WO2019176835A1 - Slope monitoring system, slope monitoring method, and recording medium - Google Patents

Slope monitoring system, slope monitoring method, and recording medium Download PDF

Info

Publication number
WO2019176835A1
WO2019176835A1 PCT/JP2019/009608 JP2019009608W WO2019176835A1 WO 2019176835 A1 WO2019176835 A1 WO 2019176835A1 JP 2019009608 W JP2019009608 W JP 2019009608W WO 2019176835 A1 WO2019176835 A1 WO 2019176835A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
safety factor
soil
moisture
soil parameter
Prior art date
Application number
PCT/JP2019/009608
Other languages
French (fr)
Japanese (ja)
Inventor
梓司 笠原
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2019176835A1 publication Critical patent/WO2019176835A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Definitions

  • the present invention relates to a slope monitoring system, a slope monitoring method, and a recording medium for monitoring slopes on topography such as mountains and valleys.
  • the safety factor is used as an index for evaluating the safety of the risk of collapse of slopes in terrain such as mountains and valleys, or the degree of no risk of slope collapse during heavy rain.
  • the safety factor is an index for evaluating the safety of a slope, and is represented by a ratio in which a sliding force for sliding down the slope is used as a denominator and a resistance force for preventing the sliding is used as a numerator. When this value is less than 1, that is, when the sliding force becomes larger than the resistance force, it is evaluated that there is a possibility of collapse.
  • Patent Document 1 discloses this kind of slope safety monitoring technology.
  • the slope monitoring system disclosed in Patent Document 1 changes the moisture content of the test layer measured from a test environment having a test layer that is substantially the same material layer as the material layer constituting the monitored slope. Measure each value of a predetermined analytical expression variable. Then, the slope monitoring system constructs a model that defines the relationship between the amount of water and the value of each analytical expression variable for each of the analytical expression variables based on the value of each analytical expression variable and the amount of water. The slope monitoring system calculates the value of each analytical expression variable when measuring the water content of the monitored slope using the constructed model, and based on the calculated value of each analytical expression variable, the slope stability analysis Calculate the safety factor of the slope to be monitored using the formula.
  • the slope monitoring systems of Patent Document 1 and Patent Document 2 use the constructed model to calculate the value of each analytical expression variable when the moisture content of the monitored slope is measured, and to calculate each calculated analytical expression variable. Based on this value, the safety factor is calculated using the slope stability analysis formula.
  • the accuracy of the value of each analytical expression variable when the amount of water on the slope to be monitored is measured may be lowered. For example, when measuring the value of each analytical expression variable over a wide range of water content and building a model as shown by a simple function from the entire value of each obtained analytical expression variable, each analytical expression variable is locally The accuracy of the value of may be lowered.
  • the main object of the present invention is to provide a slope monitoring system, a slope monitoring method, and a recording medium capable of calculating a safety factor as an index for evaluating safety of a slope with high accuracy.
  • the slope monitoring system includes a measurement unit that measures a soil parameter in association with a moisture content of a material layer constituting a monitored slope, and the measured soil parameter and the moisture content.
  • a storage unit that stores and associates, a moisture meter that measures the amount of moisture on the slope to be monitored, and moisture that is measured on the slope to be monitored based on the soil parameter that is stored in association with the amount of moisture
  • a soil parameter estimating unit that estimates an estimated soil parameter in quantity, and a safety factor calculating unit that calculates a first safety factor using the estimated soil parameter.
  • a soil layer is measured by associating a moisture amount with respect to a material layer constituting a monitored slope, and the measured soil parameter and the moisture amount are associated. Storing and measuring the amount of water on the monitored slope, estimating the estimated soil parameter at the amount of water measured on the monitored slope based on the soil parameter stored in association with the amount of water The first safety factor is calculated using the estimated soil parameter.
  • a recording medium that associates a soil parameter related to slope stability measured by linking a substance layer constituting a slope to be monitored with a moisture content and the moisture content.
  • a slope monitoring program for executing a process for estimating the estimated soil parameter and a process for calculating the first safety factor using the estimated soil parameter is stored.
  • a safety factor as an index for evaluating the safety of a slope with high accuracy.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of a method for acquiring soil parameters related to slope stability of the measurement unit in FIG.
  • FIG. 3 is a flowchart showing details of the triaxial compression test (shear test) in step S11 of FIG.
  • FIG. 4 is a flowchart illustrating an example of a water addition test of the measurement unit in FIG.
  • FIG. 5 is a flowchart showing an example of the soil parameter estimation operation of FIG.
  • FIG. 6 is a diagram illustrating a first method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 1 is a block diagram illustrating an example of the configuration of the first embodiment.
  • FIG. 2 is a flowchart illustrating an example of a method for acquiring soil parameters related to slope stability of the measurement unit in FIG.
  • FIG. 3 is a flowchart showing details of the triaxial compression test (s
  • FIG. 7 is a block diagram showing an example of the configuration of the safety factor calculation unit that estimates the soil parameter corresponding to the amount of water mt measured on the slope to be monitored by the first method.
  • FIG. 8 is a diagram showing a second method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 9 is a block diagram illustrating an example of a configuration of a safety factor calculation unit that estimates soil parameters by the second method.
  • FIG. 10 is a diagram illustrating a third method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 11 is a block diagram illustrating an example of a configuration of a safety factor calculation unit that estimates soil parameters by the third method.
  • FIG. 12 is a block diagram showing the configuration of the second embodiment.
  • FIG. 13 is a flowchart showing an operation for storing in advance the soil parameters and model formulas of the second embodiment.
  • FIG. 14 is a flowchart illustrating an operation of calculating the safety factor according to the second embodiment.
  • FIG. 15 is a diagram showing a first display example of the display unit of FIG.
  • FIG. 16 is a diagram showing a second display example of FIG.
  • FIG. 17 is a diagram illustrating an example of a configuration of a computer that implements each unit of each embodiment.
  • Fs is the safety factor
  • is the slope angle
  • C, W, u, and ⁇ are the soil parameters representing the properties of the soil, adhesive strength, mass weight, pore water pressure, and internal friction angle, respectively.
  • the shear stress of each divided piece (such as a lump) is represented by the lump weight W as the gravity applied to the divided piece and the slope gradient angle ⁇ (see the denominator of equation (1)). ).
  • the shear resistance of each divided piece is expressed by the adhesive force C of the divided piece (clump) and the resistance force ((Wu) cos ⁇ ⁇ tan ⁇ ) based on the vertical stress (of the equation (1)) See molecule).
  • the safety of a slope is evaluated by a safety factor Fs calculated using a ratio of a shear stress acting in the slope direction of each divided piece and a shear resistance force that prevents sliding due to the shear stress.
  • FIG. 1 is a block diagram showing an example of the configuration of the first embodiment.
  • the slope monitoring system 1 includes a measurement unit 11, a storage unit 12, a moisture meter 13, a soil parameter estimation unit 14, and a safety factor calculation unit 15.
  • the measurement part 11 measures the soil parameter relevant to slope stability previously linked
  • the soil parameters related to the slope stability are the adhesive force C, the internal friction angle ⁇ , the pore water pressure u, and the clot weight W.
  • soil parameters for a specimen (soil mass) of one or more water amounts m 1 , m 2 ,..., Max which are created using a material layer (sediment) collected in advance from a slope to be monitored and have different water content ratios, That is, adhesive forces C 1 , C 2 ,... C max , internal friction angles ⁇ 1 , ⁇ 2 ,... ⁇ max , pore water pressures u 1 , u 2 , ... u max , clot weight W 1 , W 2 ... W max is measured.
  • FIG. 2 is a flowchart showing an example of a method for acquiring soil parameters related to the slope stability of the measurement unit in FIG.
  • the measuring unit 11 performs a triaxial compression test (shear test) to calculate the adhesive force C and the internal friction angle ⁇ (step S11).
  • FIG. 3 is a flowchart showing details of the triaxial compression test (shear test) in step S11 of FIG.
  • a test body soil mass
  • the soil of the test body is the same as the soil of the actual slope.
  • a plurality of test bodies are formed by changing the water content ratio of soil blocks made of soil having the same type, dry density and compaction as the soil on the actual slope.
  • the measuring unit 11 measures the water content of the prepared earth clot using a moisture meter (step S112).
  • the measurement unit 11 performs compression by setting the prepared soil block in a triaxial compression test apparatus including a stress sensor included in the measurement unit 11, and calculates the vertical stress ⁇ and shear stress ⁇ during compression. Measurement is performed (step S113).
  • step S114 the compression and stress measurement in steps S112 to S113 is repeated (step S114). Usually at least three compression and stress measurements are performed. Thereby, the normal stress data and the shear stress data at the time of shearing corresponding to at least a plurality of vertical loads are obtained for one soil block.
  • the measurement unit 11 obtains moisture amount data, and normal stress data and shear stress data during shearing corresponding to a plurality of vertical loads, for each of the soil blocks having different moisture contents.
  • the measuring unit 11 is obtained. Based on the normal stress data and the shear stress data, the adhesive force C and the internal friction angle ⁇ are calculated (step S12 in FIG. 2).
  • the shear strength s is represented by the sum of the adhesive force C of the soil and the resistance force ( ⁇ tan ⁇ ) based on the normal stress ⁇ acting on the shear surface.
  • tan ⁇ is an effective friction coefficient based on the internal friction angle ⁇ , which is one of the soil parameters representing the properties of the soil.
  • s C + ⁇ tan ⁇
  • the measuring unit 11 sets the shear stress at the time of fracture of the soils having moisture amounts m 1 , m 2 ,..., Max to the shear strength s 1 , s 2 ,. , ⁇ 1 , ⁇ 2 ,... ⁇ max .
  • the water content m 1, m 2 corresponds to ⁇ ⁇ ⁇ m max, adhesion C 1, C 2, ⁇ C max, internal friction angle phi 1, phi 2 ... ⁇ max can be calculated.
  • the measurement part 11 implements a hydration test using the test body (soil mass) which is the same as the soil used in the shear test in Step S11, that is, a soil (soil mass) made of soil of the same type, dry density and compaction degree ( Step S13).
  • FIG. 4 is a flowchart showing an example of the water addition test of the measurement unit in FIG.
  • a specimen made of soil of the same type, dry density and compaction as the soil used in the shear test and having a relatively low water content is prepared (Ste S131).
  • the test body a soil block adjusted so as to have a test layer with a lower water content ratio than a test body having a test layer with the minimum water content ratio among the test bodies used in the shear test is used.
  • the measurement unit 11 sets the prepared clot on a test machine including the moisture meter, the pore water pressure meter, and the weight meter included in the measurement unit 11, and measures the moisture content, the pore water pressure, and the clot weight. (Steps S132 to S134). As a result, at least the water content, pore water pressure, and soil weight of the soil mass in a state where the water content ratio before the addition is known are obtained.
  • moisture content data, pore water pressure data, and soil mass weight data of the soil mass in each state (before and after each addition) in the hydrolysis process until the soil is saturated are acquired.
  • saturated of the soil specifically means a state where water does not soak into the soil.
  • the measurement unit 11 has one or more water amounts m 1 , m 2 ,..., M max that differ in water content ratios created using the material layer (earth and sand) collected from the slope to be monitored by the water test.
  • the pore water pressure of the soil mass (test body) is measured with a pore water pressure gauge.
  • the measurement unit 11 measures a clod weight by weighing scale, pore pressure u 1, u 2, ⁇ u max, clod weight W 1, W 2, acquires ⁇ ⁇ ⁇ W max (step S14).
  • the water test is performed after the shear test, but the order of the test is not particularly limited.
  • Storage unit 12 the water content m 1, m 2, ⁇ m max and straps association with soil parameters obtained by performing a previously measured, i.e. adhesion C 1, C 2, ⁇ C max, Internal Friction angle ⁇ 1, ⁇ 2, ⁇ ⁇ max, pore pressure u 1, u 2, ⁇ u max, and, clod weight W 1, W 2, ⁇ W max and a plurality of moisture content m 1 , M 2 ,..., M max are stored in association with each other.
  • adhesion C 1, C 2, ⁇ C max Internal Friction angle ⁇ 1, ⁇ 2, ⁇ ⁇ max, pore pressure u 1, u 2, ⁇ u max, and, clod weight W 1, W 2, ⁇ W max and a plurality of moisture content m 1 , M 2 ,..., M max are stored in association with each other.
  • the moisture meter 13 is installed on the slope to be monitored and measures the moisture amount mt on the slope to be monitored.
  • the soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the monitored slope, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters.
  • the soil parameter estimation unit 14 outputs the estimated soil parameters corresponding to the water content mt, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 15.
  • the safety factor calculation unit 15 sets the slope length l of the slope to be monitored, the slope inclination angle ⁇ of the slope, and the slip layer depth d. Then, the safety factor calculation unit 15 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt according to the equation (1), A safety factor Fs1 is calculated. The safety factor calculation unit 15 outputs the calculated first safety factor to, for example, a display unit, and displays the first safety factor Fs1 calculated by the display unit.
  • each component of the slope monitoring system of 1st embodiment shown in FIG. 1 and other embodiment mentioned later has shown the block of the functional unit.
  • Some or all of the constituent elements of the slope monitoring system of each embodiment may be realized by any combination of a computer 50 and a program as shown in FIG. 17, for example.
  • the computer 50 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program 54 loaded into the RAM 53
  • a storage device 55 for storing the program 54
  • a drive device 57 that reads and writes the recording medium 56
  • Each component of each embodiment is implement
  • the storage unit 12 is configured such that the CPU 51 that has acquired the program 54 has a moisture content for the material layer that constitutes the monitored slope output from the measurement unit 11 based on the program 54.
  • the function may be realized by performing processing of associating the soil parameters related to slope stability measured in association with a plurality of moisture amounts and storing them in the storage device 55.
