WO2017126481A1 - Display control device, method of displaying safety factor, and program recording medium - Google Patents

Display control device, method of displaying safety factor, and program recording medium Download PDF

Info

Publication number
WO2017126481A1
WO2017126481A1 PCT/JP2017/001298 JP2017001298W WO2017126481A1 WO 2017126481 A1 WO2017126481 A1 WO 2017126481A1 JP 2017001298 W JP2017001298 W JP 2017001298W WO 2017126481 A1 WO2017126481 A1 WO 2017126481A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety factor
display
display control
value
predicted
Prior art date
Application number
PCT/JP2017/001298
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 杉崎
梓司 笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017562813A priority Critical patent/JP6699672B2/en
Priority to BR112018013803-7A priority patent/BR112018013803A2/en
Priority to MX2018008770A priority patent/MX2018008770A/en
Publication of WO2017126481A1 publication Critical patent/WO2017126481A1/en
Priority to PH12018501296A priority patent/PH12018501296A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B31/00Predictive alarm systems characterised by extrapolation or other computation using updated historic data

Definitions

  • the present invention relates to the display of the safety factor of the slope.
  • Patent Documents 1 to 3 There are technologies described in Patent Documents 1 to 3 as technologies related to the prediction of earth and sand disasters.
  • Patent Document 1 describes a system that supports prediction of sediment disasters.
  • Patent Document 1 describes a technique for calculating a risk for each section based on a measured soil rainfall index.
  • ⁇ Slope safety factor is one of the indicators of slope stability used in the analysis to investigate slope stability (slope stability analysis).
  • the safety factor of a slope is simply the ratio of the sliding force (sliding force) to the slope and its resistance. The state where the safety factor of the slope is less than 1, that is, the state where the sliding force is greater than the resistance force indicates that the slope is unstable.
  • the slope safety factor can be calculated by various calculation methods (stability analysis formulas) such as the Ferrenius method and Yanbu method.
  • Patent Document 1 only displays the degree of risk in time series for each section. Therefore, it is necessary for humans to make a prediction of a disaster while looking at information such as the degree of danger displayed, and it depends on personal experience and subjectivity. That is, in the technique described in Patent Literature 1, certain prediction results and evaluations have not been obtained for sediment disasters.
  • One of the exemplary purposes of the present invention is to solve the above-mentioned problem that a certain prediction result and evaluation cannot be obtained for a landslide disaster, and to make the evacuation behavior of a user prepared for a landslide disaster more reliable. To provide technology.
  • An apparatus is specified based on a first display control unit that displays a transition of a safety factor of a slope at a certain point on a display unit using an actual value and a predicted value, and the predicted value.
  • Second display control means for causing the display means to display an estimated time at which the safety factor at the point is less than or equal to a predetermined threshold value.
  • the method according to another aspect of the present invention displays the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value, and the safety at the point specified based on the predicted value.
  • the predicted time when the rate is equal to or less than a predetermined threshold is displayed.
  • a program recording medium that causes a computer to display a transition of a safety factor of a slope at a certain point on a display unit using an actual value and a predicted value, and based on the predicted value.
  • FIG. 1 is a block diagram showing an example of the configuration of the display control apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a display example of information by the display device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing another display example of information by the display device according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing an example of the configuration of a display system according to the second embodiment of the present invention.
  • FIG. 5 is a sequence chart showing an example of the operation of the display system according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing a display example of information by the information processing apparatus according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing an example of the configuration of the display control apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a display example of information by the display device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing another display example
  • FIG. 7 is a diagram showing a display example of information by the information processing apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a diagram showing a display example of information by the information processing apparatus according to the first modification of the present invention.
  • FIG. 9 is a diagram showing a display example of information by the information processing apparatus according to the second modification of the present invention.
  • FIG. 10 is a block diagram showing an example of a hardware configuration of a computer apparatus according to Modification 8 of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the display control apparatus according to the first embodiment of the present invention.
  • the display control device 110 is a computer device that controls display of information by the display device 120.
  • the display device 120 is a dedicated or general-purpose display device that displays information (such as a safety factor) described later, and is, for example, a liquid crystal display.
  • the display control device 110 may be connected to the display device 120 by wire or wireless, or may be configured integrally with the display device 120.
  • the display control device 110 and the display device 120 are used, for example, by residents in an area where there is a risk of a sediment disaster.
  • the display control device 110 and the display device 120 may be used for an organization (such as a public institution) that transmits warning information against a sediment disaster.
  • the display control device 110 includes a first display control unit 111 and a second display control unit 112.
  • the first display control unit 111 and the second display control unit 112 both control the display of information by the display device 120.
  • the information to be controlled is different between the first display control unit 111 and the second display control unit 112.
  • the display control mentioned here is, for example, supplying data necessary for displaying information to the display device 120.
  • the first display control unit 111 controls the display of the transition of the safety factor at at least one point.
  • the first display control unit 111 causes the display device 120 to display a temporal change in the safety factor at a predetermined point using the actual value and the predicted value of the safety factor.
  • the display format of the safety factor by the first display control unit 111 is, for example, a table format or a graph format.
  • the first display control unit 111 may display a map including the plurality of points and display the transition of the safety factor together with the map.
  • the actual value refers to a numerical value that is actually calculated based on an actual measurement value of a parameter necessary for calculating a safety factor. That is, the actual value here indicates a past or present safety factor.
  • the predicted value is a future numerical value estimated at a certain time (at the time).
  • the actual value and predicted value of the safety factor are supplied from an external device (not shown).
  • the safety factor calculation formula slope stability analysis formula is not limited to a specific formula.
  • the second display control unit 112 controls the display of the predicted time when the safety factor is equal to or less than a predetermined threshold.
  • the threshold value here is typically “1.0”, but is not necessarily limited thereto.
  • the predicted time may be a time when the safety factor becomes equal to or less than a predetermined threshold, or may be a remaining time until a time when the safety factor becomes equal to or less than a predetermined threshold.
  • the predicted time can be specified based on the predicted value of the safety factor, for example.
  • FIG. 2 is a diagram showing a display example of information by the display device 120 according to the first embodiment of the present invention.
  • the display device 120 displays the transition of the safety factor at a specific point in time series using a graph.
  • This graph is a graph in which the vertical axis represents a safety factor and the horizontal axis represents time.
  • time t indicates the current time (that is, the time when this graph is displayed).
  • the display control apparatus 110 supplies image data indicating the illustrated graph to the display apparatus 120.
  • the safety factor before time t is the actual value.
  • the safety factor after time t is a predicted value.
  • the display device 120 displays the actual value and the predicted value so that the user can distinguish them. In the example of FIG. 2, the display device 120 makes it possible to distinguish each other by displaying the actual value with a solid line and the predicted value with a broken line. The actual value and the predicted value may be distinguished according to the color, thickness, etc. of the line.
  • the display device 120 displays the time t1 when the predicted value of the safety factor becomes a predetermined value (here, “1.0”).
  • the display device 120 may display the difference between the time t and the time t1 such as “two more hours” instead of the time t1 itself or together with the time t1.
  • FIG. 3 is a diagram showing another display example of information by the display device 120 according to the first embodiment of the present invention.
  • the display device 120 displays the transition of the safety factor at a plurality of points A, B, and C.
  • the display device 120 displays the numerical values of the safety factor for each 30 minutes at each point in time series. Here, it is assumed that the current time is 10:00 (1000).
  • the display device 120 is not distinguished here, but may display the numerical appearance (color, typeface, size, etc.) separately depending on whether the actual value or the predicted value.
  • the display device 120 displays the time at which the predicted value of the safety factor becomes a predetermined value (here, “1.0”) at each point. In addition, the display device 120 displays the character color and background color of the field where the safety factor is equal to or lower than the predetermined value by inverting it with the other numerical value fields.
  • a predetermined value here, “1.0”
  • the display control apparatus 110 of the present embodiment in addition to the transition of the safety factor from the past to the future, it is possible to display the predicted time when the safety factor is below a predetermined threshold. In other words, by using the safety factor of the slope, certain prediction results and evaluations about sediment disasters can be obtained. Therefore, the user can know in advance that a landslide disaster may occur, and can prepare for evacuation behavior.
  • the display control device 110 of the present embodiment how much time is left before the occurrence of a state in which there is an increased risk of a landslide disaster such as when the safety factor is “1.0”. Intuitive and easy-to-understand display is possible. Thereby, it becomes easy for users including the above-described supporters and supporters to execute appropriate evacuation behavior in a planned manner.
  • the actual value and the predicted value of the safety factor can be displayed so as to be distinguishable from each other.
  • the user can easily distinguish between a numerical value representing the actual situation of the observation point and a numerical value that is indeterminate from the numerical value, and can more reliably prepare for the evacuation action.
  • FIG. 4 is a block diagram showing an example of the configuration of a display system according to the second embodiment of the present invention.
  • the display system 200 includes information processing apparatuses 210 and 220.
  • the information processing apparatus 210 typically functions as a server apparatus for the information processing apparatus 220 that is a client apparatus.
  • the information processing apparatus 220 is, for example, a personal computer or a smartphone.
  • the specific configurations of the information processing apparatuses 210 and 220 are not particularly limited as long as they have functions described later.
  • the information processing device 210 is a computer device for calculating the actual value and the predicted value of the safety factor.
  • the information processing apparatus 210 includes a reception unit 211, a calculation unit 212, and a communication unit 213.
  • the information processing device 220 is a computer device for displaying a safety factor calculated based on the calculation by the information processing device 210.
  • the information processing apparatus 220 includes a communication unit 221, a display control unit 222, a display unit 223, and a UI (User Interface) unit 224.
  • the receiving unit 211 receives data necessary for calculating the safety factor.
  • the receiving unit 211 receives measurement data indicating parameters measured at an observation point and predicted rainfall data indicating a predicted value of rainfall at the observation point.
  • the observation point refers to a point for which a safety factor is to be displayed.
  • the observation points are, for example, points (or representative points among a plurality of points divided in this way) obtained by dividing the target area by polygons (triangles, quadrangles, etc.) of a predetermined size.
  • a sensor for measuring parameters is installed at the observation point.
  • a parameter here is a variable used for calculation of a safety factor.
  • the parameter is, for example, a numerical value having a correlation with the moisture state in the soil.
  • the moisture content here is either the volume moisture content (ratio of moisture volume to soil volume) or weight moisture content (ratio of moisture weight to soil weight).
  • the receiving unit 211 receives measurement data indicating the actual amount of water and rain measured at the observation point.
  • the sensor at the observation point may transmit the measurement data periodically (for example, every 10 minutes), or may transmit the measurement data in response to a request from the information processing apparatus 210.
  • Predicted rainfall data indicates the predicted rainfall per unit time at the observation point.
  • the predicted rainfall data may be provided from an external institution or business operator's computer.
  • Japan Meteorological Agency has published a forecast value of precipitation in 1km square mesh units (short-term precipitation forecast).
  • the calculation unit 212 calculates the actual value and the predicted value of the safety factor.
  • the calculation unit 212 calculates the actual value of the safety factor of the observation point based on the actual value of the moisture content of the soil at the observation point received by the reception unit 211 and the actual measurement value of the rainfall at the observation point. Further, the calculation unit 212 calculates a predicted value of the safety factor at the observation point based on the predicted value of the rainfall at the observation point.
  • c i is a coefficient of less than 1 that varies depending on the soil type (soil type).
  • f (p t, p t -1, p t-2, ..., p tk) is, p t, p t-1 , p t-2, ..., given multivariable function to the p tk variable It is.
  • n and k are appropriately determined numerical values.
  • m t can be expressed by the following equation (2).
  • F corresponds to the hydraulic conductivity and varies depending on the soil type.
  • C is a coefficient indicating the water retention capacity of the soil.
  • F and c may be calculated
  • Formula and (2) Formula can be used as a prediction formula of a moisture content. That is, when t is a predetermined time point after the prediction execution time, the calculation unit 212 determines the water content at the time point based on the predicted rainfall value at the time point and the measured water content value before the time point. It is possible to calculate (ie predict) the quantity.
  • the water content m t it may be a model is used other than the tank model.
  • the water content m t in addition to the primary function, quadratic function and experimentally or empirically calculated assuming other functions models are also applicable.
  • the calculation unit 212 calculates the predicted value of the safety factor at the time point using the prediction formula of the moisture amount calculated in this way and the predicted value of the rainfall amount at the observation point at the predetermined time point where the actual measurement value does not exist.
  • the point in time when the actual measurement value does not exist specifically refers to a future after a specific point in time (for example, the timing for performing the prediction), that is, the future as viewed from the point in time.
  • safety factor definition formulas there are a plurality of types of safety factor definition formulas (stability analysis formulas), and the formula is not limited to a specific type.
