WO2017128053A1 - 电调系统及具有该电调系统的云台 - Google Patents

电调系统及具有该电调系统的云台 Download PDF

Info

Publication number
WO2017128053A1
WO2017128053A1 PCT/CN2016/072220 CN2016072220W WO2017128053A1 WO 2017128053 A1 WO2017128053 A1 WO 2017128053A1 CN 2016072220 W CN2016072220 W CN 2016072220W WO 2017128053 A1 WO2017128053 A1 WO 2017128053A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
pan
esc
housing
Prior art date
Application number
PCT/CN2016/072220
Other languages
English (en)
French (fr)
Inventor
陈子寒
卢曰强
郑忠杰
潘大虎
Original Assignee
深圳市大疆灵眸科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆灵眸科技有限公司 filed Critical 深圳市大疆灵眸科技有限公司
Priority to PCT/CN2016/072220 priority Critical patent/WO2017128053A1/zh
Priority to CN201680006887.2A priority patent/CN107250653B/zh
Publication of WO2017128053A1 publication Critical patent/WO2017128053A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand

Definitions

  • the invention belongs to the technical field of cloud platforms, and in particular relates to an electric adjustment system and a cloud platform having the same.
  • the PTZ can achieve stable shooting and adjust the shooting direction. Therefore, it is widely used in photography, photography, and monitoring.
  • the pan/tilt has an electric adjustment device for adjusting the rotation speed and/or the rotation amount of the motor of the gimbal shaft.
  • the existing pan/tilt is usually a three-axis pan/tilt, so three motor drive units are required.
  • the electric adjustment devices corresponding to each motor are independently designed, that is, each motor is independently configured with an electric adjustment board.
  • three independent ESCs will increase the size of the gimbal and result in increased costs.
  • An electric adjustment system of a pan/tilt head includes a first circuit board, and the first circuit board is provided with at least two electric adjustment devices, each of which is electrically connected to a motor for respectively controlling the corresponding motor jobs.
  • each electric adjusting device comprises an electric adjusting unit and a motor driving unit, and the electric adjusting unit is electrically connected to the motor driving unit, and the motor driving unit is electrically connected to the corresponding motor respectively.
  • the ESC unit is a microprocessor
  • the motor drive unit is a power amplification unit.
  • the microprocessor is configured to receive a control signal
  • the power amplifying unit is configured to amplify the control signal to a corresponding motor to control the rotation of the motor.
  • the motor driving unit adopts an independent first power source and a first power source
  • the ESC unit adopts an independent second power source and a second power ground.
  • first power source and the first power source are provided with a wide copper wire.
  • first power source and the first power ground are respectively a complete power plane and a power ground plane.
  • the electrical tuning unit and the motor driving unit are routed by differential tight coupling.
  • each of the ESC units includes a signal receiving end and a signal transmitting end, and the signal receiving ends are connected to each other, and one of the signal transmitting ends is electrically connected to the remaining ESC units.
  • the electric modulation system further includes an inertial measurement unit, the inertial measurement unit includes an inertial measurement sensor and a controller, and the inertial measurement sensor is configured to detect a state parameter of the pan/tilt or the load, and the inertial measurement unit further
  • the signal transmitting interface is electrically connected to one of the signal receiving ends for transmitting the state parameter of the pan/tilt or the load detected by the inertial measurement sensor to the signal receiving through the signal sending interface. end.
  • the inertial measurement unit further includes a signal receiving interface, and the signal receiving interface is electrically connected to the signal transmitting end of the remaining electrical tuning unit for receiving status information from the motor.
  • the inertial measurement sensor includes a gyroscope and an accelerometer, and the signal transmission interface and the signal receiving interface are disposed at the controller.
  • controller is integrated with at least one of the ESC units.
  • a cloud platform for connecting a load comprising:
  • At least two motors At least two motors
  • An electric adjustment system includes a first circuit board, and the first circuit board is provided with at least two electric adjustment devices, each of which is electrically connected to a motor for respectively controlling the corresponding motor jobs.
  • each electric adjusting device comprises an electric adjusting unit and a motor driving unit, and the electric adjusting unit is electrically connected to the motor driving unit, and the motor driving unit is electrically connected to the corresponding motor respectively.
  • the ESC unit is a microprocessor
  • the motor drive unit is a power amplification unit.
  • the microprocessor is configured to receive a control signal
  • the power amplifying unit is configured to amplify the control signal to a corresponding motor to control the rotation of the motor.
  • the motor driving unit adopts an independent first power source and a first power source
  • the ESC unit adopts an independent second power source and a second power ground.
  • first power source and the first power source are provided with a wide copper wire.
  • first power source and the first power ground are respectively a complete power plane and a power ground plane.
  • the electrical tuning unit and the motor driving unit are routed by differential tight coupling.
  • each of the ESC units includes a signal receiving end and a signal transmitting end, and the signal receiving ends are connected to each other, and one of the signal transmitting ends is electrically connected to the remaining ESC units.
  • the electric modulation system further includes an inertial measurement unit, the inertial measurement unit includes an inertial measurement sensor and a controller, and the inertial measurement sensor is configured to detect a state parameter of the pan/tilt or the load, and the inertial measurement unit further
  • the signal transmitting interface is electrically connected to one of the signal receiving ends for transmitting the state parameter of the pan/tilt or the load detected by the inertial measurement sensor to the signal receiving through the signal sending interface. end.
  • the inertial measurement unit further includes a signal receiving interface, and the signal receiving interface is electrically connected to the signal transmitting end of the remaining electrical tuning unit for receiving status information from the motor.
  • the inertial measurement sensor includes a gyroscope and an accelerometer, and the signal transmission interface and the signal receiving interface are disposed at the controller.
  • controller is integrated with at least one of the ESC units.
  • the pan/tilt includes a first bracket, a second bracket, a first motor, a second motor connecting the first bracket and the second bracket, a third motor disposed at one end of the second bracket, and a housing,
  • the housing is disposed on one side of the second bracket, and the first circuit board is disposed in the housing.
  • first bracket is a roll axle bracket
  • second bracket is a heading axle bracket
  • first motor, the second motor, and the third motor are a pitch motor, a roll motor, and a heading motor, respectively.
  • stator of the second motor is fixed to the housing
  • first bracket is a two-arm bracket
  • rotor of the second motor is fixed at an intermediate connection between the two-arm brackets of the first bracket.
  • the housing includes a first housing and a second housing, and the second housing is mounted on the first housing and forms an accommodation space together with the first housing.
  • the first circuit board is installed in the accommodating space.