  • the soil parameter estimation unit 14 is a storage device in which the CPU 51 that has acquired the program 54 associates the moisture amount measured on the slope to be monitored based on the program 54 with the processing and moisture amount that are acquired via the input / output interface 60.
  • the function may be realized by performing a process of calculating the estimated soil parameter with the amount of water measured on the slope to be monitored based on the soil parameter stored in 55.
  • the function of the safety factor calculation unit 15 is realized by the CPU 51 that has acquired the program 54 performing a process of calculating the first safety factor of the slope to be monitored using the estimated soil parameter based on the program 54. Also good.
  • the program 54 that realizes the function of each component of each embodiment is stored in advance in the storage device 55, the ROM 52, or the RAM 53, for example, and may be configured to be read by the CPU 51 as necessary.
  • the program 54 may be supplied to the CPU 51 via the communication network 59, or may be stored in the recording medium 56 in advance, and the drive device 57 may read the program and supply it to the CPU 51.
  • FIG. 5 is a flowchart showing an example of the soil parameter estimation operation of FIG.
  • the moisture meter 13 is installed on the slope to be monitored and measures the amount of water mt on the slope to be monitored (step S16).
  • the soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the slope to be monitored, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters. Then, the soil parameter estimation unit 14 outputs the estimated soil parameter corresponding to the moisture amount mt, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 15 (step S17). .
  • the safety factor calculation unit 15 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt, to calculate the first safety of the slope.
  • the rate Fs1 is calculated.
  • the calculated first safety factor is displayed, for example, on a display unit (not shown) (step S18).
  • the safety factor calculation unit 15 determines whether the measurement is finished or not, the process returns to step S16. In this way, the processes of steps S16 to S18 are repeated until the measurement is completed.
  • various methods can be considered as a method of estimating the soil parameter corresponding to the water content mt measured by the soil parameter estimation unit 14 on the slope to be monitored in step S22 of FIG.
  • FIG. 6 is a diagram illustrating a first method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 7 is a block diagram showing an example of a configuration for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored by the first method.
  • the water content extraction unit 141 before and after the soil parameter estimation unit 14 measures the moisture measured on the slope to be monitored among the water amounts stored in the storage unit 12 for each soil parameter, as shown in FIG.
  • Two soil parameters corresponding to the moisture amounts mt + and mt ⁇ before and after the amount mt are obtained.
  • the front and rear water content extraction unit 141 corresponds to, for example, the water content mt + and mt ⁇ before and after the water content mt measured on the slope to be monitored among the water content stored in the storage unit 12 with respect to the clot weight.
  • the water content extraction unit 141 before and after the soil parameter estimation unit 14 respectively corresponds to the two water content mt + and mt ⁇ before and after the measured water content mt.
  • Internal friction angles ⁇ t + and ⁇ t ⁇ , pore water pressures ut + and ut ⁇ , and adhesive forces Ct + and Ct ⁇ are acquired from the storage unit, respectively.
  • the interpolation function generation unit 142 of the soil parameter estimation unit 14 interpolates between the acquired two internal friction angles ⁇ t + , ⁇ t ⁇ , pore water pressure ut + , ut ⁇ , adhesive force Ct + , Ct ⁇ .
  • the estimation parameter calculation unit 143 of the soil parameter estimation unit 14 estimates the corresponding internal friction angle ⁇ t, pore water pressure ut, and adhesive force Ct by substituting the measured water amount mt for each obtained function.
  • the storage unit stores not the conversion formula but the soil parameters measured in advance for a plurality of moisture amounts, and the soil parameter estimation unit 14 measures the moisture measured on the monitored slope.
  • a soil parameter corresponding to the amount is estimated based on a plurality of stored soil parameters, and a safety factor is calculated. Therefore, it is possible to calculate the safety factor with higher accuracy than in the case of creating the conversion formula in advance.
  • FIG. 8 is a diagram showing a second method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 9 is a block diagram showing an example of the configuration of the second embodiment in which soil parameters are estimated by the second method.
  • the recent water content extraction unit 161 of the soil parameter estimation unit 16 is the water content before and after the water content mt measured on the monitored slope among the water content stored in the storage unit 12 for each soil parameter. Extract the quantities mt + , mt ⁇ .
  • and ⁇ +
  • the latest water content extraction unit 161 extracts the water content mt + as the latest water content closest to the water content mt, and the recent soil parameter extraction unit 162 of the soil parameter estimation unit 16 Then, the soil parameter stored in association with the recent water content, that is, the clot weight Wt + is extracted.
  • the soil parameter estimation unit 16 sets mt ⁇ as the latest moisture amount closest to the moisture amount mt, and stores the soil parameter stored in association with the latest moisture amount, that is, the mass of the clot. Extract Wt ⁇ .
  • and ⁇ +
  • the latest moisture amount extraction unit 161 extracts the moisture amount mt + as the nearest moisture amount closest to the moisture amount mt. Further, the recent soil parameter extraction unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle ⁇ t + , the pore water pressure ut + , and the adhesive force Ct + .
  • the latest water content extraction unit 161 of the soil parameter estimation unit 16 extracts mt ⁇ as the latest water content closest to the water content mt
  • the soil parameter estimation unit 16 extracts the latest soil parameter.
  • the unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle ⁇ t ⁇ , the pore water pressure ut ⁇ , and the adhesive force Ct ⁇ .
  • FIG. 10 is a diagram showing a third method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 11 is a block diagram showing an example of the configuration of the third embodiment in which soil parameters are estimated by the third method.
  • the soil parameter estimation unit 17 estimates the soil parameter corresponding to the amount of water mt measured on the monitored slope for each soil parameter by two methods.
  • the recent water content extraction unit 161 of the soil parameter estimation unit 17 measures the water content measured on the monitored slope among the water content stored in the storage unit 12. Water contents mt + and mt ⁇ before and after mt are extracted.
  • the recent moisture amount extraction unit 161 extracts the latest moisture amount based on the distances ⁇ ⁇ and ⁇ + between the two moisture amounts mt + and mt ⁇ and the moisture amount mt measured on the slope to be monitored.
  • the recent soil parameter extraction unit 162 extracts the soil parameter stored in association with the recent water content, that is, the mass of the soil mass.
  • the latest moisture amount extraction unit 161 extracts mt + as the latest moisture amount closest to the moisture amount mt, and the recent soil parameter extraction unit 162 sets the latest moisture amount. And the soil parameter stored in association with each other, that is, the clot weight Wt + is extracted as the first estimation result and output to the estimation parameter calculation unit 173.
  • the water content extraction unit 171 before and after the soil parameter estimation unit 17 corresponds to the water content mt ++ and mt ⁇ before and after the nearest water content mt + among the water content stored in the storage unit 12.
  • two soil parameters eg clod weight wt ++, wt - to get.
  • the estimation parameter calculation unit 173 of the soil parameter estimation unit 17 calculates, for example, an average value of Wt + that is the first estimation result and f 2 (mt + ) that is the second estimation result. Then, the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored is estimated.
  • the recent water content extraction unit 161 of the soil parameter estimation unit 17 monitors the internal friction angle, the pore water pressure, and the adhesive force among the water content stored in the storage unit 12 as in the second example.
  • the moisture amounts mt + and mt ⁇ before and after the moisture amount mt measured on the slope are extracted.
  • the latest moisture amount extraction unit 161 extracts the latest moisture amount based on the distances ⁇ ⁇ and ⁇ + between the two moisture amounts mt + and mt ⁇ and the moisture amount mt measured on the slope to be monitored.
  • the recent soil parameter extraction unit 162 of the soil parameter estimation unit 17 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle, the pore water pressure, and the adhesive force.
  • the latest water content extraction unit 161 extracts mt + as the latest water content closest to the water content mt.
  • the recent soil parameter extraction unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle ⁇ t + , the pore water pressure ut + , and the adhesive force Ct + as the first estimation results, and estimates them. It outputs to the parameter calculation part 173.
  • the water content extraction unit 171 before and after the soil parameter estimation unit 17 includes two soil parameters corresponding to the water content before and after the above-mentioned recent water content among the water content stored in the storage unit 12, that is, the internal Get friction angle, pore water pressure, and adhesive strength.
  • the estimation parameter calculation unit 173 of the soil parameter estimation unit 17 performs, for example, the first estimation result, that is, the internal friction angle ⁇ t + , pore water pressure ut + , and the clot weight Wt +.
  • the estimated parameter calculation unit 173 estimates the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
  • FIG. 12 is a block diagram showing the configuration of the fourth embodiment.
  • the slope monitoring system 2 of the present embodiment has a model equation that is a function that models the relationship between the water parameters and the soil parameters related to slope stability from the soil parameters stored in the storage unit 12. It differs from 1st embodiment by the point provided with the modeling part 21 to produce
  • the safety factor calculation unit 24 displays a soil parameter estimation unit 23 that estimates a soil parameter based on the model formula, a safety factor calculation unit 24 that calculates a safety factor based on the soil parameter, and displays the calculated safety factor. This is different from the first embodiment in that the display unit 25 is provided.
  • FIG. 13 is a flowchart showing an operation for storing in advance the soil parameters and model formulas of the second embodiment.
  • the measurement unit 11 acquires stress sensor data by a triaxial compression test (step S ⁇ b> 11), as in the first embodiment, and based on the stress sensor data, the adhesive force and internal friction are obtained.
  • the corner is acquired in association with the amount of moisture (step S12).
  • the measurement unit 11 also performs a water addition test (step S13), obtains pore water pressure and clot weight in association with each moisture amount (step S14), and associates the moisture amount in the storage unit 12 with adhesive strength,
  • the internal friction angle, pore water pressure, and soil mass weight are stored (step S15).
  • the modeling unit 21 constructs a soil mass-water content model and a pore water pressure-water content model from the soil mass weight and pore water pressure acquired in association with the water content. That is, the modeling unit 21 creates a model formula that expresses the mass of the lump (density) and the pore water pressure as a function of the water content (step S21).
  • the modeling unit 21 constructs an adhesive force-water amount model and an internal friction angle-water amount model from the adhesive force and the internal friction angle acquired in association with the water amount. That is, the modeling unit 21 creates a model formula that represents the adhesive force and the internal friction angle as a function of the water content (step S22).
  • the modeling unit 21 stores the created adhesive force-water content model, internal friction angle-water content model, clot weight (density) -water content model, pore water pressure-water content model in the storage unit 22 (step S23).
  • the storage unit 22 may be the same storage unit as the storage unit 12.
  • FIG. 14 is a flowchart showing the operation of calculating the safety factor according to the second embodiment.
  • the moisture meter 13 is installed on the slope to be monitored and measures the amount of water mt on the slope to be monitored (step S16).
  • the soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the monitored slope, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters.
  • the soil parameter estimation unit 14 outputs the estimated soil parameter corresponding to the moisture amount mt, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 24 (step S17).
  • the safety factor calculation unit 24 sets the slope length l of the slope to be monitored, the slope inclination angle ⁇ of the slope, and the slip layer depth d, as in the first embodiment. Then, the safety factor calculation unit 24 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt according to the equation (1), A safety factor Fs1 is calculated (step S18).
  • the soil parameter estimation unit 23 uses the four models stored in the storage unit 22 based on the moisture amount mt measured on the monitoring target slope, and uses four analytical formula variables when measuring the moisture amount on the monitoring target slope. Estimate the value of. Then, the soil parameter estimation unit 23 outputs the estimated values, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the clot weight Wt to the safety factor calculation unit 24 (step S24).
  • the safety factor calculation unit 24 uses the soil parameters output from the soil parameter estimation unit 23, that is, the adhesive force Ct, the internal friction angle ⁇ t, the pore water pressure ut, and the soil mass weight Wt according to the equation (1) to calculate the second slope.
  • a safety factor Fs2 is calculated (step S25).
  • the display unit 25 displays the safety factor of the monitoring target slope based on the calculated first safety factor Fs1 and second safety factor Fs2 (step S26).
  • Various methods can be considered as a method of displaying the safety factor on the display unit 25.
  • FIG. 15 is a diagram showing a first display example of the display unit of FIG.
  • the display unit 25 displays the time transition of the first safety factor Fs1 and the second safety factor Fs2 as it is with the horizontal axis as time.
  • the display unit 25 displays a value included between the first safety factor Fs1 and the second safety factor Fs2, for example, an average value of the first safety factor Fs1 and the second safety factor Fs2, as a safety factor (third Display as safety factor.
  • FIG. 16 is a diagram showing a second display example of FIG.
  • the display unit 25 displays time transitions of Fs2 + ⁇ (fourth safety factor) and Fs2 ⁇ (fifth safety factor) with the horizontal axis as time.
  • the display unit 25 displays a value included in Fs2 + ⁇ to Fs2- ⁇ , for example, the second safety factor Fs2 as a safety factor (sixth safety factor).
  • the safety factor estimated based on the soil parameter measured in advance instead of the model equation, and the safety factor estimated based on the model equation generated from the measured soil parameter calculate. And by showing the range of the safety factor from the safety factor estimated by these two methods, it is possible to reduce the possibility that the judgment of safety will be greatly deviated, and it is possible to appropriately judge the safety of the monitoring slope.