  • the calculation unit 212 calculates a predicted value based on the Ferrenius method (also referred to as simple division method or Swedish method) or the modified Ferrenius method.
  • the safety factor Fs according to the Ferrenius method can be expressed by the following equation (3), for example.
  • c, W, u, and ⁇ are variables representing the adhesive strength, weight, pore water pressure, and internal friction angle, respectively.
  • represents the inclination angle of the slope.
  • l represents the length of the sliding surface of the divided piece (slice) obtained by dividing the slope in the vertical direction.
  • the inclination angle ⁇ and the slip surface length l are constants here.
  • the safety factor Fs according to the modified Ferrenius method can be expressed by, for example, the following equation (4).
  • b represents the width of the slice.
  • the slice width b is a constant.
  • the adhesive strength c, the weight W, the pore water pressure u, and the internal friction angle ⁇ all vary depending on the amount of moisture in the soil. Therefore, both of these variables can be expressed as a function of the amount of water.
  • the expression (3) indicates that the adhesive force c, weight W, pore water pressure u, and internal friction angle ⁇ are functions c (m), W (m), u (m), and ⁇ (m) of the water content m, respectively. Is replaced by the following formula (5). Such substitution is also possible in the formula (4).
  • the functions c (m), W (m), u (m), and ⁇ (m) may be different for each soil.
  • the functions c (m), W (m), u (m), and ⁇ (m) may be obtained in advance based on these variables and the actual measured water content, or may be estimated by simulation or the like. .
  • the amount of water in the soil at a certain time in the future can be predicted if the amount of water before the time and the predicted value of the rain at the time are obtained. Therefore, the value newly required by the calculation unit 212 when predicting the safety factor is only the predicted value of the rainfall at the time when the safety factor is calculated (that is, the future).
  • the calculation unit 212 calculates the actual value and the predicted value of the safety factor for each observation point.
  • the calculation unit 212 may perform calculation for a specific observation point designated by the user, or may perform calculation for all observation points.
  • the calculation unit 212 supplies the calculated actual value and predicted value of the safety factor to the communication unit 213.
  • the communication units 213 and 221 exchange data with each other.
  • the communication units 213 and 221 exchange data via the Internet, for example.
  • the communication method by the communication units 213 and 221 is not limited to a specific method.
  • the display control unit 222 controls display of information by the display unit 223.
  • the display control unit 222 generates image data using the actual value and predicted value of the safety factor received by the communication unit 221.
  • the display control unit 222 generates image data corresponding to either “graph mode” or “map mode”.
  • the graph mode is a display mode for displaying the transition of the safety factor using a graph.
  • the map mode is a display mode for displaying the transition of the safety factor using a map.
  • the display unit 223 displays an image corresponding to the image data generated by the display control unit 222. This image includes at least information on the safety factor.
  • the display unit 223 is, for example, a liquid crystal display, but the display element and the display method are not particularly limited.
  • the UI unit 224 accepts user operations.
  • the UI unit 224 is an input device (or an interface thereof) such as a keyboard and a mouse, for example.
  • the UI unit 224 may include a touch screen provided corresponding to the display area of the display unit 223.
  • the operation received by the UI unit 224 includes an instruction to display a safety factor and selection of a display mode.
  • FIG. 5 is a sequence chart showing an example of the operation of the display system 200 according to the second embodiment of the present invention. This operation is triggered by a user operation on the information processing apparatus 220. In this operation, the user may select a point for displaying the display mode and the safety factor. However, the point where the display mode and the safety factor are displayed may be determined in advance.
  • the information processing apparatus 220 receives a user operation via the UI unit 224 (step S1).
  • the information processing apparatus 220 requests the information processing apparatus 210 to transmit a safety factor via the communication unit 221 (step S2).
  • This request may include the current time (that is, at the time of the request), information for identifying the point where the safety factor is displayed, and the like.
  • the calculation unit 212 calculates the safety factor of one or a plurality of points (step S3).
  • the calculation unit 212 calculates the actual value of the safety factor based on the measurement data received in advance. Further, the calculation unit 212 calculates a predicted value of the safety factor based on the measurement data and the predicted rainfall data.
  • the calculation unit 212 calculates a safety factor for a certain period (for example, from 4 hours before to 3 hours ahead) based on the current time.
  • the information processing apparatus 210 transmits the actual value and the predicted value of the safety factor to the information processing apparatus 220 via the communication unit 213 (step S4).
  • the display control unit 222 When the information processing device 220 receives the actual value and the predicted value of the safety factor, the display control unit 222 generates image data (step S5).
  • the display control unit 222 generates image data that represents the actual value and the predicted value of the safety factor in a display mode corresponding to the display mode. Thereafter, the display control unit 222 supplies the generated image data to the display unit 223.
  • the display unit 223 displays an image corresponding to the image data (step S6).
  • FIG. 6 and 7 are diagrams showing examples of information display by the information processing apparatus 220 according to the second embodiment of the present invention.
  • This display example illustrates the case where the display mode is the map mode.
  • the display of the information processing apparatus 220 when the display mode is the graph mode is the same as the display example (see FIG. 2) of the first embodiment described above.
  • icons P1 to P5 each represent an observation point.
  • the icons P1 to P5 may be assigned names (such as place names) that can be easily recognized by the user.
  • the user may designate a region or observation point to be confirmed and cause the information processing apparatus 220 to display a map. Note that the information processing apparatus 220 may accept designation of a map display magnification.
  • the icons P1 to P5 represent the safety factor by color.
  • the icons P1 to P5 are, for example, “blue” if the safety factor is 1.5 or more, “green” if the safety factor is 1.3 or more and less than 1.5, and the safety factor is 1.0 or more and 1.3. If it is less than “yellow”, the color changes according to the safety factor, such as “red” if the safety factor is less than 1.0.
  • the information processing apparatus 220 may display a more detailed numerical value of the safety factor corresponding to the selected icon when the user selects (tap, overlaps the cursor, etc.) any of the icons P1 to P5. Then, the predicted time when the safety factor is 1.0 or less at the observation point corresponding to the selected icon may be displayed.
  • the time TM is a time corresponding to the safety factor displayed by the information processing apparatus 220.
  • the display example of FIG. 6 is an example in which the safety factor at 9:00 on a certain day is displayed.
  • the slider SL is a GUI (Graphical User Interface) element for changing the time TM.
  • the information processing apparatus 220 displays the value of the safety factor after the time displayed at that time, and the user moves the slider SL to the left.
  • the value of the safety factor at the time before the time displayed at that time is displayed.
  • the display example of FIG. 7 is an example in which the user slides the slider SL to the right from the state shown in the display example of FIG. 6 to display the safety factor at 10:00.
  • the same operational effects as those of the first embodiment can be achieved.
  • the display system 200 it is possible to graphically display the safety factor of a plurality of observation points within a certain range. Thereby, the user can prepare for evacuation action in consideration of not only a specific point but also a transition of the safety factor in the vicinity of the point.
  • the information processing apparatus 210 may calculate an error assumed for the predicted value of the safety factor.
  • the information processing device 220 may display the calculated error together with the predicted value.
  • the calculation method of this error is as follows, for example.
  • the calculating unit 212 calculates the safety factor error ⁇ Fs by the following equation (7).
  • Fs (m) represents the value of the safety factor obtained by substituting the amount of moisture m at the latest time into the prediction formula for the safety factor.
  • Fs (m + ⁇ m) represents the value of the safety factor obtained by substituting the value obtained by adding the moisture amount m and the difference ⁇ m at the latest time into the safety factor prediction formula.
  • ⁇ Fs / ⁇ m represents a change rate of the safety factor Fs (m) with respect to the water content m at the time.
  • FIG. 8 is a diagram showing a display example of information (particularly an error) by the information processing apparatus 220 according to the first modification of the present invention.
  • This display example is the same as the example shown in FIG. 2 except that the predicted value of the safety factor is displayed together with the error.
  • the information processing device 220 displays a curve indicating the value obtained by subtracting (or adding) the error ⁇ Fs from the safety factor Fs (predicted value thereof), that is, a curve indicating Fs ⁇ Fs (and Fs + ⁇ Fs). To do. Further, the information processing apparatus 220 may display the predicted time when the value of Fs ⁇ Fs is 1.0 or less as necessary.
  • the user can grasp how accurately the predicted value of the safety factor is calculated. Further, the user can improve the certainty of the evacuation action by planning the evacuation action in consideration of the error calculated with respect to the predicted value of the safety factor.
  • the information processing apparatus 210 may transmit information (water content m in the second embodiment) that is a basis for calculating the safety factor to the information processing apparatus 220.
  • the information processing apparatus 220 may display the transmitted information together with the safety factor.
  • FIG. 9 is a diagram showing a display example of information (particularly the amount of moisture) by the information processing apparatus 220 according to the second modification of the present invention.
  • This display example is the same as the example shown in FIG. 2 except that the measured value of the moisture content is displayed.
  • the safety factor of the slope tends to decrease as the moisture content of the soil constituting the slope increases.
  • the information processing apparatus 210 may calculate a safety factor at an observation point, that is, a point other than the point where the sensor is installed. For example, the information processing apparatus 210 may calculate the safety factor of the points around the observation point by interpolation from the safety factor of the observation point. In this case, the information processing apparatus 220 may display a line connecting points where the predicted time of the safety factor is equal to or less than a predetermined value, such as contour lines, on the map. .
  • the information processing apparatus 220 may output information such as a safety factor by a method other than display.
  • the information processing apparatus 220 may output the safety factor and the predicted time by voice.
  • the stability analysis formula is not limited to a formula of a specific method.
  • the stability analysis formula in addition to the Ferrenius method and the modified Ferrenius method, the Bishop method, Yanbu method, etc. can be applied. These stability analysis formulas can also describe necessary variables as a function of moisture content.
  • the index indicating the safety of the slope is not limited to the safety factor.
  • the numerical value indicating the moisture state of the slope is not limited to the moisture amount.
  • the amount of water has a correlation with the attenuation rate of the vibration waveform in the soil. Therefore, if the correlation between the moisture content and the attenuation rate can be obtained, the stability analysis formula can be described as a function of the attenuation rate.
  • the functions described as functions of the information processing apparatus 220 in the second embodiment may be realized by the information processing apparatus 210.
  • the information processing apparatus 210 may be configured to execute up to image data generation (step S5) and transmit the image data to the information processing apparatus 220.
  • the information processing apparatus 220 may receive image data and display an image corresponding to the received image data.
  • the information processing devices 210 and 220 may be realized by a single device.
  • Modification 8 Various variations are conceivable for specific hardware configurations of the display control device 100 and the information processing devices 210 and 220 described above, and the configuration is not limited to a specific configuration. For example, some components of the display control device 100 and the information processing devices 210 and 220 may be realized using software.
  • FIG. 10 is a block diagram illustrating an example of a hardware configuration of a computer apparatus 400 according to the eighth modification of the present invention.
  • the computer apparatus 400 is an example of an apparatus that implements the display control apparatus 100 and the information processing apparatuses 210 and 220 described above.
  • the computer device 400 includes a CPU (Central Processing Unit) 401, a ROM (Read Only Memory) 402, a RAM (Random Access Memory) 403, a storage device 404, a drive device 405, a communication interface 406, and an input / output interface. 407.
  • the display control device 100 and the information processing devices 210 and 220 can be realized by the configuration (or part thereof) shown in FIG.
  • the CPU 401 executes the program 408 using the RAM 403.
  • the program 408 may be stored in the ROM 402.
  • the program 408 may be recorded on a recording medium 409 such as a flash memory and read by the drive device 405, or may be transmitted from an external device via the network 410.
  • the communication interface 406 exchanges data with an external device via the network 410.
  • the input / output interface 407 exchanges data with peripheral devices (such as an input device and a display device).
  • the communication interface 406 and the input / output interface 407 can function as means for acquiring or outputting data.
  • Each of the first display control unit 111, the second display control unit 112, and the display control unit 222 may be configured by a single circuit (such as a processor) or may be configured by a combination of a plurality of circuits. Good.
  • the circuit here may be either dedicated or general purpose.
  • the first display control unit 111 and the second display control unit 112 may be configured by a single circuit.
  • a first display control means for displaying the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value;
  • a display control apparatus comprising: a second display control unit that causes the display unit to display a predicted time when a safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold value.
  • Appendix 2 The display control apparatus according to claim 1, wherein the first display control means displays the actual value and the predicted value so as to be distinguishable from each other.
  • Appendix 3) The display control apparatus according to appendix 1 or 2, wherein the first display control unit displays an error assumed for the predicted value together with the predicted value.
  • the display control device according to any one of appendix 1 to appendix 7, wherein the first display control unit changes the display of the safety factor in accordance with a user operation.
  • the first display control means includes an actual value of the safety factor calculated based on an actual measured value of a parameter having a correlation with a moisture state in the soil at the point, and an actual value and an estimated value of rainfall at the point.
  • the display control device according to any one of appendix 1 to appendix 8, wherein the predicted value of the safety factor calculated based on the display is displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Computing Systems (AREA)
  • Alarm Systems (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The reliability of evacuation behavior is increased for users prepared for a landslide disaster. A display control device is provided with a first display control unit for displaying on a display unit the change in the safety factor for a given site using the actual status value and predicted value, and a second display control unit for displaying on the display unit the predicted time at which the safety factor at the site specified on the basis of the predicted value will fall below a designated threshold value.