  • first housing and the second housing is provided with at least one mounting portion, and each mounting portion is provided with a mounting hole, and the first housing and the second housing are additionally provided
  • One of the first housings is provided with a mating portion, and the second housing is mounted to the first housing by sequentially passing the mating portions through the corresponding mounting holes.
  • the first circuit board is provided with a mounting hole, and the first circuit board is installed in the accommodating space by sequentially passing the mating portion through the corresponding mounting hole and the mounting hole.
  • the electric adjustment system and the pan/tilt head of the invention have at least two electric adjustment devices arranged on one circuit board, so that one circuit board can simultaneously control two or more motors, thereby effectively reducing the number of circuit boards.
  • the weight of the whole machine is reduced, and the flying time of the unmanned aerial vehicle that mounts the gimbal can be made longer.
  • the material cost of the whole machine is reduced, the workload of hardware development is reduced, and the space inside the machine can be effectively saved, so that the whole machine can be made smaller and the production and maintenance of the whole machine are facilitated.
  • FIG. 1 is a schematic overall view of a cloud platform according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the pan/tilt head of FIG. 1.
  • FIG. 3 is an exploded perspective view of the gimbal of FIG. 1 at another angle.
  • FIG. 4 is a functional block diagram of the electric power adjustment system in the cloud platform shown in FIG. 1.
  • FIG. 5 is another functional block diagram of the electric power adjustment system in the cloud platform shown in FIG. 1.
  • a preferred embodiment of the present invention provides a pan/tilt head 200 on which a load 21 is disposed.
  • the load 21 is a camera module.
  • the load 21 may also be other, such as a microcomputer or a projection device.
  • the pan/tilt head 200 is a three-axis pan/tilt head, and includes a first bracket 23, a second bracket 24, a first motor 25, a second motor 26 connecting the first bracket 23 and the second bracket 24, and The third motor 27 at one end of the second bracket 24.
  • the first bracket 23 is a cross roller bracket.
  • the second bracket 24 is a heading bracket.
  • the first motor 25, the second motor 26, and the third motor 27 are respectively a pitch motor, a roller motor, and a heading motor.
  • the first electric machine 25 is capable of driving the load 21 to rotate about a first axis, such as a pitch axis.
  • the first bracket 23 can be rotated about a second axis, such as a roll axis, under the driving of the second motor 26, and the second bracket 24 can be driven around the third axis by the third motor 27, For example, the heading axis rotates.
  • the stator of the second motor 26 is fixed to the housing 28, and the rotor of the second motor 26 is directly fixedly connected to the first bracket 23. Since the first bracket 23 of the present embodiment is a two-arm bracket, the rotor of the second motor 26 is fixed to the intermediate joint between the two-arm brackets of the first bracket 23, which can effectively reduce the volume.
  • the platform 200 further includes a housing 28 mounted on one side of the second bracket 24.
  • the housing 28 includes a first housing 280 and a second housing 281 that mates with the first housing 280.
  • the first housing 280 is substantially frame-shaped and includes a bottom portion 282 and a side portion 283.
  • the side portion 283 is formed by bending the edge of the bottom portion 282.
  • the bottom portion 282 is provided with at least one mounting portion 284.
  • the mounting portion 284 is substantially columnar, and a mounting hole 285 is defined in the top axial position.
  • the second housing 281 has a shape and structure corresponding to the first housing 280, and is substantially frame-shaped, and includes a bottom wall 286 and a peripheral wall 287.
  • the peripheral wall 287 is formed by bending the edge of the bottom wall 286.
  • the bottom wall 286 is provided with at least one fitting portion 288.
  • the engaging portion 288 is a columnar body, and the number of the engaging portions 288 is consistent with the number of the mounting holes 285.
  • the number of the engaging portions 288 may also be smaller than the number of the mounting holes 285, that is, the engaging portions 288 are matched with the portions of the mounting holes 285.
  • the second housing 281 is mounted on the first housing 280 through the corresponding mounting holes 285, and a receiving space 289 is formed.
  • the positions of the mounting hole 285 and the engaging portion 288 may be interchanged, that is, the mounting hole 285 is disposed on the second housing 281, and the engaging portion 288 is disposed.
  • the first housing 280; or the first housing 280 and the second housing 281 are provided with a mounting hole 285 and a matching portion 288, and only the mounting hole 285 or the second housing 281 is required to be secured.
  • the mating portion 288 can cooperate with the corresponding mating portion 288 of the first housing 280 or the mounting hole 285 to fit the second housing 281 to the first housing 280.
  • the platform 200 further includes an ESC system 100 including at least one ESC 11, a first circuit board 13, and a second circuit board 15.
  • the number of the electric adjustment devices 11 is the same as the number of the electric machines, that is, the electric adjustment system 100 includes three electric adjustment devices 11.
  • Each of the electric adjusting devices 11 includes an electric adjusting unit 111 and a motor driving unit 113.
  • the ESC unit 111 is electrically connected to the motor drive unit 113.
  • the motor drive unit 113 is electrically connected to respective motors, such as the first motor 25, the second motor 26, and the third motor 27 to control the operating state of the respective motor.
  • the ESC system 100 also includes an inertial measurement unit 17.
  • the inertial measurement unit 17 includes at least one inertial measurement sensor and a controller, the inertial measurement sensor includes a gyroscope and an accelerometer, and the inertial measurement sensor is used to detect a state parameter of the pan/tilt or the load, such as a gimbal or a parameter such as an angular velocity and/or an acceleration of the load, the controller sends a control signal to each of the electrical tuning units 111 based on the state parameter, and the motor driving unit 113 corresponding to each electrical tuning unit 111 sends the control signal to the corresponding motor. Thereby, the motor is controlled to rotate, thereby facilitating the pan/tilt head 200 to perform pan/tilt attitude adjustment according to the state parameter to achieve stable shooting.
  • the ESC unit 111 is a microprocessor
  • the motor driving unit 113 is a power amplifying unit.
  • the microprocessor is configured to receive a control signal of the controller
  • the power amplifying unit is configured to amplify the control signal to a corresponding motor to control the rotation of the motor.
  • the electrical control device 11 can receive a remote control command (such as a control command issued by a remote controller, a control command issued by a ground base station, an instruction issued by a ground control center, etc.) to control the first motor 25 and the second. At least one of the motor 26 and the third motor 27 changes the angle and/or direction of the shot.
  • a remote control command such as a control command issued by a remote controller, a control command issued by a ground base station, an instruction issued by a ground control center, etc.
  • each of the ESC units 111 includes a signal receiving end RX1 and a signal transmitting end TX1.
  • the inertial measurement unit 17 includes a signal transmission interface TX2 and a signal reception interface RX2.
