源线(12) 固定在泵体上; 上述整体组成具有一个独立工作泵腔(25) 的压电陶瓷驱动式 超微型气泵。
3、 根据权利要求 1所述的压电陶瓷驱动式超微型气泵, 其特征是: 泵体是 由泵下盖(1)和泵上盖(6)分别与泵座(5) 密封固定连接组成, 作为泵芯的 压电陶瓷换能片 (2) 的周边在泵座(5)安装糟内的密封圏与泵下盖(1 )共同 夹持下弹性固定, 其之间形成一个密封的独立工作的泵腔(25), 泵座(5)上 连接单向进气阀 (7)和单向排气阀 (8); 进气阀 (7)进气入口处空腔就是泵 上盖(6) 中的进气腔(26), 该进气腔(26)与泵体装配间隙连通, 排气阀 (8) 排气出口处空腔就是泵上盖 (6) 中的排气腔(27), 该排气腔(27)连通泵上 盖 (6) 中的泵嘴排气口; 市电部分的电源线 (12) 改成电源插头 (14), 电源 插头 (14) 固定在泵体上; 上述整体组成具有可直接插电源的一个独立工作泵 腔( 25 ) 的压电陶瓷驱动式超微型气泵。
4、 根据权利要求 1所述的压电陶瓷驱动式超微型气泵, 其特征是: 此处泵 壳组件指排气连接件( 18 )、 A泵壳 ( 15 )和 B泵壳 ( 16 ) 以及泵嘴( 20 ); 在 泵座(5)和泵下盖 (1 ) 以及排气连接件 (18)之间形成的密封空腔中, 两侧 泵座(5)和泵下盖 (1 )之间弹性固定一个压电陶瓷换能片 (2), 构成该压电 陶瓷换能片 (2)的两侧空腔均为两个独立工作的双气泵腔(25); 在泵下盖(1 ) 和泵座(5) 上分别安装有两个独立的单向进气阀 (7), 该两个进气阀 (7) 与 压电陶瓷换能片 (2)振动幅度最大处中心均相互对应; 泵下盖(1 )和泵座(5) 上的出气口处连接排气连接件(18), 该排气连接件 ( 18)上安装有两个独立的 单向排气阀 (8), 泵嘴(20) 密封连接在泵座(5)上, 两个进气阀 (7)进气 入口处空腔就是泵座(5)和泵下盖(1 ) 中的进气腔(26), 该两个进气腔(26) 与泵体装配间隙连通, 两个排气阀 (8)排气出口处空腔就是排气连接件 18 上 的排气腔(27), 该排气腔(27)连通泵嘴(20)排气口; 电源线(12)卡接在 A泵壳 (15)上, 并由 B泵壳 (16) 与 A泵壳 (15)压紧连接固定一体化; 上 述整体组成具有一个压电陶瓷换能片 (2)、 两个独立工作的双气泵腔(25) 的 压电陶瓷驱动式超微型气泵。
5、 根据权利要求 4所述的压电陶瓷驱动式超微型气泵, 其特征是: 卡接在 A泵壳( 15 )上电源线( 12 )通过橡胶密封块( 17 )固定穿过, 橡胶密封块( 17 ) 压入泵下盖(1 )上的孔中密封固定。