Abstract

In order to enable highly precise calculation of a safety factor that serves as an indicator for evaluating the safety of a slope, this slope monitoring system 1 comprises: a measurement unit 11 that measures soil parameters in association with a moisture content regarding a material layer constituting a slope to be monitored; a storage unit 12 that stores the measured soil parameters in association with the moisture content; a moisture meter 13 for measuring the moisture content in the slope to be monitored; a soil parameter estimation unit 14 that uses the soil parameters stored in association with the moisture content as a basis to estimate estimated soil parameters at the moisture content measured in the slope to be monitored; and a safety factor calculation unit 15 that calculates a first safety factor for the slope to be monitored using the estimated soil parameters.

Description

斜面監視システム、斜面監視方法及び記録媒体Slope monitoring system, slope monitoring method and recording medium
 本発明は、山や谷などの地形における斜面を監視する斜面監視システム、斜面監視方法及び記録媒体に関する。 The present invention relates to a slope monitoring system, a slope monitoring method, and a recording medium for monitoring slopes on topography such as mountains and valleys.
 大雨のときに、山や谷などの地形における斜面が崩壊する危険性、又は、斜面の崩壊の恐れがない度合を示す安全性を評価する指標として安全率が用いられている。安全率は、斜面の安全性を評価する指標であって、斜面を滑落しようとする滑落力を分母とし、滑落を抑止しようとする抵抗力を分子とした比で表わされる。この値が1未満、すなわち滑落力が抵抗力よりも大きくなったときに、崩壊する可能性があると評価される。 The safety factor is used as an index for evaluating the safety of the risk of collapse of slopes in terrain such as mountains and valleys, or the degree of no risk of slope collapse during heavy rain. The safety factor is an index for evaluating the safety of a slope, and is represented by a ratio in which a sliding force for sliding down the slope is used as a denominator and a resistance force for preventing the sliding is used as a numerator. When this value is less than 1, that is, when the sliding force becomes larger than the resistance force, it is evaluated that there is a possibility of collapse.
 例えば特許文献1に、この種の斜面安全性監視技術が開示されている。特許文献1に開示される斜面監視システムは、監視対象斜面を構成している物質層と略同一の物質層である試験層を有する試験環境から計測される、試験層の水分量を変化させたときの、所定の解析式変数の各々の値を計測する。そして斜面監視システムは、解析式変数の各々の値と、水分量に基づいて、解析式変数の各々について、水分量から各解析式変数の値との関係を規定するモデルを構築する。そして斜面監視システムは、構築されたモデルを用いて監視対象斜面の水分量を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて監視対象斜面の安全率を算出する。 For example, Patent Document 1 discloses this kind of slope safety monitoring technology. The slope monitoring system disclosed in Patent Document 1 changes the moisture content of the test layer measured from a test environment having a test layer that is substantially the same material layer as the material layer constituting the monitored slope. Measure each value of a predetermined analytical expression variable. Then, the slope monitoring system constructs a model that defines the relationship between the amount of water and the value of each analytical expression variable for each of the analytical expression variables based on the value of each analytical expression variable and the amount of water. The slope monitoring system calculates the value of each analytical expression variable when measuring the water content of the monitored slope using the constructed model, and based on the calculated value of each analytical expression variable, the slope stability analysis Calculate the safety factor of the slope to be monitored using the formula.
国際公開第2016/027390号International Publication No. 2016/027390 国際公開第2016/027291号International Publication No. 2016/027291
 しかしながら特許文献1及び特許文献2の斜面監視システムは、構築されたモデルを用いて、監視対象斜面の水分量を計測したときの各解析式変数の値を算出し、算出された各解析式変数の値を基に、斜面安定解析式を用いて安全率を算出するものである。この方法では構築されたモデルの妥当性次第で、監視対象斜面の水分量を計測したときの各解析式変数の値の精度が低くなるおそれがある。例えば、広範囲の水分量で各解析式変数の値を測定し、得られた各解析式変数の値全体から単純な関数で示されるようにモデルを構築する場合、局所的には各解析式変数の値の精度が低くなるおそれがある。 However, the slope monitoring systems of Patent Document 1 and Patent Document 2 use the constructed model to calculate the value of each analytical expression variable when the moisture content of the monitored slope is measured, and to calculate each calculated analytical expression variable. Based on this value, the safety factor is calculated using the slope stability analysis formula. In this method, depending on the validity of the constructed model, the accuracy of the value of each analytical expression variable when the amount of water on the slope to be monitored is measured may be lowered. For example, when measuring the value of each analytical expression variable over a wide range of water content and building a model as shown by a simple function from the entire value of each obtained analytical expression variable, each analytical expression variable is locally The accuracy of the value of may be lowered.
 本発明は、斜面の安全性を評価する指標となる安全率を高精度に算出することが可能となる斜面監視システム、斜面監視方法及び記録媒体を提供することを主な目的としている。 The main object of the present invention is to provide a slope monitoring system, a slope monitoring method, and a recording medium capable of calculating a safety factor as an index for evaluating safety of a slope with high accuracy.
 本発明の1つの側面による斜面監視システムは、監視対象斜面を構成している物質層について水分量と紐づけて土壌パラメータを測定する測定部と、測定された前記土壌パラメータと前記水分量とを紐づけて記憶する記憶部と、前記監視対象の斜面において水分量を計測する水分計と、前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象の斜面において計測された水分量での推定土壌パラメータを推定する土壌パラメータ推定部と、前記推定土壌パラメータを用いて第一の安全率を算出する安全率算出部と、を備える。 The slope monitoring system according to one aspect of the present invention includes a measurement unit that measures a soil parameter in association with a moisture content of a material layer constituting a monitored slope, and the measured soil parameter and the moisture content. A storage unit that stores and associates, a moisture meter that measures the amount of moisture on the slope to be monitored, and moisture that is measured on the slope to be monitored based on the soil parameter that is stored in association with the amount of moisture A soil parameter estimating unit that estimates an estimated soil parameter in quantity, and a safety factor calculating unit that calculates a first safety factor using the estimated soil parameter.
 本発明の他の側面による斜面監視方法は、監視対象斜面を構成している物質層について水分量と紐づけて土壌パラメータを測定し、測定された前記土壌パラメータと前記水分量とを紐づけて記憶し、前記監視対象の斜面において水分量を計測し、前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象の斜面において計測された水分量での推定土壌パラメータを推定し、前記推定土壌パラメータを用いて第一の安全率を算出する。 In the slope monitoring method according to another aspect of the present invention, a soil layer is measured by associating a moisture amount with respect to a material layer constituting a monitored slope, and the measured soil parameter and the moisture amount are associated. Storing and measuring the amount of water on the monitored slope, estimating the estimated soil parameter at the amount of water measured on the monitored slope based on the soil parameter stored in association with the amount of water The first safety factor is calculated using the estimated soil parameter.
 本発明のさらに他の側面による記録媒体は、コンピュータに、監視対象斜面を構成している物質層について水分量と紐づけて計測された斜面安定性に関連する土壌パラメータと前記水分量とを紐づけて記憶する処理、前記監視対象の斜面において計測された水分量を取得する処理、前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象の斜面において計測された水分量での推定土壌パラメータを推定する処理、及び、前記推定土壌パラメータを用いて第一の安全率を算出する処理、を実行させる斜面監視プログラムを格納している。 According to still another aspect of the present invention, there is provided a recording medium that associates a soil parameter related to slope stability measured by linking a substance layer constituting a slope to be monitored with a moisture content and the moisture content. The process of storing the process, the process of acquiring the amount of water measured on the slope of the monitoring target, the amount of water measured on the slope of the monitoring target based on the soil parameter stored in association with the amount of water A slope monitoring program for executing a process for estimating the estimated soil parameter and a process for calculating the first safety factor using the estimated soil parameter is stored.
 本発明の上記側面によれば、斜面の安全性を評価する指標となる安全率を高精度に算出することが可能となる。 According to the above aspect of the present invention, it is possible to calculate a safety factor as an index for evaluating the safety of a slope with high accuracy.
図1は、第一の実施形態の構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of the configuration of the first embodiment. 図2は、図1の測定部の斜面安定性に関連する土壌パラメータの取得方法の一例を示すフローチャートである。FIG. 2 is a flowchart illustrating an example of a method for acquiring soil parameters related to slope stability of the measurement unit in FIG. 図3は、図2のステップS11における三軸圧縮試験(せん断試験)の詳細を示すフローチャートである。FIG. 3 is a flowchart showing details of the triaxial compression test (shear test) in step S11 of FIG. 図4は、図1の測定部の加水試験の例を示すフローチャートである。FIG. 4 is a flowchart illustrating an example of a water addition test of the measurement unit in FIG. 図5は、図1の土壌パラメータ推定動作の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of the soil parameter estimation operation of FIG. 図6は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第一の方法を示す図である。FIG. 6 is a diagram illustrating a first method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. 図7は、第一の方法で監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する安全率算出部の構成の一例を示すブロック図である。FIG. 7 is a block diagram showing an example of the configuration of the safety factor calculation unit that estimates the soil parameter corresponding to the amount of water mt measured on the slope to be monitored by the first method. 図8は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第二の方法を示す図である。FIG. 8 is a diagram showing a second method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. 図9は第二の方法で土壌パラメータを推定する安全率算出部の構成の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of a configuration of a safety factor calculation unit that estimates soil parameters by the second method. 図10は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第三の方法を示す図である。FIG. 10 is a diagram illustrating a third method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. 図11は、第三の方法で土壌パラメータを推定する安全率算出部の構成の一例を示すブロック図である。FIG. 11 is a block diagram illustrating an example of a configuration of a safety factor calculation unit that estimates soil parameters by the third method. 図12は、第二の実施形態の構成を示すブロック図である。FIG. 12 is a block diagram showing the configuration of the second embodiment. 図13は、第二の実施形態の土壌パラメータ及びモデル式を予め記憶する動作を示すフローチャートである。FIG. 13 is a flowchart showing an operation for storing in advance the soil parameters and model formulas of the second embodiment. 図14は、第二の実施形態の安全率を算出する動作を示すフローチャートである。FIG. 14 is a flowchart illustrating an operation of calculating the safety factor according to the second embodiment. 図15は、図12の表示部の第一の表示例を示す図である。FIG. 15 is a diagram showing a first display example of the display unit of FIG. 図16は、図12の第二の表示例を示す図である。FIG. 16 is a diagram showing a second display example of FIG. 図17は、各実施形態の各部を実現するコンピュータの構成の一例を示す図である。FIG. 17 is a diagram illustrating an example of a configuration of a computer that implements each unit of each embodiment.
 次に例示的な第一の実施形態について図面を参照して説明する。本発明の各実施形態では、式(1)に示すような斜面安定解析式を用いるフェレニウス法により斜面の安全性を評価する例について説明する。
Figure JPOXMLDOC01-appb-I000001
Next, an exemplary first embodiment will be described with reference to the drawings. In each embodiment of the present invention, an example in which the safety of a slope is evaluated by the Ferrenius method using a slope stability analysis formula as shown in Formula (1) will be described.
Figure JPOXMLDOC01-appb-I000001
 ここで、Fsは安全率、αは傾斜勾配角、C、W、u、φは、それぞれ土壌の性質を表す土壌パラメータである粘着力、土塊重量、間隙水圧、内部摩擦角である。 Here, Fs is the safety factor, α is the slope angle, C, W, u, and φ are the soil parameters representing the properties of the soil, adhesive strength, mass weight, pore water pressure, and internal friction angle, respectively.
 フェレニウス法において、各分割片(土塊等)のせん断応力は、当該分割片の、当該分割片に加わる重力としての土塊重量Wと傾斜勾配角αとで表される(式(1)の分母参照)。一方、各分割片のせん断抵抗力は、分割片(土塊)の、粘着力Cと、垂直応力に基づく抵抗力((W-u)cosα・tanφ)とで表される(式(1)の分子参照)。フェレニウス法においては、各分割片の斜面方向に働くせん断応力と、そのせん断応力による滑落を阻止するせん断抵抗力との比を用いて算出される安全率Fsによって斜面の安全性が評価される。 In the Ferrenius method, the shear stress of each divided piece (such as a lump) is represented by the lump weight W as the gravity applied to the divided piece and the slope gradient angle α (see the denominator of equation (1)). ). On the other hand, the shear resistance of each divided piece is expressed by the adhesive force C of the divided piece (clump) and the resistance force ((Wu) cos α · tan φ) based on the vertical stress (of the equation (1)) See molecule). In the Ferrenius method, the safety of a slope is evaluated by a safety factor Fs calculated using a ratio of a shear stress acting in the slope direction of each divided piece and a shear resistance force that prevents sliding due to the shear stress.
 図1は、第一の実施形態の構成の一例を示すブロック図である。図1に示すように斜面監視システム1は、測定部11と、記憶部12と、水分計13と、土壌パラメータ推定部14と、安全率算出部15と、を備える。 FIG. 1 is a block diagram showing an example of the configuration of the first embodiment. As shown in FIG. 1, the slope monitoring system 1 includes a measurement unit 11, a storage unit 12, a moisture meter 13, a soil parameter estimation unit 14, and a safety factor calculation unit 15.
 測定部11は、監視対象斜面を構成している物質層(土砂)を用いて、水分量と紐づけて予め斜面安定性に関連する土壌パラメータを測定する。すなわち測定部11は、1以上の水分量mの土砂で予め斜面安定性に関連する土壌パラメータを測定する。斜面安定性に関連する土壌パラメータとは、具体的には、粘着力C、内部摩擦角φ、間隙水圧u、土塊重量Wである。例えば、予め監視対象斜面から採取した物質層(土砂)を用いて作成された含水比が異なる1以上の水分量m、m、・・・mmaxの試験体(土塊)について土壌パラメータ、すなわち粘着力C、C、・・・Cmax、内部摩擦角φ、φ、・・・φmax、間隙水圧u、u、・・・umax、土塊重量W、W、・・・Wmaxが測定される。 The measurement part 11 measures the soil parameter relevant to slope stability previously linked | related with a moisture content using the substance layer (sediment) which comprises the monitoring object slope. That is, the measurement part 11 measures the soil parameter relevant to slope stability previously with the soil of 1 or more moisture content m. Specifically, the soil parameters related to the slope stability are the adhesive force C, the internal friction angle φ, the pore water pressure u, and the clot weight W. For example, soil parameters for a specimen (soil mass) of one or more water amounts m 1 , m 2 ,..., Max , which are created using a material layer (sediment) collected in advance from a slope to be monitored and have different water content ratios, That is, adhesive forces C 1 , C 2 ,... C max , internal friction angles φ 1 , φ 2 ,... Φ max , pore water pressures u 1 , u 2 , ... u max , clot weight W 1 , W 2 ... W max is measured.
 図2は、図1の測定部の斜面安定性に関連する土壌パラメータの取得方法の一例を示すフローチャートである。まず、測定部11は、粘着力C、内部摩擦角φを算出するため三軸圧縮試験(せん断試験)を行う(ステップS11)。 FIG. 2 is a flowchart showing an example of a method for acquiring soil parameters related to the slope stability of the measurement unit in FIG. First, the measuring unit 11 performs a triaxial compression test (shear test) to calculate the adhesive force C and the internal friction angle φ (step S11).