  • the signal receiving ends RX1 of the two ESC units 111 disposed on the first circuit board 13 are electrically connected together, and the signal receiving end RX1 of one of the ESC units 111 is electrically connected to the inertial measurement unit 17
  • the signal transmitting interface TX2 is configured to receive a state parameter of the pan/tilt or the load detected by the inertial measurement unit 17.
  • the signal transmitting terminal TX1 of one of the ESC units 111 disposed on the first circuit board 13 is electrically connected to the ESC unit 111 of another ECD device 11 , wherein an ESC unit 111 is configured to receive a corresponding motor (for example The status information of the second motor 26) (such as the angle at which the motor is currently rotated) transmits the received status information to the other ESC unit 111 via the signal transmitting terminal TX1.
  • a corresponding motor for example The status information of the second motor 26
  • the status information of the second motor 26 (such as the angle at which the motor is currently rotated) transmits the received status information to the other ESC unit 111 via the signal transmitting terminal TX1.
  • the signal transmitting end TX1 of the ESC unit 111 that receives the status information of the one of the ESC units 111 is electrically connected to the signal receiving interface RX2 of the inertial measurement unit 17 for receiving the received status information and the local
  • the state information of the corresponding motor (for example, the third motor 27) of the tuning unit 111 is fed back to the inertial measurement unit 17, wherein the state information of the motor includes the rotational speed, temperature, current magnitude, voltage magnitude, etc. of the motor, when the motor is detected.
  • the controller issues a further control signal or a prompt signal.
  • the signal sending interface TX2 and the signal receiving interface RX2 are all disposed on the controller.
  • the signal receiving end RX1 of the electronic regulating unit 111 disposed on the second circuit board 15 is electrically connected to the signal transmitting interface TX2 of the inertial measuring unit 17 for receiving the inertial measuring unit 17 to detect the pan/tilt or The status parameter of the load.
  • the signal transmitting end TX1 of the ESC unit 111 disposed on the second circuit board 15 is electrically connected to the inertial measurement unit 17, and further receives status information of the corresponding motor (for example, the first motor 25), and The status information is fed back to the inertial measurement unit 17 via the signal receiving terminal RX1.
  • the three electrical adjustment devices 11 may also be disposed on the first circuit board 13 to omit the second circuit board 15 to further save the pan/tilt head 200. space.
  • the signal receiving ends RX1 of the three ESC units 111 on the first circuit board 13 are electrically connected together, and the signal receiving end RX1 of one of the ESC units 111 is electrically connected to the inertial measurement unit 17
  • the signal transmitting interface TX2 is configured to receive a state parameter of the pan/tilt or the load detected by the inertial measurement unit 17.
  • the signal transmitting terminals TX1 of the two electronic tuning units 111 disposed on the first circuit board 13 are electrically connected to the remaining electrical tuning units 111 to respectively receive state information of the corresponding motors, and will receive the same.
  • the status information is transmitted to the remaining ESC unit 111 via the signal transmitting terminal TX1.
  • the signal transmitting end TX1 of the remaining ESC unit 111 is electrically connected to the signal receiving interface RX2 of the inertial measurement unit 17, and the corresponding state information of the three motors is fed back to the inertial measurement unit 17.
  • the first circuit board 13 is further provided with at least one mounting hole 131.
  • the number of the mounting holes 131 is the same as the number of the mating portions 288, and the first circuit is further passed through the corresponding mounting holes 131 and the mounting holes 285 in sequence.
  • the plate 13 is mounted in the accommodating space 289.
  • the number of the fitting holes 131 may also be larger than the number of the fitting portions 288, that is, the fitting portion 288 is matched with a portion of the fitting hole 131.
  • the second circuit board 15 and the ESC unit 111 and the motor driving unit 113 disposed on the second circuit board 15 are disposed in the load 21.
  • the plurality of the motor driving units 113 can adopt a separate first power source 115 (ie, a positive power source) and a first power source ground 117 (ie, a negative power source) to form a separate power supply circuit.
  • first power source 115 ie, a positive power source
  • first power source ground 117 ie, a negative power source
  • the ESC unit 111 and other various functional modules can be connected to a separate second power source 118 (ie, the power source positive pole) and the second power source ground 119 (ie, the power source cathode) to form a single power supply loop.
  • the first power source 115 and the first power source ground 117 can adopt a wide copper trace to further reduce Electromagnetic Interference (EMI) radiation of the ESC system 100.
  • the first power source 115 and the first power source ground 117 are a complete power plane and a power ground plane.
  • the electrical tuning unit 111 and the motor driving unit 113 can be routed by differential tight coupling to eliminate common mode interference caused by signal recirculation across the power supply and across the ground.
  • the inertial measurement unit 17 can be disposed on the second circuit board 15 and other functions disposed on the second circuit board 15. Modules such as the ESC unit 111 and the motor drive unit 113 are collectively disposed within the load 21. More specifically, the controller of the inertial measurement unit 17 is integrated with the ESC unit mounted on the second circuit board 15.
  • the inertial measurement unit 17 can also be disposed on the first circuit board 15, and the controller is integrated with at least one of the two electrical adjustment devices 11 disposed on the first circuit board 13. Together.
  • the controller is integrated with one of the ESC units 111 on the first circuit board 13; alternatively, the controller is integrated with the two ESC units 111 on the first circuit board 13.
  • the pan/tilt head 200 is not limited to the three-axis pan/tilt head described above, and may also be a two-axis pan/tilt head.
  • the number of motors in the pan/tilt head 200 is two.
  • the number of the electric adjusting devices 11 in the ESC system 100 is also two.
  • two electric adjusting devices 11 can be disposed on the first circuit board 13 to omit the second circuit board 15.
  • the arrangement of the three-axis pan/tilt is not limited to the arrangement of the pitch-roll-yaw of the present embodiment.
  • pan/tilt head 200 can be disposed not only on the unmanned aerial vehicle but also on other movable objects, such as bicycles, electric bicycles, automobiles, trains, ships, etc., or human or animal creatures. Physically.
  • the electric power adjustment system 100 and the pan/tilt head 200 having the electric power adjustment system 100 have at least two electric adjustment devices 11 disposed on one circuit board, so that one circuit board can simultaneously control two or more motors, thereby effectively reducing the circuit board.
  • the quantity while reducing the weight of the whole machine, can make the flying life of the unmanned aerial vehicle that mounts the PTZ 200 longer.
  • the material cost of the whole machine is reduced, the workload of hardware development is reduced, and the space inside the machine can be effectively saved, so that the whole machine can be made smaller and the production and maintenance of the whole machine are facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