6、 根据权利要求 1至 4所述的任意一项压电陶瓷驱动式超微型气泵, 其特 征是: 进气阀 (7) 和排气阀 (8)作为阀门结构是不等臂长的双悬臂梁阀片结 构, 或者是等臂长的双悬臂梁阀片结构, 或者采用伞形阀结构; 其阀片材质为 硅橡胶, 阀体比重 0.95- 1.4 g/m3,厚度 0.30— 0.8毫米之间, 肖氏硬度在 48-56 度之间。
7、 根据权利要求 1至 4所述的任意一项压电陶瓷驱动式超微型气泵, 其特 征是: 在泵体中固定相串联的电容(9)、 电阻(10)和保险丝(11 ), 其电容(9) 一端连接电源线(12) 电源, 保险丝 (11 )一端连接压电陶瓷换能片 (2) 中银 层(24), 电源线(12) 的或者电源插头 (14) 的电源一端连接压电陶瓷换能片 (2) 中的金属基片 (21 )上。
8、 根据权利要求 1至 4所述的任意一项压电陶瓷驱动式超微型气泵, 其特 征是: 压电陶瓷换能片 (2)是由金属基片 (21 )粘接带有正反两面银层(24) 的陶瓷片(22)构成,整体呈圓盘状或者近似圓盘状;其中的粘接层即胶层(23), 金属基片 (21 ) 专指用铜或者用不锈钢制作的金属基片 (21)。
9、 根据权利要求 1至 4所述的任意一项压电陶瓷驱动式超微型气泵, 其特 征是: 所述的泵腔(25)在静态下是一个规则的腔体或者是一个不规则的腔体; 所说的规则的腔体形状是圓盘状; 所说的不规则的腔体是一边大一边小的盘状, 且都是在排气阀 (8)处的腔体空间大于进气阀 (7)处的腔体空间。
10、 根据权利要求 1至 4所述的任意一项压电陶瓷驱动式超微型气泵, 其 特征是: 其主要技术指标特点为:
①机电转换率高, KP>0.65;
②介电常数高 K25°C >6000;
③ D33高, d33>560±30;
④机械品质好, 弯曲强度大, 不易龟裂, 脱胶;
⑤陶瓷表面居里温度 > 70°C;
⑥耐压高 > 180V;
⑦频率: >3.20KHz;
⑧电容:>90nF;
⑨电阻: > 61欧姆;
扫频范围: l ~6KHz;
频长: 10Hz ;
金属基片 (21 )直径 Φ41ιηιη, 厚度为 0.20 ~ 0.40mm; 陶瓷片 (22)直径 Φ35ιηηι, 厚度为 0.20 ~ 0.40mm;
气泵体积: 长 62 ±10 mm χ宽 50 ± 5 mm χ 16 ± 2mm ; 重量: 12~18g; 噪音: 低于 30~40dB; 功耗: 1~1.5W。
PCT/CN2012/076663 2011-08-31 2012-06-08 压电陶瓷驱动式超微型气泵 WO2013029407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110255709.2 2011-08-31
CN201110255709.2A CN102338072B (zh) 2011-08-31 2011-08-31 压电陶瓷驱动式超微型气泵