Description

表示制御装置、安全率の表示方法及びプログラム記録媒体Display control device, safety factor display method, and program recording medium
 本発明は、斜面の安全率の表示に関する。 The present invention relates to the display of the safety factor of the slope.
 土砂災害の避難行動に際しては、土砂災害が発生するおそれがある地点からより安全な地点へと避難することが想定される。しかしながら、斜面崩壊のような土砂災害は、局地的に発生する可能性がある。そうすると、例えば、ある地点から別の地点へ避難する場合に、その避難経路の途中の地点において土砂災害が発生する可能性がある。この土砂災害の結果、道路が通行できない状態になるなどした場合には、避難行動に想定以上の時間を要したり、あるいは孤立して避難自体が不可能になったりする可能性がある。したがって、土砂災害の避難行動に際しては、避難経路全体での土砂災害の予測及び評価がユーザにとって重要である。 In evacuation actions for landslide disasters, it is assumed that evacuation will take place from a point where a landslide disaster may occur to a safer point. However, landslide disasters such as slope failures may occur locally. Then, for example, when evacuating from one point to another, there is a possibility that a landslide disaster will occur at a point in the middle of the evacuation route. As a result of this earth and sand disaster, if the road becomes inaccessible, the evacuation action may take more time than expected, or the evacuation may become impossible in isolation. Therefore, in evacuation behavior of landslide disasters, prediction and evaluation of landslide disasters throughout the evacuation route is important for the user.
 土砂災害の予測に関連する技術として、特許文献1~3に記載された技術がある。例えば、特許文献1には、土砂災害の予測を支援するシステムが記載されている。特許文献1には、測定された土壌雨量指数に基づいて区画毎の危険度を算出する技術が記載されている。 There are technologies described in Patent Documents 1 to 3 as technologies related to the prediction of earth and sand disasters. For example, Patent Document 1 describes a system that supports prediction of sediment disasters. Patent Document 1 describes a technique for calculating a risk for each section based on a measured soil rainfall index.
 斜面の安定性を調べるための解析(斜面の安定解析)に用いる、斜面の安定性を示す指標の一つに斜面の安全率がある。斜面の安全率とは、簡単にいえば、斜面に対する滑動力(滑ろうとする力)とその抵抗力の比である。斜面の安全率が1を下回っている状態は、すなわち滑動力が抵抗力を上回っている状態であり、斜面が不安定であることを示す。なお、斜面の安全率は、フェレニウス法、ヤンブ法など、さまざまな算出方法(安定解析式)によって算出可能である。 ¡Slope safety factor is one of the indicators of slope stability used in the analysis to investigate slope stability (slope stability analysis). The safety factor of a slope is simply the ratio of the sliding force (sliding force) to the slope and its resistance. The state where the safety factor of the slope is less than 1, that is, the state where the sliding force is greater than the resistance force indicates that the slope is unstable. The slope safety factor can be calculated by various calculation methods (stability analysis formulas) such as the Ferrenius method and Yanbu method.
特開2011-075386号公報JP 2011-075386 A 特開2008-121185号公報JP 2008-121185 A 特許第5731700号公報Japanese Patent No. 5731700
 特許文献1に記載された技術は、危険度を区画毎に時系列で表示するのみである。したがって、災害の予測自体は表示された危険度などの情報を見ながら人間が行う必要があり、個人の経験や主観に依存していた。つまり、特許文献1に記載された技術においては、土砂災害について一定の予測結果及び評価が得られなかった。 The technique described in Patent Document 1 only displays the degree of risk in time series for each section. Therefore, it is necessary for humans to make a prediction of a disaster while looking at information such as the degree of danger displayed, and it depends on personal experience and subjectivity. That is, in the technique described in Patent Literature 1, certain prediction results and evaluations have not been obtained for sediment disasters.
 本発明の例示的な目的の一つは、上述した、土砂災害について一定の予測結果及び評価が得られないという課題を解決し、土砂災害に備えたユーザの避難行動をより確実にするための技術を提供することにある。 One of the exemplary purposes of the present invention is to solve the above-mentioned problem that a certain prediction result and evaluation cannot be obtained for a landslide disaster, and to make the evacuation behavior of a user prepared for a landslide disaster more reliable. To provide technology.
 本発明の一態様に係る装置は、ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させる第1表示制御手段と、前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させる第2表示制御手段とを備える。 An apparatus according to an aspect of the present invention is specified based on a first display control unit that displays a transition of a safety factor of a slope at a certain point on a display unit using an actual value and a predicted value, and the predicted value. Second display control means for causing the display means to display an estimated time at which the safety factor at the point is less than or equal to a predetermined threshold value.
 本発明の別の態様に係る方法は、ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示し、前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を表示する。 The method according to another aspect of the present invention displays the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value, and the safety at the point specified based on the predicted value. The predicted time when the rate is equal to or less than a predetermined threshold is displayed.
 本発明のさらに別の態様に係るプログラム記録媒体は、コンピュータに、ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させるステップと、前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させるステップとを実行させるためのプログラムを記録する。 According to still another aspect of the present invention, there is provided a program recording medium that causes a computer to display a transition of a safety factor of a slope at a certain point on a display unit using an actual value and a predicted value, and based on the predicted value. A program for causing the display means to display a predicted time at which the safety factor at the point specified in the above is below a predetermined threshold.
 本発明によれば、土砂災害に備えたユーザの避難行動をより確実にすることが可能である。 According to the present invention, it is possible to further ensure the user's evacuation behavior in preparation for a sediment disaster.
図1は、本発明の第1実施形態に係る表示制御装置の構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of the display control apparatus according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る表示装置による情報の表示例を示す図である。FIG. 2 is a diagram showing a display example of information by the display device according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る表示装置による情報の別の表示例を示す図である。FIG. 3 is a diagram showing another display example of information by the display device according to the first embodiment of the present invention. 図4は、本発明の第2実施形態に係る表示システムの構成の一例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of a display system according to the second embodiment of the present invention. 図5は、本発明の第2実施形態に係る表示システムの動作の一例を示すシーケンスチャートである。FIG. 5 is a sequence chart showing an example of the operation of the display system according to the second embodiment of the present invention. 図6は、本発明の第2実施形態に係る情報処理装置による情報の表示例を示す図である。FIG. 6 is a diagram showing a display example of information by the information processing apparatus according to the second embodiment of the present invention. 図7は、本発明の第2実施形態に係る情報処理装置による情報の表示例を示す図である。FIG. 7 is a diagram showing a display example of information by the information processing apparatus according to the second embodiment of the present invention. 図8は、本発明の変形例1に係る情報処理装置による情報の表示例を示す図である。FIG. 8 is a diagram showing a display example of information by the information processing apparatus according to the first modification of the present invention. 図9は、本発明の変形例2に係る情報処理装置による情報の表示例を示す図である。FIG. 9 is a diagram showing a display example of information by the information processing apparatus according to the second modification of the present invention. 図10は、本発明の変形例8に係るコンピュータ装置のハードウェア構成の一例を示すブロック図である。FIG. 10 is a block diagram showing an example of a hardware configuration of a computer apparatus according to Modification 8 of the present invention.
 [第1実施形態]
 図1は、本発明の第1実施形態に係る表示制御装置の構成を示すブロック図である。表示制御装置110は、表示装置120による情報の表示を制御するコンピュータ装置である。表示装置120は、後述される情報(安全率等)を表示する専用又は汎用の表示装置であり、例えば液晶ディスプレイである。表示制御装置110は、表示装置120と有線又は無線のいずれによって接続されてもよいし、表示装置120と一体に構成されてもよい。
[First Embodiment]
FIG. 1 is a block diagram showing the configuration of the display control apparatus according to the first embodiment of the present invention. The display control device 110 is a computer device that controls display of information by the display device 120. The display device 120 is a dedicated or general-purpose display device that displays information (such as a safety factor) described later, and is, for example, a liquid crystal display. The display control device 110 may be connected to the display device 120 by wire or wireless, or may be configured integrally with the display device 120.
 表示制御装置110及び表示装置120は、例えば、土砂災害が発生するおそれがある地域の住民に利用される。あるいは、表示制御装置110及び表示装置120は、土砂災害に対する警戒情報を発信する組織(公共機関等)に利用されてもよい。 The display control device 110 and the display device 120 are used, for example, by residents in an area where there is a risk of a sediment disaster. Alternatively, the display control device 110 and the display device 120 may be used for an organization (such as a public institution) that transmits warning information against a sediment disaster.
 表示制御装置110は、第1表示制御部111と、第2表示制御部112とを備える。第1表示制御部111及び第2表示制御部112は、いずれも、表示装置120による情報の表示を制御する。ただし、第1表示制御部111と第2表示制御部112とは、制御対象とする情報が異なる。なお、ここでいう表示の制御は、例えば、情報の表示に必要なデータを表示装置120に供給することである。 The display control device 110 includes a first display control unit 111 and a second display control unit 112. The first display control unit 111 and the second display control unit 112 both control the display of information by the display device 120. However, the information to be controlled is different between the first display control unit 111 and the second display control unit 112. The display control mentioned here is, for example, supplying data necessary for displaying information to the display device 120.
 第1表示制御部111は、少なくとも1以上の地点における安全率の推移の表示を制御する。第1表示制御部111は、安全率の実況値と予測値とを用いて、所定の地点における安全率の時間変化を表示装置120に表示させる。第1表示制御部111による安全率の表示形式は、例えば、表形式やグラフ形式である。また、第1表示制御部111は、複数の地点について安全率の推移を表示させる場合には、当該複数の地点を含む地図を表示させ、安全率の推移を地図とともに表示させてもよい。 The first display control unit 111 controls the display of the transition of the safety factor at at least one point. The first display control unit 111 causes the display device 120 to display a temporal change in the safety factor at a predetermined point using the actual value and the predicted value of the safety factor. The display format of the safety factor by the first display control unit 111 is, for example, a table format or a graph format. Moreover, when displaying the transition of the safety factor for a plurality of points, the first display control unit 111 may display a map including the plurality of points and display the transition of the safety factor together with the map.
 ここにおいて、実況値とは、安全率の算出に必要なパラメータの実測値に基づいて実際に算出された数値をいう。すなわち、ここでいう実況値は、過去又は現在の安全率を示す。一方、予測値とは、ある時点において推測された(当該時点における)未来の数値をいう。本実施形態において、安全率の実況値及び予測値は、図示されない外部装置から供給されるものとする。安全率の算出式(斜面の安定解析式)は、特定の式に限定されない。 Here, the actual value refers to a numerical value that is actually calculated based on an actual measurement value of a parameter necessary for calculating a safety factor. That is, the actual value here indicates a past or present safety factor. On the other hand, the predicted value is a future numerical value estimated at a certain time (at the time). In the present embodiment, the actual value and predicted value of the safety factor are supplied from an external device (not shown). The safety factor calculation formula (slope stability analysis formula) is not limited to a specific formula.
 第2表示制御部112は、安全率が所定の閾値以下になる予測時間の表示を制御する。ここでいう閾値は、典型的には「1.0」であるが、必ずしもこれに限定されない。また、予測時間とは、安全率が所定の閾値以下になる時刻のことであってもよいし、安全率が所定の閾値以下になる時刻までの残り時間のことであってもよい。予測時間は、例えば、安全率の予測値に基づいて特定可能である。 The second display control unit 112 controls the display of the predicted time when the safety factor is equal to or less than a predetermined threshold. The threshold value here is typically “1.0”, but is not necessarily limited thereto. The predicted time may be a time when the safety factor becomes equal to or less than a predetermined threshold, or may be a remaining time until a time when the safety factor becomes equal to or less than a predetermined threshold. The predicted time can be specified based on the predicted value of the safety factor, for example.
 図2は、本発明の第1実施形態に係る表示装置120による情報の表示例を示す図である。この例において、表示装置120は、特定の地点の安全率の推移をグラフによって時系列的に表示する。このグラフは、縦軸を安全率とし、横軸を時刻としたグラフである。なお、同図において、時刻tは、現在時刻(すなわち、このグラフを表示した時点の時刻)を示している。表示制御装置110は、図示されたグラフを示す画像データを表示装置120に供給する。 FIG. 2 is a diagram showing a display example of information by the display device 120 according to the first embodiment of the present invention. In this example, the display device 120 displays the transition of the safety factor at a specific point in time series using a graph. This graph is a graph in which the vertical axis represents a safety factor and the horizontal axis represents time. In the figure, time t indicates the current time (that is, the time when this graph is displayed). The display control apparatus 110 supplies image data indicating the illustrated graph to the display apparatus 120.
 図2において、時刻t以前の安全率は、実況値である。一方、時刻tより後の安全率は、予測値である。表示装置120は、実況値と予測値をユーザに区別可能に表示する。図2の例において、表示装置120は、実況値を実線、予測値を破線で表示することによって互いを区別可能にしている。なお、実況値と予測値は、線の色、太さなどによって区別されてもよい。 In FIG. 2, the safety factor before time t is the actual value. On the other hand, the safety factor after time t is a predicted value. The display device 120 displays the actual value and the predicted value so that the user can distinguish them. In the example of FIG. 2, the display device 120 makes it possible to distinguish each other by displaying the actual value with a solid line and the predicted value with a broken line. The actual value and the predicted value may be distinguished according to the color, thickness, etc. of the line.
 また、表示装置120は、安全率の予測値が所定の値(ここでは「1.0」)になる時刻t1を表示する。あるいは、表示装置120は、時刻t1そのものに代えて、又は時刻t1とともに、例えば「あと2時間」といったように時刻tと時刻t1の差分を表示してもよい。 In addition, the display device 120 displays the time t1 when the predicted value of the safety factor becomes a predetermined value (here, “1.0”). Alternatively, the display device 120 may display the difference between the time t and the time t1 such as “two more hours” instead of the time t1 itself or together with the time t1.