一种电调系统(100),包括第一电路板(13),所述第一电路板(13)上设置有至少两个电调装置(11),每一电调装置(11)分别电连接至一电机(25,26,27),用以分别控制相应电机(25,26,27)的工作。该电调系统(100)可以用于云台(200)。

Description

电调系统及具有该电调系统的云台 技术领域
本发明属于云台技术领域,尤其涉及一种电调系统及具有该电调系统的云台。
背景技术
云台作为摄像机等拍摄设备的支撑设备,能够实现稳定拍摄及调整拍摄方向的功能,因此其广泛应用于摄影、照相、监测等领域。云台具有电调装置,该电调装置用于调整云台转轴的电机的转速及/或转动量。
现有的云台通常为三轴云台,因此需要三个电机驱动单元。目前每个电机对应的电调装置是独立设计的,即每个电机都独立配置一块电调板。然而,三块独立的电调板将使得云台的体积变大,并导致成本的增加。
发明内容
鉴于以上内容,有必要提供一种电调系统及具有该电调系统的云台。
一种云台的电调系统,包括第一电路板,所述第一电路板上设置有至少两个电调装置,每一电调装置分别电连接至一电机,用以分别控制相应电机的工作。
进一步地,每一电调装置包括电调单元及电机驱动单元,所述电调单元与所述电机驱动单元电连接,所述电机驱动单元分别电连接至对应的电机。
进一步地,所述电调单元为微处理器,所述电机驱动单元为功率放大单元。
进一步地,所述微处理器用于接收控制信号,所述功率放大单元用于将该控制信号放大至对应的电机,从而控制电机转动。
进一步地,所述电机驱动单元采用独立的第一电源以及第一电源地,所述电调单元采用独立的第二电源以及第二电源地。
进一步地,所述第一电源及第一电源地采用宽铜皮走线。
进一步地,所述第一电源以及第一电源地分别为一完整的电源平面及电源地平面。
进一步地,所述电调单元与电机驱动单元之间采用差分紧耦合的方式走线。
进一步地,每一电调单元包括信号接收端及信号发送端,所述信号接收端相互连接,其中一个信号发送端分别电连接至剩余的电调单元。
进一步地,所述电调系统还包括惯性测量单元,所述惯性测量单元包括惯性测量传感器和控制器,所述惯性测量传感器用于侦测云台或负载的状态参数,所述惯性测量单元还包括信号发送接口,所述信号发送接口与其中一个信号接收端电连接,用以将所述惯性测量传感器侦测到的云台或负载的状态参数通过所述信号发送接口发送至所述信号接收端。
进一步地,所述惯性测量单元还包括信号接收接口,所述信号接收接口与所述剩余的电调单元的信号发送端电连接,用以接收来自电机的状态信息。
进一步地,所述惯性测量传感器包括陀螺仪和加速度器,所述信号发送接口及信号接收接口设置于所述控制器。
进一步地,所述控制器与其中至少一个电调单元集成在一起。
一种云台,用于连接一负载,所述云台包括:
至少两个电机;以及
电调系统,所述电调系统包括第一电路板,所述第一电路板上设置有至少两个电调装置,每一电调装置分别电连接至一电机,用以分别控制相应电机的工作。
进一步地,每一电调装置包括电调单元及电机驱动单元,所述电调单元与所述电机驱动单元电连接,所述电机驱动单元分别电连接至对应的电机。
进一步地,所述电调单元为微处理器,所述电机驱动单元为功率放大单元。
进一步地,所述微处理器用于接收控制信号,所述功率放大单元用于将该控制信号放大至对应的电机,从而控制电机转动。
进一步地,所述电机驱动单元采用独立的第一电源以及第一电源地,所述电调单元采用独立的第二电源以及第二电源地。
进一步地,所述第一电源及第一电源地采用宽铜皮走线。
进一步地,所述第一电源以及第一电源地分别为一完整的电源平面及电源地平面。
进一步地,所述电调单元与电机驱动单元之间采用差分紧耦合的方式走线。
进一步地,每一电调单元包括信号接收端及信号发送端,所述信号接收端相互连接,其中一个信号发送端分别电连接至剩余的电调单元。
进一步地,所述电调系统还包括惯性测量单元,所述惯性测量单元包括惯性测量传感器和控制器,所述惯性测量传感器用于侦测云台或负载的状态参数,所述惯性测量单元还包括信号发送接口,所述信号发送接口与其中一个信号接收端电连接,用以将所述惯性测量传感器侦测到的云台或负载的状态参数通过所述信号发送接口发送至所述信号接收端。
进一步地,所述惯性测量单元还包括信号接收接口,所述信号接收接口与所述剩余的电调单元的信号发送端电连接,用以接收来自电机的状态信息。
进一步地,所述惯性测量传感器包括陀螺仪和加速度器,所述信号发送接口及信号接收接口设置于所述控制器。
进一步地,所述控制器与其中至少一个电调单元集成在一起。
进一步地,所述云台包括第一支架、第二支架、第一电机、连接第一支架与第二支架的第二电机、设置于第二支架一端的第三电机、以及壳体,所述壳体设置于所述第二支架的一侧,所述第一电路板装设于所述壳体内。
进一步地,所述第一支架为横滚轴支架,所述第二支架为航向轴支架,所述第一电机、第二电机以及第三电机分别为俯仰电机、横滚电机、以及航向电机。
进一步地,所述第二电机的定子固定于所述壳体,所述第一支架为双臂支架,所述第二电机的转子固定于第一支架的双臂支架之间的中间连接处。
进一步地,所述壳体包括第一壳体及第二壳体,所述第二壳体装设于所述第一壳体上,且与所述第一壳体共同形成一容置空间,所述第一电路板装设于所述容置空间内。
进一步地,所述第一壳体与所述第二壳体其中之一设置有至少一安装部,每一安装部上开设有安装孔,所述第一壳体与所述第二壳体另外之一设置有配合部,通过将所述配合部依次穿过相应的安装孔,进而将所述第二壳体装设于所述第一壳体。
进一步地,所述第一电路板上设置有装配孔,通过将所述配合部依次穿过相应的装配孔以及安装孔,进而将所述第一电路板装设于所述容置空间内。