 図3は、図2のステップS11における三軸圧縮試験(せん断試験)の詳細を示すフローチャートである。まず、監視対象斜面から採取した物質層(土砂)を用いて、含水比を調整した試験体(土塊)が作成される(ステップS111)。試験体の土は、実斜面の土と同質のものを用いる。ここで試験体は、実斜面の土と同一の種類、乾燥密度および締固め度の土からなる土塊を、含水比を変えて複数作成される。 FIG. 3 is a flowchart showing details of the triaxial compression test (shear test) in step S11 of FIG. First, using a material layer (sediment) collected from the slope to be monitored, a test body (soil mass) having an adjusted water content ratio is created (step S111). The soil of the test body is the same as the soil of the actual slope. Here, a plurality of test bodies are formed by changing the water content ratio of soil blocks made of soil having the same type, dry density and compaction as the soil on the actual slope.
 次に、測定部11は、水分計を用いて、用意した土塊の水分量を計測する(ステップS112)。 Next, the measuring unit 11 measures the water content of the prepared earth clot using a moisture meter (step S112).
 次に、測定部11は、用意された土塊を、測定部11に含まれる、応力センサを備えた三軸圧縮試験装置にセットして圧縮を行い、圧縮時の垂直応力σとせん断応力τを計測する(ステップS113)。 Next, the measurement unit 11 performs compression by setting the prepared soil block in a triaxial compression test apparatus including a stress sensor included in the measurement unit 11, and calculates the vertical stress σ and shear stress τ during compression. Measurement is performed (step S113).
 必要回数に達するまで、ステップS112~S113の圧縮および応力測定を繰り返し実施する(ステップS114)。通常は最低3回圧縮および応力測定が実施される。これにより、1つの土塊に対して、少なくとも複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データが得られる。 Until the required number of times is reached, the compression and stress measurement in steps S112 to S113 is repeated (step S114). Usually at least three compression and stress measurements are performed. Thereby, the normal stress data and the shear stress data at the time of shearing corresponding to at least a plurality of vertical loads are obtained for one soil block.
 必要サンプル数に達するまで、含水比を変えた土塊に対して同様の動作がわれる(ステップS115)。これにより、測定部11は、含水比の異なる土塊の各々に対して、水分量データと、複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データとを得る。 Until the required number of samples is reached, the same operation is performed on the soil block with the changed moisture content (step S115). As a result, the measurement unit 11 obtains moisture amount data, and normal stress data and shear stress data during shearing corresponding to a plurality of vertical loads, for each of the soil blocks having different moisture contents.
 せん断試験により、含水比の異なる土塊の各々に対して、水分量データと、複数の垂直荷重に対応したせん断時の垂直応力データおよびせん断応力データとを得ると、測定部11は、得られた垂直応力データおよびせん断応力データに基づいて、粘着力Cおよび内部摩擦角φを算出する(図2のステップS12)。 When the moisture amount data, the normal stress data during shearing and the shear stress data corresponding to a plurality of vertical loads are obtained for each of the soil blocks having different moisture contents by the shear test, the measuring unit 11 is obtained. Based on the normal stress data and the shear stress data, the adhesive force C and the internal friction angle φ are calculated (step S12 in FIG. 2).
 クーロンの式と呼ばれる以下の式(2)によれば、せん断強さsは、土壌がもつ粘着力Cと、せん断面上に働く垂直応力σにもとづく抵抗力(σtanφ)の和で表わされる。ここで、tanφは土壌の性質を表す土壌パラメータの1つである内部摩擦角φに基づく有効摩擦係数である。
s=C+σtanφ・・・(2)
 例えば、測定部11は、一面せん断試験等によって、水分量m、m、・・・mmaxの土砂について試験体(土塊等)に加える垂直荷重を変化させながら垂直応力及びせん断応力を測定する。測定部11は、水分量m、m、・・・mmaxの土砂の、破壊時のせん断応力をせん断強さs、s、・・・smaxとし、破壊時の垂直応力を、σ、σ、・・・σmaxとする。これらを、式(2)に当てはめることにより、水分量m、m、・・・mmaxに対応する、粘着力C、C、・・・Cmax、内部摩擦角φ、φ、・・・φmaxを算出することができる。
According to the following equation (2) called the Coulomb equation, the shear strength s is represented by the sum of the adhesive force C of the soil and the resistance force (σ tan φ) based on the normal stress σ acting on the shear surface. Here, tanφ is an effective friction coefficient based on the internal friction angle φ, which is one of the soil parameters representing the properties of the soil.
s = C + σtanφ (2)
For example, the measurement unit 11, the direct shear test, etc., measuring the water content m 1, m 2, vertical stress while changing the vertical load applied on sediment · · · m max to the test body (clod, etc.) and shear stress To do. The measuring unit 11 sets the shear stress at the time of fracture of the soils having moisture amounts m 1 , m 2 ,..., Max to the shear strength s 1 , s 2 ,. , Σ 1 , σ 2 ,... Σ max . These, by fitting the equation (2), the water content m 1, m 2, corresponds to · · · m max, adhesion C 1, C 2, ··· C max, internal friction angle phi 1, phi 2 ... Φ max can be calculated.
 次に、測定部11は、ステップS11のせん断試験で用いた土と同質、すなわち同一の種類、乾燥密度および締固め度の土からなる試験体(土塊)を用いて、加水試験を実施する(ステップS13)。 Next, the measurement part 11 implements a hydration test using the test body (soil mass) which is the same as the soil used in the shear test in Step S11, that is, a soil (soil mass) made of soil of the same type, dry density and compaction degree ( Step S13).
 図4は、図1の測定部の加水試験の例を示すフローチャートである。図4に示す加水試験では、初めに、せん断試験で用いた土と同一の種類、乾燥密度および締固め度の土からなり、かつ含水比が相対的に少ない試験体(土塊)を用意する(ステップS131)。ここで試験体としては、せん断試験で用いられた試験体のうち最小の含水比の試験層を有する試験体よりも少ない含水比の試験層になるように調整された土塊が用いられる。 FIG. 4 is a flowchart showing an example of the water addition test of the measurement unit in FIG. In the hydration test shown in FIG. 4, first, a specimen (soil mass) made of soil of the same type, dry density and compaction as the soil used in the shear test and having a relatively low water content is prepared ( Step S131). Here, as the test body, a soil block adjusted so as to have a test layer with a lower water content ratio than a test body having a test layer with the minimum water content ratio among the test bodies used in the shear test is used.
 次に、測定部11は、用意された土塊を、測定部11に含まれる、水分計、間隙水圧計および重量計を備える試験機にセットして、水分量、間隙水圧および土塊重量を計測する(ステップS132~ステップS134)。これにより、少なくとも加水前の含水比が既知の状態における土塊の水分量、間隙水圧および土塊重量を得る。 Next, the measurement unit 11 sets the prepared clot on a test machine including the moisture meter, the pore water pressure meter, and the weight meter included in the measurement unit 11, and measures the moisture content, the pore water pressure, and the clot weight. (Steps S132 to S134). As a result, at least the water content, pore water pressure, and soil weight of the soil mass in a state where the water content ratio before the addition is known are obtained.
 次に、土が飽和するまで土塊に一定量ずつ加水して(ステップS135,ステップS136)、同様の計測を行う(ステップS132に戻る)。これにより、土が飽和するまでの加水過程における各状態(加水前および加水毎)の土塊の水分量データ、間隙水圧データ、土塊重量データを取得する。なお、「土が飽和する」とは、具体的には、土に水がしみ込まなくなる状態になることである。なお、土が飽和するまで加水を行う方法以外に、所定回数分加水を行う方法もある。 Next, a certain amount of water is added to the mass until the soil is saturated (step S135, step S136), and the same measurement is performed (return to step S132). Thereby, the moisture content data, pore water pressure data, and soil mass weight data of the soil mass in each state (before and after each addition) in the hydrolysis process until the soil is saturated are acquired. Note that “saturation of the soil” specifically means a state where water does not soak into the soil. In addition to the method of adding water until the soil is saturated, there is a method of adding water a predetermined number of times.
 このようにして測定部11は、加水試験により、監視対象斜面から採取した物質層(土砂)を用いて作成された含水比が異なる1以上の水分量m、m、・・・mmaxの土塊(試験体)について、間隙水圧計により間隙水圧を測定する。また測定部11は、重量計により土塊重量を計測し、間隙水圧u、u、・・・umax、土塊重量W、W、・・・Wmaxを取得する(ステップS14)。なお、上記の例では、せん断試験を行った後に、加水試験を行っているが、試験の順序は特に問わない。 In this way, the measurement unit 11 has one or more water amounts m 1 , m 2 ,..., M max that differ in water content ratios created using the material layer (earth and sand) collected from the slope to be monitored by the water test. The pore water pressure of the soil mass (test body) is measured with a pore water pressure gauge. The measurement unit 11 measures a clod weight by weighing scale, pore pressure u 1, u 2, ··· u max, clod weight W 1, W 2, acquires · · · W max (step S14). In the above example, the water test is performed after the shear test, but the order of the test is not particularly limited.
 記憶部12は、水分量m、m、・・・mmaxと紐づけて予め測定を行って得られた土壌パラメータ、すなわち粘着力C、C、・・・Cmax、内部摩擦角φ、φ、・・・φmax、間隙水圧u、u、・・・umax、及び、土塊重量W、W、・・・Wmaxと、複数の水分量m、m、・・・mmaxとを紐づけて記憶する。 Storage unit 12, the water content m 1, m 2, ··· m max and straps association with soil parameters obtained by performing a previously measured, i.e. adhesion C 1, C 2, ··· C max, Internal Friction angle φ 1, φ 2, ··· φ max, pore pressure u 1, u 2, ··· u max, and, clod weight W 1, W 2, ··· W max and a plurality of moisture content m 1 , M 2 ,..., M max are stored in association with each other.
 図1にもどり本実施形態の斜面監視システム1の構成についてさらに説明する。水分計13は、監視対象斜面に設置され監視対象の斜面において水分量mtを計測する。 Referring back to FIG. 1, the configuration of the slope monitoring system 1 of this embodiment will be further described. The moisture meter 13 is installed on the slope to be monitored and measures the moisture amount mt on the slope to be monitored.
 土壌パラメータ推定部14は、監視対象斜面において計測した水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを、記憶部12に記憶された複数の土壌パラメータに基づいて推定する。土壌パラメータ推定部14は、推定した、水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを安全率算出部15に出力する。 The soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the monitored slope, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters. The soil parameter estimation unit 14 outputs the estimated soil parameters corresponding to the water content mt, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 15.
 安全率算出部15は、監視対象の斜面の斜面長l、斜面の傾斜勾配角α、すべり層深さdを設定する。そして安全率算出部15は、土壌パラメータ推定部14から出力された土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを用いて式(1)により斜面の第一の安全率Fs1を算出する。安全率算出部15は、算出した第一の安全率を例えば表示部に出力し、表示部が算出された第一の安全率Fs1を表示する。 The safety factor calculation unit 15 sets the slope length l of the slope to be monitored, the slope inclination angle α of the slope, and the slip layer depth d. Then, the safety factor calculation unit 15 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt according to the equation (1), A safety factor Fs1 is calculated. The safety factor calculation unit 15 outputs the calculated first safety factor to, for example, a display unit, and displays the first safety factor Fs1 calculated by the display unit.
 なお図1に示す第一の実施形態及び後述の他の実施形態の斜面監視システムの各構成要素は、機能単位のブロックを示している。各実施形態の斜面監視システムの各構成要素の一部又は全部は、例えば図17に示すようなコンピュータ50とプログラムとの任意の組み合わせにより実現されてもよい。コンピュータ50は、一例として、以下のような構成を含む。 In addition, each component of the slope monitoring system of 1st embodiment shown in FIG. 1 and other embodiment mentioned later has shown the block of the functional unit. Some or all of the constituent elements of the slope monitoring system of each embodiment may be realized by any combination of a computer 50 and a program as shown in FIG. 17, for example. The computer 50 includes the following configuration as an example.
  ・CPU(Central Processing Unit)51
  ・ROM(Read Only Memory)52
  ・RAM(Random Access Memory)53
  ・RAM53にロードされるプログラム54
  ・プログラム54を格納する記憶装置55
  ・記録媒体56の読み書きを行うドライブ装置57
  ・通信ネットワーク59と接続する通信インタフェース58
  ・データの入出力を行う入出力インタフェース60
  ・各構成要素を接続するバス61
 各実施形態の各構成要素は、これらの機能を実現するプログラム54をCPU51が取得して実行することで実現される。例えば、図1の斜面監視システム1の例では、記憶部12は、プログラム54を取得したCPU51が、プログラム54に基づき測定部11から出力される監視対象斜面を構成している物質層について水分量と紐づけて計測された斜面安定性に関連する土壌パラメータと、複数の水分量とを紐づけて記憶装置55に記憶する処理を行うことで機能が実現されてもよい。
CPU (Central Processing Unit) 51
・ ROM (Read Only Memory) 52
-RAM (Random Access Memory) 53
A program 54 loaded into the RAM 53
A storage device 55 for storing the program 54
A drive device 57 that reads and writes the recording medium 56
A communication interface 58 connected to the communication network 59
-Input / output interface 60 for data input / output
Bus 61 connecting each component
Each component of each embodiment is implement | achieved when CPU51 acquires and executes the program 54 which implement | achieves these functions. For example, in the example of the slope monitoring system 1 in FIG. 1, the storage unit 12 is configured such that the CPU 51 that has acquired the program 54 has a moisture content for the material layer that constitutes the monitored slope output from the measurement unit 11 based on the program 54. The function may be realized by performing processing of associating the soil parameters related to slope stability measured in association with a plurality of moisture amounts and storing them in the storage device 55.
 また土壌パラメータ推定部14は、プログラム54を取得したCPU51が、プログラム54に基づき監視対象斜面において計測された水分量を、入出力インタフェース60を介して取得する処理及び水分量と紐づけて記憶装置55に記憶された土壌パラメータに基づいて監視対象の斜面において計測された水分量での推定土壌パラメータを算出する処理を行うことで機能が実現されてもよい。 In addition, the soil parameter estimation unit 14 is a storage device in which the CPU 51 that has acquired the program 54 associates the moisture amount measured on the slope to be monitored based on the program 54 with the processing and moisture amount that are acquired via the input / output interface 60. The function may be realized by performing a process of calculating the estimated soil parameter with the amount of water measured on the slope to be monitored based on the soil parameter stored in 55.
 また安全率算出部15は、プログラム54を取得したCPU51が、プログラム54に基づき上記の推定土壌パラメータを用いて監視対象斜面の第一の安全率を算出する処理を行うことで機能が実現されてもよい。 The function of the safety factor calculation unit 15 is realized by the CPU 51 that has acquired the program 54 performing a process of calculating the first safety factor of the slope to be monitored using the estimated soil parameter based on the program 54. Also good.
 各実施形態の各構成要素の機能を実現するプログラム54は、例えば、予め記憶装置55やROM52やRAM53に格納されており、必要に応じてCPU51が読み出すように構成されてもよい。プログラム54は、通信ネットワーク59を介してCPU51に供給されてもよいし、予め記録媒体56に格納されており、ドライブ装置57が当該プログラムを読み出してCPU51に供給してもよい。 The program 54 that realizes the function of each component of each embodiment is stored in advance in the storage device 55, the ROM 52, or the RAM 53, for example, and may be configured to be read by the CPU 51 as necessary. The program 54 may be supplied to the CPU 51 via the communication network 59, or may be stored in the recording medium 56 in advance, and the drive device 57 may read the program and supply it to the CPU 51.
 図5は、図1の土壌パラメータ推定動作の一例を示すフローチャートである。まず、水分計13は、監視対象の斜面に設置され監視対象の斜面において水分量mtを計測する(ステップS16)。 FIG. 5 is a flowchart showing an example of the soil parameter estimation operation of FIG. First, the moisture meter 13 is installed on the slope to be monitored and measures the amount of water mt on the slope to be monitored (step S16).
 土壌パラメータ推定部14は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを、記憶部12に記憶された複数の土壌パラメータに基づいて推定する。そして土壌パラメータ推定部14は、推定した、水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを安全率算出部15に出力する(ステップS17)。 The soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the slope to be monitored, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters. Then, the soil parameter estimation unit 14 outputs the estimated soil parameter corresponding to the moisture amount mt, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 15 (step S17). .