 図3は、本発明の第1実施形態に係る表示装置120による情報の別の表示例を示す図である。この例において、表示装置120は、複数の地点A、B、Cにおける安全率の推移を表示する。表示装置120は、各地点の30分毎の安全率の数値を時系列的に並べて表示する。ここにおいて、現在時刻は、10時00分(1000)であるとする。表示装置120は、ここでは区別されていないが、実況値か予測値かによって数値の外観(色、書体、サイズなど)を区別して表示してもよい。 FIG. 3 is a diagram showing another display example of information by the display device 120 according to the first embodiment of the present invention. In this example, the display device 120 displays the transition of the safety factor at a plurality of points A, B, and C. The display device 120 displays the numerical values of the safety factor for each 30 minutes at each point in time series. Here, it is assumed that the current time is 10:00 (1000). The display device 120 is not distinguished here, but may display the numerical appearance (color, typeface, size, etc.) separately depending on whether the actual value or the predicted value.
 また、表示装置120は、各地点において安全率の予測値が所定の値(ここでは「1.0」)になる時刻をそれぞれ表示する。加えて、表示装置120は、安全率が所定の値以下である欄の文字色と背景色を、他の数値の欄と反転させて表示する。 In addition, the display device 120 displays the time at which the predicted value of the safety factor becomes a predetermined value (here, “1.0”) at each point. In addition, the display device 120 displays the character color and background color of the field where the safety factor is equal to or lower than the predetermined value by inverting it with the other numerical value fields.
 以上に説明したように、本実施形態の表示制御装置110によれば、過去から未来にわたる安全率の推移に加え、安全率が所定の閾値以下になる予測時間を表示することができる。つまり、斜面の安全率を用いることにより、土砂災害についての一定の予測結果及び評価が得られる。したがって、ユーザは、土砂災害が発生する可能性があることを事前に知ることができ、避難行動に備えることが可能である。 As described above, according to the display control apparatus 110 of the present embodiment, in addition to the transition of the safety factor from the past to the future, it is possible to display the predicted time when the safety factor is below a predetermined threshold. In other words, by using the safety factor of the slope, certain prediction results and evaluations about sediment disasters can be obtained. Therefore, the user can know in advance that a landslide disaster may occur, and can prepare for evacuation behavior.
 一般に、災害においては、避難行動に困難を伴う者(介護を要する高齢者、障害者など)が犠牲になりやすい傾向がある。例えば、内閣府発行の「避難行動要支援者の避難行動支援に関する取組指針」によれば、2011年の東日本大震災においては、被災者全体の死者数のうち65歳以上の高齢者の死者数が約6割であった。また、障害者の死亡率は、被災住民全体の死亡率の約2倍であった。加えて、高齢者・障害者の支援者が犠牲になる事例も発生した。 Generally, in disasters, people who have difficulty in evacuation behavior (elderly people who need care, disabled people, etc.) tend to be sacrificed. For example, according to the “Guidelines for Evacuation Action Support for Evacuation Action Supporters” published by the Cabinet Office, the 2011 Great East Japan Earthquake caused the deaths of elderly people aged 65 and over to the total number of victims. About 60%. In addition, the mortality rate for persons with disabilities was about twice that of all affected people. In addition, there were cases where elderly and disabled supporters were sacrificed.
 このような要支援者(支援を要する者)及びその支援者の避難行動においては、十分な時間を確保することが重要である。したがって、特に要支援者及び支援者にとっては、単に災害が発生するおそれがあるという情報以上に、災害が“いつ頃”発生するおそれがあるという情報に重要性がある。本実施形態の表示制御装置110によれば、安全率が「1.0」になる場合のような、土砂災害が発生するおそれが高まる状態の発生までにどの程度の時間的余裕があるのかを直感的にわかりやすく表示することが可能である。これにより、上述した要支援者や支援者を含むユーザは、適切な避難行動を計画的に実行することが容易になる。 It is important to ensure sufficient time for such supporters (people who need support) and their evacuation behavior. Therefore, especially for those who need assistance and those who need assistance, information that “when” a disaster may occur is more important than information that a disaster may occur. According to the display control device 110 of the present embodiment, how much time is left before the occurrence of a state in which there is an increased risk of a landslide disaster such as when the safety factor is “1.0”. Intuitive and easy-to-understand display is possible. Thereby, it becomes easy for users including the above-described supporters and supporters to execute appropriate evacuation behavior in a planned manner.
 また、表示制御装置110によれば、安全率の実況値と予測値とを互いに区別可能に表示することが可能である。これにより、ユーザは、観測点の実際の状況を表す数値と当該数値よりも不確定な数値とを容易に見分けることが可能であり、避難行動に対する備えをより確実にすることができる。 Further, according to the display control device 110, the actual value and the predicted value of the safety factor can be displayed so as to be distinguishable from each other. Thereby, the user can easily distinguish between a numerical value representing the actual situation of the observation point and a numerical value that is indeterminate from the numerical value, and can more reliably prepare for the evacuation action.
 [第2実施形態]
 図4は、本発明の第2実施形態に係る表示システムの構成の一例を示すブロック図である。表示システム200は、情報処理装置210、220を備える。情報処理装置210は、典型的には、クライアント装置たる情報処理装置220に対するサーバ装置として機能する。一方、情報処理装置220は、例えば、パーソナルコンピュータやスマートフォンである。ただし、情報処理装置210及び220は、後述される機能を有していれば、その具体的構成は特に限定されない。
[Second Embodiment]
FIG. 4 is a block diagram showing an example of the configuration of a display system according to the second embodiment of the present invention. The display system 200 includes information processing apparatuses 210 and 220. The information processing apparatus 210 typically functions as a server apparatus for the information processing apparatus 220 that is a client apparatus. On the other hand, the information processing apparatus 220 is, for example, a personal computer or a smartphone. However, the specific configurations of the information processing apparatuses 210 and 220 are not particularly limited as long as they have functions described later.
 情報処理装置210は、安全率の実況値及び予測値を算出するためのコンピュータ装置である。情報処理装置210は、受信部211と、算出部212と、通信部213とを備える。一方、情報処理装置220は、情報処理装置210による計算に基づいて算出された安全率などを表示するためのコンピュータ装置である。情報処理装置220は、通信部221と、表示制御部222と、表示部223と、UI(User Interface)部224とを備える。 The information processing device 210 is a computer device for calculating the actual value and the predicted value of the safety factor. The information processing apparatus 210 includes a reception unit 211, a calculation unit 212, and a communication unit 213. On the other hand, the information processing device 220 is a computer device for displaying a safety factor calculated based on the calculation by the information processing device 210. The information processing apparatus 220 includes a communication unit 221, a display control unit 222, a display unit 223, and a UI (User Interface) unit 224.
 受信部211は、安全率の算出に必要なデータを受信する。受信部211は、観測点において測定されたパラメータを示す測定データと、観測点における雨量の予測値を示す予測雨量データとを受信する。ここにおいて、観測点とは、安全率の表示対象となる地点をいう。観測点は、例えば、対象地域を所定のサイズの多角形(三角形、四角形など)で区切った地点のそれぞれ(又は、このように区切られた複数の地点のうちの代表的な地点)である。 The receiving unit 211 receives data necessary for calculating the safety factor. The receiving unit 211 receives measurement data indicating parameters measured at an observation point and predicted rainfall data indicating a predicted value of rainfall at the observation point. Here, the observation point refers to a point for which a safety factor is to be displayed. The observation points are, for example, points (or representative points among a plurality of points divided in this way) obtained by dividing the target area by polygons (triangles, quadrangles, etc.) of a predetermined size.
 観測点には、パラメータを測定するためのセンサが設置される。ここでいうパラメータは、安全率の算出に用いられる変数である。パラメータは、例えば、土中の水分状態と相関を有する数値である。以下においては、本実施形態のパラメータは、観測点の土壌の水分量と観測点における単位時間(30分、1時間など)当たりの雨量の2つであるとする。なお、ここでいう水分量は、体積含水率(土壌の体積に対して水分の体積が占める比率)と重量含水率(土壌の重量に対して水分の重量が占める比率)のいずれであってもよい。受信部211は、観測点で測定された水分量と雨量の実測値を示す測定データを受信する。観測点のセンサは、測定データを定期的(例えば、10分毎)に送信してもよいし、情報処理装置210からの要求に応じて測定データを送信してもよい。 A sensor for measuring parameters is installed at the observation point. A parameter here is a variable used for calculation of a safety factor. The parameter is, for example, a numerical value having a correlation with the moisture state in the soil. In the following, it is assumed that there are two parameters of the present embodiment: the amount of soil moisture at the observation point and the rainfall per unit time (30 minutes, 1 hour, etc.) at the observation point. Note that the moisture content here is either the volume moisture content (ratio of moisture volume to soil volume) or weight moisture content (ratio of moisture weight to soil weight). Good. The receiving unit 211 receives measurement data indicating the actual amount of water and rain measured at the observation point. The sensor at the observation point may transmit the measurement data periodically (for example, every 10 minutes), or may transmit the measurement data in response to a request from the information processing apparatus 210.
 予測雨量データは、観測点における単位時間当たりの雨量の予測値を示す。予測雨量データは、外部の機関又は事業者のコンピュータから提供されてもよい。例えば、日本国においては、気象庁が1km四方のメッシュ単位で降水量の予測値を発表している(降水短時間予報)。 Predicted rainfall data indicates the predicted rainfall per unit time at the observation point. The predicted rainfall data may be provided from an external institution or business operator's computer. For example, in Japan, the Japan Meteorological Agency has published a forecast value of precipitation in 1km square mesh units (short-term precipitation forecast).
 算出部212は、安全率の実況値及び予測値を算出する。算出部212は、受信部211により受信された観測点の土壌の水分量の実測値と、当該観測点の雨量の実測値とに基づいて、当該観測点の安全率の実況値を算出する。また、算出部212は、観測点の雨量の予測値に基づき、当該観測点における安全率の予測値を算出する。 The calculation unit 212 calculates the actual value and the predicted value of the safety factor. The calculation unit 212 calculates the actual value of the safety factor of the observation point based on the actual value of the moisture content of the soil at the observation point received by the reception unit 211 and the actual measurement value of the rainfall at the observation point. Further, the calculation unit 212 calculates a predicted value of the safety factor at the observation point based on the predicted value of the rainfall at the observation point.
 ここで、ある時点tにおける水分量をmt、雨量をptとした場合、mtは、例えばタンクモデルに基づき、以下の(1)式により算出することができる。ここにおいて、ciは、土種(土壌の種類)に応じて異なる1未満の係数である。また、f(pt,pt-1,pt-2,…,pt-k)は、pt,pt-1,pt-2,…,pt-kを変数とする所定の多変数関数である。なお、n及びkは、適当に定められる数値である。 Here, when the water content at a certain point in time t m t, rainfall and p t, m t, for example based on the tank model can be calculated by the following equation (1). Here, c i is a coefficient of less than 1 that varies depending on the soil type (soil type). Further, f (p t, p t -1, p t-2, ..., p tk) is, p t, p t-1 , p t-2, ..., given multivariable function to the p tk variable It is. Here, n and k are appropriately determined numerical values.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、過去のデータの影響を無視してよいとすると、mtは、以下の(2)式によって表すことができる。ここにおいて、Fは、透水係数に相当し、土種に応じて異なる。また、cは、土壌の保水性を示す係数である。F及びcは、土壌での試験によって求められてもよいし、所定のデータベースを利用して求められてもよい。 Here, when it is to ignore the influence of past data, m t can be expressed by the following equation (2). Here, F corresponds to the hydraulic conductivity and varies depending on the soil type. C is a coefficient indicating the water retention capacity of the soil. F and c may be calculated | required by the test in soil, and may be calculated | required using a predetermined | prescribed database.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (1)式及び(2)式は、水分量の予測式として用いることができる。すなわち、算出部212は、予測の実施時点より後の所定の時点をtとした場合に、当該時点の雨量の予測値と当該時点より前の水分量の実測値とに基づき、当該時点の水分量を算出(すなわち予測)することが可能である。 (1) Formula and (2) Formula can be used as a prediction formula of a moisture content. That is, when t is a predetermined time point after the prediction execution time, the calculation unit 212 determines the water content at the time point based on the predicted rainfall value at the time point and the measured water content value before the time point. It is possible to calculate (ie predict) the quantity.
 なお、水分量mtとしては、タンクモデル以外のモデルが用いられてもよい。例えば、水分量mtは、1次関数のほか、2次関数や実験的又は経験的に算出された他の関数を想定したモデルも適用可能である。 As the water content m t, it may be a model is used other than the tank model. For example, the water content m t, in addition to the primary function, quadratic function and experimentally or empirically calculated assuming other functions models are also applicable.
 算出部212は、このように算出された水分量の予測式と、実測値が存在しない所定の時点の観測点における雨量の予測値とを用いて、当該時点における安全率の予測値を算出する。ここにおいて、実測値が存在しない時点とは、具体的には、特定の時点(例えば予測を実施するタイミング)よりも後、すなわち当該時点からみた未来のことをいう。 The calculation unit 212 calculates the predicted value of the safety factor at the time point using the prediction formula of the moisture amount calculated in this way and the predicted value of the rainfall amount at the observation point at the predetermined time point where the actual measurement value does not exist. . Here, the point in time when the actual measurement value does not exist specifically refers to a future after a specific point in time (for example, the timing for performing the prediction), that is, the future as viewed from the point in time.
 なお、安全率の定義式(安定解析式)は、複数の種類があり、特定の種類に限定されない。以下の説明においては、算出部212は、フェレニウス法(簡易分割法、スウェーデン法ともいう。)又は修正フェレニウス法に基づく予測値を算出するものとする。 There are a plurality of types of safety factor definition formulas (stability analysis formulas), and the formula is not limited to a specific type. In the following description, it is assumed that the calculation unit 212 calculates a predicted value based on the Ferrenius method (also referred to as simple division method or Swedish method) or the modified Ferrenius method.