本发明中的电调系统及具有该电调系统的云台将至少两个电调装置设置于一个电路板上,即可实现一个电路板同时控制两个以上电机,有效减少了电路板的数量,同时减轻了整机重量,可以使得挂载该云台的无人飞行器的飞行续航时间更长。同时,降低了整机的物料成本,减小了硬件开发的工作量,且可有效节约机内空间,使整机可以做的更小,方便整机的生产和维护。
附图说明
图1为本发明实施例的云台的整体示意图。
图2为图1所述云台的分解示意图。
图3为图1所述云台另一角度下的分解示意图。
图4为图1所示云台中电调系统的功能模块图。
图5为图1所示云台中电调系统的另一功能模块图。
主要元件符号说明
云台 200
负载 21
第一支架 23
第二支架 24
第一电机 25
第二电机 26
第三电机 27
壳体 28
第一壳体 280
第二壳体 281
底部 282
侧部 283
安装部 284
安装孔 285
底壁 286
周壁 287
配合部 288
容置空间 289
电调系统 100
电调装置 11
电调单元 111
信号接收端 RX1
信号发送端 TX1
电机驱动单元 113
第一电路板 13
装配孔 131
第二电路板 15
惯性测量单元 17
信号接收接口 RX2
信号发送接口 TX2
第一电源 115
第一电源地 117
第二电源 118
第二电源地 119
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本发明较佳实施方式提供一种云台200,其上设置有负载21。在本实施例中,所述负载21为相机模组。当然,在其他实施例中,所述负载21也可以为其他,例如微型电脑或投影设备等。所述云台200为三轴云台,其包括第一支架23、第二支架24、第一电机25、连接第一支架23与第二支架24的第二电机26、以及设置于所述第二支架24一端的第三电机27。在本实施例中,所述第一支架23为横滚轴支架。所述第二支架24为航向轴支架。所述第一电机25、第二电机26以及第三电机27分别为俯仰(Pitch)电机、横滚(Roll)电机、以及航向(Yaw)电机。所述第一电机25能够驱动所述负载21绕第一轴,例如俯仰轴转动。所述第一支架23能够在所述第二电机26的驱动下绕第二轴,例如横滚轴转动,所述第二支架24能够在所述第三电机27的驱动下绕第三轴,例如航向轴转动。
本实施例中,所述第二电机26的定子固定于所述壳体28,所述第二电机26的转子直接与第一支架23固定连接。由于本实施例的第一支架23为双臂支架,所述第二电机26的转子固定于第一支架23的双臂支架之间的中间连接处,这样可以有效降低体积。
请一并参阅图2及图3,所述云台200还包括壳体28,所述壳体28装设于所述第二支架24的一侧。所述壳体28包括第一壳体280及与所述第一壳体280相配合的第二壳体281。所述第一壳体280大致呈框状,包括底部282及侧部283。该侧部283由所述底部282的边缘弯折而成。该底部282上设置有至少一安装部284。在本实施例中,该安装部284大致呈柱状,其顶部轴向位置开设有安装孔285。
所述第二壳体281的形状及结构与所述第一壳体280相应,其大致呈框状,包括底壁286及周壁287。该周壁287由所述底壁286的边缘弯折而成。所述底壁286上设置有至少一配合部288。在本实施例中,所述配合部288呈柱状体,且所述配合部288的数量与所述安装孔285的数量一致。当然,所述配合部288的数量也可以小于所述安装孔285的数量,即所述配合部288与所述安装孔285的部分相配合。通过将所述配合部288依次穿过相应的安装孔285,进而将所述第二壳体281装设于所述第一壳体280上,并共同形成一容置空间289。
可以理解,在其他实施例中,所述安装孔285与所述配合部288的位置可以互换,即所述安装孔285设置于所述第二壳体281上,而所述配合部288设置于第一壳体280;或者所述第一壳体280与第二壳体281上均设置有安装孔285及配合部288,仅需保证所述第二壳体281上的安装孔285或/及配合部288可与第一壳体280上相应的配合部288或及安装孔285配合,进而将所述第二壳体281装配于所述第一壳体280上即可。
请一并参阅图4,所述云台200还包括电调系统100,所述电调系统100包括至少一个电调装置11、第一电路板13以及第二电路板15。在本实施方式中,所述电调装置11的数量与所述电机的数量一致,即所述电调系统100包括三个电调装置11。
每一电调装置11包括电调单元111以及电机驱动单元113。所述电调单元111电连接至所述电机驱动单元113。所述电机驱动单元113电连接至相应的电机,例如第一电机25、第二电机26以及第三电机27,以控制相应电机的工作状态。
可以理解,所述电调系统100还包括惯性测量单元17。所述惯性测量单元17包括至少一个惯性测量传感器和一控制器,所述惯性测量传感器包括陀螺仪和加速度器,所述惯性测量传感器用于侦测云台或负载的状态参数,例如云台或负载的角速度和/或加速度等参数,所述控制器基于该状态参数发出控制信号至各电调单元111,各电调单元111所对应的电机驱动单元113将该控制信号发送至对应的电机,从而控制电机转动,进而便于所述云台200根据该状态参数进行云台姿态调整,以实现稳定拍摄。
本实施例中,所述电调单元111为微处理器,而所述电机驱动单元113为功率放大单元。所述微处理器用于接收所述控制器的控制信号,所述功率放大单元用于将该控制信号放大至对应的电机,从而控制电机转动。
可以理解,所述电调装置11可以接收远端控制指令(例如遥控器发出的控制指令、地面基站发出的控制指令、地面控制中心发出的指令等),控制所述第一电机25、第二电机26以及第三电机27中的至少一个改变拍摄的角度及/或方向。