 安全率算出部15は、土壌パラメータ推定部14から出力された土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを用いて式(1)により斜面の第一の安全率Fs1を算出する。算出した第一の安全率は、例えば図示しない表示部に表示される(ステップS18)。安全率算出部15が計測終了か判断し、終了でないと判断するとステップS16に戻る。このようにして計測が終了まで、ステップS16からS18の処理が繰り返される。 The safety factor calculation unit 15 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt, to calculate the first safety of the slope. The rate Fs1 is calculated. The calculated first safety factor is displayed, for example, on a display unit (not shown) (step S18). When the safety factor calculation unit 15 determines whether the measurement is finished or not, the process returns to step S16. In this way, the processes of steps S16 to S18 are repeated until the measurement is completed.
 なお図5のステップS22において土壌パラメータ推定部14が監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する方法として種々の方法が考えられる。 In addition, various methods can be considered as a method of estimating the soil parameter corresponding to the water content mt measured by the soil parameter estimation unit 14 on the slope to be monitored in step S22 of FIG.
 図6は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第一の方法を示す図である。また図7は第一の方法で監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する構成の一例を示すブロック図である。まず、土壌パラメータ推定部14の前後水分量抽出部141は、図6に示すように、各土壌パラメータ毎に、記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtに対応する2つの土壌パラメータを取得する。 FIG. 6 is a diagram illustrating a first method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. FIG. 7 is a block diagram showing an example of a configuration for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored by the first method. First, the water content extraction unit 141 before and after the soil parameter estimation unit 14 measures the moisture measured on the slope to be monitored among the water amounts stored in the storage unit 12 for each soil parameter, as shown in FIG. Two soil parameters corresponding to the moisture amounts mt + and mt before and after the amount mt are obtained.
 すなわち前後水分量抽出部141は、例えばまず土塊重量について記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtに対応する2つの土壌パラメータ、例えば土塊重量Wt、Wtを取得する。そして土壌パラメータ推定部14の補間関数生成部142は、取得した2つの土塊重量Wt、Wt間を補間する、水分量mを変数とする関数W=f(m)を求める。なお関数W=f(m)は図6に示すように例えば2点(mt、Wt)、(mt、Wt)を結ぶ一次関数としてよい。土壌パラメータ推定部の推定パラメータ算出部143は、求められた関数W=f(m)に、計測した水分量mtを代入することで、監視対象の斜面において計測した水分量mtに対応する土塊重量Wtを推定する。 That is, the front and rear water content extraction unit 141 corresponds to, for example, the water content mt + and mt before and after the water content mt measured on the slope to be monitored among the water content stored in the storage unit 12 with respect to the clot weight. Obtain two soil parameters, for example, clot weights Wt + , Wt . Then, the interpolation function generation unit 142 of the soil parameter estimation unit 14 obtains a function W = f 1 (m) that interpolates between the two acquired mass weights Wt + and Wt and uses the water content m as a variable. The function W = f 1 (m) may be a linear function connecting two points (mt + , Wt + ) and (mt , Wt ), for example, as shown in FIG. The estimated parameter calculator 143 of the soil parameter estimator substitutes the measured water content mt for the obtained function W = f 1 (m), so that the soil mass corresponding to the water content mt measured on the slope to be monitored. Estimate the weight Wt.
 同様に内部摩擦角、間隙水圧、粘着力についてもそれぞれ、土壌パラメータ推定部14の前後水分量抽出部141は、計測した水分量mtに近い前後の水分量mt、mtに対応する2つの内部摩擦角φt、φt、間隙水圧ut、ut、粘着力Ct、Ctを記憶部からそれぞれ取得する。そして土壌パラメータ推定部14の補間関数生成部142は、取得した2つの内部摩擦角φt、φt、間隙水圧ut、ut、粘着力Ct、Ct間を補間する関数φ=g(m)、u=h(m)、C=i(m)をそれぞれ求める。補間関数生成部142は、関数φ=g(m)、u=h(m)、C=i(m)も、それぞれ2点(mt、φt)、(mt、φt)を結ぶ一次関数、2点(mt、ut)、(mt、ut)を結ぶ一次関数、2点(mt、Ct)、(mt、Ct)を結ぶ一次関数としてよい。 Similarly, with respect to the internal friction angle, the pore water pressure, and the adhesive force, the water content extraction unit 141 before and after the soil parameter estimation unit 14 respectively corresponds to the two water content mt + and mt before and after the measured water content mt. Internal friction angles φt + and φt , pore water pressures ut + and ut , and adhesive forces Ct + and Ct are acquired from the storage unit, respectively. Then, the interpolation function generation unit 142 of the soil parameter estimation unit 14 interpolates between the acquired two internal friction angles φt + , φt , pore water pressure ut + , ut , adhesive force Ct + , Ct −. 1 (m), u = h 1 (m), and C = i 1 (m) are obtained. The interpolation function generation unit 142 also has two functions (mt + , φt + ), (mt , φt ) for the functions φ = g 1 (m), u = h 1 (m), and C = i 1 (m), respectively. ), A linear function connecting two points (mt + , ut + ), (mt , ut ), and a linear function connecting two points (mt + , Ct + ), (mt , Ct ) Good.
 土壌パラメータ推定部14の推定パラメータ算出部143は、求められた各関数に、計測した水分量mtを代入することで、対応する内部摩擦角φt、間隙水圧ut、粘着力Ctをそれぞれ推定する。 The estimation parameter calculation unit 143 of the soil parameter estimation unit 14 estimates the corresponding internal friction angle φt, pore water pressure ut, and adhesive force Ct by substituting the measured water amount mt for each obtained function.
 以上説明したように、本実施形態によれば、記憶部が、変換式ではなく、複数の水分量について予め測定した土壌パラメータを記憶し、土壌パラメータ推定部14が、監視対象斜面で計測した水分量に対応する土壌パラメータを、記憶された複数の土壌パラメータに基づいて推定し、安全率が算出される。したがって事前に変換式を作成する場合と比較して高精度に安全率を算出することが可能となる。 As described above, according to the present embodiment, the storage unit stores not the conversion formula but the soil parameters measured in advance for a plurality of moisture amounts, and the soil parameter estimation unit 14 measures the moisture measured on the monitored slope. A soil parameter corresponding to the amount is estimated based on a plurality of stored soil parameters, and a safety factor is calculated. Therefore, it is possible to calculate the safety factor with higher accuracy than in the case of creating the conversion formula in advance.
 なお図5のステップS17において土壌パラメータ推定部14が監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する方法としては、上述の方法以外にも種々な方法が考えられる。 In addition, as a method for estimating the soil parameter corresponding to the amount of water mt measured on the slope to be monitored by the soil parameter estimation unit 14 in step S17 in FIG.
 図8は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第二の方法を示す図である。また図9は第二の方法で土壌パラメータを推定する第二の実施形態の構成の一例を示すブロック図である。 FIG. 8 is a diagram showing a second method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. FIG. 9 is a block diagram showing an example of the configuration of the second embodiment in which soil parameters are estimated by the second method.
 まず、土壌パラメータ推定部16の最近水分量抽出部161は、各土壌パラメータ毎に、記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtを抽出する。 First, the recent water content extraction unit 161 of the soil parameter estimation unit 16 is the water content before and after the water content mt measured on the monitored slope among the water content stored in the storage unit 12 for each soil parameter. Extract the quantities mt + , mt .
 例えばまず土塊重量について最近水分量抽出部161は、記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtを抽出する。そして最近水分量抽出部161は、2つの水分量mt、mtと、監視対象の斜面において計測した水分量mtとの距離δ=|mt-mt|、δ=|mt-mt|を算出する。そして最近水分量抽出部161は、δ-δ>0の場合、水分量mtを水分量mtに最も近い最近水分量として抽出し、土壌パラメータ推定部16の最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち土塊重量Wtを抽出する。δ-δ<0の場合は、土壌パラメータ推定部16は、mtを水分量mtに最も近い最近水分量とし、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち土塊重量Wtを抽出する。 For example, first, the latest moisture amount extraction unit 161 extracts the moisture amounts mt + and mt before and after the moisture amount mt measured on the slope to be monitored among the moisture amounts stored in the storage unit 12 for the mass of the soil mass. . Then, the recent water content extraction unit 161 has a distance δ = | mt−mt | and δ + = | mt−mt between the two water content mt + and mt and the water content mt measured on the slope to be monitored. + | Then, when δ −δ + > 0, the latest water content extraction unit 161 extracts the water content mt + as the latest water content closest to the water content mt, and the recent soil parameter extraction unit 162 of the soil parameter estimation unit 16 Then, the soil parameter stored in association with the recent water content, that is, the clot weight Wt + is extracted. In the case of δ −δ + <0, the soil parameter estimation unit 16 sets mt as the latest moisture amount closest to the moisture amount mt, and stores the soil parameter stored in association with the latest moisture amount, that is, the mass of the clot. Extract Wt .
 同様に最近水分量抽出部161は、内部摩擦角、間隙水圧、粘着力について、それぞれ記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtを抽出する。そして最近水分量抽出部161は、2つの水分量mt、mtと、監視対象の斜面において計測した水分量mtとの距離δ=|mt-mt|、δ=|mt-mt|を算出する。 Similarly, the latest water content extraction unit 161 has the water content before and after the water content mt measured on the monitored slope among the water content stored in the storage unit 12 for the internal friction angle, the pore water pressure, and the adhesive force. Extract the quantities mt + , mt . Then, the recent water content extraction unit 161 has a distance δ = | mt−mt | and δ + = | mt−mt between the two water content mt + and mt and the water content mt measured on the slope to be monitored. + |
 そして最近水分量抽出部161は、δ-δ>0の場合、水分量mtを水分量mtに最も近い最近水分量として抽出する。また最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち内部摩擦角φt、間隙水圧ut、粘着力Ctを抽出する。δ-δ<0の場合は土壌パラメータ推定部16の最近水分量抽出部161は、mtを水分量mtに最も近い最近水分量として抽出し、土壌パラメータ推定部16の最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち内部摩擦角φt、間隙水圧ut、粘着力Ctを抽出する。 Then, in the case of δ −δ + > 0, the latest moisture amount extraction unit 161 extracts the moisture amount mt + as the nearest moisture amount closest to the moisture amount mt. Further, the recent soil parameter extraction unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle φt + , the pore water pressure ut + , and the adhesive force Ct + . When δ −δ + <0, the latest water content extraction unit 161 of the soil parameter estimation unit 16 extracts mt as the latest water content closest to the water content mt, and the soil parameter estimation unit 16 extracts the latest soil parameter. The unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle φt , the pore water pressure ut , and the adhesive force Ct .
 このような方法によっても、事前に変換式を作成する場合と比較して高精度に安全率を算出することが可能となる。また第二の方法によれば第一の方法と比較して土壌パラメータ推定処理の負担を軽減できる可能性がある。 Even with such a method, it is possible to calculate the safety factor with higher accuracy than in the case of creating a conversion formula in advance. Further, according to the second method, there is a possibility that the burden of soil parameter estimation processing can be reduced as compared with the first method.
 図10は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する第三の方法を示す図である。また図11は第三の方法で土壌パラメータを推定する第三の実施形態の構成の一例を示すブロック図である。 FIG. 10 is a diagram showing a third method for estimating the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored. FIG. 11 is a block diagram showing an example of the configuration of the third embodiment in which soil parameters are estimated by the third method.
 第三の方法では、土壌パラメータ推定部17が、各土壌パラメータ毎に、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを2つの方法で推定する。 In the third method, the soil parameter estimation unit 17 estimates the soil parameter corresponding to the amount of water mt measured on the monitored slope for each soil parameter by two methods.
 例えばまず土塊重量について、第二の方法と同様に、土壌パラメータ推定部17の最近水分量抽出部161は、記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtを抽出する。最近水分量抽出部161は、2つの水分量mt、mtと、監視対象の斜面において計測した水分量mtとの距離δ、δに基づいて、最近水分量を抽出する。最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち土塊重量を抽出する。 For example, first, with respect to the mass of the clot, as in the second method, the recent water content extraction unit 161 of the soil parameter estimation unit 17 measures the water content measured on the monitored slope among the water content stored in the storage unit 12. Water contents mt + and mt before and after mt are extracted. The recent moisture amount extraction unit 161 extracts the latest moisture amount based on the distances δ and δ + between the two moisture amounts mt + and mt and the moisture amount mt measured on the slope to be monitored. The recent soil parameter extraction unit 162 extracts the soil parameter stored in association with the recent water content, that is, the mass of the soil mass.
 図10の例ではδ-δ>0なので、最近水分量抽出部161は、mtを水分量mtに最も近い最近水分量として抽出し、最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち土塊重量Wtを1番目の推定結果として抽出し、推定パラメータ算出部173に出力する。 In the example of FIG. 10, since δ −δ + > 0, the latest moisture amount extraction unit 161 extracts mt + as the latest moisture amount closest to the moisture amount mt, and the recent soil parameter extraction unit 162 sets the latest moisture amount. And the soil parameter stored in association with each other, that is, the clot weight Wt + is extracted as the first estimation result and output to the estimation parameter calculation unit 173.
 次に土壌パラメータ推定部17の前後水分量抽出部171は、記憶部12に記憶されている水分量のうち、上記の最近水分量mtに近い前後の水分量mt++、mtに対応する2つの土壌パラメータ、例えば土塊重量Wt++、Wtを取得する。そして土壌パラメータ推定部17の補間関数生成部172は、取得した2つの土塊重量Wt++、Wt間を補間する、水分量mを変数とする関数W=f(m)を求める。なお関数W=f(m)は図10に示すように例えば2点(mt++、Wt++)、(mt、Wt)を結ぶ一次関数としてよい。土壌パラメータ推定部17の推定パラメータ算出部173は、求められた関数W=f(m)に上記の最近水分量mtを代入したf(mt)を2番目の推定結果とする。 Next, the water content extraction unit 171 before and after the soil parameter estimation unit 17 corresponds to the water content mt ++ and mt before and after the nearest water content mt + among the water content stored in the storage unit 12. two soil parameters, eg clod weight wt ++, wt - to get. Then, the interpolation function generation unit 172 of the soil parameter estimation unit 17 obtains a function W = f 2 (m) that interpolates between the two acquired soil mass weights Wt ++ and Wt with the water content m as a variable. The function W = f 2 (m) may be a linear function connecting two points (mt ++ , Wt ++ ) and (mt , Wt ) as shown in FIG. The estimated parameter calculation unit 173 of the soil parameter estimation unit 17 sets f 2 (mt + ) obtained by substituting the above-described recent water content mt + to the obtained function W = f 2 (m) as the second estimation result.
 土壌パラメータ推定部17の推定パラメータ算出部173は、2つの推定結果に基づいて、例えば1番目の推定結果であるWtと2番目の推定結果であるf(mt)の平均値を算出して、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する。 Based on the two estimation results, the estimation parameter calculation unit 173 of the soil parameter estimation unit 17 calculates, for example, an average value of Wt + that is the first estimation result and f 2 (mt + ) that is the second estimation result. Then, the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored is estimated.