 フェレニウス法による安全率Fsは、例えば、以下の(3)式で表すことができる。ここにおいて、c、W、u、φは、それぞれ、土塊の粘着力、重量、間隙水圧、内部摩擦角を表す変数である。また、αは、斜面の傾斜角を表す。また、lは、斜面を垂直方向に分割した分割片(スライス)のすべり面の長さを表す。説明の便宜上、傾斜角α及びすべり面長lは、ここでは定数とする。 The safety factor Fs according to the Ferrenius method can be expressed by the following equation (3), for example. Here, c, W, u, and φ are variables representing the adhesive strength, weight, pore water pressure, and internal friction angle, respectively. Α represents the inclination angle of the slope. Moreover, l represents the length of the sliding surface of the divided piece (slice) obtained by dividing the slope in the vertical direction. For convenience of explanation, the inclination angle α and the slip surface length l are constants here.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、修正フェレニウス法による安全率Fsは、例えば、以下の(4)式で表すことができる。ここにおいて、bは、スライスの幅を表す。スライス幅bは、ここでは定数とする。 Also, the safety factor Fs according to the modified Ferrenius method can be expressed by, for example, the following equation (4). Here, b represents the width of the slice. Here, the slice width b is a constant.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、粘着力c、重量W、間隙水圧u及び内部摩擦角φは、いずれも、土中の水分量に応じて変化する。したがって、これらの変数は、いずれも水分量の関数として表すことができる。例えば、(3)式は、粘着力c、重量W、間隙水圧u及び内部摩擦角φを、それぞれ水分量mの関数c(m)、W(m)、u(m)及びφ(m)に置換すると、以下の(5)式で表される。このような置換は、(4)式においても同様に可能である。 Here, the adhesive strength c, the weight W, the pore water pressure u, and the internal friction angle φ all vary depending on the amount of moisture in the soil. Therefore, both of these variables can be expressed as a function of the amount of water. For example, the expression (3) indicates that the adhesive force c, weight W, pore water pressure u, and internal friction angle φ are functions c (m), W (m), u (m), and φ (m) of the water content m, respectively. Is replaced by the following formula (5). Such substitution is also possible in the formula (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、関数c(m)、W(m)、u(m)及びφ(m)は、土壌毎に異なり得る。関数c(m)、W(m)、u(m)及びφ(m)は、これらの変数と水分量の実測値に基づいてあらかじめ求められてもよいし、シミュレーション等によって推定されてもよい。 Note that the functions c (m), W (m), u (m), and φ (m) may be different for each soil. The functions c (m), W (m), u (m), and φ (m) may be obtained in advance based on these variables and the actual measured water content, or may be estimated by simulation or the like. .
 ここで、(5)式のmを(1)式又は(2)式のmtに置換すると、以下の(6)式が得られる。そうすると、安全率Fsは、過去の水分量の計測値と過去の雨量の予測値とによって算出することが理論上可能である。また、水分量mtが予測可能であれば、安全率Fsも同様に予測可能であるといえる。 Here, (5) of m (1) or (2) Substituting the equation of m t, the equation (6) below is obtained. Then, it is theoretically possible to calculate the safety factor Fs based on the past measured amount of moisture and the predicted value of past rainfall. Further, water content m t is predicted if the safety factor Fs is also said to be predictable as well.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上述したように、未来のある時点における土中の水分量は、当該時点より前の水分量と当該時点における雨量の予測値が得られれば予測可能である。したがって、安全率の予測に際して算出部212が新たに必要とする値は、安全率が算出される時点(すなわち未来)における雨量の予測値のみである。 As described above, the amount of water in the soil at a certain time in the future can be predicted if the amount of water before the time and the predicted value of the rain at the time are obtained. Therefore, the value newly required by the calculation unit 212 when predicting the safety factor is only the predicted value of the rainfall at the time when the safety factor is calculated (that is, the future).
 算出部212は、安全率の実況値及び予測値を観測点毎に算出する。算出部212は、ユーザによって指定された特定の観測点について計算を実行してもよいし、全ての観測点について計算を実行してもよい。算出部212は、算出された安全率の実況値及び予測値を、通信部213に供給する。 The calculation unit 212 calculates the actual value and the predicted value of the safety factor for each observation point. The calculation unit 212 may perform calculation for a specific observation point designated by the user, or may perform calculation for all observation points. The calculation unit 212 supplies the calculated actual value and predicted value of the safety factor to the communication unit 213.
 通信部213、221は、互いにデータをやり取りする。通信部213、221は、例えばインターネットを介してデータをやり取りする。ただし、通信部213、221による通信方式は、特定の方式に限定されない。 The communication units 213 and 221 exchange data with each other. The communication units 213 and 221 exchange data via the Internet, for example. However, the communication method by the communication units 213 and 221 is not limited to a specific method.
 表示制御部222は、表示部223による情報の表示を制御する。表示制御部222は、通信部221により受信された安全率の実況値及び予測値を用いて、画像データを生成する。本実施形態において、表示制御部222は、「グラフモード」又は「マップモード」のいずれかに応じた画像データを生成する。グラフモードは、グラフを用いて安全率の推移を表示する表示モードである。一方、マップモードは、地図を用いて安全率の推移を表示する表示モードである。 The display control unit 222 controls display of information by the display unit 223. The display control unit 222 generates image data using the actual value and predicted value of the safety factor received by the communication unit 221. In the present embodiment, the display control unit 222 generates image data corresponding to either “graph mode” or “map mode”. The graph mode is a display mode for displaying the transition of the safety factor using a graph. On the other hand, the map mode is a display mode for displaying the transition of the safety factor using a map.
 表示部223は、表示制御部222により生成された画像データに応じた画像を表示する。この画像は、安全率に関する情報を少なくとも含む。表示部223は、例えば液晶ディスプレイであるが、その表示素子や表示方法は特に限定されない。 The display unit 223 displays an image corresponding to the image data generated by the display control unit 222. This image includes at least information on the safety factor. The display unit 223 is, for example, a liquid crystal display, but the display element and the display method are not particularly limited.
 UI部224は、ユーザの操作を受け付ける。UI部224は、例えば、キーボード、マウスなどの入力装置(又はそのインタフェース)である。UI部224は、表示部223の表示領域に対応して設けられたタッチスクリーンを含んでもよい。UI部224が受け付ける操作は、安全率を表示する指示や、表示モードの選択を含む。 The UI unit 224 accepts user operations. The UI unit 224 is an input device (or an interface thereof) such as a keyboard and a mouse, for example. The UI unit 224 may include a touch screen provided corresponding to the display area of the display unit 223. The operation received by the UI unit 224 includes an instruction to display a safety factor and selection of a display mode.
 図5は、本発明の第2実施形態に係る表示システム200の動作の一例を示すシーケンスチャートである。この動作は、情報処理装置220に対するユーザの操作を契機として開始される。この操作において、ユーザは、表示モードや安全率を表示する地点を選択してもよい。ただし、表示モードや安全率を表示する地点は、あらかじめ決められていてもよい。 FIG. 5 is a sequence chart showing an example of the operation of the display system 200 according to the second embodiment of the present invention. This operation is triggered by a user operation on the information processing apparatus 220. In this operation, the user may select a point for displaying the display mode and the safety factor. However, the point where the display mode and the safety factor are displayed may be determined in advance.
 情報処理装置220は、UI部224を介してユーザの操作を受け付ける(ステップS1)。情報処理装置220は、ユーザの操作を受け付けると、通信部221を介して情報処理装置210に安全率の送信を要求する(ステップS2)。この要求には、現在(すなわち要求時)の時刻、安全率を表示する地点を識別する情報などが含まれてもよい。 The information processing apparatus 220 receives a user operation via the UI unit 224 (step S1). When the information processing apparatus 220 receives a user operation, the information processing apparatus 220 requests the information processing apparatus 210 to transmit a safety factor via the communication unit 221 (step S2). This request may include the current time (that is, at the time of the request), information for identifying the point where the safety factor is displayed, and the like.
 情報処理装置210は、この要求を受け付けると、算出部212によって1又は複数の地点の安全率を算出する(ステップS3)。算出部212は、あらかじめ受信された測定データに基づいて、安全率の実況値を算出する。また、算出部212は、測定データと予測雨量データに基づいて、安全率の予測値を算出する。算出部212は、現在時刻を基準に、一定の期間(例えば、4時間前から3時間先まで)の安全率を算出する。 When the information processing apparatus 210 receives this request, the calculation unit 212 calculates the safety factor of one or a plurality of points (step S3). The calculation unit 212 calculates the actual value of the safety factor based on the measurement data received in advance. Further, the calculation unit 212 calculates a predicted value of the safety factor based on the measurement data and the predicted rainfall data. The calculation unit 212 calculates a safety factor for a certain period (for example, from 4 hours before to 3 hours ahead) based on the current time.
 情報処理装置210は、通信部213を介して安全率の実況値及び予測値を情報処理装置220に送信する(ステップS4)。情報処理装置220は、安全率の実況値及び予測値を受信すると、表示制御部222によって画像データを生成する(ステップS5)。表示制御部222は、安全率の実況値及び予測値を表示モードに応じた表示態様で表す画像データを生成する。その後、表示制御部222は、生成された画像データを表示部223に供給する。表示部223は、画像データに応じた画像を表示する(ステップS6)。 The information processing apparatus 210 transmits the actual value and the predicted value of the safety factor to the information processing apparatus 220 via the communication unit 213 (step S4). When the information processing device 220 receives the actual value and the predicted value of the safety factor, the display control unit 222 generates image data (step S5). The display control unit 222 generates image data that represents the actual value and the predicted value of the safety factor in a display mode corresponding to the display mode. Thereafter, the display control unit 222 supplies the generated image data to the display unit 223. The display unit 223 displays an image corresponding to the image data (step S6).
 図6、図7は、本発明の第2実施形態に係る情報処理装置220による情報の表示例を示す図である。この表示例は、表示モードがマップモードである場合を例示している。なお、表示モードがグラフモードである場合における情報処理装置220の表示は、上述した第1実施形態の表示例(図2参照)と同様である。 6 and 7 are diagrams showing examples of information display by the information processing apparatus 220 according to the second embodiment of the present invention. This display example illustrates the case where the display mode is the map mode. Note that the display of the information processing apparatus 220 when the display mode is the graph mode is the same as the display example (see FIG. 2) of the first embodiment described above.
 図6、図7において、アイコンP1~P5は、それぞれ観測点を表す。アイコンP1~P5は、ユーザが認識しやすい名称(地名など)が割り当てられていてもよい。ユーザは、確認したい地域や観測点を指定して情報処理装置220に地図を表示させてもよい。なお、情報処理装置220は、地図の表示倍率の指定を受け付けてもよい。 6 and 7, icons P1 to P5 each represent an observation point. The icons P1 to P5 may be assigned names (such as place names) that can be easily recognized by the user. The user may designate a region or observation point to be confirmed and cause the information processing apparatus 220 to display a map. Note that the information processing apparatus 220 may accept designation of a map display magnification.
 アイコンP1~P5は、安全率を色によって表す。アイコンP1~P5は、例えば、安全率が1.5以上であれば「青」、安全率が1.3以上1.5未満であれば「緑」、安全率が1.0以上1.3未満であれば「黄」、安全率が1.0未満であれば「赤」、といったように、安全率に応じて色が変化する。情報処理装置220は、アイコンP1~P5のいずれかをユーザが選択(タップする、カーソルを重ねるなど)した場合に、選択されたアイコンに対応する安全率のより詳細な数値を表示してもよいし、選択されたアイコンに対応する観測点において安全率が1.0以下になる予測時間を表示してもよい。 The icons P1 to P5 represent the safety factor by color. The icons P1 to P5 are, for example, “blue” if the safety factor is 1.5 or more, “green” if the safety factor is 1.3 or more and less than 1.5, and the safety factor is 1.0 or more and 1.3. If it is less than “yellow”, the color changes according to the safety factor, such as “red” if the safety factor is less than 1.0. The information processing apparatus 220 may display a more detailed numerical value of the safety factor corresponding to the selected icon when the user selects (tap, overlaps the cursor, etc.) any of the icons P1 to P5. Then, the predicted time when the safety factor is 1.0 or less at the observation point corresponding to the selected icon may be displayed.
 また、時刻TMは、情報処理装置220が表示している安全率に対応する時刻である。例えば、図6の表示例は、ある日の9時00分時点における安全率を表示した例である。また、スライダーSLは、時刻TMを変化させるためのGUI(Graphical User Interface)要素である。情報処理装置220は、ユーザがスライダーSLを右に移動(スライド)させると、そのとき表示している時刻よりも後の時刻の安全率の値を表示し、ユーザがスライダーSLを左に移動させると、そのとき表示している時刻よりも前の時刻の安全率の値を表示する。例えば、図7の表示例は、ユーザが図6の表示例に示された状態からスライダーSLを右にスライドし、10時00分時点における安全率を表示した例である。 Further, the time TM is a time corresponding to the safety factor displayed by the information processing apparatus 220. For example, the display example of FIG. 6 is an example in which the safety factor at 9:00 on a certain day is displayed. The slider SL is a GUI (Graphical User Interface) element for changing the time TM. When the user moves (slides) the slider SL to the right, the information processing apparatus 220 displays the value of the safety factor after the time displayed at that time, and the user moves the slider SL to the left. And the value of the safety factor at the time before the time displayed at that time is displayed. For example, the display example of FIG. 7 is an example in which the user slides the slider SL to the right from the state shown in the display example of FIG. 6 to display the safety factor at 10:00.
 以上に説明したように、本実施形態の表示システム200によれば、第1実施形態と同様の作用効果を奏することが可能である。また、表示システム200によれば、一定の範囲内にある複数の観測点の安全率をグラフィカルに表示することが可能である。これにより、ユーザは、特定の地点のみならず、当該地点の近辺の安全率の推移も考慮して避難行動に備えることが可能である。 As described above, according to the display system 200 of the present embodiment, the same operational effects as those of the first embodiment can be achieved. Moreover, according to the display system 200, it is possible to graphically display the safety factor of a plurality of observation points within a certain range. Thereby, the user can prepare for evacuation action in consideration of not only a specific point but also a transition of the safety factor in the vicinity of the point.
 [変形例]
 上述した第1実施形態~第2実施形態は、本発明の実施の形態の一例にすぎない。本発明の実施の形態は、これらの実施形態に限定されず、例えば、以下に記載する変形例を含み得る。また、本発明の実施の形態は、本明細書に記載された実施形態及び変形例を必要に応じて適宜に組み合わせたものであってもよい。例えば、特定の実施形態を用いて説明された変形は、他の実施形態に対しても適用され得る。
[Modification]
The first to second embodiments described above are merely examples of embodiments of the present invention. Embodiments of the present invention are not limited to these embodiments, and may include, for example, modifications described below. Further, the embodiment of the present invention may be a combination of the embodiments and modifications described in this specification as appropriate. For example, the modifications described using a specific embodiment can be applied to other embodiments.
 (変形例1)
 情報処理装置210は、安全率の予測値に対して想定される誤差を算出してもよい。この場合、情報処理装置220は、算出された誤差を予測値とともに表示してもよい。この誤差の算出方法は、例えば、以下のとおりである。
(Modification 1)
The information processing apparatus 210 may calculate an error assumed for the predicted value of the safety factor. In this case, the information processing device 220 may display the calculated error together with the predicted value. The calculation method of this error is as follows, for example.