在本实施例中,两个电调装置11设置于所述第一电路板13上,另外一个电调装置11设置于所述第二电路板15上。其中,每一电调单元111均包括信号接收端RX1及信号发送端TX1。所述惯性测量单元17包括信号发送接口TX2及信号接收接口RX2。其中,设置于所述第一电路板13上的两个电调单元111的信号接收端RX1电连接于一起,并且其中一个电调单元111的信号接收端RX1电连接至所述惯性测量单元17的信号发送接口TX2,用以接收所述惯性测量单元17侦测到的云台或负载的状态参数。设置于所述第一电路板13上的其中一个电调单元111的信号发送端TX1电连接至另一电调装置11的电调单元111,其中一电调单元111用以接收相应电机(例如第二电机26)的状态信息(如电机当前转动的角度),并将接收到的状态信息通过所述信号发送端TX1传送给所述另一电调单元111。接收到所述其中一电调单元111的状态信息的电调单元111的信号发送端TX1电连接至所述惯性测量单元17的信号接收接口RX2,用以将接收到的状态信息以及与本电调单元111相应的电机(例如第三电机27)的状态信息均反馈至所述惯性测量单元17,其中电机的状态信息包括电机的转速、温度、电流大小、电压大小等,当检测到电机的状态信息出现异常时,所述控制器发出进一步的控制信号或者提示信号。本实施例中,所述信号发送接口TX2及信号接收接口RX2均设置于所述控制器上。设置于所述第二电路板15上的电调单元111的信号接收端RX1电连接至所述惯性测量单元17的信号发送接口TX2,用以接收所述惯性测量单元17侦测到云台或负载的状态参数。同时,设置于所述第二电路板15上的电调单元111的信号发送端TX1电连接至所述惯性测量单元17,进而接收相应电机(例如第一电机25)的状态信息,并将所述状态信息通过所述信号接收端RX1反馈至所述惯性测量单元17。
可以理解,在其他实施例中,所述三个电调装置11也可全部设置于所述第一电路板13上,进而省略所述第二电路板15,以进一步节省所述云台200的空间。如此,所述第一电路板13上的三个电调单元111的信号接收端RX1均电连接于一起,并且其中一个电调单元111的信号接收端RX1电连接至所述惯性测量单元17的信号发送接口TX2,用以接收所述惯性测量单元17侦测到的云台或负载的状态参数。另外,设置于所述第一电路板13上的其中两个电调单元111的信号发送端TX1均电连接至剩下的电调单元111,以分别接收相应电机的状态信息,并将接收到的状态信息通过所述信号发送端TX1传送给所述剩下的电调单元111。所述剩下的电调单元111的信号发送端TX1电连接至所述惯性测量单元17的信号接收接口RX2,进而将三个电机相应的状态信息均反馈至所述惯性测量单元17。
可以理解,请再次参阅图2及图3,所述第一电路板13上还设置有至少一装配孔131。在本实施例中,所述装配孔131的数量与所述配合部288的数量一致,通过将所述配合部288依次穿过相应的装配孔131以及安装孔285,进而将所述第一电路板13装设于所述容置空间289内。当然,所述装配孔131的数量也可以大于所述配合部288的数量,即所述配合部288与所述装配孔131的部分相配合。
可以理解,在本实施例中,所述第二电路板15以及设置于所述第二电路板15上的电调单元111和电机驱动单元113是设置于所述负载21内。
可以理解,在其他实施例中,多个所述电机驱动单元113可采用一独立的第一电源115(即电源正极)以及第一电源地117(即电源负极),进而形成单独的供电回路,以消除电机驱动单元113因为工作电流较大对其他功能模块产生的干扰影响。所述电调单元111以及其他各个功能模块可连接于至一独立的第二电源118(即电源正极)以及第二电源地119(即电源负极),以形成一个单独的供电回路。
可以理解,所述第一电源115以及第一电源地117可采用宽铜皮走线,以进一步减小电调系统100的电磁(Electromagnetic Interference,EMI)辐射。优选地,第一电源115以及第一电源地117为一完整的电源平面和电源地平面。
可以理解,所述电调单元111与电机驱动单元113之间可采用差分紧耦合的方式走线,以消除信号回流跨电源、跨地分割所受到的共模干扰。
可以理解,请一并参阅图5,在其中一个实施例中,所述惯性测量单元17可设置于所述第二电路板15上,并与其他设置于所述第二电路板15上的功能模块,例如电调单元111和电机驱动单元113共同设置于所述负载21内。更具体地,所述惯性测量单元17的控制器与安装于所述第二电路板15上的电调单元集成在一起。
可以理解,所述惯性测量单元17也可设置于第一电路板15上,而所述控制器与设置于第一电路板13上的两个电调装置11中的至少一个电调单元111集成在一起。例如,所述控制器与第一电路板13上的其中一个电调单元111集成在一起;或者,所述控制器与第一电路板13上的两个电调单元111集成一起。
可以理解,在其他实施例中,所述云台200不局限于上述所述的三轴云台,其还可以为两轴云台。如此,所述云台200中的电机数量为两个,对应的,所述电调系统100中的电调装置11的数量也为两个。则两个电调装置11可设置于所述第一电路板13上,进而省略所述第二电路板15。此外,三轴云台的排列方式并不限于本实施例的pitch-roll-yaw的排列方式。
可以理解,所述云台200不仅可以设置于无人飞行器上,也可以设置于其他可运动物体上,例如,自行车、电动自行车、汽车、火车、轮船等交通工具上,或者人体或者动物等生物体上。
上述电调系统100及具有该电调系统100的云台200将至少两个电调装置11设置于一个电路板上,即可实现一个电路板同时控制两个以上电机,有效减少了电路板的数量,同时减轻了整机重量,可以使得挂载该云台200的无人飞行器的飞行续航时间更长。同时,降低了整机的物料成本,减小了硬件开发的工作量,且可有效节约机内空间,使整机可以做的更小,方便整机的生产和维护。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (32)