 同様に土壌パラメータ推定部17の最近水分量抽出部161は、内部摩擦角、間隙水圧、粘着力について、第二の例と同様に、記憶部12に記憶されている水分量のうち、監視対象の斜面において計測した水分量mtに近い前後の水分量mt、mtを抽出する。そして最近水分量抽出部161は、2つの水分量mt、mtと、監視対象の斜面において計測した水分量mtとの距離δ、δに基づいて、最近水分量を抽出する。土壌パラメータ推定部17の最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち内部摩擦角、間隙水圧、粘着力を抽出する。例えばδ-δ>0の場合、最近水分量抽出部161は、mtを水分量mtに最も近い最近水分量として抽出する。最近土壌パラメータ抽出部162は、その最近水分量と紐づいて記憶されている土壌パラメータ、すなわち内部摩擦角φt、間隙水圧ut、粘着力Ctを1番目の推定結果として抽出し、推定パラメータ算出部173に出力する。 Similarly, the recent water content extraction unit 161 of the soil parameter estimation unit 17 monitors the internal friction angle, the pore water pressure, and the adhesive force among the water content stored in the storage unit 12 as in the second example. The moisture amounts mt + and mt before and after the moisture amount mt measured on the slope are extracted. Then, the latest moisture amount extraction unit 161 extracts the latest moisture amount based on the distances δ and δ + between the two moisture amounts mt + and mt and the moisture amount mt measured on the slope to be monitored. The recent soil parameter extraction unit 162 of the soil parameter estimation unit 17 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle, the pore water pressure, and the adhesive force. For example, when δ −δ + > 0, the latest water content extraction unit 161 extracts mt + as the latest water content closest to the water content mt. The recent soil parameter extraction unit 162 extracts the soil parameters stored in association with the recent water content, that is, the internal friction angle φt + , the pore water pressure ut + , and the adhesive force Ct + as the first estimation results, and estimates them. It outputs to the parameter calculation part 173.
 次に土壌パラメータ推定部17の前後水分量抽出部171は、記憶部12に記憶されている水分量のうち、上記の最近水分量に近い前後の水分量に対応する2つの土壌パラメータ、すなわち内部摩擦角、間隙水圧、粘着力を取得する。そして土壌パラメータ推定部17の補間関数生成部172は、上記の最近水分量に近い2つの水分量に対応する2つの内部摩擦角、間隙水圧、粘着力間を補間する、水分量mを変数とする関数φ=g(m)、u=h(m)、C=i(m)を求める。なお関数φ=g(m)、u=h(m)、C=i(m)は取得した2つの内部摩擦角、間隙水圧、粘着力の2点間を結ぶ一次関数としてよい。土壌パラメータ推定部14の推定パラメータ算出部173は、求められた関数φ=g(m)、u=h(m)、C=i(m)に上記の最近水分量を代入したφ=g(mt)、u=h(mt)、C=i(mt)を2番目の推定結果とする。 Next, the water content extraction unit 171 before and after the soil parameter estimation unit 17 includes two soil parameters corresponding to the water content before and after the above-mentioned recent water content among the water content stored in the storage unit 12, that is, the internal Get friction angle, pore water pressure, and adhesive strength. Then, the interpolation function generation unit 172 of the soil parameter estimation unit 17 interpolates between the two internal friction angles, the pore water pressure, and the adhesive force corresponding to the two water amounts close to the recent water amount, and the water amount m is a variable. Functions φ = g 2 (m), u = h 2 (m), and C = i 2 (m) are obtained. The functions φ = g 2 (m), u = h 2 (m), and C = i 2 (m) may be linear functions that connect the two acquired internal friction angles, pore water pressure, and adhesive force. The estimated parameter calculation unit 173 of the soil parameter estimation unit 14 substitutes the above-described recent water amount into the obtained functions φ = g 2 (m), u = h 2 (m), and C = i 2 (m). = G 2 (mt + ), u = h 2 (mt + ), and C = i 2 (mt + ) are the second estimation results.
 土壌パラメータ推定部17の推定パラメータ算出部173は、2つの推定結果に基づいて、例えば1番目の推定結果である内部摩擦角φt、間隙水圧ut、土塊重量Wtと、2番目の推定結果である内部摩擦角φ=g(mt)、間隙水圧u=h(mt)、粘着力C=i(mt)の平均値をそれぞれ算出する。このようにして推定パラメータ算出部173は、監視対象の斜面において計測した水分量mtに対応する土壌パラメータを推定する。 Based on the two estimation results, the estimation parameter calculation unit 173 of the soil parameter estimation unit 17 performs, for example, the first estimation result, that is, the internal friction angle φt + , pore water pressure ut + , and the clot weight Wt +. The average values of the resulting internal friction angle φ = g 2 (mt + ), pore water pressure u = h 2 (mt + ), and adhesive force C = i 2 (mt + ) are calculated. In this way, the estimated parameter calculation unit 173 estimates the soil parameter corresponding to the moisture amount mt measured on the slope to be monitored.
 このような方法によっても、事前に変換式を作成する場合と比較して高精度に安全率を算出することが可能となる。また第三の方法によれば、第一の方法、第二の方法と比較して高精度に安全率を算出できる可能性がある。 Even with such a method, it is possible to calculate the safety factor with higher accuracy than in the case of creating a conversion formula in advance. Further, according to the third method, there is a possibility that the safety factor can be calculated with higher accuracy than the first method and the second method.
 次に第四の実施形態について説明する。図12は、第四の実施形態の構成を示すブロック図である。本実施形態の斜面監視システム2は、図12に示すように、記憶部12に記憶される土壌パラメータから水分量と斜面安定性に関連する土壌パラメータの関係をモデル化した関数であるモデル式を生成するモデル化部21と、モデル式を記憶する記憶部22を備えている点で第一の実施形態と異なる。また、安全率算出部24は、モデル式に基づいて土壌パラメータを推定する土壌パラメータ推定部23と、土壌パラメータに基づいて安全率を算出する安全率算出部24と、算出された安全率を表示する表示部25を備えている点で第一の実施形態と異なる。 Next, a fourth embodiment will be described. FIG. 12 is a block diagram showing the configuration of the fourth embodiment. As shown in FIG. 12, the slope monitoring system 2 of the present embodiment has a model equation that is a function that models the relationship between the water parameters and the soil parameters related to slope stability from the soil parameters stored in the storage unit 12. It differs from 1st embodiment by the point provided with the modeling part 21 to produce | generate and the memory | storage part 22 which memorize | stores a model formula. The safety factor calculation unit 24 displays a soil parameter estimation unit 23 that estimates a soil parameter based on the model formula, a safety factor calculation unit 24 that calculates a safety factor based on the soil parameter, and displays the calculated safety factor. This is different from the first embodiment in that the display unit 25 is provided.
 図13は、第二の実施形態の土壌パラメータ及びモデル式を予め記憶する動作を示すフローチャートである。測定部11は、図13に示すように、第一の実施形態と同様、三軸圧縮試験により、応力センサデータを取得し(ステップS11)、応力センサデータをもとに、粘着力、内部摩擦角を水分量に紐づけて取得する(ステップS12)。測定部11は、併せて、加水試験を行い(ステップS13)、各水分量に紐づけて間隙水圧、土塊重量を取得し(ステップS14)、記憶部12に水分量に紐づけて粘着力、内部摩擦角、間隙水圧、土塊重量を保存する(ステップS15)。 FIG. 13 is a flowchart showing an operation for storing in advance the soil parameters and model formulas of the second embodiment. As shown in FIG. 13, the measurement unit 11 acquires stress sensor data by a triaxial compression test (step S <b> 11), as in the first embodiment, and based on the stress sensor data, the adhesive force and internal friction are obtained. The corner is acquired in association with the amount of moisture (step S12). The measurement unit 11 also performs a water addition test (step S13), obtains pore water pressure and clot weight in association with each moisture amount (step S14), and associates the moisture amount in the storage unit 12 with adhesive strength, The internal friction angle, pore water pressure, and soil mass weight are stored (step S15).
 また本実施形態では、モデル化部21が、水分量に紐づけて取得された土塊重量、間隙水圧から、土塊重量-水分量モデル、間隙水圧-水分量モデルを構築する。すなわちモデル化部21が、土塊重量(密度)、間隙水圧を水分量の関数として表すモデル式を作成する(ステップS21)。またモデル化部21は、水分量に紐づけて取得された粘着力、内部摩擦角から、粘着力-水分量モデル、内部摩擦角-水分量モデルを構築する。すなわちモデル化部21が、粘着力、内部摩擦角を水分量の関数として表すモデル式を作成する(ステップS22)。モデル化部21は、作成した粘着力-水分量モデル、内部摩擦角-水分量モデル、土塊重量(密度)-水分量モデル、間隙水圧-水分量モデルを記憶部22に保存する(ステップS23)。なお記憶部22は記憶部12と同じ記憶部でもよい。 Further, in the present embodiment, the modeling unit 21 constructs a soil mass-water content model and a pore water pressure-water content model from the soil mass weight and pore water pressure acquired in association with the water content. That is, the modeling unit 21 creates a model formula that expresses the mass of the lump (density) and the pore water pressure as a function of the water content (step S21). The modeling unit 21 constructs an adhesive force-water amount model and an internal friction angle-water amount model from the adhesive force and the internal friction angle acquired in association with the water amount. That is, the modeling unit 21 creates a model formula that represents the adhesive force and the internal friction angle as a function of the water content (step S22). The modeling unit 21 stores the created adhesive force-water content model, internal friction angle-water content model, clot weight (density) -water content model, pore water pressure-water content model in the storage unit 22 (step S23). . The storage unit 22 may be the same storage unit as the storage unit 12.
 図14は、第二の実施形態の安全率を算出する動作を示すフローチャートである。まず、水分計13は、監視対象の斜面に設置され監視対象の斜面において水分量mtを計測する(ステップS16)。土壌パラメータ推定部14は、監視対象斜面において計測した水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを、記憶部12に記憶された複数の土壌パラメータに基づいて推定する。土壌パラメータ推定部14は、推定した、水分量mtに対応する土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを安全率算出部24に出力する(ステップS17)。 FIG. 14 is a flowchart showing the operation of calculating the safety factor according to the second embodiment. First, the moisture meter 13 is installed on the slope to be monitored and measures the amount of water mt on the slope to be monitored (step S16). The soil parameter estimation unit 14 stores a plurality of soil parameters corresponding to the moisture amount mt measured on the monitored slope, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt. Estimate based on soil parameters. The soil parameter estimation unit 14 outputs the estimated soil parameter corresponding to the moisture amount mt, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt to the safety factor calculation unit 24 (step S17).
 安全率算出部24は、第一の実施形態と同様に、監視対象の斜面の斜面長l、斜面の傾斜勾配角α、すべり層深さdを設定している。そして安全率算出部24は、土壌パラメータ推定部14から出力された土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを用いて式(1)により斜面の第一の安全率Fs1を算出する(ステップS18)。 The safety factor calculation unit 24 sets the slope length l of the slope to be monitored, the slope inclination angle α of the slope, and the slip layer depth d, as in the first embodiment. Then, the safety factor calculation unit 24 uses the soil parameters output from the soil parameter estimation unit 14, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt according to the equation (1), A safety factor Fs1 is calculated (step S18).
 また土壌パラメータ推定部23は、監視対象斜面において計測した水分量mtに基づいて、記憶部22に記憶されている4つのモデルを用いて、監視対象斜面の水分量計測時における4つの解析式変数の値を推定する。そして土壌パラメータ推定部23は、推定された各値、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを安全率算出部24に出力する(ステップS24)。 In addition, the soil parameter estimation unit 23 uses the four models stored in the storage unit 22 based on the moisture amount mt measured on the monitoring target slope, and uses four analytical formula variables when measuring the moisture amount on the monitoring target slope. Estimate the value of. Then, the soil parameter estimation unit 23 outputs the estimated values, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the clot weight Wt to the safety factor calculation unit 24 (step S24).
 また安全率算出部24は、土壌パラメータ推定部23から出力された土壌パラメータ、すなわち粘着力Ct、内部摩擦角φt、間隙水圧ut、土塊重量Wtを用いて式(1)により斜面の第二の安全率Fs2を算出する(ステップS25)。 Further, the safety factor calculation unit 24 uses the soil parameters output from the soil parameter estimation unit 23, that is, the adhesive force Ct, the internal friction angle φt, the pore water pressure ut, and the soil mass weight Wt according to the equation (1) to calculate the second slope. A safety factor Fs2 is calculated (step S25).
 そして表示部25は、算出された第一の安全率Fs1、第二の安全率Fs2に基づいて監視対象斜面の安全率を表示する(ステップS26)。なお表示部25における安全率の表示方法として種々な方法が考えられる。 Then, the display unit 25 displays the safety factor of the monitoring target slope based on the calculated first safety factor Fs1 and second safety factor Fs2 (step S26). Various methods can be considered as a method of displaying the safety factor on the display unit 25.
 図15は、図12の表示部の第一の表示例を示す図である。この例では、表示部25は、図15に示すように、横軸を時刻として、第一の安全率Fs1、第二の安全率Fs2の時間推移をそのまま表示する。また表示部25は、第一の安全率Fs1、第二の安全率Fs2の間に含まれる値、例えば第一の安全率Fs1、第二の安全率Fs2の平均値を安全率(第三の安全率)として表示する。 FIG. 15 is a diagram showing a first display example of the display unit of FIG. In this example, as shown in FIG. 15, the display unit 25 displays the time transition of the first safety factor Fs1 and the second safety factor Fs2 as it is with the horizontal axis as time. The display unit 25 displays a value included between the first safety factor Fs1 and the second safety factor Fs2, for example, an average value of the first safety factor Fs1 and the second safety factor Fs2, as a safety factor (third Display as safety factor.
 図16は、図12の第二の表示例を示す図である。表示部25は、第一の安全率Fs1、第二の安全率Fs2の差分Δ=|Fs1-Fs2|を算出する。表示部25は、図16に示すように、横軸を時刻として、Fs2+Δ(第四の安全率)及びFs2-Δ(第五の安全率)の時間推移を表示する。また表示部25は、Fs2+Δ~Fs2-Δに含まれる値、例えば第二の安全率Fs2を安全率(第六の安全率)として表示する。 FIG. 16 is a diagram showing a second display example of FIG. The display unit 25 calculates a difference Δ = | Fs1−Fs2 | between the first safety factor Fs1 and the second safety factor Fs2. As shown in FIG. 16, the display unit 25 displays time transitions of Fs2 + Δ (fourth safety factor) and Fs2−Δ (fifth safety factor) with the horizontal axis as time. The display unit 25 displays a value included in Fs2 + Δ to Fs2-Δ, for example, the second safety factor Fs2 as a safety factor (sixth safety factor).
 以上説明したように、本実施形態によれば、モデル式ではなく予め測定した土壌パラメータに基づいて推定した安全率と、測定した土壌パラメータから生成されたモデル式に基づいて推定した安全率とを算出する。そしてこれら2つの方法で推定した安全率から安全率の範囲を示すことで、安全性の判断が大きく外れるおそれを少なくでき、適切に監視斜面の安全性を判断することが可能となる。 As described above, according to the present embodiment, the safety factor estimated based on the soil parameter measured in advance instead of the model equation, and the safety factor estimated based on the model equation generated from the measured soil parameter, calculate. And by showing the range of the safety factor from the safety factor estimated by these two methods, it is possible to reduce the possibility that the judgment of safety will be greatly deviated, and it is possible to appropriately judge the safety of the monitoring slope.
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2018年3月13日に出願された日本出願特願2018-044855を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-044455 filed on Mar. 13, 2018, the entire disclosure of which is incorporated herein.
 1、2  斜面監視システム
 11  測定部
 12  記憶部
 13  水分計
 14、16、17  土壌パラメータ推定部
 15  安全率算出部
 141、171  前後水分量抽出部
 142、172  補間関数生成部
 143、173  推定パラメータ算出部
 161  最近水分量抽出部
 162  最近土壌パラメータ抽出部
 21  モデル化部
 22  記憶部
 23  土壌パラメータ推定部
 24  安全率算出部
 25  表示部
DESCRIPTION OF SYMBOLS 1, 2 Slope monitoring system 11 Measurement part 12 Storage part 13 Moisture meter 14, 16, 17 Soil parameter estimation part 15 Safety factor calculation part 141,171 Front and back water content extraction part 142,172 Interpolation function generation part 143,173 Estimation parameter calculation Unit 161 Recent water content extraction unit 162 Recent soil parameter extraction unit 21 Modeling unit 22 Storage unit 23 Soil parameter estimation unit 24 Safety factor calculation unit 25 Display unit