 算出部212は、以下の(7)式によって安全率の誤差ΔFsを算出する。ここにおいて、Fs(m)は、安全率の予測式に最新の時点における水分量mを代入して得られる安全率の値を表す。また、Fs(m+Δm)は、安全率の予測式に最新の時点における水分量mと差分Δmを加算した値を代入して得られる安全率の値を表す。また、∂Fs/∂mは、当該時点の水分量mに対する安全率Fs(m)の変化率を表す。 The calculating unit 212 calculates the safety factor error ΔFs by the following equation (7). Here, Fs (m) represents the value of the safety factor obtained by substituting the amount of moisture m at the latest time into the prediction formula for the safety factor. Fs (m + Δm) represents the value of the safety factor obtained by substituting the value obtained by adding the moisture amount m and the difference Δm at the latest time into the safety factor prediction formula. Further, ∂Fs / ∂m represents a change rate of the safety factor Fs (m) with respect to the water content m at the time.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 図8は、本発明の変形例1に係る情報処理装置220による情報(特に誤差)の表示例を示す図である。なお、この表示例は、安全率の予測値を誤差とともに表示する点を除き、図2に示された例と同様である。情報処理装置220は、安全率Fsを示す曲線に加え、安全率Fs(の予測値)に対して誤差ΔFsを減算(又は加算)した値、すなわちFs-ΔFs(及びFs+ΔFs)を示す曲線を表示する。また、情報処理装置220は、必要に応じて、Fs-ΔFsの値が1.0以下になる予測時間を表示してもよい。 FIG. 8 is a diagram showing a display example of information (particularly an error) by the information processing apparatus 220 according to the first modification of the present invention. This display example is the same as the example shown in FIG. 2 except that the predicted value of the safety factor is displayed together with the error. In addition to the curve indicating the safety factor Fs, the information processing device 220 displays a curve indicating the value obtained by subtracting (or adding) the error ΔFs from the safety factor Fs (predicted value thereof), that is, a curve indicating Fs−ΔFs (and Fs + ΔFs). To do. Further, the information processing apparatus 220 may display the predicted time when the value of Fs−ΔFs is 1.0 or less as necessary.
 これにより、ユーザは、安全率の予測値がどの程度の精度で算出されているかを把握することができる。また、ユーザは、安全率の予測値に対して算出された誤差を考慮して避難行動を計画することにより、避難行動の確実性を高めることが可能である。 Thereby, the user can grasp how accurately the predicted value of the safety factor is calculated. Further, the user can improve the certainty of the evacuation action by planning the evacuation action in consideration of the error calculated with respect to the predicted value of the safety factor.
 (変形例2)
 情報処理装置210は、安全率の算出の基礎となった情報(第2実施形態においては、水分量m)を情報処理装置220に送信してもよい。この場合、情報処理装置220は、送信された情報を安全率とともに表示してもよい。
(Modification 2)
The information processing apparatus 210 may transmit information (water content m in the second embodiment) that is a basis for calculating the safety factor to the information processing apparatus 220. In this case, the information processing apparatus 220 may display the transmitted information together with the safety factor.
 図9は、本発明の変形例2に係る情報処理装置220による情報(特に水分量)の表示例を示す図である。なお、この表示例は、水分量の実測値を表示する点を除き、図2に示された例と同様である。なお、一般に、斜面の安全率は、斜面を構成する土壌の水分量が増えるに従って低下する傾向にある。 FIG. 9 is a diagram showing a display example of information (particularly the amount of moisture) by the information processing apparatus 220 according to the second modification of the present invention. This display example is the same as the example shown in FIG. 2 except that the measured value of the moisture content is displayed. In general, the safety factor of the slope tends to decrease as the moisture content of the soil constituting the slope increases.
 (変形例3)
 情報処理装置210は、観測点、すなわちセンサが設置されている地点以外の地点の安全率を算出してもよい。例えば、情報処理装置210は、観測点周辺の地点の安全率を、観測点の安全率から補間によって算出してもよい。この場合、情報処理装置220は、例えば等高線(コンター)のように、安全率の予測値が所定の値以下になる時刻が同一の地点を結んだ線を地図上に重ねて表示してもよい。
(Modification 3)
The information processing apparatus 210 may calculate a safety factor at an observation point, that is, a point other than the point where the sensor is installed. For example, the information processing apparatus 210 may calculate the safety factor of the points around the observation point by interpolation from the safety factor of the observation point. In this case, the information processing apparatus 220 may display a line connecting points where the predicted time of the safety factor is equal to or less than a predetermined value, such as contour lines, on the map. .
 (変形例4)
 情報処理装置220は、安全率などの情報を表示以外の方法で出力してもよい。例えば、情報処理装置220は、安全率や予測時間を音声によって出力してもよい。
(Modification 4)
The information processing apparatus 220 may output information such as a safety factor by a method other than display. For example, the information processing apparatus 220 may output the safety factor and the predicted time by voice.
 (変形例5)
 安定解析式は、特定の方法の式に限定されない。安定解析式としては、フェレニウス法や修正フェレニウス法のほかにも、ビショップ法、ヤンブ法なども適用可能である。これらの安定解析式も、必要な変数を水分量の関数として記述することが可能である。
(Modification 5)
The stability analysis formula is not limited to a formula of a specific method. As the stability analysis formula, in addition to the Ferrenius method and the modified Ferrenius method, the Bishop method, Yanbu method, etc. can be applied. These stability analysis formulas can also describe necessary variables as a function of moisture content.
 (変形例6)
 斜面の安全性を示す指標は、安全率に限定されない。また、斜面の水分状態を表す数値は、水分量に限定されない。例えば、水分量は、土壌中の振動波形の減衰率と相関を有する。したがって、水分量と減衰率の相関関係を求めることができれば、安定解析式を減衰率の関数として記述することも可能になる。
(Modification 6)
The index indicating the safety of the slope is not limited to the safety factor. Further, the numerical value indicating the moisture state of the slope is not limited to the moisture amount. For example, the amount of water has a correlation with the attenuation rate of the vibration waveform in the soil. Therefore, if the correlation between the moisture content and the attenuation rate can be obtained, the stability analysis formula can be described as a function of the attenuation rate.
 (変形例7)
 第2実施形態において情報処理装置220の機能として説明された機能は、情報処理装置210によって実現されてもよい。例えば、情報処理装置210は、画像データの生成(ステップS5)まで実行し、情報処理装置220に画像データを送信するように構成されてもよい。この場合、情報処理装置220は、画像データを受信し、受信された画像データに応じた画像を表示すればよい。また、情報処理装置210及び220は、単一の装置によって実現されてもよい。
(Modification 7)
The functions described as functions of the information processing apparatus 220 in the second embodiment may be realized by the information processing apparatus 210. For example, the information processing apparatus 210 may be configured to execute up to image data generation (step S5) and transmit the image data to the information processing apparatus 220. In this case, the information processing apparatus 220 may receive image data and display an image corresponding to the received image data. Further, the information processing devices 210 and 220 may be realized by a single device.
 (変形例8)
 上述した表示制御装置100、情報処理装置210及び220の具体的なハードウェア構成は、さまざまなバリエーションが考えられ、特定の構成に限定されない。例えば、表示制御装置100、情報処理装置210及び220は、その一部の構成要素がソフトウェアを用いて実現されてもよい。
(Modification 8)
Various variations are conceivable for specific hardware configurations of the display control device 100 and the information processing devices 210 and 220 described above, and the configuration is not limited to a specific configuration. For example, some components of the display control device 100 and the information processing devices 210 and 220 may be realized using software.
 図10は、本発明の変形例8に係るコンピュータ装置400のハードウェア構成の一例を示すブロック図である。コンピュータ装置400は、上述した表示制御装置100、情報処理装置210及び220を実現する装置の一例である。コンピュータ装置400は、CPU(Central Processing Unit)401と、ROM(Read Only Memory)402と、RAM(Random Access Memory)403と、記憶装置404と、ドライブ装置405と、通信インタフェース406と、入出力インタフェース407とを備える。表示制御装置100、情報処理装置210及び220は、図5に示される構成(又はその一部)によって実現され得る。 FIG. 10 is a block diagram illustrating an example of a hardware configuration of a computer apparatus 400 according to the eighth modification of the present invention. The computer apparatus 400 is an example of an apparatus that implements the display control apparatus 100 and the information processing apparatuses 210 and 220 described above. The computer device 400 includes a CPU (Central Processing Unit) 401, a ROM (Read Only Memory) 402, a RAM (Random Access Memory) 403, a storage device 404, a drive device 405, a communication interface 406, and an input / output interface. 407. The display control device 100 and the information processing devices 210 and 220 can be realized by the configuration (or part thereof) shown in FIG.
 CPU401は、RAM403を用いてプログラム408を実行する。プログラム408は、ROM402に記憶されていてもよい。また、プログラム408は、フラッシュメモリなどの記録媒体409に記録され、ドライブ装置405によって読み出されてもよいし、外部装置からネットワーク410を介して送信されてもよい。通信インタフェース406は、ネットワーク410を介して外部装置とデータをやり取りする。入出力インタフェース407は、周辺機器(入力装置、表示装置など)とデータをやり取りする。通信インタフェース406及び入出力インタフェース407は、データを取得又は出力する手段として機能することができる。 The CPU 401 executes the program 408 using the RAM 403. The program 408 may be stored in the ROM 402. The program 408 may be recorded on a recording medium 409 such as a flash memory and read by the drive device 405, or may be transmitted from an external device via the network 410. The communication interface 406 exchanges data with an external device via the network 410. The input / output interface 407 exchanges data with peripheral devices (such as an input device and a display device). The communication interface 406 and the input / output interface 407 can function as means for acquiring or outputting data.
 なお、第1表示制御部111、第2表示制御部112及び表示制御部222のそれぞれは、単一の回路(プロセッサ等)によって構成されてもよいし、複数の回路の組み合わせによって構成されてもよい。ここでいう回路(circuitry)は、専用又は汎用のいずれであってもよい。また、第1表示制御部111及び第2表示制御部112は、これらが単一の回路によって構成されてもよい。
[付記]
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、いかには限られない。
(付記1)
 ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させる第1表示制御手段と、
 前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させる第2表示制御手段と
 を備える表示制御装置。
(付記2)
 前記第1表示制御手段は、前記実況値と前記予測値とを互いに区別可能に表示させる
 付記1に記載の表示制御装置。
(付記3)
 前記第1表示制御手段は、前記予測値に対して想定される誤差を当該予測値とともに表示させる
 付記1又は2に記載の表示制御装置。
(付記4)
 前記第1表示制御手段は、安全率の算出の基礎となった情報を表示させる
 付記1から付記3までのいずれかに記載の表示制御装置。
(付記5)
 前記第1表示制御手段は、前記実況値と前記予測値とを時系列的に並べて表示させる
 付記1から付記4までのいずれかに記載の表示制御装置。
(付記6)
 前記第1表示制御手段は、複数の地点における安全率の推移を表示させる
 付記1から付記5までのいずれかに記載の表示制御装置。
(付記7)
 前記第2表示制御手段は、複数の地点の前記予測時間を表示させる
 付記1から付記6までのいずれかに記載の表示制御装置。
(付記8)
 前記第1表示制御手段は、前記安全率の表示をユーザの操作に応じて推移させる
 付記1から付記7までのいずれかに記載の表示制御装置。
(付記9)
 前記第1表示制御手段は、前記地点における土中の水分状態と相関を有するパラメータの実測値に基づいて算出された安全率の実況値と、当該実測値と当該地点における雨量の予測値とに基づいて算出された安全率の予測値とを表示させる
 付記1から付記8までのいずれかに記載の表示制御装置。
(付記10)
 ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示し、
 前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を表示する
 安全率の表示方法。
(付記11)
 コンピュータに、
 ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させるステップと、
 前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させるステップと
 を実行させるためのプログラムを記録したコンピュータ読み取り可能なプログラム記録媒体。
Each of the first display control unit 111, the second display control unit 112, and the display control unit 222 may be configured by a single circuit (such as a processor) or may be configured by a combination of a plurality of circuits. Good. The circuit here may be either dedicated or general purpose. Further, the first display control unit 111 and the second display control unit 112 may be configured by a single circuit.
[Appendix]
Part or all of the above-described embodiments can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A first display control means for displaying the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value;
A display control apparatus comprising: a second display control unit that causes the display unit to display a predicted time when a safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold value.
(Appendix 2)
The display control apparatus according to claim 1, wherein the first display control means displays the actual value and the predicted value so as to be distinguishable from each other.
(Appendix 3)
The display control apparatus according to appendix 1 or 2, wherein the first display control unit displays an error assumed for the predicted value together with the predicted value.
(Appendix 4)
The display control apparatus according to any one of Supplementary Note 1 to Supplementary Note 3, wherein the first display control unit displays information that is a basis for calculating the safety factor.
(Appendix 5)
The display control apparatus according to any one of Supplementary Note 1 to Supplementary Note 4, wherein the first display control unit displays the actual value and the predicted value side by side in time series.
(Appendix 6)
The display control device according to any one of Supplementary Note 1 to Supplementary Note 5, wherein the first display control means displays a transition of a safety factor at a plurality of points.
(Appendix 7)
The display control apparatus according to any one of Supplementary Note 1 to Supplementary Note 6, wherein the second display control unit displays the predicted time at a plurality of points.
(Appendix 8)
The display control device according to any one of appendix 1 to appendix 7, wherein the first display control unit changes the display of the safety factor in accordance with a user operation.
(Appendix 9)
The first display control means includes an actual value of the safety factor calculated based on an actual measured value of a parameter having a correlation with a moisture state in the soil at the point, and an actual value and an estimated value of rainfall at the point. The display control device according to any one of appendix 1 to appendix 8, wherein the predicted value of the safety factor calculated based on the display is displayed.
(Appendix 10)
The transition of the safety factor of the slope at a certain point is displayed on the display means using the actual value and the predicted value,
A safety factor display method for displaying a predicted time at which the safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold.
(Appendix 11)
On the computer,
Displaying the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value;
A computer-readable program recording medium recording a program for causing the display unit to display a predicted time at which a safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2016年1月18日に出願された日本出願特願2016-007230を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-007230 filed on January 18, 2016, the entire disclosure of which is incorporated herein.
 110  表示制御装置
 111  第1表示制御部
 112  第2表示制御部
 120  表示装置
 210、220  情報処理装置
 211  受信部
 212  算出部
 213、221  通信部
 222  表示制御部
 223  表示部
 224  UI部
 400  コンピュータ装置
DESCRIPTION OF SYMBOLS 110 Display control apparatus 111 1st display control part 112 2nd display control part 120 Display apparatus 210,220 Information processing apparatus 211 Reception part 212 Calculation part 213, 221 Communication part 222 Display control part 223 Display part 224 UI part 400 Computer apparatus