  1. 一种云台的电调系统,其特征在于:所述电调系统包括第一电路板,所述第一电路板上设置有至少两个电调装置,每一电调装置分别电连接至一电机,用以分别控制相应电机的工作。
  2. 如权利要求1所述的电调系统,其特征在于:每一电调装置包括电调单元及电机驱动单元,所述电调单元与所述电机驱动单元电连接,所述电机驱动单元分别电连接至对应的电机。
  3. 如权利要求2所述的电调系统,其特征在于:所述电调单元为微处理器,所述电机驱动单元为功率放大单元。
  4. 如权利要求3所述的电调系统,其特征在于:所述微处理器用于接收控制信号,所述功率放大单元用于将该控制信号放大至对应的电机,从而控制电机转动。
  5. 如权利要求2所述的电调系统,其特征在于:所述电机驱动单元采用独立的第一电源以及第一电源地,所述电调单元采用独立的第二电源以及第二电源地。
  6. 如权利要求5所述的电调系统,其特征在于:所述第一电源及第一电源地采用宽铜皮走线。
  7. 如权利要求5所述的电调系统,其特征在于:所述第一电源以及第一电源地分别为一完整的电源平面及电源地平面。
  8. 如权利要求2所述的电调系统,其特征在于:所述电调单元与电机驱动单元之间采用差分紧耦合的方式走线。
  9. 如权利要求2所述的电调系统,其特征在于:每一电调单元包括信号接收端及信号发送端,所述信号接收端相互连接,其中一个信号发送端分别电连接至剩余的电调单元。
  10. 如权利要求9所述的电调系统,其特征在于:所述电调系统还包括惯性测量单元,所述惯性测量单元包括惯性测量传感器和控制器,所述惯性测量传感器用于侦测云台或负载的状态参数,所述惯性测量单元还包括信号发送接口,所述信号发送接口与其中一个信号接收端电连接,用以将所述惯性测量传感器侦测到的云台或负载的状态参数通过所述信号发送接口发送至所述信号接收端。
  11. 如权利要求10所述的电调系统,其特征在于:所述惯性测量单元还包括信号接收接口,所述信号接收接口与所述剩余的电调单元的信号发送端电连接,用以接收来自电机的状态信息。
  12. 如权利要求11所述的电调系统,其特征在于:所述惯性测量传感器包括陀螺仪和加速度器,所述信号发送接口及信号接收接口设置于所述控制器。
  13. 如权利要求10所述的电调系统,其特征在于:所述控制器与其中至少一个电调单元集成在一起。
  14. 一种云台,用于连接一负载,其特征在于,所述云台包括:
    至少两个电机;以及
    电调系统,所述电调系统包括第一电路板,所述第一电路板上设置有至少两个电调装置,每一电调装置分别电连接至一电机,用以分别控制相应电机的工作。
  15. 如权利要求14所述的云台,其特征在于:每一电调装置包括电调单元及电机驱动单元,所述电调单元与所述电机驱动单元电连接,所述电机驱动单元分别电连接至对应的电机。
  16. 如权利要求15所述的云台,其特征在于:所述电调单元为微处理器,所述电机驱动单元为功率放大单元。
  17. 如权利要求16所述的云台,其特征在于:所述微处理器用于接收控制信号,所述功率放大单元用于将该控制信号放大至对应的电机,从而控制电机转动。
  18. 如权利要求15所述的云台,其特征在于:所述电机驱动单元采用独立的第一电源以及第一电源地,所述电调单元采用独立的第二电源以及第二电源地。
  19. 如权利要求18所述的云台,其特征在于:所述第一电源及第一电源地采用宽铜皮走线。
  20. 如权利要求18所述的云台,其特征在于:所述第一电源以及第一电源地分别为一完整的电源平面及电源地平面。
  21. 如权利要求15所述的云台,其特征在于:所述电调单元与电机驱动单元之间采用差分紧耦合的方式走线。
  22. 如权利要求15所述的云台,其特征在于:每一电调单元包括信号接收端及信号发送端,所述信号接收端相互连接,其中一个信号发送端分别电连接至剩余的电调单元。
  23. 如权利要求22所述的云台,其特征在于:所述电调系统还包括惯性测量单元,所述惯性测量单元包括惯性测量传感器和控制器,所述惯性测量传感器用于侦测云台或负载的状态参数,所述惯性测量单元还包括信号发送接口,所述信号发送接口与其中一个信号接收端电连接,用以将所述惯性测量传感器侦测到的云台或负载的状态参数通过所述信号发送接口发送至所述信号接收端。
  24. 如权利要求23所述的云台,其特征在于:所述惯性测量单元还包括信号接收接口,所述信号接收接口与所述剩余的电调单元的信号发送端电连接,用以接收来自电机的状态信息。
  25. 如权利要求24所述的云台,其特征在于:所述惯性测量传感器包括陀螺仪和加速度器,所述信号发送接口及信号接收接口设置于所述控制器。
  26. 如权利要求23所述的云台,其特征在于:所述控制器与其中至少一个电调单元集成在一起。
  27. 如权利要求14所述的云台,其特征在于:所述云台包括第一支架、第二支架、第一电机、连接第一支架与第二支架的第二电机、设置于第二支架一端的第三电机、以及壳体,所述壳体设置于所述第二支架的一侧,所述第一电路板装设于所述壳体内。
  28. 如权利要求27所述的云台,其特征在于:所述第一支架为横滚轴支架,所述第二支架为航向轴支架,所述第一电机、第二电机以及第三电机分别为俯仰电机、横滚电机、以及航向电机。
  29. 如权利要求27所述的云台,其特征在于:所述第二电机的定子固定于所述壳体,所述第一支架为双臂支架,所述第二电机的转子固定于第一支架的双臂支架之间的中间连接处。
  30. 如权利要求27所述的云台,其特征在于:所述壳体包括第一壳体及第二壳体,所述第二壳体装设于所述第一壳体上,且与所述第一壳体共同形成一容置空间,所述第一电路板装设于所述容置空间内。
  31. 如权利要求30所述的云台,其特征在于:所述第一壳体与所述第二壳体其中之一设置有至少一安装部,每一安装部上开设有安装孔,所述第一壳体与所述第二壳体另外之一设置有配合部,通过将所述配合部依次穿过相应的安装孔,进而将所述第二壳体装设于所述第一壳体。
  32. 如权利要求31所述的云台,其特征在于:所述第一电路板上设置有装配孔,通过将所述配合部依次穿过相应的装配孔以及安装孔,进而将所述第一电路板装设于所述容置空间内。
PCT/CN2016/072220 2016-01-26 2016-01-26 电调系统及具有该电调系统的云台 WO2017128053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/072220 WO2017128053A1 (zh) 2016-01-26 2016-01-26 电调系统及具有该电调系统的云台
CN201680006887.2A CN107250653B (zh) 2016-01-26 2016-01-26 电调系统及具有该电调系统的云台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072220 WO2017128053A1 (zh) 2016-01-26 2016-01-26 电调系统及具有该电调系统的云台