Publications (1)

Publication Number Publication Date
WO2013029407A1 true WO2013029407A1 (zh) 2013-03-07

Family

ID=45513973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076663 WO2013029407A1 (zh) 2011-08-31 2012-06-08 压电陶瓷驱动式超微型气泵

Country Status (2)

Country Link
CN (1) CN102338072B (zh)
WO (1) WO2013029407A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338072B (zh) * 2011-08-31 2016-05-11 胡军 压电陶瓷驱动式超微型气泵
JP5093543B1 (ja) 2012-02-15 2012-12-12 独立行政法人情報通信研究機構 嗅覚ディスプレイ
CN102961806B (zh) * 2012-12-10 2014-05-21 同济大学 医用反馈式柱状压电自动微量注射器
WO2016008154A1 (zh) * 2014-07-18 2016-01-21 科际精密股份有限公司 负压伤口治疗仪
CN106602107A (zh) * 2016-12-21 2017-04-26 武汉理工大学 一种主动排水式燃料电池
CN108052737A (zh) * 2017-12-12 2018-05-18 中国西电电气股份有限公司 一种用于气体断路器中束缚阀片的运动模拟方法
CN109265213A (zh) * 2018-10-17 2019-01-25 河南科技学院 一种用于好氧发酵工艺的智能控制系统
CN111188749B (zh) * 2018-11-15 2021-07-16 哈尔滨工业大学 一种基于压电陶瓷驱动的无膜片新型压电泵
CN113137364A (zh) * 2020-01-19 2021-07-20 侯致霖 微型氧泵
CN112720428A (zh) * 2021-01-19 2021-04-30 杨慧 一种基于高端设备制造业的新一代工业机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819631A (en) * 2006-08-09 2008-05-01 Alps Electric Co Ltd Piezoelectric pump and piezoelectric vibrator
TW200821470A (en) * 2006-10-20 2008-05-16 Alps Electric Co Ltd Diaphragm pump and thin channel structure
CN101589233A (zh) * 2007-01-23 2009-11-25 日本电气株式会社 隔膜泵
CN101634292A (zh) * 2009-08-10 2010-01-27 胡军 用于电子产品及cpu散热冷却系统的压电陶瓷泵
CN102338072A (zh) * 2011-08-31 2012-02-01 胡军 压电陶瓷驱动式超微型气泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100365278C (zh) * 2005-06-04 2008-01-30 胡军 一种用于制造微型泵的压电陶瓷片和微型气泵
CN1936326A (zh) * 2006-10-13 2007-03-28 江苏大学 无阀微压电泵
US8821134B2 (en) * 2009-06-03 2014-09-02 The Technology Partnership Plc Fluid disc pump
CN202300955U (zh) * 2011-08-31 2012-07-04 胡军 压电陶瓷驱动式超微型气泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819631A (en) * 2006-08-09 2008-05-01 Alps Electric Co Ltd Piezoelectric pump and piezoelectric vibrator
TW200821470A (en) * 2006-10-20 2008-05-16 Alps Electric Co Ltd Diaphragm pump and thin channel structure
CN101589233A (zh) * 2007-01-23 2009-11-25 日本电气株式会社 隔膜泵
CN101634292A (zh) * 2009-08-10 2010-01-27 胡军 用于电子产品及cpu散热冷却系统的压电陶瓷泵
CN102338072A (zh) * 2011-08-31 2012-02-01 胡军 压电陶瓷驱动式超微型气泵

Also Published As

Publication number Publication date
CN102338072B (zh) 2016-05-11
CN102338072A (zh) 2012-02-01

Similar Documents

Publication Publication Date Title
WO2013029407A1 (zh) 压电陶瓷驱动式超微型气泵
CN2908849Y (zh) 磁悬浮节能无磨损多用途水液泵
CN100427759C (zh) 双压电梁驱动的膜片气泵
CN101846059B (zh) 一种自适应主动阀压电泵
TW201808779A (zh) 壓電致動器及其所適用之微型流體控制裝置
CN103334907A (zh) 悬臂式压电隔膜泵
WO2013159425A1 (zh) 微型无刷直流自吸外转子多腔泵
CN106401941B (zh) 一种采用温控形状记忆合金驱动的高精度有阀微泵
CN204663827U (zh) 一种基于圆形压电双晶片驱动的共振隔膜泵
WO2013029406A1 (zh) 专用于压电泵的伞形阀
WO2017128297A1 (zh) 压电陶瓷气泵及其构筑方法
CN1908431A (zh) 超磁致伸缩棒驱动的膜式微泵
CN203404051U (zh) 悬臂式压电隔膜泵
JP2018109407A (ja) 小型流体制御装置
Guo et al. Valveless piezoelectric micropump of parallel double chambers
CN108953123B (zh) 一种基于PVC-gel柔性驱动的微泵结构
CN201723421U (zh) 一种自适应主动阀压电泵
CN112081729B (zh) 一种带滑阀的谐振式压电叠堆泵
CN202300955U (zh) 压电陶瓷驱动式超微型气泵
JPS61171891A (ja) 圧電型ポンプ
CN209892418U (zh) 一种轴流式微型压电气体压缩机
TWM544943U (zh) 微型流體控制裝置
CN202493404U (zh) 一种压电泵
CN109723628A (zh) 一种压电叠堆泵
CN109915347B (zh) 一种塔式微型压电气体压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/09/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12826761

Country of ref document: EP

Kind code of ref document: A1