Claims (11)

  1.  ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させる第1表示制御手段と、
     前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させる第2表示制御手段と
     を備える表示制御装置。
    A first display control means for displaying the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value;
    A display control apparatus comprising: a second display control unit that causes the display unit to display a predicted time when a safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold value.
  2.  前記第1表示制御手段は、前記実況値と前記予測値とを互いに区別可能に表示させる
     請求項1に記載の表示制御装置。
    The display control apparatus according to claim 1, wherein the first display control unit displays the actual value and the predicted value so as to be distinguishable from each other.
  3.  前記第1表示制御手段は、前記予測値に対して想定される誤差を当該予測値とともに表示させる
     請求項1又は2に記載の表示制御装置。
    The display control device according to claim 1, wherein the first display control unit displays an error assumed for the predicted value together with the predicted value.
  4.  前記第1表示制御手段は、安全率の算出の基礎となった情報を表示させる
     請求項1から請求項3までのいずれか1項に記載の表示制御装置。
    The display control apparatus according to any one of claims 1 to 3, wherein the first display control unit displays information that is a basis for calculating a safety factor.
  5.  前記第1表示制御手段は、前記実況値と前記予測値とを時系列的に並べて表示させる
     請求項1から請求項4までのいずれか1項に記載の表示制御装置。
    The display control apparatus according to claim 1, wherein the first display control unit displays the actual value and the predicted value side by side in time series.
  6.  前記第1表示制御手段は、複数の地点における安全率の推移を表示させる
     請求項1から請求項5までのいずれか1項に記載の表示制御装置。
    The display control apparatus according to any one of claims 1 to 5, wherein the first display control means displays a transition of a safety factor at a plurality of points.
  7.  前記第2表示制御手段は、複数の地点の前記予測時間を表示させる
     請求項1から請求項6までのいずれか1項に記載の表示制御装置。
    The display control apparatus according to any one of claims 1 to 6, wherein the second display control unit displays the predicted time at a plurality of points.
  8.  前記第1表示制御手段は、前記安全率の表示をユーザの操作に応じて推移させる
     請求項1から請求項7までのいずれか1項に記載の表示制御装置。
    The display control apparatus according to any one of claims 1 to 7, wherein the first display control unit changes the display of the safety factor in accordance with a user operation.
  9.  前記第1表示制御手段は、前記地点における土中の水分状態と相関を有するパラメータの実測値に基づいて算出された安全率の実況値と、当該実測値と当該地点における雨量の予測値とに基づいて算出された安全率の予測値とを表示させる
     請求項1から請求項8までのいずれか1項に記載の表示制御装置。
    The first display control means includes an actual value of the safety factor calculated based on an actual measured value of a parameter having a correlation with a moisture state in the soil at the point, and an actual value and an estimated value of rainfall at the point. The display control apparatus according to claim 1, wherein a predicted value of the safety factor calculated based on the display is displayed.
  10.  ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示し、
     前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を表示する
     安全率の表示方法。
    The transition of the safety factor of the slope at a certain point is displayed on the display means using the actual value and the predicted value,
    A safety factor display method for displaying a predicted time at which the safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold.
  11.  コンピュータに、
     ある地点における斜面の安全率の推移を、実況値と予測値とを用いて表示手段に表示させるステップと、
     前記予測値に基づいて特定される前記地点における安全率が所定の閾値以下になる予測時間を前記表示手段に表示させるステップと
     を実行させるためのプログラムを記録したコンピュータ読み取り可能なプログラム記録媒体。
    On the computer,
    Displaying the transition of the safety factor of the slope at a certain point on the display means using the actual value and the predicted value;
    A computer-readable program recording medium recording a program for causing the display unit to display a predicted time at which a safety factor at the point specified based on the predicted value is equal to or less than a predetermined threshold.
PCT/JP2017/001298 2016-01-18 2017-01-17 Display control device, method of displaying safety factor, and program recording medium WO2017126481A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017562813A JP6699672B2 (en) 2016-01-18 2017-01-17 Display control device, safety factor display method, and computer program
BR112018013803-7A BR112018013803A2 (en) 2016-01-18 2017-01-17 display control device, safety factor display method and program recording means
MX2018008770A MX2018008770A (en) 2016-01-18 2017-01-17 Display control device, method of displaying safety factor, and program recording medium.
PH12018501296A PH12018501296A1 (en) 2016-01-18 2018-06-18 Display control device, method of displaying safety factor, and program recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007230 2016-01-18
JP2016007230 2016-01-18