Publications (1)

Publication Number Publication Date
WO2017128053A1 true WO2017128053A1 (zh) 2017-08-03

Family

ID=59397040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072220 WO2017128053A1 (zh) 2016-01-26 2016-01-26 电调系统及具有该电调系统的云台

Country Status (2)

Country Link
CN (1) CN107250653B (zh)
WO (1) WO2017128053A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921286A (zh) * 2005-08-23 2007-02-28 江南机器(集团)有限公司 单片机控制的直流有刷电机电子调速器
CN202647109U (zh) * 2012-06-04 2013-01-02 深圳市大疆创新科技有限公司 电调装置、具有该电调装置的云台及飞行器
CN203372391U (zh) * 2013-04-27 2014-01-01 湖北易瓦特科技有限公司 一种用于无人驾驶飞机的驱动装置及无人驾驶飞机
CN203859813U (zh) * 2014-05-25 2014-10-01 深圳市大疆创新科技有限公司 云台系统
CN204250379U (zh) * 2014-09-24 2015-04-08 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN204383757U (zh) * 2014-12-26 2015-06-10 深圳市大疆创新科技有限公司 无人飞行器及其电路板组件
WO2015138217A1 (en) * 2014-03-13 2015-09-17 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
CN204688429U (zh) * 2015-05-20 2015-10-07 深圳市大疆创新科技有限公司 主机结构总成及使用该主机结构总成的遥控移动装置
CN205534911U (zh) * 2016-01-26 2016-08-31 深圳市大疆创新科技有限公司 电调系统及具有该电调系统的云台

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921286A (zh) * 2005-08-23 2007-02-28 江南机器(集团)有限公司 单片机控制的直流有刷电机电子调速器
CN202647109U (zh) * 2012-06-04 2013-01-02 深圳市大疆创新科技有限公司 电调装置、具有该电调装置的云台及飞行器
CN203372391U (zh) * 2013-04-27 2014-01-01 湖北易瓦特科技有限公司 一种用于无人驾驶飞机的驱动装置及无人驾驶飞机
WO2015138217A1 (en) * 2014-03-13 2015-09-17 Endurant Systems, Llc Uav configurations and battery augmentation for uav internal combustion engines, and associated systems and methods
CN203859813U (zh) * 2014-05-25 2014-10-01 深圳市大疆创新科技有限公司 云台系统
CN204250379U (zh) * 2014-09-24 2015-04-08 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN204383757U (zh) * 2014-12-26 2015-06-10 深圳市大疆创新科技有限公司 无人飞行器及其电路板组件
CN204688429U (zh) * 2015-05-20 2015-10-07 深圳市大疆创新科技有限公司 主机结构总成及使用该主机结构总成的遥控移动装置
CN205534911U (zh) * 2016-01-26 2016-08-31 深圳市大疆创新科技有限公司 电调系统及具有该电调系统的云台

Also Published As

Publication number Publication date
CN107250653A (zh) 2017-10-13
CN107250653B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN210431574U (zh) 一种光学防抖模组和电子设备
CN205534911U (zh) 电调系统及具有该电调系统的云台
WO2018076366A1 (zh) 云台、拍摄设备、增稳系统及移动载体
WO2013033925A1 (zh) 小型无人飞行器用两轴云台及小型无人飞行器用三轴云台
CN202647109U (zh) 电调装置、具有该电调装置的云台及飞行器
US8345428B2 (en) Data acquisition module and system
WO2018119767A1 (zh) 无人机及其控制系统与控制方法、电调及其控制方法
US20190375510A1 (en) Unmanned aerial vehicle
CN110867768B (zh) 一种适用于复杂情况下的输电线路地线通道巡检系统
WO2017128317A1 (zh) 无人飞行器及无人飞行器航拍方法
WO2018076250A1 (zh) 电机,云台及拍摄设备
WO2018086227A1 (zh) 无人机
CN104914649A (zh) 一种适用于运动拍摄的稳定器
CN111496814A (zh) 一种可变形的机器人机构和巡检机器人
WO2017206070A1 (zh) 无人飞行器的机架及无人飞行器
CN109823557B (zh) 云台、无人飞行器、拍摄设备以及可移动设备
WO2017128053A1 (zh) 电调系统及具有该电调系统的云台
WO2018053693A1 (zh) 电机控制系统和无人飞行器
CN211685666U (zh) 一种云台、无人机及控制系统
CN113315892A (zh) 摄像机
WO2019000397A1 (zh) 无人飞行器及无人飞行器的组装方法
CN113120247A (zh) 云台、云台控制方法、无人机、控制系统及其控制方法
CN214930673U (zh) 一种两轴调节光电吊舱
WO2023120848A1 (ko) 예지정비 기능을 구비한 위성 안테나 포지셔너
CN205256676U (zh) 八面体飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886940

Country of ref document: EP

Kind code of ref document: A1