Claims (9)

  1.  監視対象斜面を構成している物質層について水分量と紐づけて土壌パラメータを測定する測定手段と、
     測定された前記土壌パラメータと前記水分量とを紐づけて記憶する記憶手段と、
     前記監視対象斜面において水分量を計測する水分計と、
     前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象斜面において計測された水分量での推定土壌パラメータを推定する第一の土壌パラメータ推定手段と、
     前記推定土壌パラメータを用いて前記監視対象斜面の第一の安全率を算出する安全率算出手段と、
     を有する斜面監視システム。
    A measuring means for measuring a soil parameter in association with a moisture content of a material layer constituting a slope to be monitored;
    Storage means for storing the measured soil parameter and the amount of water in association with each other;
    A moisture meter for measuring the amount of moisture on the slope to be monitored;
    First soil parameter estimating means for estimating an estimated soil parameter at a moisture amount measured at the monitoring target slope based on the soil parameter stored in association with the moisture amount;
    A safety factor calculating means for calculating a first safety factor of the slope to be monitored using the estimated soil parameter;
    Slope monitoring system with.
  2.  前記第一の土壌パラメータ推定手段は、
      前記監視対象斜面において計測された水分量に近い前後の水分量を抽出する前後水分量抽出手段と、
     前記監視対象斜面において計測された水分量に近い前後の水分量の間を補間する第一の補間関数を生成する第一の補間関数生成手段と、
     前記第一の補間関数に、前記監視対象斜面において計測された水分量を代入して、前記推定土壌パラメータを算出する推定パラメータ算出手段と、
     を有する請求項1に記載の斜面監視システム。
    The first soil parameter estimation means includes
    Before and after water content extraction means for extracting the water content before and after the water content measured on the monitored slope,
    First interpolation function generating means for generating a first interpolation function for interpolating between moisture amounts before and after the moisture amount measured on the monitored slope;
    Substituting the amount of moisture measured on the monitoring target slope into the first interpolation function, estimated parameter calculating means for calculating the estimated soil parameter;
    The slope monitoring system according to claim 1.
  3.  前記第一の土壌パラメータ推定手段は、
      前記監視対象斜面において計測された水分量に最も近い最近水分量を抽出する最近水分量抽出手段と、
      前記最近水分量に紐づけて記憶された最近土壌パラメータを、前記推定土壌パラメータとして抽出する最近土壌パラメータ抽出手段と、
     を有する請求項1に記載の斜面監視システム。
    The first soil parameter estimation means includes
    A latest moisture amount extracting means for extracting the latest moisture amount closest to the moisture amount measured on the slope to be monitored;
    Recent soil parameter extraction means for extracting the recent soil parameter stored in association with the recent water content as the estimated soil parameter;
    The slope monitoring system according to claim 1.
  4.  前記第一の土壌パラメータ推定手段は、
      前記監視対象斜面において計測された水分量に最も近い最近水分量を抽出する最近水分量抽出手段と、
      前記最近水分量に紐づいて記憶された最近土壌パラメータを抽出する最近土壌パラメータ抽出手段と、
      前記最近水分量に近い前後の水分量を抽出する第二の前後水分量抽出手段と、
      前記最近水分量に近い前後の水分量の間を補間する第二の補間関数を生成する第二の補間関数生成手段と、
      前記第二の補間関数に前記最近水分量を代入して算出した前記土壌パラメータと前記最近土壌パラメータとに基づいて前記推定土壌パラメータを算出する第二の推定パラメータ算出手段と、
     を有する請求項1に記載の斜面監視システム。
    The first soil parameter estimation means includes
    A latest moisture amount extracting means for extracting the latest moisture amount closest to the moisture amount measured on the slope to be monitored;
    A recent soil parameter extracting means for extracting a recent soil parameter stored in association with the recent water amount;
    A second before and after water content extraction means for extracting the water content before and after the recent water content;
    Second interpolation function generating means for generating a second interpolation function for interpolating between the moisture amounts before and after the nearest moisture amount;
    Second estimated parameter calculation means for calculating the estimated soil parameter based on the soil parameter calculated by substituting the recent moisture amount into the second interpolation function and the recent soil parameter;
    The slope monitoring system according to claim 1.
  5.  前記監視対象斜面を構成している物質層について水分量と前記土壌パラメータの関係をモデル化した関数を生成するモデル化手段と、
     前記関数に基づいて前記監視対象斜面において計測された水分量でのモデル推定土壌パラメータを出力する第二の土壌パラメータ推定手段と、を有し、
     前記安全率算出手段は、前記モデル推定土壌パラメータを用いて第二の安全率を算出する、
     請求項1から4のいずれか一項に記載の斜面監視システム。
    Modeling means for generating a function that models the relationship between the amount of water and the soil parameter for the material layer constituting the monitored slope;
    A second soil parameter estimating means for outputting a model estimated soil parameter at a moisture amount measured on the monitoring target slope based on the function,
    The safety factor calculating means calculates a second safety factor using the model estimated soil parameter,
    The slope monitoring system according to any one of claims 1 to 4.
  6.  前記第一の安全率と、前記第二の安全率と、前記第一の安全率及び前記第二の安全率の間に含まれる第三の安全率とを表示する表示手段を有する、
     請求項5に記載の斜面監視システム。
    Display means for displaying the first safety factor, the second safety factor, and the third safety factor included between the first safety factor and the second safety factor;
    The slope monitoring system according to claim 5.
  7.  前記第一の安全率と前記第二の安全率の差分を算出し、前記第二の安全率に前記差分を加えた第四の安全率と、前記第二の安全率から前記差分を差し引いた第五の安全率とを算出し、
     前記第四の安全率と、前記第五の安全率と、前記第四の安全率及び前記第五の安全率の間に含まれる第六の安全率とを表示する表示手段を有する、
     請求項5に記載の斜面監視システム。
    The difference between the first safety factor and the second safety factor is calculated, the fourth safety factor obtained by adding the difference to the second safety factor, and the difference is subtracted from the second safety factor. Calculate the fifth safety factor,
    Display means for displaying the fourth safety factor, the fifth safety factor, and the sixth safety factor included between the fourth safety factor and the fifth safety factor;
    The slope monitoring system according to claim 5.
  8.  監視対象斜面を構成している物質層について水分量と紐づけて土壌パラメータを測定し、
     測定された前記土壌パラメータと前記水分量とを紐づけて記憶し、
     前記監視対象斜面において水分量を計測し、
     前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象斜面において計測された水分量での推定土壌パラメータを推定し、
     前記推定土壌パラメータを用いて前記監視対象斜面の第一の安全率を算出する、
     斜面監視方法。
    Measure soil parameters in relation to the amount of water for the material layer that constitutes the monitored slope,
    Store the measured soil parameter and the water content in association with each other,
    Measure moisture content on the monitored slope,
    Estimating the estimated soil parameter with the amount of moisture measured at the monitored slope based on the soil parameter stored in association with the amount of moisture,
    Calculating a first safety factor of the monitored slope using the estimated soil parameter;
    Slope monitoring method.
  9.  コンピュータに、
     監視対象斜面を構成している物質層について水分量と紐づけて計測された斜面安定性に関連する土壌パラメータと、前記水分量とを紐づけて記憶する処理、
     前記監視対象斜面において計測された水分量を取得する処理、
     前記水分量と紐づけて記憶された前記土壌パラメータに基づいて前記監視対象の斜面において計測された水分量での推定土壌パラメータを算出する処理、及び、
     前記推定土壌パラメータを用いて前記監視対象斜面の第一の安全率を算出する処理、
     を実行させる斜面監視プログラムを格納した記録媒体。
    On the computer,
    A process for storing and storing the soil parameters related to the slope stability measured in association with the water content and the water content for the material layer constituting the monitoring target slope,
    A process for obtaining the amount of moisture measured on the monitored slope;
    A process for calculating an estimated soil parameter at a moisture content measured on the monitored slope based on the soil parameter stored in association with the moisture content; and
    A process of calculating a first safety factor of the monitored slope using the estimated soil parameter;
    A recording medium that stores a slope monitoring program that executes
PCT/JP2019/009608 2018-03-13 2019-03-11 Slope monitoring system, slope monitoring method, and recording medium WO2019176835A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-044855 2018-03-13
JP2018044855 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176835A1 true WO2019176835A1 (en) 2019-09-19