Publications (1)

Publication Number Publication Date
WO2017126481A1 true WO2017126481A1 (en) 2017-07-27

Family

ID=59362718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001298 WO2017126481A1 (en) 2016-01-18 2017-01-17 Display control device, method of displaying safety factor, and program recording medium

Country Status (6)

Country Link
JP (1) JP6699672B2 (en)
BR (1) BR112018013803A2 (en)
MX (1) MX2018008770A (en)
PH (1) PH12018501296A1 (en)
TW (1) TW201738435A (en)
WO (1) WO2017126481A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176835A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Slope monitoring system, slope monitoring method, and recording medium
JP2020144512A (en) * 2019-03-05 2020-09-10 日本電気株式会社 Evacuation support device, evacuation support method, and program
JP2021140672A (en) * 2020-03-09 2021-09-16 キヤノンマーケティングジャパン株式会社 Information processing unit, information processing system, control method thereof and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070029A (en) * 2000-08-31 2002-03-08 Dai Nippon Construction Risk decision of slope and measuring system and safety evaluation method of measuring works
JP2006190131A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Evaluation device for control system, verification device used for the evaluation device, evaluation method for control system and computer program used therefor
JP2006195650A (en) * 2005-01-12 2006-07-27 Chuo Kaihatsu Kk Slope collapse monitoring/prediction system
JP2008286803A (en) * 2008-06-27 2008-11-27 Xanavi Informatics Corp Navigation device, and method for displaying traffic information therein
WO2013030984A1 (en) * 2011-08-31 2013-03-07 株式会社日立エンジニアリング・アンド・サービス Facility state monitoring method and device for same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252128A (en) * 2005-03-10 2006-09-21 Shimizu Corp System for predicting slope collapse and for transmitting evacuation information to peripheral area
JP2009122291A (en) * 2007-11-13 2009-06-04 Godai Kaihatsu Kk Map information providing device, map information providing method, and program
JP2012233714A (en) * 2011-04-28 2012-11-29 Kyoto Univ Environment condition prediction system, method of displaying environment condition prediction information, and power generation prediction system
JP5804034B2 (en) * 2013-12-03 2015-11-04 有限会社 ジオテック Local collapse risk notification service information providing apparatus, method for providing the same, and medium used in the computer operating the apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070029A (en) * 2000-08-31 2002-03-08 Dai Nippon Construction Risk decision of slope and measuring system and safety evaluation method of measuring works
JP2006190131A (en) * 2005-01-07 2006-07-20 Toyota Motor Corp Evaluation device for control system, verification device used for the evaluation device, evaluation method for control system and computer program used therefor
JP2006195650A (en) * 2005-01-12 2006-07-27 Chuo Kaihatsu Kk Slope collapse monitoring/prediction system
JP2008286803A (en) * 2008-06-27 2008-11-27 Xanavi Informatics Corp Navigation device, and method for displaying traffic information therein
WO2013030984A1 (en) * 2011-08-31 2013-03-07 株式会社日立エンジニアリング・アンド・サービス Facility state monitoring method and device for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176835A1 (en) * 2018-03-13 2019-09-19 日本電気株式会社 Slope monitoring system, slope monitoring method, and recording medium
JP2020144512A (en) * 2019-03-05 2020-09-10 日本電気株式会社 Evacuation support device, evacuation support method, and program
JP7375307B2 (en) 2019-03-05 2023-11-08 日本電気株式会社 Evacuation support equipment, evacuation support methods and programs
JP2021140672A (en) * 2020-03-09 2021-09-16 キヤノンマーケティングジャパン株式会社 Information processing unit, information processing system, control method thereof and program
JP7453521B2 (en) 2020-03-09 2024-03-21 キヤノンマーケティングジャパン株式会社 Information processing device, its control method and program

Also Published As

Publication number Publication date
PH12018501296A1 (en) 2019-02-11
JPWO2017126481A1 (en) 2018-10-11
MX2018008770A (en) 2018-11-09
TW201738435A (en) 2017-11-01
BR112018013803A2 (en) 2018-12-11
JP6699672B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2017126481A1 (en) Display control device, method of displaying safety factor, and program recording medium
Shan et al. Model‐reference health monitoring of hysteretic building structure using acceleration measurement with test validation
JP2012233714A (en) Environment condition prediction system, method of displaying environment condition prediction information, and power generation prediction system
Lourens et al. Full-field response monitoring in structural systems driven by a set of identified equivalent forces
JP2008039446A (en) Earthquake damage evaluation program
JP2021508096A (en) Monitoring multiple system indicators
JP6583529B2 (en) Information processing apparatus, parameter correction method, and program
Diaz et al. Housing recovery in the aftermath of a catastrophe: Material resources perspective
Tsang et al. Development of an accident modelling in the Hong Kong construction industry
WO2018164102A1 (en) Diagnosis cost output device, diagnosis cost output method, and computer-readable recording medium
JP6555391B2 (en) Prediction device, prediction system, prediction method, and program
JP3131559U (en) Mesh weather information creation device
JP5526541B2 (en) Debris flow risk judgment device, debris flow risk judgment method, and debris flow risk judgment program
JP6707012B2 (en) Information providing system, control method of information providing system, and program
KR102417675B1 (en) Expression apparatus for level of disaster crisis, and control method thereof
Pan et al. Displacement estimation for nonlinear structures using seismic acceleration response data
JP6295402B2 (en) A habitability evaluation system for building vibration
JP7375307B2 (en) Evacuation support equipment, evacuation support methods and programs
JP7499050B2 (en) Information processing device and program
WO2024004713A1 (en) Water leakage detection system and water leakage detection method
WO2023047819A1 (en) Disaster prevention information management system, control method of disaster prevention information management system, and control program of disaster prevention information management system
JP7435742B2 (en) Decision support device, decision support method and program
JP5138124B1 (en) Method for evaluating risk of occurrence of snow damage accident in power transmission equipment and information processing apparatus
JP2016194514A (en) Method and device for identifying layer rigidity of architectural structure
JP5345993B2 (en) Earthquake motion prediction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562813

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018013803

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008770

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018013803

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180705

122 Ep: pct application non-entry in european phase

Ref document number: 17741359

Country of ref document: EP

Kind code of ref document: A1