Family

ID=67906730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009608 WO2019176835A1 (en) 2018-03-13 2019-03-11 Slope monitoring system, slope monitoring method, and recording medium

Country Status (1)

Country Link
WO (1) WO2019176835A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414576A (en) * 2020-04-01 2020-07-14 青岛农业大学 Non-iterative solution method for slope safety coefficient
CN114065590A (en) * 2021-11-25 2022-02-18 中国电建集团成都勘测设计研究院有限公司 Underground cavern block stability analysis method fusing rigid body limit balance method and finite element method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132472A (en) * 1993-11-09 1995-05-23 Mitsubishi Heavy Ind Ltd Approach method by plural distance sensors
JP2010110498A (en) * 2008-11-07 2010-05-20 Fujifilm Corp Imaging device
WO2016027390A1 (en) * 2014-08-21 2016-02-25 日本電気株式会社 Slope monitoring system, device for slope safety analysis, method, and program
WO2017126481A1 (en) * 2016-01-18 2017-07-27 日本電気株式会社 Display control device, method of displaying safety factor, and program recording medium
WO2017145851A1 (en) * 2016-02-23 2017-08-31 日本電気株式会社 Information processing device, parameter correction method and program recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07132472A (en) * 1993-11-09 1995-05-23 Mitsubishi Heavy Ind Ltd Approach method by plural distance sensors
JP2010110498A (en) * 2008-11-07 2010-05-20 Fujifilm Corp Imaging device
WO2016027390A1 (en) * 2014-08-21 2016-02-25 日本電気株式会社 Slope monitoring system, device for slope safety analysis, method, and program
WO2017126481A1 (en) * 2016-01-18 2017-07-27 日本電気株式会社 Display control device, method of displaying safety factor, and program recording medium
WO2017145851A1 (en) * 2016-02-23 2017-08-31 日本電気株式会社 Information processing device, parameter correction method and program recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KASAHARA SHINJI : "Study of Slope Stability Analysis Using Soil Moisture Sensor", 405, no. 405, March 2016 (2016-03-01), pages 49 - 54, XP055684410 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111414576A (en) * 2020-04-01 2020-07-14 青岛农业大学 Non-iterative solution method for slope safety coefficient
CN111414576B (en) * 2020-04-01 2021-03-30 青岛农业大学 Non-iterative solution method for slope safety coefficient
CN114065590A (en) * 2021-11-25 2022-02-18 中国电建集团成都勘测设计研究院有限公司 Underground cavern block stability analysis method fusing rigid body limit balance method and finite element method
CN114065590B (en) * 2021-11-25 2023-04-07 中国电建集团成都勘测设计研究院有限公司 Underground cavern block stability analysis method fusing rigid body limit balance method and finite element method

Similar Documents

Publication Publication Date Title
JP6414222B2 (en) Slope monitoring system, slope safety analysis device, method and program
Kim et al. Determination of joint roughness coefficient (JRC) for slope stability analysis: a case study from the Gold Coast area, Australia
CN105466790B (en) A kind of rock structural face shear strength appraisal procedure of anisotropic character
WO2019176835A1 (en) Slope monitoring system, slope monitoring method, and recording medium
TW201841138A (en) Risk determination device, risk determination system, risk determination method, and computer-readable recording medium
CN113360983B (en) Slope reliability analysis and risk assessment method
WO2019176836A1 (en) Slope monitoring system, slope monitoring method, and recording medium
CN109470581A (en) Open mine side slope rock mass structural plane shearing strength is classified the method for determination
JP6610666B2 (en) Slope evaluation apparatus, judgment system, slope evaluation method and program
JP2021012078A (en) Temperature distribution estimation device and temperature distribution estimation method
Monforte et al. Permeability estimates from CPTu: a numerical study
KR102230397B1 (en) Displacement Estimating Method of a Structure based on Acceleration and Strain
JP2016161463A (en) Liquefaction strength curve generation method and program
Langat et al. Estimating the furrow infiltration characteristic from a single advance point
Wei et al. Nonlinearity of the rock joint shear strength
CN110276045B (en) Analysis device
JP7007222B2 (en) Seismic resistance judgment method for structures and seismic resistance judgment system for structures
JP2020197475A (en) Parameter determination device, parameter determination method, and parameter determination program
JP2005273218A (en) Apparatus and method for evaluating behavior of groundwater in bedrock drilling, computer program, and recording medium
Mendes et al. Physical and numerical modelling of infiltration and runoff in unsaturated exposed soil using a rainfall simulator
Liao et al. Application of Spline Interpolation Function in Back Analysis of Displacement of Pile Support in Foundation Pit
Kuklina Scaling and dynamics of special machines
Moiseev Calculating the density of loamy sandy soddy-podzolic soils from penetration resistance diagrams
JP5318183B2 (en) Earthquake response analysis apparatus, earthquake response analysis method, and earthquake response analysis program
Moret-Fernández et al. Microflowmeter–tension disc infiltrometer: Part II–Hydraulic properties estimation from transient infiltration rate analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766495

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP